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Abstract. The classical definition of tissue P systems includes a dis-
tinguished alphabet with the special assumption that its elements are
available in an arbitrarily large amount of copies. These objects are
shared in a distinguished place of the system, called the environment.
This ability of having infinitely many copies of some objects has been
widely exploited in the design of efficient solutions to computationally
hard problems by means of tissue P systems.

This paper deals with computational aspects of tissue P systems with
cell separation where there is no such environment as described above.
The main result is that only tractable problems can be efficiently solved
by using this kind of P systems. Bearing in mind that INP-complete
problems can be efficiently solved by using tissue P systems without
environment and with cell division, we deduce that in the framework
of tissue P systems without environment, the kind of rules (separation
versus division) provides a new frontier of the tractability of decision
problems.

Keywords: Membrane Computing, Tissue P System, Cell Separation,
Environment of a Tissue, Computational Complexity, Borderline of
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1 Introduction

Membrane Computing is a young branch of Natural Computing initiated by
Gh. Piun in the end of 1998 [15]. The computational devices of this paradigm,
called P systems, operate in a distributed, parallel and non-deterministic manner,
getting inspiration from living cells (their structure and functioning), as well as
from the way cells are organized in tissues, organs, etc.

Several different models of cell-like P systems have been successfully used
to solve computationally hard problems efficiently, by trading space for time,
usually following a brute force approach: an exponential workspace is created
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in polynomial time by using some kind of rules, and then massive parallelism
is used to simultaneously check all the candidate solutions. Inspired by living
cells, several ways for obtaining exponential workspace in polynomial time were
proposed: membrane division (mitosis) [16], membrane creation (autopoiesis) [7],
and membrane separation (membrane fission) [12]. These three ways have given
rise to the following models: P systems with active membranes, P systems with
membrane creation, and P systems with membrane separation.

A new type of P systems, the so-called tissue P systems, was considered
in [10]. Instead of considering a hierarchical arrangement, membranes/cells are
placed in the nodes of a virtual graph. This variant has two biological justifica-
tions (see [11]): intercellular communication and cooperation between neurons.
The common mathematical model of these two mechanisms is a net of processors
dealing with symbols and communicating these symbols along channels speci-
fied in advance. The communication among cells is based on symport/antiport
rules, which were introduced to P systems in [18]. These models have a special
alphabet associated with the environment of the system and it is assumed that
the symbols of that alphabet appear in an arbitrary large amount of copies at
the initial configuration of the system.

From the seminal definitions of tissue P systems [10, 11], several research lines
have been developed and other variants have arisen (see, for example, [1,2,4, 8,
9,14]). One of the most interesting variants of tissue P systems was presented
in [19], where the definition of tissue P systems is combined with the one of P
systems with active membranes, yielding tissue P systems with cell division.

In the biological phenomenon of fission, the contents of the two new cells
evolved from a cell can be significantly different, and membrane separation in-
spired by this biological phenomenon in the framework of cell-like P systems
was proved to be an efficient way to obtain exponential workspace in polynomial
time [12]. In [13], a new class of tissue P systems based on cell fission, called tis-
sue P systems with cell separation, was presented. Its computational efficiency
was investigated, and two important results were obtained: (a) only tractable
problems can be efficiently solved by using cell separation and communication
rules with length at most 1, and (b) an efficient (uniform) solution to the SAT
problem by using cell separation and communication rules with length at most
8 was presented.

In this paper we study the efficiency of tissue P systems with communication
rules and cell separation where the alphabet associated with the environment
is empty. These systems are called tissue P systems without environment and,
specifically, we prove that only tractable problems can be solved in polynomial
time by families of tissue P systems with communication rules, with cell separa-
tion and without environment.

The paper is organized as follows: first, we recall some preliminaries, and
then, the definition of tissue P systems with cell separation, recognizer tissue
P systems and computational complexity classes in this framework, are briefly
described. Section 4 is devoted to the main result of the paper: the polynomial
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complexity class associated with TSC is the class P. Finally, conclusions and
further works are presented.

