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HOMOTOPY THEORY OF BICOMPLEXES

FERNANDO MURO AND CONSTANZE ROITZHEIM

Abstract. We define two model structures on the category of bicomplexes
concentrated in the right half plane. The first model structure has weak
equivalences detected by the totalisation functor. The second model struc-
ture’s weak equivalences are detected by the E2-term of the spectral sequence
associated to the filtration of the total complex by the horizontal degree. We
then extend this result to twisted complexes.
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Introduction

The notion of chain complex is central to homological algebra, as they arise e.g.
as resolutions of modules. Bicomplexes, in turn, arise as resolutions of chain com-
plexes. These resolutions, first defined by Cartan and Eilenberg [CE56], are concen-
trated in a half-plane. They are used to compute derived functors between derived
categories [GM03] in conjuction with the totalisation functor from bicomplexes to
complexes.

Homotopy theory of chain complexes is a well-known concept. Model categories
provide a commonly used language to construct resolutions in the presence of a
notion of equivalence weaker than isomorphisms. One such example is homology
isomorphisms of chain complexes, also known as quasi-isomorphisms. A standard
model structure on the category of chain complexes of modules over a ring k is the
projective model structure, where weak equivalences are quasi-isomorphisms and
cofibrant objects are also degreewise projective.

The first goal of this paper is to provide useful model structures on the category
of bicomplexes X∗,∗ concentrated in the right half plane, i.e. Xp,q = 0 for p < 0.
In the first one, the total model structure, the weak equivalences are exactly those
morphisms whose totalisation induces an isomorphism in homology. In the sec-
ond model structure, the Cartan–Eilenberg model structure, cofibrant resolutions
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2 FERNANDO MURO AND CONSTANZE ROITZHEIM

are Cartan–Eilenberg resolutions. Weak equivalences in this second model struc-
ture are the so-called “E2-equivalences”. Bicomplexes have horizontal and vertical
differentials,

dh : Xp,q −→ Xp−1,q, dv : Xp,q −→ Xp,q−1.

These differentials anti-commute, i.e.

dhdv + dvdh = 0.

This condition implies that the horizontal differential dh induces a differential on
the vertical homology Hv

∗ (X) of a bicomplex X , so one can consider

Hh
∗ (H

v
∗ (X)).

This is exactly the E2-term of a spectral sequence that converges strongly to the
homology of the total complex Tot(X) of the bicomplex X . Therefore, the (Hh

∗ ◦
Hv

∗ )-isomorphisms are called E2-equivalences, and they are special cases of (H∗ ◦
Tot)-isomorphisms.

Both model structures will enjoy useful properties such as being combinatorial,
proper, and monoidal. Furthermore, we will see that the first one is an abelian
model structure, i.e. fibrations are surjections with fibrant kernel and cofibrations
are injections with cofibrant cokernel. Cofibrant objects are also degreewise pro-
jective in both cases, so we can really see our model structures as generalisations
of the projective model structure on chain complexes for different choices of weak
equivalences. The total model structure, in addition, is Quillen equivalent to the
model category of chain complexes.

We will then generalise the total model structure on bicomplexes to the category of
twisted complexes. While a bicomplex is a bigraded k-module with two differentials,
a twisted complex is equipped with maps

di : Xp,q −→ Xp−i,q+i−1, i ≥ 0,

satisfying ∑

i+j=n

didj = 0, n ≥ 0.

Naturally, making all the necessary definitions and calculations to obtain the total
model structure on this category is a lot more involved than in the case of just two
differentials.

Another motivation for these model structures stems from the study ofA∞-algebras,
or “homotopy associative” algebras. Among other things, A∞-structures on the
homology of a differential graded algebra allow us to see how many differential
graded algebras realise this homology. However, this only works over a ground
field [Kad80], or if all modules in question are projective. To circumnavigate this
rather restrictive assumption, one can work in the context of derived A∞-algebras
[Sag10]. These are bigraded objects, where the second degree allows to create a pro-
jective resolution compatible with any A∞-structure. Where A∞-algebras have an
underlying chain complex, derived A∞-algebras have an underlying twisted chain
complex concentrated in the right half plane. Furthermore, the homological pertur-
bation lemma [Bro67] tells us that the vertical homology of every Cartan–Eilenberg
resolution can be equipped with the structure of a twisted complex.
Therefore, in order to understand the homotopy theory of derived A∞-algebras,
specifically in an operadic context [LRW13, CESLW17], it is necessary to under-
stand the homotopy theory of the underlying twisted complexes.
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This paper is organised as follows. In Section 1 we recall some basic definitions and
results concerning chain complexes and the projective model structure, in particular
on how the model structure is constructed using spheres and discs. In Section 2 we
study the category bCh of bicomplexes concentrated in the right half-plane, define
the bigraded analogue of spheres and discs and discuss the tensor product. Sections
3 and 4 give the total and the Cartan–Eilenberg model structures by showing that
the generating cofibrations and trivial cofibrations defined using those spheres and
discs together with the respective weak equivalences satisfy Smith’s recognition
principle from [Hov99, Theorem 2.1.19]. Finally, we introduce the category of
twisted complexes in Section 5, define spheres and discs, and obtain the desired
model structure.

1. Complexes

We briefly recall a couple of facts about the model categories Ch of unbounded
(chain) complexes and Ch≥0 of complexes concentrated in non-negative degrees.
We use the convention that differentials shift the degree by −1.
Throughout this paper, k denotes a commutative ground ring. Further conditions
on k will be imposed when necessary. Tensor product will always be taken over k.
As a category, Ch is locally finitely presentable. Limits and colimits are computed
pointwise. It is also a closed symmetric monoidal category with respect to the
tensor product. The symmetry constraint uses the Koszul sign convention, and the
inner Hom is the graded module

HomCh(X,Y )n =
∏

m∈Z

Homk(Xm, Ym+n)

endowed with the following differential

d(f) = df − (−1)|f |fd.

