
Reaching efficiency through collaboration in membrane
systems: Dissolution, polarization and cooperation

Luis Valencia-Cabrera, David Orellana-Martín, Miguel A. Martínez-del-Amor, 
Agustín Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Sevilla, 41012, Spain

                                                             a b s t r a c t

Keywords:
Membrane computing 
Active membranes 
Cooperative rules Minimal 
cooperation 
Computational complexity 
The P versus NP problem

From a computational complexity point of view, some syntactical ingredients play different
roles depending on the kind of combination considered. Inspired by the fact that the
passing of a chemical substance through a biological membrane is often done by an
interaction with the membrane itself, systems with active membranes were considered.
Several combinations of different ingredients have been used in order to know which kind
of problems could they solve efficiently In this paper, minimal cooperation with a minimal
expression (the left-hand side of every object evolution rule has at most two objects and
its right-hand side contains only one object) in object evolution rules is considered and a
polynomial-time uniform solution to the SAT problem is presented. Consequently, a new
way to tackle the P versus NP problem is provided.

1. Introduction

The first models in Membrane Computing were designed in such a manner that the number of membranes could not
increase during a computation. They could only decrease by dissolving membranes as a result of applying some rules to the 
objects present in the system. However, in these systems an exponential workspace (expressed in terms of the number of 
objects) can be constructed in linear time, e.g. via evolution rules of the type a → (a2, here). Nevertheless, such a capability 
is not enough to efficiently solve NP-complete problems, unless P = NP (see [6] for details).

It is well known that in ideal circumstances, a cell produces two identical copies by the processes of interphase and 
mitosis. First, the cell grows and makes a copy of its DNA (replication) and, finally, the cell separates its DNA into two 
sets and divides its cytoplasm, forming two new cells. Inspired from this mechanism, a new kind of rules was introduced 
in Membrane Computing allowing the proliferation of membranes by means of division rules. A membrane without any 
other membrane inside it (elementary membrane) can be divided by means of an interaction with an object from that 
membrane. In [12], cell-like P systems with active membranes are defined incorporating this ingredient. In such systems, 
each membrane has an electrical charge (positive, negative or neutral) associated with it, but the rules are non-cooperative 
and there are no priorities among rules. Besides, a non-elementary membrane (that is, a membrane with one or more 
membranes within it) with at least two inner membranes can also be divided. The skin cannot be divided.
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In the classical version of these systems, each membrane is identified by a label and has an electrical polarization 
(positive, negative or neutral) associated with it. They can be dissolved or their objects can be replicated (respectively 
distributed) by a mechanism abstracting the cell division (membrane fission) process. In each membrane, objects can evolve 
according to given evolution rules, or can be sent outside the current membrane or to an inner membrane. This framework 
is too powerful with respect to efficiency, so that PSPACE-complete problems can be solved in polynomial time with respect 
to the input size by avoiding cooperative rules, dissolution and division for non-elementary membranes.

The class of all problems solvable in polynomial time with respect to the input size and in a uniform way1 by means of 
families of P systems with active membranes using division for elementary and non-elementary membranes contains class
PSPACE and it is contained in class EXP [15]. Thus, in order to provide efficient solutions to computationally hard problems, 
this framework seems to be too powerful from the computational complexity point of view. If polarizations are removed, 
then dissolution rules become essential, in the sense that, without their presence, only problems in class P can be efficiently 
solved by families of these kind of systems.

P systems with active membranes and without electrical charges were initially studied in [1,2]. Polarizations were re-
placed by the possibility to change the label of the membranes by means of some rules. However, in order to obtain 
polynomial-time solutions to computationally hard problems, two polarizations suffice (see [3] for details). In [14] bi-stable 
catalysts are used to compensate the loss of computational efficiency represented by avoiding polarizations. Recognizer po-
larizationless P systems with active membranes were introduced in [7] as systems such that: (a) the working alphabet has 
two distinguished objects yes and no; (b) there is an input alphabet strictly contained in the working alphabet; (c) the 
initial multisets do not contain any object from the input alphabet; (d) there is a distinguished membrane (the input mem-
brane); (e) the output region is the environment; (f) all computations halt; and (g) either object yes or object no (but not 
both) must have been released into the environment for any computation, and only at the last step.

In [7] the first polynomial-time semi-uniform solution to SUBSET-SUM problem was given in the framework of po-
larizationless P systems with active membranes using division rules for elementary and non-elementary membranes and 
without dissolution. In [4] a polynomial-time uniform solution to the satisfiability of a quantified Boolean formula (QSAT) 
problem (a well known PSPACE-complete problem) was given in that framework by using division for elementary and non-
elementary membranes. In [7] was highlighted the surprising role of (up to then) an apparently “innocent” type of rules: 
dissolution. Thus, in the framework of polarizationless P systems with active membranes using division for elementary and 
non-elementary membranes, passing from allowing dissolution rules to forbidding them amounts to passing from efficiency 
to non-efficiency.