2 Preliminaries

An alphabet, X, is a non—empty set whose elements are called symbols. A finite
sequence of symbols is a string over Y. If v and v are strings over X, then so
is their concatenation wv, obtained by juxtaposition, that is, writing v and v
one after the other. The number of symbols in a string u is the length of the
string, and it is denoted by |u|. As usual, the empty string (with length 0) will
be denoted by A. The set of all strings over an alphabet X' is denoted by X*. In
algebraic terms, X* is the free monoid generated by X under the operation of
concatenation. Subsets of X*, finite or infinite, are referred to as languages over
2.

The Parikh vector associated with a string u € X* with respect to the
alphabet ¥ = {a1,...,a,} is ¥s(u) = (|u|a,,-.-,|ula.), where |u|,, denotes
the number of ocurrences of the symbol a; in the string w. This is called the
Parikh mapping associated with Y. Notice that in this definition the ordering
of the symbols from X is relevant. If ¥ = {a;,,...,a;,} € X then we define
Uy, (u) = (Ju a;, ), for each u € X%,

A multiset m over a set A is a pair (A, f) where f : A — IN is a mapping. If
m = (A, f) is a multiset then its supportis defined as supp(m) = {z € A| f(z) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A, and supp(m) = {a1,...,ax} then
it will be denoted as m = {a{(al)7 . ,ai(a’“)}. That is, superscripts indicate the

multiplicity of each element, and if f(z) = 0 for x € A, then the element x
f(a1)
1

aiysees U

is omitted. A finite multiset m = {a

by the string a{(al) . ..ai(ak) over the alphabet {ai,...,a;}. Nevertheless, all

permutations of this string identify the same multiset m precisely. Throughout
this paper, whenever we refer to “the finite multiset m” where m is a string, this
should be understood as “the finite multiset represented by the string m”.

It my = (A, f1), ma = (A4, f2) are multisets over A, then we define the union of
my and mo as m1+mo = (4,g), where g = f1 + fa, that is, g(a) = f1(a)+ f2(a),
for each a € A. We also define the difference m4 \ mo as the multiset (A, h),
where h(a) = fi(a) — f2(a), in the case fi(a) > f2(a), and h(a) = 0, otherwise.
In particular, given two sets A and B, A\ B is the set {x € A| = ¢ B}.

In what follows, we assume the reader is already familiar with the basic
notions and the terminology of P systems. For details, see [17].

..,al™)} can also be represented

2.1 Tissue P Systems with Communication Rules and with Cell
Separation

A tissue P system with communication rules and with cell separation of degree
q (¢g>1)isatuple IT = (I,E,Io, I'1, My,..., My, R,iout), where:
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1. I' is a finite alphabet.
2. £ECT.
3. {Iv, I} is a partition of I', that is, I' = Ty U I, I, I1 # 0, Ty N Iy = 0
4. My,..., M, are strings over I'.
5. R is a finite set of rules of the following forms:
Communication rules: (i,u/v,j), for i,5 € {0,...,q},1 # j, u,v € I'*,
|ul + o] > 0;
Separation rules: [a]; — [Io];[I1]i, where i € {1,...,q}, a € I" and © # ioyt.

6. iout S {0, . ,q}

A tissue P system with communication rules and with cell separation II =
(€, Io, I, M1, ..., Mg, R,iou), of degree g can be viewed as a set of g cells,
labelled by 1,...,q such that: (a) My,..., M, represent the finite multisets of
objects initially placed in the ¢ cells of the system; (b) &£ is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; and (c) i,t represents a distinguished region which
will encode the output of the system. We use the term region i (0 < i < q) to
refer to cell 7 in the case 1 < i < ¢ and to refer to the environment in the case
1=0.