Here Homk denotes the inner Hom in the category of modules.
The category Ch is also a combinatorial proper model category. Weak equivalences
are quasi-isomorphisms and fibrations are (pointwise) surjections. Let us recall the
generating (trivial) cofibrations. For a k-module A, we define the chain complex
Dn(A) to be

· · · → 0→ A
1
→ A→ 0→ · · ·

concentrated in degrees n and n− 1. Similarily we define Sn(A) to just consist of
A concentrated in degree n. This in fact gives us adjoint functor pairs

evn : k-mod −−→←− Ch : Dn

and

Zn : k-mod −−→←− Ch : Sn

where evn denotes evaluation at degree n and Zn(X) = ker[d : Xn → Xn−1] denotes
the cycles in degree n. (Note that when we write adjunctions, the top arrow is
always the left adjoint.)
We now define the n-sphere Sn to be Sn(k) and the n-disk Dn to be Dn(k) for
short. This is used to construct the projective model structure on Ch, which is the
model structure we will consider throughout this paper. Define sets ICh and JCh

as

ICh = {Sn−1 →֒ Dn}n∈Z,

JCh = {0 →֒ Dn}n∈Z.

Here Sn−1 →֒ Dn is the identity in degree n − 1. Furthermore, let W denote the
class of H∗-isomorphisms, i.e. quasi-isomorphisms.
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Recall that for a class of maps I, the class I-inj is given by all the maps that have
the right lifting property with respect to I. Furthermore, I-cof is the class of all
maps that have the left lifting properties with respect to all maps in I-inj. The
class I-cell is given by all transfinite compositions of pushouts of elements of I.
This class satisfies I-cell ⊆ I-cof.
Then in our case ICh, JCh, and W satisfy the following properties:

• W has the two-out-of-three property and is closed under retracts,
• JCh-cell ⊆ W ∩ ICh-cof,
• ICh-inj ⊆ W ∩ JCh-inj,
• either W ∩ ICh-cof ⊆ JCh-cof or W ∩ JCh-inj ⊆ ICh-inj (a posteriori both),

plus some set-theoretic conditions. By [Hov99, Theorem 2.1.19], this means that
there is a cofibrantly generated model structure with weak equivalences W , gener-
ating cofibrations ICh, and generating trivial cofibrations JCh. (Trivial) fibrations
are the maps in JCh-inj (resp. ICh-inj), and cofibrations are retracts of maps in
JCh-cell. It can furthermore be shown using the adjunctions defined earlier, that
a map is a fibration if and only if it is a degreewise surjection, and that cofibra-
tions are the degreewise monomorphisms with cofibrant cokernel. The last property
means that this model structure is abelian in the sense of [Hov07], i.e. a cofibration
is a monomorphism with cofibrant cokernel and a fibration is an epimorphism with
fibrant kernel. Cofibrant objects do not have an easy characterization, but they are
known to be pointwise projective.
Furthermore, it is compatible with the monoidal structure in the sense of [Hov99,
Definition 4.2.6]. The tensor unit S0 is actually cofibrant since it is the cokernel of
the generating cofibration S−1 →֒ D0. The monoid axiom of Schwede and Shipley
[SS00, Definition 3.3] is also satisfied.
The full subcategory Ch≥0 ⊂ Ch of complexes concentrated in non-negative degrees
inherits a monoidal model structure with the same tensor product and weak equiva-
lences. The inner HomCh≥0

(X,Y ) is the non-negative truncation of HomCh(X,Y ).
The former is a subcomplex of the latter, both complexes coincide in (strictly)
positive degrees, and

HomCh≥0
(X,Y )0 = Ch≥0(X,Y ) = Z0(HomCh(X,Y )).

The fibrations in Ch≥0 are the maps which are surjective on positive degrees but
not necessarily in degree 0. Cofibrations are precisely the maps with pointwise
projective cokernel. Sets of generating (trivial) cofibrations are

ICh≥0
= {0 →֒ S0} ∪ {Sn−1 →֒ Dn}n≥1,

JCh≥0
= {0 →֒ Dn}n≥1.

The model structure on Ch≥0 is proper, monoidal, with cofibrant monoidal tensor
unit S0, and it satisfies the monoid axiom. It is not abelian, though, since fibrations
need not be surjective. The inclusion Ch≥0 ⊂ Ch is a left Quillen functor. Its right
adjoint is the non-negative truncation.
We will use the outline of these well-known results as a blueprint for the model
structures on bicomplexes, respectively twisted chain complexes, that we are going
to construct in the subsequent chapters.

2. Bicomplexes

This section consists of elementary definitions and examples which are relevant for
later computations. We consider (N×Z)-graded bicomplexes made of anticommu-
tative squares.
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Definition 2.1. A bicomplex X is a bigraded module X = {Xp,q}p,q∈Z with Xp,q =
0 for p < 0, equipped with horizontal and vertical differentials

dh : Xp,q −→ Xp−1,q, dv : Xp,q −→ Xp,q−1,

respectively, satisfying

dvdh + dhdv = 0.

A morphism of bicomplexes f : X → Y is a family of maps fp,q : Xp,q → Yp,q

compatible with the horizontal and vertical differentials

dhf = fdh, dvf = fdv.

We denote the category of bicomplexes by bCh.
For any bigraded module X , given x ∈ Xp,q, we say that |x|h = p is the horizontal
degree of x, and |x|v = q is its vertical degree. The bidegree of x is (|x|h, |x|v) = (p, q)
and the total degree is |x| = |x|h + |x|v = p+ q.

The category bCh is clearly abelian and locally finitely presentable. Limits and
colimits are computed pointwise.

Remark 2.2. The equation dvdh + dhdv says that the following squares are anti-
commutative in a bicomplex

Xp−1,q

dv

��

Xp,q

dv

��

dh
oo

Xp−1,q−1 Xp,q−1
dh

oo

Some readers will probably prefer that these squares commute. If we denote by X ′

the underlying bigraded module of X endowed with the same horizontal differential
d′h = dh and the new vertical differential d′v defined by

d′v(x) = (−1)|x|hx,

we obtain a bicomplex X ′ with commuting differentials d′hd
′
v = d′vd

′
h. If bCh′

denotes the category of bicomplexes with commuting differentials, we obtain an
isomorphims of categories

bCh ∼= bCh′

X 7→ X ′.