Let us recall that in P systems with active membranes, division rules provide a mechanism to produce an exponential 
number of membranes in linear time. This mechanism can be replaced by other one, inspired by the membrane fission 
process, by which a biological membrane splits into two new ones in such a manner that the contents of the initial mem-
brane is distributed between the new membranes. Membrane separation rules have been introduced in the framework of P 
systems with active membranes instead of division rules, and their efficiency have been shown [8–10].

Rules involving the evolution of several objects at the same time are called cooperative rules. It is the case of cooperation 
by means of objects. An object a needs additional objects in order to evolve, and the application of the rules “consumes” 
the additional objects used. An interesting particular case of cooperative rules is the ones involving certain special objects 
(called catalysts), specified in advance. In these rules, regular objects only evolve in evolution rules in conjunction with 
these catalyst objects, which remain unmodified [11].

It is worth noting that polarization in P systems with active membranes also provides a certain kind of “cooperation”. 
In these systems, a rule associated with the label of a membrane can be triggered at a moment of time t when a certain 
object is present in the membrane. However, additionally, it needs to “cooperate” with a specific polarization associated 
with the membrane at instant t . In this case, the polarization is not “consumed” by the application of the rule, in the sense 
that many different objects of the current contents can evolve at instant t “by using” the same polarization.

The paper is organized as follows. In Section 2, polarizationless P systems with active membranes by using minimal 
cooperation in object evolution rules are considered. The computational efficiency of such P systems using minimal cooper-
ation with minimal production (only a single object is produced by the application of any rule) is established in Section 3
by providing a uniform polynomial-time solution to the SAT problem. A formal verification of this result is presented in 
Section 4. Next, the main results of the paper are presented in Section 5. Finally, the paper ends with some conclusions and 
open problems.

2. Polarizationless P systems with active membranes and minimal cooperation in object evolution rules

We assume the reader is familiar with basic notions and terminology of membrane computing [13]. However, before 
going on let us briefly overview some notations that will be used throughout the paper. An alphabet � is a non-empty set 
whose elements are called symbols. A multiset over an alphabet � is an ordered pair (�, f ), where f is a mapping from �
onto the set of natural numbers N. The support of a multiset m = (�, f ) is defined as supp(m) = {x ∈ � | f (x) > 0}, and its 

1 For more details about the uniformity of a solution, see [4].



size is |m| = �x∈supp(m) f (x). We denote by M(�) the set of all multisets over �. If m1 = (�, f1), m2 = (�, f2) are multisets 
over �, then the union of m1 and m2, denoted by m1 +m2, is the multiset (�, g), where g(x) = f1(x) + f2(x) for each x ∈ �.

Next, minimal cooperation in object evolution rules is introduced in the framework of polarizationless P systems with 
active membranes. The term “minimal cooperation” is used in the following sense: the left-hand side of such rules consists 
of two symbols.

Definition 2.1. In the context of polarizationless P system with active membranes, several types of minimal cooperation in 
object evolution rules are defined as follows.

– Minimal cooperation (mc): object evolution rules are of the form [ u → v ]h , where u, v ∈ M(�) such that |u| ≤ 2, but at
least one object evolution rule verifies |u| = 2.

– Primary minimal cooperation (pmc): object evolution rules are of the form [ u → v ]h , where u, v ∈ M(�) and 1 ≤
|u|, |v| ≤ 2, but at least one object evolution rule verifies |u| = 2.

– Bounded minimal cooperation (bmc): object evolution rules are of the form [ u → v ]h , where u, v ∈ M(�) and 1 ≤ |v| ≤
|u| ≤ 2, but at least one object evolution rule verifies |u| = 2.

– Minimal cooperation and minimal production (mcmp): object evolution rules are of the forms [ a → b ]h or [ a b → c ]h ,
where a, b, c ∈ �, but at least one object evolution rule is of the second type.

In these systems, send-in communication rules, send-out communication rules, dissolution rules and division rules are 
non-cooperative rules.

In polarizationless P systems with active membranes and minimal cooperation in object evolution rules, the rules are 
applied according to the same principles than in the “classical” P systems with active membranes (see [12], for details).

We denote by DAM0(α, β, γ , δ) the class of all recognizer polarizationless P systems with active membranes and 
division rules, where α, β, γ and δ are parameters associated with object evolution rules, communication rules, dissolution 
rules and division rules, respectively. The meaning of the parameters α, β, γ , δ is the following:

• If α = −e (resp. α = +e), object evolution rules are forbidden (resp. permitted).
• If α = mc (resp. α = pmc, α = bmc or α = mcmp), then minimal cooperation (primary minimal cooperation, bounded

minimal cooperation or minimal cooperation and minimal production, respectively) in object evolution rules are per-
mitted.

• If β = −c (resp. β = +c) then communication rules are forbidden (resp. permitted).
• If γ = −d (resp. γ = +d) then dissolution rules are forbidden (resp. permitted).
• If δ = −n (resp. δ = +n) then division rules for only elementary membranes are permitted (resp. division rules for

elementary and non-elementary membranes are permitted).