A communication rule (i,u/v,j) is called a symport rule if u = X or v = A.
A symport rule (¢,u/),j), with ¢ # 0,5 # 0, provides a virtual arc from cell i
to cell j. A communication rule (¢,u/v, j) is called an antiport rule if u # X and
v # A. An antiport rule (7, u/v, j), with ¢ # 0, j # 0, provides two arcs: one from
cell 7 to cell j and the other from cell j to cell i. Thus, every tissue P system has
an underlying directed graph whose nodes are the cells of the system and the
arcs are obtained from communication rules. In this context, the environment
can be considered as a virtual node of the graph such that its connections are
defined by communication rules of the form (i,u/v,j), with ¢ =0 or j = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of communication rule (i, u/v, )
is defined as |u| + |v].

When applying a separation rule [a]; — [I5];[{1]:, in reaction with an object
a, the cell ¢ is separated into two cells with the same label; at the same time,
object a is consumed; the objects from [ are placed in the first cell, those from
I} are placed in the second cell; the output cell i,,; cannot be separated.

The rules of a system like the above one are used in a non-deterministic
maximally parallel manner as customary in membrane computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further applicable rule can
be added). This way of applying rules has only one restriction: when a cell is
separated, the separation rule is the only one which is applied for that cell at that
step; thus, the objects inside that cell do not evolve by means of communication
rules. The new cells resulting from separation could participate in the interaction
with other cells or the environment by means of communication rules at the
next step — providing that they are not separated once again. The label of a cell
precisely identifies the rules which can be applied to it.
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An instantaneous description or a configuration at any instant of a tissue
P system with cell separation is described by all multisets of objects over I'
associated with all the cells present in the system, and the multiset of objects
over I' — & associated with the environment at that moment. Recall that there
are infinitely many copies of objects from £ in the environment, and hence this
set is not properly changed along the computation. The initial configuration
is (My,--+,My;0). A configuration is a halting configuration if no rule of the
system is applicable to it.

Let us fix a tissue P system with cell separation IT. We say that configuration
C; yields configuration Cs in one transition step, denoted by C; =7 Co, if we can
pass from C; to Co by applying the rules from R following the previous remarks.
A computation of II is a (finite or infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;

2. each non-initial configuration of the sequence is obtained from the previous
configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output cell i,,; in the halting configuration.

If C = {Ci}i<ry1 of IT (r € IN) is a halting computation, then the length of C
is 7, that is, the number of non-initial configurations which appear in the finite
sequence C. We denote it by |C|. We also denote by C;(i) the contents of region
i (0 <i < q) at the configuration C;.

2.2 Recognizer Tissue P Systems

In order to study the computing efficiency, the notions from classical compu-
tational complexity theory are adapted for membrane computing, and a special
class of cell-like P systems is introduced in [22]: recognizer P systems (called ac-
cepting P systems in a previous paper [21]). For tissue P systems, with the same
idea as recognizer cell-like P systems, recognizer tissue P systems is introduced
in [19].

A recognizer tissue P system with communication rules and with cell separa-
tion of degree g (¢ > 1) is a tuple IT = (I, €, X, I'o, I'1, M1, ..., Mg, R, iin, tout),
where:

- (E, Lo, I, My, ..., Mg, R,iout) is a tissue P system with communication
rules and with cell separation of degree ¢, as defined in the previous subsec-

tion.
— The working alphabet I" has two distinguished objects yes and no, at least
one copy of them present in some initial multisets My, ..., M,.

X is an (input) alphabet strictly contained in I" such that X N & = (.
- My,..., M, are strings over I" \ X.
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— iin € {1,..., ¢} is the input cell.

— dout = 0 is the output region, that is, the output of the system is encoded in
the environment.

All computations halt.

If C is a computation of II, then either object yes or object no (but not
both) must have been released into the output region, and only at the last
step of the computation.