Definition 2.3. Let X be a bicomplex. The vertical cycles Zv(X) are the elements
in the kernel of the vertical differential of X , and the vertical boundaries Bv(X)
are the elements in the image of dh. The vertical homology is

Hv(X) =
Zv(X)

Bv(X)
.

We can regard Zv(X), Bv(X), and Hv(X) as bicomplexes with trivial vertical
differential. Their vertical differentials are induced by that of X . We similarly
define the horizontal cycles Zh(X), boundaries Bh(X), and homology Hh(X).

Let A be a k-module. Then we define Dp,q(A), p > 0, q ∈ Z, to be the bicomplex
whose underlying bigraded module is

Dp,q
p,q(A) = D

p,q
p−1,q(A) = D

p,q
p,q−1(A) = D

p,q
p−1,q−1(A) = A

and zero elsewhere. Its four nontrivial differentials are given by the identity except
for

dv = −1 : Dp,q(A)p,q −→ Dp,q(A)p,q−1.
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Furthermore, we define ∂hD
p,q(A) and ∂vD

p,q(A) to be the horizontal resp. vertical
boundaries of Dp,q(A). We also define Sp,q(A) to be the bicomplex with A in
bidegree (p, q) and zero in all other degrees.

The following can be easily verified.

Lemma 2.4. The above definitions give rise to adjunctions

evp,q : k-mod −−→←− bCh: Dp,q

Zh
p−1,q : k-mod −−→←− bCh: ∂hD

p,q

Zv
p−1,q : k-mod −−→←− bCh: ∂vD

p,q

Zh
p ◦ Z

v
q : k-mod −−→←− bCh: Sp,q

Here evp,q denotes evaluation at bidegree (p, q).

We define the (p, q)-disc Dp,q as Dp,q(k). We can view it as the bicomplex freely
generated by a single element xp,q ∈ Dp,q. The free k-module generators are xp,q,
dh(xp,q), −dv(xp,q), and dvdh(xp,q) = −dhdv(xp,q), respectively. The horizontal
and vertical boundaries of the (p, q)-disk will again be denoted by ∂hD

p,q and
∂vD

p,q, respectively. The (p, q)-sphere is k concentrated in bidegree (p, q). These
bicomplexes look as follows,

q

q−1

k

k

k

k

−1Dp,q

∂vD
p,q

∂hD
p,q

Sp−1,q−1

p−1 p

Here, unlabelled arrows are identities.

Remark 2.5. The bicomplex ∂hD
p,q is freely generated by the horizontal cycle

dh(xp,q) in bidegree (p− 1, q). Similarly, ∂vD
p,q is freely generated by the vertical

cycle −dv(xp,q) in bidegree (p, q − 1). Since our bicomplexes are concentrated in
non-negative horizontal degree, ∂hD

1,q is freely generated by the element dh(x1,q) in
bidegree (0, q). Indeed, morally, we can define D0,q = ∂hD

1,q and ∂vD
0,q = S0,q−1.

The reader can check that most of the properties of Dp,q and ∂vD
p,q for p > 0

extend to the case p = 0 with these definitions, but we have preferred two avoid
two different notations for the same object.

As a consequence of Lemma 2.4, we have the following useful natural isomorphisms,
which we list for convenience.
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Corollary 2.6. For any bicomplex X, p > 0, and q ∈ Z, there are natural isomor-
phisms

bCh(S0,q−1 →֒ ∂hD
1,q, X) ∼= Ch(Sq−1 →֒ Dq, X0,∗),

bCh(∂vD
p,q →֒ Dp,q, X) ∼= Ch(Sq−1 →֒ Dq, Xp,∗),

bCh(0 →֒ ∂hD
1,q, X) ∼= Ch(0 →֒ Dq, X0,∗)

∼= Ch(0 →֒ S0, X∗,q),

bCh(0 →֒ S0,q−1, X) ∼= Ch≥0(0 →֒ S0, Zv
∗,q−1(X)),

bCh(Sp−1,q−1 →֒ ∂vD
p,q, X) ∼= Ch≥0(S

p−1 →֒ Dp, Zv
∗,q−1(X)),

bCh(∂hD
p,q →֒ Dp,q, X) ∼= Ch≥0(S

p−1 →֒ Dp, X∗,q),

bCh(0 →֒ ∂vD
p,q, X) ∼= Ch≥0(0 →֒ Dp, Zv

∗,q−1(X)).

�

We now consider the monoidal structure on bicomplexes.

Definition 2.7. The tensor product X ⊗ Y of two bicomplexes X and Y is the
bicomplex defined as

(X ⊗ Y )p,q =
⊕

m+s=p
n+t=q

Xm,n ⊗ Ys,t

with horizontal and vertical differentials defined as

dh(x⊗ y) = dh(x)⊗ y + (−1)|x|x⊗ dh(y),

dv(x⊗ y) = dv(x) ⊗ y + (−1)|x|x⊗ dv(y).

Note that both formulas use the total degree in their sign conventions.
This tensor product endows bCh with a closed symmetric monoidal structure with
obvious associativity and unit constraints. The tensor unit is k concentrated in
bidegree (0, 0). The symmetry constraint uses the Koszul sign rule with respect to
the total degree,

X ⊗ Y ∼= Y ⊗X,

x⊗ y 7→ (−1)|x||y|y ⊗ x.

The mapping objects HombCh(X,Y ) in bCh, adjoints to the tensor product, are
defined by the k-modules

HombCh(X,Y )p,q =
∏

s≥0
t∈Z

Homk(Xs,t, Ys+p,t+q), p > 0, q ∈ Z,

and the submodules

HombCh(X,Y )0,q ⊂
∏

s≥0
t∈Z

Homk(Xs,t, Ys,t+q), q ∈ Z,

formed by the elements f such that

dhf = (−1)|f |fdh.

The horizontal and vertical differentials are defined by

dh(f) = dhf − (−1)|f |fdh, dv(f) = dvf − (−1)|f |fdv.