If separation rules are considered instead of division rules, the corresponding classes of recognizer membrane systems are 
denoted by SAM0(α, β, γ , δ).

Let us recall some interesting results expressed in these notations.

1. Families of systems from DAM0(+e,+c,+d,+n) can solve PSPACE-complete problems in polynomial time and in a
uniform way, that is, PSPACE ⊆ PMCDAM0(+e,+c,+d,+n)

(see [4] for details). Moreover, in [17] and [16] the reverse
inclusion was proved, so a stronger result is obtained in this framework: PSPACE = PMCDAM0(+e,+c,+d,+n)

.

2. Families of systems from DAM0(+e,+c,−d,+n) can efficiently solve only problems in class P, that is,
PMCDAM0(+e,+c,−d,+n)

= P (see [7] for details).

3. Families of systems from SAM0(+e,+c,−d,+n) can efficiently solve only problems in class P, that is,
PMCSAM0(+e,+c,−d,+n)

= P (see [19] for details).

4. Families of systems from DAM0(bmc,+c,−d,−n) can solve NP-complete problems in polynomial time and in a uni-
form way, that is, NP ∪ co-NP ⊆ PMCDAM0(bmc,+c,−d,−n)

(see [18] for details).

5. Families of systems from SAM0(bmc,+c,−d,−n) can efficiently solve only problems in class P, that is,
PMCSAM0(bmc,+c,+d,+n)

= P (see [20] for details).

6. Families of systems from SAM0(pmc,+c,−d,−n) can solve NP-complete problems in polynomial time and in a uni-
form way, that is, NP ∪ co-NP ⊆ PMCSAM0(pmc,+c,−d,−n)

(see [18] for details).

Păun’s conjecture can be expressed as follows: PMCDAM0(+e,+c,+d,−n)
= P. It is a relevant open question.

From results 4 and 5, a new frontier of efficiency is deduced. In the framework of polarizationless P systems with active 
membranes not using dissolution rules, a new frontier of the efficiency is obtained. Specifically, when bounded minimal 
cooperation in object evolution rules is allowed in the previous computing framework, passing from separation rules to 
division rules amounts to passing from non-efficiency to efficiency.



Next, we try to find narrower frontiers of efficiency by showing that bounded minimal cooperation can be replaced by 
minimal cooperation and minimal production in object evolution rules. Let us recall that the application of this kind of rules 
implies that only a single object can be produced by the application of a rule.

3. On the efficiency of systems from DAM0(mcmp,+c,−d,−n)

In this section, we analyze what happens, from a computational complexity point of view, when minimal cooperation and 
minimal production in object evolution rules are considered instead of dissolution rules. The first work in this direction was 
addressed in [18]. The efficiency of such systems was proven when only object evolution rules such that the of length their 
left-hand sides are greater than or equal to the length of the corresponding right-hand side, and both lengths are at most 
two. Specifically, we show that the syntactical ingredient of minimal cooperation and minimal production in polarizationless 
P systems with active membranes (without dissolution and allowing only division for elementary membranes) is enough to 
solve computationally hard problems in an efficient way.

3.1. A uniform polynomial-time solution to the SAT problem

Next, a polynomial-time uniform solution to the SAT problem, a well known NP-complete problem [5] is provided by a 
family � = {�(t) | t ∈ N} of recognizer P systems from DAM0(mcmp,+c,−d,−n).

Let us recall that the polynomial-time computable function (the Cantor pair function) 〈n, p〉 = ((n + p)(n + p + 1)/2) + n
is a primitive recursive and bijective function from N ×N to N. The family � = {�(t) | t ∈ N} is defined in such a manner 
that system �(t) will process any Boolean formula ϕ in conjunctive normal form (CNF) with n variables and p clauses, 
where t = 〈n, p〉, provided that the appropriate input multiset cod(ϕ) is supplied to the system (through the corresponding 
input membrane), and will answer if there exists at least one truth assignment that makes true the input formula ϕ , that 
is, �(t) will solve an instance of the SAT problem.

For each n, p ∈N, we consider the recognizer P system �(〈n, p〉) = (�, �, H, μ, M1, M2, R, iin, iout) from DAM0(mcmp,

+c, −d, −n), defined as follows:

(1) Working alphabet �:
{yes , no ,α , β ′ , β ′′ , γ , γ ′ , γ ′′ , #} ∪ {ai,k | 1 ≤ i ≤ n,1 ≤ k ≤ i}∪
{ti,k, f i,k | 1 ≤ i ≤ n, i ≤ k ≤ n + p − 1}∪
{βk | 0 ≤ k ≤ n + 2p + 1} ∪ {c j | 1 ≤ j ≤ p} ∪ {d j | 2 ≤ j ≤ p}∪
{Ti,k, Fi,k | 1 ≤ i ≤ n,0 ≤ k ≤ n − 1} ∪ {Ti, Fi | 1 ≤ i ≤ n}∪
{xi, j,k, xi, j,k, x∗

i, j,k | 0 ≤ i ≤ n,1 ≤ j ≤ p,1 ≤ k ≤ n + p}
(2) Input alphabet �: {xi, j,0, xi, j,0, x∗

i, j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
(3) H = {1, 2}.
(4) Membrane structure: μ = [ [ ]2 ]1, that is, μ = (V , E) where V = {1, 2} and E = {(1, 2)}.
(5) Initial multisets: M1 = { α , β0 }, M2 = { ai,1, T

p
i,0, F

p
i,0 | 1 ≤ i ≤ n }.