For each w € X* the computation of the system II with input w € X* starts
from the configuration of the form (My,...,M;, +w,..., My;0), that is, the
input multiset w has been added to the contents of the input cell i;,, and we
denote it by IT 4+ w. Therefore, we have an initial configuration associated with
each input multiset w (over the input alphabet X) in this kind of systems.

Given such a recognizer tissue P system and a halting computation C =
{Ci}t<rs1 of IT (r € IN), we define the result of C as follows:

yes, if Yiyesnoy(Mro) = (1,0) A
— P(yes,no}(Mio) = (0,0) for t =0,...,r — 1
Output(C) = no, if U(yes,no}(Mro) = (0,1) A
Q/{yes,no}(Mt,o) = (0, O) fort=0,...,r—1

where ¥ is the Parikh mapping, and M, is the multiset over I" \ £ associated
with region 0 at the configuration C;, in particular, M, o is the multiset over
I'\ € associated with region 0 at the halting configuration C,.

We say that a computation C is an accepting computation (respectively, re-
jecting computation) if Output(C) = yes (respectively, Output(C) = no), that
is, if object yes (respectively, object no) appears in the output region of the
corresponding halting configuration of C, and neither object yes nor no appears
in the output region of any non-halting configuration of C.

We denote by TSC the class of recognizer tissue P systems with cell commu-
nication and with cell separation. For each natural number & > 1, we denote by
TSC(k) the class of recognizer tissue P systems with cell separation and with
communication rules of length at most k.

3 Tissue P Systems with Communication Rules, with
Cell Separation and without Environment

Definition 1. A tissue P system with communication rules, with cell separation
and without environment of degree q + 1 is a tuple

I = (F7F07F17M0aM17 e >Mq7Rai0ut)7
where:

1. I is a finite alphabet.
2. {Iy, I} is a partition of I', that is, I' = [, U Iy, I'o, In #0, IoN Iy = 0;
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3. Mo, My,..., My are strings over I
4. R is a finite set of rules of the following forms:
Communication rules: (i,u/v,j), for i,5 € {0,...,q},i # j, u,v € I'*,
|ul + [v] > 0;
Separation rules: [a]; — [[0]i[I1]i, wherei € {0,...,q}, a € I" and i # iout-
5. tout €{0,...,q}.

A tissue P system with communication rules, with cell separation and with-
out environment is a tissue P system with communication rules and with cell
separation such that the alphabet £ of the environment is empty.

Definition 2. A recognizer tissue P system with communication rules, with cell
separation and without environment of degree q + 1 is a tuple

I = (F7Z>F07F15M07M17- .. an7R7iina7;out)
where:

— (I Lo, I, Mo, My, ..., My, Ry iout) 05 a tissue P system with communica-
tion rules, with cell separation and without environment of degree q + 1, as
defined previously.

— The working alphabet I' has two distinguished objects yes and no, at least
one copy of them present in some initial multisets Mo, My, ..., M,.

— X is an (input) alphabet strictly contained in I.

- Mo, My, ..., M, are strings over I' \ X.

— in €4{1,...,q} is the input cell.

— dout = 0 is the output cell.

— All computations halt.

— If C is a computation of II, then either object yes or object no (but not
both) must have been released into cell 0, and only at the last step of the
computation.

For each w € X* the computation of the system I with input w € X* starts
from the configuration of the form (Mg, Mq,..., M;, +w,..., My;0), that is,
the input multiset w has been added to the contents of the input cell i;,, and
we denote it by IT 4+ w. Therefore, we have an initial configuration associated
with each input multiset w (over the input alphabet X') in this kind of systems.

Given a recognizer tissue P system with cell separation, and a halting com-
putation C of II, the result of C is defined as in the previous section.