Remark 2.8. The previous definition would not work for bicomplexes with commut-
ing differentials (see Remark 2.2). The readers which prefer commuting differentials
will probably find more natural to consider the horizontal and vertical degrees in the
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definition of the horizontal and vertical differentials of the tensor product. Indeed,
this yields a bicomplex X ′ ⊗′ Y ′ with commuting differentials

d′h(x
′ ⊗ y′) = d′h(x

′)⊗ y′ + (−1)|x
′|hx′ ⊗ d′h(y

′),

d′v(x
′ ⊗ y′) = d′v(x

′)⊗ y′ + (−1)|x
′|vx′ ⊗ d′v(y

′).

The underlying bigraded module of X ′ ⊗′ Y ′ is obviously defined as for X ⊗ Y .
In this case it ismore sensible to use the Koszul sign rule with respect to the hori-
zontal and vertical degrees separately in the definition of the symmetry constraint,

X ′ ⊗′ Y ′ ∼= Y ′ ⊗′ X ′,

x′ ⊗ y′ 7→ (−1)|x
′|h|y

′|h+|x′|v|y
′|vy′ ⊗ x′.

This endows the category bCh′ of bicomplexes with commuting differentials with a
closed symmetric monoidal structure.
The isomorphism of categories bCh ∼= bCh′ in Remark 2.2 together with the natural
isomorphism

(X ⊗ Y )′ ∼= X ′ ⊗′ Y ′,

x⊗ y 7→ (−1)|x|v|y|hx⊗ y,

defines a symmetric monoidal isomorphism. We will work with bCh since certain
computations are simpler here.

Definition 2.9. Given a bigraded module X , the graded module Tot(X) is defined
as

Totn(X) =
⊕

p+q=n

Xp,q.

If X is a bicomplex, Tot(X) equipped with the differential

dTot = dh + dv

is called the total complex of X . This construction defines the totalisation exact
functor

Tot : bCh −→ Ch .

Remark 2.10. The totalisation functor is strong symmetric monoidal in the obvious
naive way. In addition, Tot preserves (co)limits, since they are computed pointwise
both in bCh and Ch. If we had used bicomplexes with commuting differentials, we
would have had to include signs in the natural isomorphism comparing the tensor
products in the source and in the target of Tot.

Remark 2.11. For any bigraded module X , Tot(X) has a natural increasing non-
negative exhaustive filtration defined by

Fm Totn(X) =
⊕

p+q=n
p≤m

Xp,q.

If X is a bicomplex, this filtration of the total complex Tot(X) is compatible with
the differential. Since our bicomplexes are concentrated in the right half-plane, the
associated spectral sequence converges strongly to the homology of Tot(X). The
E2-term is Hh(Hv(X)) [McC01, Theorem 2.15],

E2
p,q = Hh

p,q(H
v(X)) =⇒ Hp+q(Tot(X)).

This will play a central role in the model structures to be defined later.
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3. The total model structure on bicomplexes

Let W denote the class of (H∗ ◦Tot)-isomorphisms in bCh, i.e. maps which induce
a quasi-isomorphism in totalisation, and let

ITot = {S
0,q−1 →֒ ∂hD

1,q}q∈Z ∪ {∂vD
p,q →֒ Dp,q}p>0

q∈Z

,

JTot = {0 →֒ ∂hD
1,q}q∈Z ∪ {∂vD

p,q →֒ Dp,q}p>0
q∈Z

.

In the same way that one constructs the projective model structure on chain com-
plexes outlined in Section 1, we are going to use Smith’s recognition principle to
show that this choice defines a cofibrantly generated model structure on bCh. We
will then further characterise its cofibrations and fibrations.

Theorem 3.1. The category of bicomplexes bCh can be endowed with a proper
combinatorial abelian model category structure called the total model structure with
the following properties:

• a morphism f : X → Y is a weak equivalence if Tot(f) is a quasi-isomorphism
in Ch, i.e. the class of weak equivalences is W,

• a morphism f : X → Y is a (trivial) fibration if it is pointwise surjective
and Hv

p,∗(f) is an isomorphism for all p > 0 (resp. p ≥ 0),
• the cofibrations are the injective maps with cofibrant cokernel. Cofibrant

implies pointwise projective.

Furthermore, its generating cofibrations and trivial cofibrations are given by ITot
and JTot, respectively.

Proof. The proposed weak equivalences in bChTot are clearly closed under retracts
and satisfy the 2-out-of-3 property.

We will now verify the various lifting properties we require for our proof, making
use of the identities in Lemma 2.4 and Corollary 2.6. We use them in combination
with the model structures on Ch and Ch≥0 reviewed in the previous sections, whose
generating (trivial) cofibrations we know.

A map f : X → Y in bCh has the right lifting property with respect to 0→ ∂hD
1,q if

and only if f0,∗ : X0,∗ → Y0,∗ has the right lifting property with respect to 0→ Dq.
This happens for all q ∈ Z whenever f0,∗ is a fibration in Ch, i.e. degreewise
surjective.
For p > 0, having the right lifting property with respect to ∂vD

p,q → Dp,q is
equivalent to fp,∗ : Xp,∗ → Yp,∗ having the right lifting property with respect to all
Sq−1 → Dq. This happens for all q ∈ Z precisely when fp,∗ is a trivial fibration in
Ch, i.e. degreewise surjective as well as a homology isomorphism.
Similarily, having the right lifting property with respect to S0,q−1 → ∂hD

1,q is
equivalent to f0,∗ : X0,∗ → Y0,∗ having the right lifting property with respect to
Sq−1 → Dq in Ch. This happens for all q ∈ Z whenever f0,∗ is a trivial fibration in
Ch.
We can summarise our findings as follows.

ITot-inj = {degreewise surjective f such that

Hv
p,∗(f) is an isomorphism for all p ≥ 0}

and

JTot-inj = {degreewise surjective f such that

Hv
p,∗(f) is an isomorphism for all p > 0.}

This is consistent with our claims about the (trivial) fibrations in bChTot.
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Obviously, ITot-inj ⊆ JTot-inj. Because of the spectral sequence in Remark 2.11, a
map that induces an isomorphism in vertical homology also induces an (H∗ ◦Tot)-
isomorphism. Therefore, a map in ITot-inj is also in W so

ITot-inj ⊆ W ∩ JTot-inj.