(6) The set of rules R consists of the following rules:
1.1 Rules for a general counter.

[ βk −→ βk+1 ]1 , for 0 ≤ k ≤ n + 2p
[ βn+2p+1 −→ β ′ ]1

1.2 Rules for an affirmative answer.
[ α γ −→ γ ′ ]1
[ γ ′ −→ γ ′′ ]1
[ γ ′′ ]1 −→ yes [ ]1

1.3 Rules for a negative answer.
[ α β ′ −→ β ′′ ]1
[ β ′′ ]1 −→ no [ ]1

2.1 Rules to generate all truth assignments.
[ ai,i ]2 −→ [ ti,i ]2 [ f i,i ]2 , for 1 ≤ i ≤ n
[ai,k −→ ai,k+1 ]2 , for 2 ≤ i ≤ n ∧ 1 ≤ k ≤ i − 1

2.2 Rules to produce exactly p copies of each truth assignment.
[ti,k −→ ti,k+1 ]2
[ f i,k −→ f i,k+1 ]2

}
1 ≤ i ≤ n − 1 ∧ i ≤ k ≤ n − 1

[Ti,k −→ Ti,k+1 ]2
[Fi,k −→ Fi,k+1 ]2

}
1 ≤ i ≤ n, 0 ≤ k ≤ n − 2

[Ti,n−1 −→ Ti ]2
[F −→ F ]

}
1 ≤ i ≤ n
i,n−1 i 2



[ti,k Fi −→ ti,k+1 ]2
[ f i,k Ti −→ f i,k+1 ]2

}
1 ≤ i ≤ n ∧ n ≤ k ≤ n + p − 2

[ti,n+p−1 Fi −→ # ]2
[ f i,n+p−1 Ti −→ # ]2

}
1 ≤ i ≤ n

2.3 Rules to prepare the input formula for check clauses:
[ xi, j,k −→ xi, j,k+1 ]2
[ xi, j,k −→ xi, j,k+1 ]2
[ x∗

i, j,k −→ x∗
i, j,k+1 ]2

⎫⎬
⎭ 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n + p − 1

2.4 Rules for the first checking stage.
[Ti xi, j,n+p −→ c j ]2
[Ti xi, j,n+p −→ # ]2
[Ti x∗

i, j,n+p −→ # ]2

[Fi xi, j,n+p −→ # ]2
[Fi xi, j,n+p −→ c j ]2
[Fi x∗

i, j,n+p −→ # ]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1 ≤ i ≤ n ∧ 1 ≤ j ≤ p

2.5 Rules for the second checking stage.
[c1 c2 −→ d2 ]2
[d j c j+1 −→ d j+1 ]2 , for 2 ≤ j ≤ p − 1

2.6 Rule to prepare an affirmative answer.
[ dp ]2 −→ γ [ ]2

(7) The input membrane is the membrane labelled by 2 (iin = 2) and the output region is the environment (iout = env).

4. A formal verification of the solution

We consider the polynomial encoding (cod, s) from SAT in � defined as follows: let ϕ be a Boolean formula in 
conjunctive normal form (a conjunction of clauses such that each clause is the disjunction of one or more literals) and 
simplified (in each clause, literals are not repeated, and also none of the clauses contains both a literal and its negation). 
Let V ar(ϕ) = {x1, · · · , xn} be the set of propositional variables and {C1, · · · , C p} the set of clauses of ϕ . Let us assume that 
the number of variables and the number of clauses of the input formula ϕ , are greater than or equal to 2. Then, we define 
s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi, j,0 | xi ∈ C j} ∪ {xi, j,0 | ¬xi ∈ C j} ∪ {x∗
i, j,0 | xi /∈ C j,¬xi /∈ C j}

Notice that we can represent this multiset as a matrix, in such a way that the j-th row (1 ≤ j ≤ p) encodes the j-th clause 
C j of ϕ . For instance, the formula ϕ = (x1 + x2 + ¬x3)(¬x2 + x4)(¬x2 + x3 + ¬x4) is encoded as follows:

cod(ϕ) =
⎛
⎜⎝

x1,1,0 x2,1,0 x3,1,0 x∗
4,1,0

x∗
1,2,0 x2,2,0 x∗

3,2,0 x4,2,0

x∗
1,3,0 x2,3,0 x3,3,0 x4,3,0

⎞
⎟⎠

We denote by codk(ϕ) the multiset cod(ϕ) when the third index of all objects is equal to k. For instance:

cod3(ϕ) =
⎛
⎜⎝

x1,1,3 x2,1,3 x3,1,3 x∗
4,1,3

x∗
1,2,3 x2,2,3 x∗

3,2,3 x4,2,3

x∗
1,3,3 x2,3,3 x3,3,3 x4,3,3

⎞
⎟⎠

The Boolean formula ϕ will be processed by the system �(s(ϕ)) with input multiset cod(ϕ). Next, we informally describe 
how that system works.