We denote by TSC the class of recognizer tissue P systems with cell com-
munication, cell separation and without environment. For each natural number

k > 1, we denote by ’I{SE(k) the class of recognizer tissue P systems with cell
separation, without environment, and with communication rules of length at
most k.
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3.1 Polynomial Complexity Classes

Next, we define what solving a decision problem in a uniform and efficient way
means in the framework of tissue P systems. Since we define each tissue P system
to work on a finite number of inputs, to solve a decision problem we define a
numerable family of tissue P systems.

Definition 3. We say that a decision problem X = (Ix,0x) is solvable in a
uniform way and polynomial time by a family II = {II(n) | n € IN} of recognizer
tissue P systems with communication rules, with cell separation and without
environment if the following holds:

e The family II is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system II(n) from n € IN.

e There exists a pair (cod, s) of polynomial-time computable functions over Ix
such that:

— for each instance u € Ix, s(u) is a natural number, and cod(u) is an
input multiset of the system I1(s(u));

— for each n € IN, s71(n) is a finite set;

— the family I is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u € Ix every
computation of II(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

— the family 11 is sound with regard to (X, cod, s), that is, for each u € Ix,
if there exists an accepting computation of II(s(u)) with input cod(u),
then 0x (u) = 1;

— the family II is complete with regard to (X,cod,s), that is, for each
u € Ix, if Ox(u) = 1, then every computation of II(s(u)) with input
cod(u) is an accepting one.

>From the soundness and completeness conditions above, we deduce that
every P system II(n) is confluent, in the following sense: every computation of
a system with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCg the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCpg is closed under
complement and polynomial-time reductions [21].

4 Efficiency of Tissue P Systems with Cell
Communication, with Cell Separation and without
Environment

4.1 Representation of Tissue P Systems from TSC

Let IT = (I, X, Iy, [h, Mo, M1, ..., Mg, R,iin,iout) be a recognizer tissue P
system of degree g+1 with communication rules, with cell separation and without
environment.
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1. We denote by R¢ (Rg respectively) the set of communication rules (separa-
tion rules respectively) of II. We will fix total orders in R¢ and Rg.

2. Let C be a computation of I, and C; a configuration of C. The application
of a communication rule keeps the multiset of objects of the whole system
unchanged because only movement of objects between the cells of the system
is produced. On the other hand, the application of a separation rule causes
that an object is removed from the system, and since there is no objects
replication, the rest remain unchanged. Thus, the multiset of objects of the
system in any configuration C; is contained in Mg + - - - + M,. Moreover, if
M = |Mgy+ -+ M,| then the total number of copies of cell ¢ € {0, ..., ¢}
at configuration C is, at most, M because the copies can only be produced
by the application of a separation rule, and each application of this kind of
rule consumes one object. Consequently, (¢ + 1) - M is an upper bound of
the number of cells at any configuration of the system.

3. In order to identify the cells created by the application of a separation rule,
we modify the labels of the new membranes in the following manner:

— The label of a cell will be a pair (i,0) where 0 < i < g and o € {0,1}*.
At the initial configuration, the labels of the cells are (0, A),..., (g, \).

— If a separation rule is applied to a cell labelled by (i, o), then the new cre-
ated cells will be labelled by (7,00) and (7, 01), respectively. Cell (i,00)
will contain the objects of cell (i,0) which belong to Iy, and cell (i,01)
will contain the objects of cell (i,0) which belong to I1.

— Note that we can consider a lexicographical order over the set of labels
(7,0) in a natural way.

4. If cells labelled by (4,0;) and (j,0;) are engaged by a communication rule,
then, after the application of the rule, both cells keep their labels.