We also have the opposite inclusion.
By the long exact homology sequence, a degreewise surjective map f is a weak
equivalence, respectively an Hv

p,∗-isomorphism, if and only if ker f → 0 is. But if
X → 0 is JTot-injective, then Hv

0,∗(X) = H∗(Tot(X)) by the spectral sequence.
Therefore, a JTot-injective X → 0 is ITot-injective if and only if it is a weak equiv-
alence.
So, altogether we arrive at

I-inj =W ∩ J-inj.

For the existence of the claimed model structure, it remains to prove that

JTot-cell ⊆ W ∩ ITot-cof.

We always have JTot-cell ⊆ JTot-cof. As ITot-inj ⊆ JTot-inj, we get JTot-cof ⊆
ITot-cof. All source and target objects of elements of JTot are Tot-acyclic, therefore
JTot ⊆ W . Moreover, Tot preserves colimits and takes JTot to trivial cofibrations
in Ch. Thus, JTot-cell complexes are weak equivalences, which is what we wanted
to prove. Thus, we proved all the conditions of the recognition principle, meaning
that we have a model structure on bCh with weak equivalences W , generating
cofibrations ITot, generating acyclic cofibrations JTot, fibrations JTot-inj, and trivial
fibrations ITot-inj.

The ITot-cell complexes are injections with pointwise free cokernel, since a push-
out along one of the two classes of maps in ITot adds a free factor k in bidegrees
(0, q) or (p, q) and (p − 1, q), respectively. Hence cofibrations are injections with
pointwise projective cokernel. This can be alternatively checked as in the first parts
of the proofs of [Hov99, Proposition 2.3.9 and Lemma 2.3.6]. A long exact sequence
argument as above shows that a map f : X → Y in bChTot is a (trivial) fibration if
and only if it is a pointwise surjection with (trivially) fibrant kernel. These remarks
prove that bChTot is an abelian model category in the sense of [Hov07, Definition
2.1], see [Hov02, Proposition 4.2], and also the third item in the statement.

Finally, the functor Tot takes ITot to cofibrations in Ch, and it also preserves
(co)limits, fibrations, and weak equivalences (the latter by definition). We conclude
that bChTot is proper, since Ch is. �

Remark 3.2. By the characterization of (trivial) fibrations in the total model struc-
ture, a bicomplex X is fibrant in bChTot whenever its vertical homology is concen-
trated in horizontal degree 0, i.e. Hv

p,q(X) = 0 if p > 0. It is trivially fibrant if the
vertical homology vanishes completely.
The cokernels of generating cofibrations are S0,q, ∂vD

p,q, p > 0, q ∈ Z. The
horizontal homology of these bicomplexes is projective and concentrated in hori-
zontal degree 0. Hence it is easy to derive that any cofibrant bicomplex X satisfies
Hh

p,q(X) = 0 for p > 0 and Hh
0,q(X) is always projective.

The model structure on bChTot is also well-behaved with regards to the tensor
product of bicomplexes. In order to show monoidality, it does not matter that we
have not given an explicit characterisation of the cofibrations in bChTot as we can
use a result specific to abelian model categories.
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Proposition 3.3. The model category bChTot is monoidal with cofibrant unit and
satisfies the monoid axiom.

Proof. For the monoidality of bChTot, we check the conditions of [Hov07, Theorem
4.2]:

(1) every cofibrant object of bChTot is flat,
(2) the tensor product of cofibrant objects is again cofibrant,
(3) if X and Y are cofibrant objects and one of them is acyclic, then their

tensor product is acyclic,
(4) the unit of the tensor product is cofibrant.

Cofibrant objects are flat since their underlying bigraded modules are projective.
The tensor unit is cofibrant since it is the cokernel of the generating cofibration
S0,−1 →֒ ∂hD

1,0. Therefore we have (1) and (4).

Let us now check conditions (2) and (3). For a general model category, it is enough
to check the pushout-product axiom on generating (trivial) cofibrations, see [Hov99,
Corollary 4.2.5]. So for abelian model categories, it is sufficient to check (2) and (3)
on cokernels of generating (trivial) cofibrations, rather than on arbitrary (trivially)
cofibrant objects. This follows from the proof of [Hov07, Theorem 4.2] in [Hov02,
Theorem 7.2].

The cokernels of generating (trivial) cofibrations are

S0,q and ∂vD
p,q, p > 0, q ∈ Z,

as well as

∂hD
1,q and ∂vD

p,q, p > 0, q ∈ Z,

respectively. It is straightforward to verify that

∂vD
p,q ⊗ ∂vD

s,t ∼= ∂vD
p+s,q+t−1 ⊕ ∂vD

p+s−1,q+t−1,

∂vD
p,q ⊗ S0,t ∼= ∂vD

p,q+t,

S0,q ⊗ S0,t ∼= S0,q+t.

Moreover,

S0,q ⊗ ∂hD
1,t ∼= ∂hD

1,t+q,

∂vD
p,q ⊗ ∂hD

1,t ∼= Dp,q+t−1,

which we can see is trivially cofibrant for all p and q. This concludes the proof of
monoidality.

The monoid axiom [SS00, Definition 3.3] follows from the fact that Tot takes gen-
erating trivial cofibrations in bChTot to trivial cofibrations in Ch. �

Finally, we arrive at the following result.

Proposition 3.4. The inclusion of chain complexes as bicomplexes concentrated
in horizontal degree 0 is the left adjoint of a strong symmetric monoidal Quillen
equivalence

Ch −−→←− bChTot .

Proof. The right adjoint bChTot → Ch in this adjunction is given by X 7→ X0,∗.
The left adjoint obviously preserves the tensor product and the tensor unit. More-
over, it sends the standard generating (trivial) cofibrations in Ch to the first factors
of the unions defining the sets of generating (trivial) cofibrations of bChTot. Hence
it preserves arbitrary (trivial) cofibrations and therefore is a left Quillen functor.
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Next, let us check that this Quillen pair is a Quillen equivalence. Let

i : Ch→ bCh

denote the left adjoint. We have to prove that if X is cofibrant in Ch and Y is
fibrant in bChTot then a map

f : iX → Y

is a weak equivalence if and only if the adjoint map

f0,∗ : X → Y0,∗

is. We will prove this statement for X not necessarily cofibrant. We have that

Tot(iX) = X = (iX)0,∗.