The solution proposed follows a brute force algorithm in the framework of recognizer P systems with active membranes, 
minimal cooperation and minimal production in object evolution rules. It consists of the following stages:

• Generation stage: using division rules, all truth assignments for the variables {x1, . . . , xn} associated with ϕ are produced.
Specifically, 2n membranes labelled by 2 are generated, each of them encoding a truth assignment. This stage takes
exactly n computation steps, n being the number of variables in ϕ .

• Production of enough copies for each truth assignment: in this stage p copies of each truth assignment are produced to
allow the checking of the literal associated with each variable in each clause. This stage takes exactly p computation
steps.

• First Checking stage: checking whether or not each clause of the input formula ϕ is satisfied by the truth assignments
generated in the previous stage, encoded by each membrane labelled by 2. This stage takes exactly one computa-
tion step.



• Second Checking stage: checking whether or not all clauses of the input formula ϕ are satisfied by some truth assignment
encoded by a membrane labelled by 2. This stage takes exactly p − 1 steps, p being the number of clauses of ϕ .

• Output stage: the system sends to the environment the right answer according to the results of the previous stage. This
stage takes exactly 4 steps.

4.1. Generation stage

At this stage, all the truth assignments for the variables associated with the Boolean formula ϕ are generated, by applying 
division rules from 2.1 in membranes labelled by 2. In such manner at the i-th step, 1 ≤ i ≤ n, of this stage, division rule is 
triggered by object ai,i , producing two new membranes with all its remaining contents replicated in the new membranes 
labelled by 2. This stage ends when objects ti,n, f i,n , 1 ≤ i ≤ n, have been generated.

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(ϕ)) with input multiset cod(ϕ).

(a) For each k, 1 ≤ k ≤ n − 1, at configuration Ck we have Ck(1) = {α, βk} (being Ct(i) the contents of membrane i at the moment t)
and there are 2k membranes labelled by 2 such that each of them contains: the set {ai,k+1 | k + 1 ≤ i ≤ n} and the set codk(ϕ);
the multiset {T p

i,k, F
p
i,k | 1 ≤ i ≤ n}; and a different subset {r1,k, . . . , rk,k}, being r ∈ {t, f }.

(b) At configuration Cn we have Cn(1) = {α, βn} and there are 2n membranes labelled by 2 such that each of them contains: the set
codn(ϕ); the multiset {T p

i , F p
i | 1 ≤ i ≤ n}; and a different subset {r1,n, . . . , rn,n}, being r ∈ {t, f }.

Proof.

(a) By induction on k. The base case k = 1 follows bearing in mind that configuration C1 is obtained from configuration C0
by applying the rules [β0 → β1]1, [a1,1]2 → [t1,1]2 [ f1,1]2, [Ti,0 → Ti,1]2, [Fi,0 → Fi,1]2, for 1 ≤ i ≤ n, [xi, j,0 → xi, j,1]2,
[xi, j,0 → xi, j,1]2, [x∗

i, j,0 → x∗
i, j,1]2, for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let us assume that the result holds for k, 1 ≤ k < n − 1. Let us see that the result also holds for k + 1.
On the one hand, at configuration Ck we have Ck(1) = {α, βk} and there are 2k membranes labelled by 2 each of them
containing the set {ai,k+1 | k + 1 ≤ i ≤ n} and the set codk(ϕ); the multiset {T p

i,k, F
p
i,k | 1 ≤ i ≤ n}; and a different subset

{r1,k, . . . , rk,k}, being r ∈ {t, f }.
On the other hand, configuration Ck+1 is obtained from configuration Ck by applying the rules: [βk → βk+1]1,
[ak+1,k+1]2 → [tk+1,k+1]2 [ fk+1,k+1]2, [ti,k → ti,k+1]2, [ f i,k → f i,k+1]2, for 1 ≤ i ≤ k, [ai,k+1 → ai,k+2]2, for k + 2 ≤ i ≤ n,
[Ti,k → Ti,k+1]2, [Fi,k → Fi,k+1]2, for 1 ≤ i ≤ n, [xi, j,k → xi, j,k+1]2, [xi, j,k → xi, j,k+1]2, [x∗

i, j,k → x∗
i, j,k+1]2, for 1 ≤ i ≤

n, 1 ≤ j ≤ p.
Hence, the result holds for k + 1.