5. A configuration of IT can be described by a multiset of labelled objects from
{(a,i,0)]ae TU{A},0<i<gq,0€{0,1}*}.

6. Let 7 = (i,a1---as/by---by,j) be a communication rule of IT. If n is a
natural number, then denote by n - LHS(r, (4,0;),(j,0;)) the multiset of
labelled objects “consumed” by applying n times rule r over cells (i,0;) and
(J,05). That is, n - LHS(r, (i,0;), (j,0;)) is the following multiset

(a17i,ai)n e (a87ivai)n(b17j7 Jj)n e (bs’aj7 U])n
Similarly, n - RHS(r, (i,0;), (j,0;)) denotes the multiset of labelled objects
produced by applying n times rule r over cells (i,0;) and (j,0;). That is,
n-RHS(r, (i,0:),(j,0;)) is the following multiset
(alvj; Uj)n o (asajv Uj)n(blv i? Ui)n tet (bs/vi; Ui)n
7. If C; is a configuration of I we denote by C; + {(z,4,0)/c’} the multiset
obtained by replacing in C; every occurrence of (z,i,0) by (x,i,0"). Besides,

C: +m ( C:\ m, respectively) is used to denote that a multiset m of labelled
objects is added (removed, respectively) to the configuration.
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4.2 Efficiency of Tissue P Systems from TSC

The goal of this section is to show that only tractable problems can be solved
efficiently by using tissue P systems with communication rules, separation rules
and without environment. That is, we will prove that P = PMC tg&.

For this purpose, given a family of recognizer tissue P system, we provide
a deterministic algorithm A working in polynomial time that receives as input
a recognizer tissue P system from TSC together with an input multiset, and
reproduces the behaviour of a computation of such system. In particular, if the
given tissue P system is confluent, then algorithm will provide the same answer
of the system, that is, the answer of the algorithm is affirmative if and only if
the input tissue P system has an accepting computation.

The pseudocode of the algorithm A is described as follows:

Input: A recognizer tissue P system [/ from ﬁﬁ and an input multiset m
Initialization stage: the initial configuration Co of IT+m
t«0
while C; is a non halting configuration do
Selection stage: Input C;, Output (C;, A)
Ezecution stage: Input (C;, A), Output Cii1
t+t+1
end while
Output: Yes if C; is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a
recognizer tissue P system II. Specifically, the selection stage receives as input a
configuration C; of IT at an instant ¢. The output of this stage is a pair (C;, 4),
where A encodes a multiset of rules selected to be applied to C;, and C; is the
configuration obtained from C,; once the labelled objects corresponding to the
application of rules from A have been consumed. The execution stage receives
as input the output (C;, A) of the selection stage. The output of this stage is the
next configuration C;yq1 of C;. Specifically, at this stage, the configuration Ci4q
is obtained from C; by adding the labelled objects produced by the application
of rules from A.

Next, selection stage and execution stage are described in detail.

Selection stage.

Input: A configuration C; of I at instant ¢
Ci+Cit; A<0; B0
for r = (i,u/v,j) € Rc according to the order chosen do
for each pair of cells (i,0;),(j,0;) of C{ according to the
lexicographical order do
Ny < maximum number of times that r is applicable to (i,0;),(J,0;)
if n, > 0 then
C{t — Cé \Tlr : LHS(Tv (iv Ui), (.77 Uj))
A+ AU {(T’ nr, (i’ 0'7;), (]7 Uj))}
B+ BU {(ivo—’i)7 (]7 Uj)}
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end if
end for
end for
for r = [a]; — [I0]i[[1]: € Rs according to the order chosen do
for each (a,i,0;) € C{, according to the lexicographical order, and
such that (i,0;) ¢ B do
Ci «+ Ci\ {(a,i,09)}
A+ AU{(r1,(0))}
B+ BU{(i,04)}
end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of IT because the
number of cycles of the first main loop for is of order
O(|R| - MW), and the number of cycles of the second main loop for
is of order O(|R| - |I'| - (2M + q)). Besides, the last loop includes a membership
test of order O(2M + q).

In order to complete the simulation of a computation step of the system I7,
the execution stage takes care of the effects of applying the rules selected in the
previous stage: updating the objects according to the RHS of the rules.

Execution stage.