Moreover, since Y is fibrant, we have

H∗(Y0,∗) = Hv
0,∗(Y ) = Hv(Tot(Y )).

This was checked within the proof of Theorem 3.1. Hence

H∗(Tot(iX))→ H∗(Tot(Y ))

is an isomorphism if and only if H∗(X)→ H∗(Y0,∗) is. �

4. The Cartan–Eilenberg model structure on bicomplexes

In this section, we will introduce a different model structure on the category of
bicomplexes bCh, namely the Cartan–Eilenberg model structure bChCE. With re-
gards to the spectral sequence in Remark 2.11, the total model structure from
Section 3 can be thought of as the “limit model structure” as the weak equiva-
lences are exactly those maps inducing isomorphisms on the respective limits. (By
limit, we mean the homology of the total complex, not the E∞-term.) In analogy to
this, the Cartan–Eilenberg model structure can be considered the “E2-model struc-
ture”. The spectral sequence is strongly convergent, hence the weak equivalences
of bChCE are contained in those of bChTot. In this new model category bChCE,
a cofibrant resolution of a chain complex, regarded as bicomplex concentrated in
horizontal degree 0, is a Cartan–Eilenberg resolution [CE56, Wei94].
We suspect that the Cartan–Eilenberg model structure coincides with the model
structure that could be obtained by transferring Sagave’s E2-model structure on
simplicial chain complexes [Sag10] along the given Dold–Kan equivalence. Weak
equivalences obviously match, but we have not checked the details concerning
(co)fibrations. We think it is simpler to directly construct our Cartan–Eilenberg
model structure, at the very least because we obtain easier generating (trivial) cofi-
brations which allow for a straightforward identification of (trivial) fibrations. For
0 ≤ r <∞, Er-equivalences have been studied by Cirici, Santander, Livernet, and
Whitehouse in [CESLW17], not only for maps of bicomplexes but for twisted maps
of twisted complexes.

Again, we will define weak equivalences, generating cofibrations, and trivial cofi-
brations, and then show that they create a model structure in the way that they
are supposed to. Define

W = {f : X → Y ∈ bCh | Hh
p,q(H

v(f)) is an isomorphism for all p ≥ 0, q ∈ Z}
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and

ICE = {0 →֒ S0,q}q∈Z ∪ {S
p−1,q−1 →֒ ∂vD

p,q}p>0
q∈Z

∪ {0 →֒ ∂hD
1,q}q∈Z ∪ {∂hD

p,q →֒ Dp,q}p>0
q∈Z

,

JCE = {0 →֒ ∂vD
p,q}p>0

q∈Z

∪ {0 →֒ ∂hD
1,q}q∈Z ∪ {∂hD

p,q →֒ Dp,q}p>0
q∈Z

.

Theorem 4.1. There is a combinatorial model structure bChCE on the category of
bicomplexes satisfying the following:

• Weak equivalences are those morphisms f such that Hh
p,q(H

v(f)) is an iso-
morphism for all p ≥ 0 and q ∈ Z.

• f is a fibration if
– if is degreewise surjective,
– Zv

p,q(f) is surjective if p > 0,

– Hh
p,q(f) is an isomorphism for all p and q.

• f is a trivial fibration if in addition Hh
p,q(Z

v(f)) is an isomorphism for all
p and q.

• If f is a cofibration, then f and Hv(f) are injective and the cokernels of
Bv(f) and Hv(f) are degreewise projective.

Proof. We are going to follow a similar strategy to the proof of Theorem 3.1. Weak
equivalences in bChCE are obviously closed under retracts and transfinite compo-
sitions, and satisfy the 2-out-of-3 property.

Using Corollary 2.6 and the generating (trivial) cofibrations of Ch≥0, we see the
following. A morphism f : X → Y in bCh has the right lifting property with
respect to all elements in ICE if and only if

Zv
∗,q(f) : Z

v
∗,q(X) −→ Zv

∗,q(Y ), f∗,q : X∗,q −→ Y∗,q,

are trivial fibrations in Ch≥0 for all q. Similarily, f has the right lifting property
with respect to all elements in JCE if and only if Zv

∗,q(f) is a fibration and f∗,q is a
trivial fibration, both in Ch≥0, for all q. Therefore, we obviously have

ICE-inj ⊆ JCE-inj.

We also have ICE-inj ⊆ W . This follows by considering the obvious natural short
exact sequences of complexes on Ch≥0, q ∈ Z,

Zv
∗,q(X) →֒ X∗,q ։ Bv

∗,q−1(X), Bv
∗,q(X) →֒ Zv

∗,q(X) ։ Hv
∗,q(X).

They show that if a map of bicomplexes f : X → Y induces quasi-isomorphisms on
horizontal complexes and vertical cycles

f∗,q : X∗,q → Y∗,q, Zv
∗,q(f) : Z

v
∗,q(X)→ Zv

∗,q(Y ),

for all q ∈ Z, then it also induces quasi-isomorphisms on vertical boundaries and
vertical homology

Bv
∗,q(f) : B

v
∗,q(X)→ Bv

∗,q(Y ), Hv
∗,q(f) : H

v
∗,q(X)→ Hv

∗,q(Y ).

Altogether,
ICE-inj ⊆ JCE-inj ∩W

as required.