(b) By applying (a) to k = n − 1 at configuration Cn−1 we have Cn−1(1) = {α, βn−1} and there are 2n−1 membranes labelled
by 2 each of them containing: the object an,n and the set codn−1(ϕ); the multiset {T p

i,k, F
p
i,k | 1 ≤ i ≤ n}; and a different

subset {r1,n−1, . . . , rn−1,n−1}, being r ∈ {t, f }.
Then, (b) follows noting that configuration Cn is obtained from configuration Cn−1 by applying the rules: [βn−1 →
βn]1, [an,n]2 → [tn,n]2 [ fn,n]2, [ti,n−1 → ti,n]2, [ f i,n−1 → f i,n]2, for 1 ≤ i ≤ n − 1, [xi, j,n−1 → xi, j,n]2, [xi, j,n−1 → xi, j,n]2,
[x∗

i, j,n−1 → x∗
i, j,n]2, for 1 ≤ i ≤ n, 1 ≤ j ≤ p. �

4.2. Producing enough copies for each truth assignment

At this stage, in each membrane labelled by 2, a sufficient number of copies from each truth assignment will be gen-
erated. Specifically, p copies of each of them will be produced, where p is the number of clauses of the input formula. 
Let us recall that in the initial configuration there are p copies of T1, F1, . . . Tn, Fn . These copies are replicated in the 2n

membranes labelled by 2 produced by applying division rules where a copy of each truth assignment is produced. By using 
cooperation we use the values ti and f i of the truth assignment associated with each membrane labelled by 2 to remove a 
copy of the opposite value Fi or Ti , respectively. This stage takes exactly p steps.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(ϕ)) with input multiset cod(ϕ).

(a) For each k, 1 ≤ k ≤ p − 1, at configuration Cn+k we have Cn+k(1) = {α, βn+k} and there are 2n membranes labelled by 2 such 
that each of them contains: the set codn+k(ϕ); a different subset {r1,n+k, . . . , rn,n+k}, being r ∈ {t, f }; and the corresponding 
multiset {R p

1 , R p−k
1 , . . . , R p

n , R p−k
n } verifying the following: for each k, 1 ≤ i ≤ n, if ri,n+k = ti,n+k then Ri = Ti and Ri = Fi ; 

if ri,n+k = f i,n+k then Ri = Fi and Ri = Ti ;
(b) At configuration Cn+p we have Cn+p(1) = {α, βn+p} and there are 2n membranes labelled by 2 such that each of them contains:

n copies of object #; the set codn+p(ϕ); and a different subset {R p
, . . . , R p

n } being R ∈ {T , F }.
1



Proof.

(a) By induction on k. The base case k = 1 follows bearing in mind that configuration Cn+1 is obtained from configuration
Cn by applying the rules: [βn → βn+1]1, [ti,n Fi → ti,n+1]2, [ f i,n Ti → f i,n+1]2, for 1 ≤ i ≤ n, [xi, j,n → xi, j,n+1]2, [xi, j,n →
xi, j,n+1]2, [x∗

i, j,n → x∗
i, j,n+1]2, for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let us assume that the result holds for k, 1 ≤ k < p − 1. Let us see that the result also holds for k + 1.
On the one hand, at configuration Cn+k we have Cn+k(1) = {α, βn+k} and there are 2n membranes labelled by 2 each of
them containing the set codn+k(ϕ); a different subset {r1,n+k, . . . , rn,n+k}, being r ∈ {t, f }; and the corresponding mul-

tiset {R p
1 , R p−k

1 , . . . , R p
n , R p−k

n } verifying the following: for each k, 1 ≤ i ≤ n, if ri,n+k = ti,n+k then Ri = Ti and Ri = Fi ;
if ri,n+k = f i,n+k then Ri = Fi and Ri = Ti ;
On the other hand, configuration Cn+k+1 is obtained from configuration Cn+k by applying the rules: [βn+k → βn+k+1]1,
[ti,n+k Fi → ti,n+k+1]2, [ f i,n+k Ti → f i,n+k+1]2, for 1 ≤ i ≤ n, [xi, j,n+k → xi, j,n+k+1]2, [xi, j,n+k → xi, j,n+k+1]2, [x∗

i, j,n+k →
x∗

i, j,n+k+1]2, for 1 ≤ i ≤ n, 1 ≤ j ≤ p.
Hence, the result holds for k + 1.

(b) By applying (a) to k = p − 1, at configuration Cn+p−1 we have Cn+p−1(1) = {α, βn+p−1} and there are 2n membranes
labelled by 2 each of them containing the set codn+p−1(ϕ); a different subset {r1,n+p−1, . . . , rn,n+p−1}, being r ∈ {t, f };

and the corresponding multiset {R p
1 , R1

1, . . . , R
p
n , R1

n} verifying the following: for each i, 1 ≤ i ≤ n, if ri,n+p−1 = ti,n+p−1

then Ri = Ti, Ri = Fi and if ri,n+p−1 = f i,n+p−1 then Ri = Fi, Ri = Ti .
Then, (b) follows noting that configuration Cn+p is obtained from configuration Cn+p−1 by applying the rules:
[βn+p−1 → βn+p]1, [ti,n+p−1 Fi → #]2, [ f i,n+p−1Ti → #]2, for 1 ≤ i ≤ n, [xi, j,n+p−1 → xi, j,n+p]2, [xi, j,n+p−1 → xi, j,n+p]2,
[x∗

i, j,n+p−1 → x∗
i, j,n+p]2, for 1 ≤ i ≤ n, 1 ≤ j ≤ p. �

4.3. First checking stage

At this stage, we try to determine the clauses satisfied by the truth assignments encoded by each membrane labelled 
by 2. For that, rules from 2.4 will be applied in such a manner that an object c j is produced if and only if the truth 
assignment encoded by that membrane makes true clause C j . This stage takes exactly one step.