Input: The output C; and A of the selection stage
for each (r,n,,(i,0:),(j,0;)) € A do
Ci < C{+n, - RHS(r,(i,0:), (j,05))
end for
for each (r,1,(i,0:)) € A do
Ci + Ci+ {(\i,04)/0:0}
Ci+ Ci+{(\i,0:1)}
for each (z,i,0;) € C; according to the lexicographical order do
if z € Iy then
C,+Ci+ {(z,i,04)/0:0}
else
Ci + Ci + {(x,i,04)/0:1}
end if
end for
end for
Ct+1 < C,;

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of IT because the
number of cycles of the first main loop for is of order O(|R|), and the number
of cycles of the second main loop for is of order O(|R| - |I'| - (2M + q)). Besides,
inside the body of the last loop there is a membership test of order O(|I|).
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Throughout this algorithm we have deterministically simulated a computa-
tion of IT in such manner that the answer of the algorithm is affirmative if and
only if the simulated computation is accepting.

Theorem 1. P = PMCT/S\C.

Proof. Tt suffices to prove that PMCqgs C P. Let £ € IN such that X €

PMC’I/‘S\C(k) and let {II(n) : n € IN} be a family of tissue P systems from

'I<S\C(l<:) solving X according to Definition 3. Let (cod, s) be a polinomial en-
coding associated with that solution. If u € I'x is an instance of the problem X,
then w will be processed by the system IT(s(u)) + cod(u).

Let us consider the following algorithm A’:

Input: an instance u of the problem X.
Construct the system II(s(u)) + cod(u).
Run algorithm A with input II(s(u)) + cod(u).
Output: Yes if II(s(u))+cod(u) has an accepting computation, No otherwise

The algorithm A’ receives as input an instance u of the decision problem X =
(Ix,0x) and works in polynomial time. The following assertions are equivalent:

1. Ox(u) = 1, that is, the answer of problem X to instance u is affirmative.
2. Every computation of IT(s(u)) + cod(u) is an accepting computation.
3. The output of the algorithm with input u is Yes.

Hence, X € P.
O

Remark 1. From the previous theorem we deduce that P = PMCrfé\c(g). In
[23], a polynomial time solution of the SAT problem was given by a family of
tissue P systems from TSC(3) according to Definition 3. Thus, NP U co-NP
C PMCrsc(3)- Hence, in the framework of tissue P systems with cell separation
and communication rules of length at most 3, the environment provides a new

borderline between efficiency and non-efficiency, assuming P # NP.

Remark 2. From the previous theorem we deduce that P = PMCrFs\C(z)' In

[24], it was shown that PMCypcri1) = PMC'I/‘D\C(IH»l)’ for each k € IN. In
[25], a polynomial time solution of the HAM-CYCLE problem was given by a family
of tissue P systems from TDC(2) according to Definition 3. Thus, NP U co-NP
C PMCrpce) = PMC’FD\C(Q)' Hence, in the framework of tissue P systems
with communicaction rules of length at most 2 and without environment, the
kind of rules (separation versus division) provides a new borderline between the

efficiency and non-efficiency, assuming P # NP.
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5 Conclusions and Further Works

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The usual approach is to perform a space-time tradeoff that al-
lows “efficient” (in terms of the number of steps of the computations) solutions
to NP-complete problems in the framework of Membrane Computing. For in-
stance, membrane division, membrane creation, and membrane separation are
three efficient ways of obtaining exponential workspace in polynomial time that
have been used in the literature. Such tools have been adapted to tissue-like P
systems, and linear-time solutions to the SAT problem have been designed both
in the model with cell division rules [19], as well as in the case of cell separation
[13].

In this paper, the computational efficiency of tissue P systems with cell sepa-
ration and without environment has been studied. We highlight the relevant role
played by the environment in this framework from the point of view of efficiency.

Finally, two new borderlines between efficiency and non-efficiency are pre-
sented, assuming P # NP. The first of them is related with the environment
and the second one is related to the kind of rules (separation versus division).
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