It is not hard to see that any map in JCE, and hence any JCE-cell complex, is an
ICE-cell complex, so it is in ICE-cof. Indeed, the two last factors of the union JCE

are also in ICE. Moreover, the maps

0 →֒ Sp−1,q−1, p > 0, q ∈ Z,
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are ICE-cell complexes since Sp−1,q−1 is the cokernel of the map

Sp−2,q−1 →֒ ∂vD
p−1,q,

in ICE. Hence 0 →֒ ∂vD
p,q, which is the composite of

0 →֒ Sp−1,q−1 and Sp−1,q−1 →֒ ∂vD
p,q,

is also an ICE-cell complex.
We can also see that every JCE-cell complex is a weak equivalence: A push-out
along one of the first two kinds of maps in JCE adds up a copy of ∂vD

p,q or ∂hD
1,q,

which are weakly equivalent to 0. Hence such a push-out is a weak equivalence. A
push-out along one of the third kind adds a copy of k to the modules of bidegrees
(p, q) and (p, q−1), and dv maps identically the top copy to the bottom one. Hence
it induces an isomorphism on Hv, in particular it is a weak equivalence. Since
any transfinite composition of weak equivalences in this tentative model structure
is a weak equivalence, we derive that any JCE-cell complex is a weak equivalence.
Therefore,

JCE-cell ⊆ W ∩ ICE-cof.

To complete the proof of this model structure’s existence, we have to show that

JCE-inj ∩W ⊆ ICE-inj.

Assume that f : X → Y is a JCE-injective weak equivalence. We want to show that

Hh
p,q(f) is an isomorphism for all p and q

and

Hh
p,q(H

v(f)) is an isomorphism for all p and q

implies that

Hh
p,q(Z

v(f)) is an isomorphism for all p and q.

We prove by induction on p that, for all q ∈ Z, Hh
n,q(Z

v(f)) and Hh
n,q(B

v(f)) are
isomorphisms for n < p and epimorphisms for n = p. This will suffice. For this,
we will use the long exact homology sequences associated to the two natural short
exact sequences of horizontal complexes above.

The statement is obvious for p = −1 since our bicomplexes are trivial in negative
horizontal degrees. So next, assume the result true for p. The exact sequences of
maps

Hh
p,q(Z

v(f))
︸ ︷︷ ︸

epi

→ Hh
p,q(f)︸ ︷︷ ︸
iso

→ Hh
p,q−1(B

v(f))→ Hh
p−1,q(Z

v(f))
︸ ︷︷ ︸

iso

→ Hh
p−1,q(f)︸ ︷︷ ︸

iso

for q ∈ Z and the Five Lemma show that Hh
p,q(B

v(f)) is an isomorphism for all q.
Now, the exact sequences

Hh
p+1,q(H

v(f))
︸ ︷︷ ︸

iso

→ Hh
p,q(B

v(f))
︸ ︷︷ ︸

iso

→ Hh
p,q(Z

v(f))→ Hh
p,q(H

v(f))
︸ ︷︷ ︸

iso

→ Hh
p−1,q(B

v(f))
︸ ︷︷ ︸

iso

prove that Hh
p,q(Z

v(f)) is an isomorphism for q ∈ Z for the same reasons. Chasing

Hh
p+1,q(f)︸ ︷︷ ︸

iso

→ Hh
p+1,q−1(B

v(f))→ Hh
p,q(Z

v(f))
︸ ︷︷ ︸

iso

→ Hh
p,q(f)︸ ︷︷ ︸
iso

we see that Hh
p+1,q(B

v(f)) is an epimorphism for all q, and chasing

Hh
p+1,q(B

v(f))
︸ ︷︷ ︸

epi

→ Hh
p+1,q(Z

v(f))→ Hh
p+1,q(H

v(f))
︸ ︷︷ ︸

iso

→ Hh
p,q(B

v(f))
︸ ︷︷ ︸

iso
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we deduce that Hh
p+1,q(Z

v(f)) is also an epimorphism for all q.
So again we have checked the conditions for [Hov99, Theorem 2.1.19], hence the
model structure bChCE with the indicated weak equivalences and (trivial) fibrations
exists.

Now let us take a look at the cofibrations. There are four kinds of generating
cofibrations. A push-out along one of the first two kinds adds up a copy of k of
bidegree (p, q − 1), p ≥ 0 with trivial vertical differential. As we remarked earlier,
a push-out along one of the last two kinds adds a copy of k of bidegrees (p, q) and
(p, q−1), p ≥ 0, and dv maps identically the top copy to the bottom one. It follows
by induction that, for any ICE-cofibration f , both f and Hv(f) are injective and
the cokernels of Bv(f) and Hv(f) are pointwise projective.

�

Given a chain complex Y regarded as a bicomplex concentrated in the horizontal de-
gree 0, any cofibrant resolution Y cof

։ Y in the Cartan–Eilenberg model structure
bChCE is a projective resolution in the sense of [CE56, §XVII.1], hence the name
of the model structure. It is also what Sagave calls a “k-projective E1-resolution”
in [Sag10].

A bicomplex X is fibrant in bChCE if and only if its horizontal homology is trivial
Hh(X) = 0. It is trivially fibrant if in addition Hh(Zv(X)) = 0.

It is possible to check with a certain amount of work that the model category bChCE

is proper. It is not abelian since, for p > 0, the projection Dp,q
։ ∂vD

p,q+1 onto
the cokernel of ∂vD

p,q →֒ Dp,q has a fibrant kernel ∂vD
p,q, but it is not a fibration

as it is not surjective on Zv
p,q. Nevertheless, it could be compatible with a restricted

family of short exact sequences in the sense of [Hov02].

Again, this model structure is well-behaved with regards to the tensor product.

Proposition 4.2. The model category bChCE is monoidal with cofibrant tensor
unit and satisfies the monoid axiom.

Proof. For q ∈ Z, we have functors

zq, cq : Ch≥0 → bCh

defined as follows. Given an object X in the source, the bicomplex zq(X) is X con-
centrated in vertical degree q and zero elsewhere. The complex cq(X) is obtained by
placing X in vertical degrees q and q−1 and taking the vertical differential dv from
bidegree (p, q) to (p, q − 1) to be (−1)p. (The sign is needed to get anticommuting
differentials.)

We have
zq−1(D

p) = ∂vD
p,q, zq(S

p) = Sp,q,

cq(D
p) = Dp,q, cq(S

p−1) = ∂hD
p,q.

Therefore, zq sends the elements of ICh≥0
to elements of ICE and JCh≥0

to JCE.
This implies that the zq preserve cofibrations and trivial cofibrations. Likewise, the
cq send cofibrations in Ch≥0 to trivial cofibrations in bChCE.