Proposition 3. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(ϕ)) with input multiset cod(ϕ). At configuration Cn+p+1
we have Cn+p+1(1) = {α , βn+p+1} and there are 2n membranes labelled by 2 such that each of them contains t j copies of object c j , 
for 1 ≤ j ≤ p, if and only if the truth assignment encoded by that membrane makes true exactly t j literals of clause C j , and np − (t1 +
· · · + tp) copies of object #.

Proof. It suffices to note that configuration Cn+p+1 is obtained from configuration Cn+p by applying the rules: [βn+p →
βn+p+1]1, [Ti xi, j,n+p → c j]2, [Ti xi, j,n+p → #]2, [Ti x∗

i, j,n+p → #]2, [Fi xi, j,n+p → #]2, [Fi xi, j,n+p → c j]2, [Fi x∗
i, j,n+p → #]2, for

1 ≤ i ≤ n, 1 ≤ j ≤ p. �
4.4. Second checking stage

At this stage, we try to determine whether some truth assignment encoded by a membrane labelled by 2 satisfies all 
clauses of the input formula. To that end, rules from 2.5 will be applied in such a manner that object d j (2 ≤ j ≤ p) is 
produced in a membrane labelled by 2 if and only if the truth assignment encoded by that membrane makes true the 
clauses C1, . . . , C j . Then, the input formula will be satisfied by the truth assignment encoded by a membrane labelled by 2 
if and only if object dp appears in that membrane. This stage takes exactly p − 1 computation steps.

Proposition 4. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(ϕ)) with input multiset cod(ϕ).

(a) For each k, 1 ≤ k ≤ p − 1, at configuration C(n+p+1)+k we have C(n+p+1)+k(1) = {α , β(n+p+1)+k} and there are 2n membranes
labelled by 2 such that each of them contains an object dk+1 if and only if the truth assignment encoded in that membrane, makes
true clauses C1, . . . , Ck+1 .

(b) ϕ is satisfiable if and only if at configuration Cn+2p there exists some membrane labelled by 2 which contains an object dp.

Proof.

(a) By induction on k. For the base case k = 1 it suffices to note that configuration Cn+p+2 is obtained from configuration
Cn+p+1 by applying the rules [βn+p+1 → βn+p+2]1 and [c1c2 → d2]2.
Let us assume that the result holds for k, 1 ≤ k < p − 1. Then, at configuration C(n+p+1)+k we have C(n+p+1)+k(1) =
{α , β(n+p+1)+k} and there are 2n membranes labelled by 2 each of them containing an object dk+1 if and only if the
truth assignment encoded in that membrane, makes true clauses C1, . . . , Ck+1.



Bearing in mind that configuration C(n+p+1)+k+1 is obtained from configuration C(n+p+1)+k by applying the rules 
[β(n+p+1)+k → β(n+p+1)+k+1]1 and [dk+1ck+2 → dk+2]2, we deduce that the result holds for k + 1.

(b) In order to prove (b), let us note that the input formula ϕ is satisfiable if and only if there exists a truth assignment
σ making true ϕ , that is, making true the clauses C1, . . . , C p . From (a) we deduce that ϕ is satisfiable if and only at
configuration Cn+2p there exists some membrane labelled by 2 which contains an object dp . �

4.5. Output stage

The output phase starts at the (n + 2p + 1)-th step, and takes exactly four steps.

– Affirmative answer: if the input formula ϕ is satisfiable then at least one of the truth assignments from a membrane
with label 2 makes true all clauses. Thus, a copy of object dp will appear in that membrane at configuration Cn+2p .
Then, by applying the rules [dp]2 → γ [ ]2 and [ βn+2p −→ βn+2p+1 ]1, objects γ and βn+2p+1 are produced in the skin
membrane. At the next step, by applying rules [ α γ −→ γ ′ ]1 and [ βn+2p+1 −→ β ′ ]1, objects γ ′ and β ′ are produced in
the skin membrane. At the step n + 2p + 3, by applying rule [ γ ′ −→ γ ′′ ]1, object γ ′′ is produced in the skin membrane
(let us notice that object β ′ cannot interact with α). Finally, at the next step, by applying rule [ γ ′′ ]1 −→ yes [ ]1,
object yes is sent out to the environment. Hence, the computation halts and the answer of the computation is yes.

– Negative answer: if the input formula ϕ is not satisfiable then none of the truth assignments encoded by a membrane
with label 2 makes the formula ϕ true. Thus, object dp does not appear in any membrane labelled by 2 in configuration
Cn+2p . At the step n + 2p + 1, only rule [ βn+2p −→ βn+2p+1 ]1 is applicable to Cn+2p . Then, Cn+2p+1(1) = {α , βn+2p+1}.
At the next step, by applying rule [ βn+2p+1 −→ β ′ ]1 we have Cn+2p+2(1) = {α , β ′}. At the step n + 2p + 3, rule
[ α β ′ −→ β ′′ ]1 produces an object β ′′ in the skin membrane. Finally, at the last step, by applying rule [ β ′′ ]1 −→ no [ ]1
an object no is released to the environment. Consequently, the computation halts and the answer of the computation
is no.

5. Main results

Theorem 1. SAT ∈ PMCDAM0(mcmp,+c,−d,−n)
.

Proof. The family of P systems previously constructed verifies the following:

(a) Every system of the family � belongs to DAM0(mcmp, +c, −d, −n).
(b) The family � is polynomially uniform by Turing machines because for each n, p ∈ N, the amount of resources needed

to build �(〈n, p〉) is of a polynomial order in n and p:
– Size of the alphabet: 3np2 + 3n2 p + 5np + 7n2

2 + 5n
2 + 4p + 10 ∈ �(max{np2, n2 p}).

– Initial number of membranes: 2 ∈ �(1).
– Initial number of objects in membranes: 2np + n + 2 ∈ �(np).
– Number of rules: 3np2 + 3n2 p + 8np + 7n2

2 + n
2 + 3p + 7 ∈ �(max{np2, n2 p}).

– Maximal number of objects involved in any rule: 3 ∈ �(1).
(c) The pair (cod, s) of polynomial-time computable functions defined fulfil the following: for each input formula ϕ of the

SAT problem, s(ϕ) is a natural number, cod(ϕ) is an input multiset of the system �(s(ϕ)), and for each n ∈ N, s−1(n)

is a finite set.
(d) The family � is polynomially bounded: indeed, for each input formula ϕ of the SAT problem, the deterministic P

system �(s(ϕ)) + cod(ϕ) takes exactly n + 2p + 4 steps, n being the number of variables of ϕ and p the number of
clauses.

(e) The family � is sound with regard to (X, cod, s): indeed, for each input formula ϕ , if the computation of �(s(ϕ)) +
cod(ϕ) is an accepting computation, then ϕ is satisfiable.

(f) The family � is complete with regard to (X, cod, s): indeed, for each input formula ϕ such that it is satisfiable, the
computation of �(s(ϕ)) + cod(ϕ) is an accepting computation.

Therefore, the family � of P systems previously constructed solves the SAT problem in polynomial time in a uniform 
way. �
Corollary 1. NP ∪ co − NP ⊆ PMCDAM0(mcmp,+c,−d,−n)

.

Proof. It suffices to note that the SAT problem is an NP-complete problem, SAT ∈ PMCDAM0(mcmp,+c,−d,−n)
, and class 

PMCDAM0(mcmp,+c,−d,−n)
is closed under polynomial-time reduction and under complement. �

Corollary 2. P = PMCSAM0(mcmp,+c,−d,−n)
.



Proof. It suffices to notice that P = PMCSAM0(bmc,+c,−d,−n)
and each rule using minimal cooperation and minimal pro-

duction is also a rule using bounded minimal cooperation, and realizing that the class is closed under polynomial-time 
reduction. For the reverse inclusion, we only need to keep in mind the Sevilla theorem to see that we can simulate 
any Deterministic Turing Machine with this kind of membrane systems. �
6. Conclusions

Limitations of polarizationless P systems with active membranes not using dissolution rules, with respect to efficiency,
are well known. In this paper, the computational efficiency of such kind of P systems using only division rules for elementary 
membranes is studied in the case that a very restrictive cooperation in object evolution rules is considered. Specifically, the 
left-hand side of the rules consists of at most two objects and each such rule only can produce a single object. The efficiency 
of these systems is shown, improving a result concerning object evolution rules with minimal cooperation, where the length 
of their right-hand side is less than or equal to the corresponding left-hand side.

It is worth pointing out that the situation is completely different when division rules is replaced by separation rules; 
that is, when in the mechanism of producing an exponential number of membranes in linear time, distribution of objects is 
considered instead of the replication of objects. In this case, only problems in class P can be efficiently solved by families 
of polarizationless P systems with active membranes which use minimal cooperation and minimal production in object 
evolution rules. Consequently, new frontiers of efficiency are obtained.

These results confirm the strength of the replication with respect to the distribution of objects, from an efficiency point 
of view, and the irrelevant role played by dissolution when minimal cooperation is considered.

As future work, we propose to study polarizationless P systems with active membranes when cooperation in commu-
nication rules is considered instead of cooperation in object evolution rules. It seems that, in this case, division rules for 
non-elementary membranes can play a relevant role from a computational complexity point of view.
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