The model category Ch≥0 is monoidal, and we have natural isomorphisms

zp(X)⊗ zq(Y ) ∼= zp+q(X ⊗ Y ).

Thus, we see that the push-out product of two cofibrations concentrated a single
(possibly different) vertical degree is a cofibration in bChCE, which is trivial if one
of the initial cofibrations was.
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Moreover, if f is a cofibration in Ch≥0 and U is a trivially cofibrant object in Ch
regarded as a bicomplex concentrated in horizontal degree 0, then U ⊗ zq(f) is a
trivial cofibration in bChCE. Indeed, the complex U , being trivially cofibrant, is a
retract of a direct sum of copies of Dt, t ∈ Z, i.e. U regarded as a bicomplex is a
retract of a direct sum of copies of ∂hD

1,t, t ∈ Z. Moreover,

∂hD
1,t ⊗ zq(f) ∼= ct+q(f),

hence U ⊗ zq(f) is retract of a direct sum factors of the form ct(f), t ∈ Z, which
are trivial cofibrations. Recall also that trivially cofibrant objects in Ch are closed
under tensor products since the model category Ch is monoidal.
If we combine the previous observations with the fact that the map ∂hD

p,q →֒ Dp,q

is the same as

∂hD
1,1 ⊗ (Sp−1,q−1 →֒ ∂vD

p,q),

we conclude that the push-out product of two maps in ICE is a cofibration, and
that the push-out product of a map in ICE and a map in JCE is a trivial cofibration.
Hence bChCE is monoidal.

Let us now consider the monoid axiom [SS00, Definition 3.3]. Since Cartan–
Eilenberg equivalences are closed under transfinite compositions, it suffices to prove
that, given two bicomplexes X and Y , the push-out of X along a map f in Y ⊗JCE

is a weak equivalence. All maps in JCE are pointwise split monomorphisms, hence
maps in Y ⊗JCE are injective and therefore the push-out along a map f in Y ⊗JCE

is a weak equivalence if and only if the cokernel of f is acyclic. The cokernels of
maps in Y ⊗ JCE are of the form Y ⊗ ∂vD

p,q and Y ⊗ ∂hD
p,q, p > 0, q ∈ Z. They

are acyclic in bChCE because

Hh(Hv(Y ⊗ ∂vD
p,q)) = Hh(Hv(Y )⊗ ∂vD

p,q) = 0,

Hv(Y ⊗ ∂hD
p,q) = 0.

This concludes the verification of the monoid axiom.
The tensor unit S0,0 is cofibrant since 0 →֒ S0,0 is one of the generating cofibrations.

�

5. Twisted complexes and their total model structure

In this section, we generalise the total model structure on bCh to the category of
twisted complexes. The notion of twisted complex goes back to Wall [Wal61]. They
have proven useful in many contexts in the construction of small resolutions.

Definition 5.1. A twisted complex X , also known as multicomplex, is a bigraded
module X = {Xp,q}p,q∈Z with Xp,q = 0 for p < 0 equipped with maps

di : Xp,q −→ Xp−i,q+i−1, i ≥ 0,

satisfying
∑

i+j=n

didj = 0, n ≥ 0.

Abusing terminology, we also call the maps di differentials, despite they do not
square to zero in general.
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d0

d1

d2

d3

d4

A morphism of bicomplexes f : X → Y is a family of maps fp,q : Xp,q → Yp,q

compatible with the differentials. We denote the category of twisted complexes by
tCh.

Definition 5.2. We define the total complex of the twisted complex X as the chain
complex which in degree n is

Tot(X)n =
⊕

p+q=n

Xp,q.

The differential in Tot(X) is then

d =
∑

i≥0

di.

Totalisation defines an functor

Tot: tCh −→ Ch .

Note that the sum in the differential is finite on each bidegree (p, q) since the target
of di is trivial for i > p. We see that the differential on Tot(X) is compatible with
the filtration by the horizontal degree considered in Remark 2.11. Moreover, any
such differential in Tot(X) comes from a unique twisted complex structure on X .

The category tCh is clearly abelian and locally finitely presentable. Limits and
colimits are computed pointwise. The totalisation functor is exact and preserves
(co)limits.

Remark 5.3. A bicomplex is the same as a twisted complex with di = 0 for i ≥ 2.
The horizontal and vertical differentials are dh = d1 and dv = d0. This observation
defines a fully faithful functor bCh → tCh which has a left adjoint tCh → bCh
sending X to

X
/(∑

i≥2

di(X)
)
.

The first equations defining a general twisted complex X are

d20 = 0,

d0d1 + d1d0 = 0,

d0d2 + d21 + d2d0 = 0.

Hence d0, which points vertically downwards, is always a differential, so we can
define the vertical cycles Zv(X) and vertical homology Hv(X). Moreover, d1 in-
duces a differential on Hv(X) ponting horizontally to the left, hence we can define
its horizontal homology Hh(Hv(X)). As in Remark 2.11, this is the second term
of the spectral sequence of the filtered complex Tot(X), converging strongly to its
homology,

E2
p,q = Hh

p,q(H
v(X)) =⇒ Hp+q(Tot(X)).
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Definition 5.4. We define the twisted (p, q)-disc D̃p,q, p ≥ 0, q ∈ Z, as the twisted

complex freely generated by a single element xp,q ∈ D̃p,q
p,q . More precisely, as a

k-module D̃p,q
p,q = k generated by xp,q , and for 0 ≤ s ≤ p and n ≥ 1, D̃p,q

p−s,q+s−n is
the quotient of the free module generated by

{di1 · · · din(xp,q)}i1+···+in=s

by the relations
{ ∑

ij+ij+1=m

di1 · · · dijdij+1
· · · din(xp,q)

}

1≤j<n
i1+···+ij−1+m+ij+2+···+in=s

Elsewhere, D̃p,q is trivial. These relations provide a way of taking any d0 in
di1 · · · din(xp,q) to the right. In particular, di1 · · · din(xp,q) is trivial as long as

there are two 0 subscripts, since d20 = 0. Therefore D̃p,q
s,t = 0 if t < q− 1. Moreover,

we can take any word di1 · · · din(xp,q) with exactly one d0 in it and uniquely rewrite
it as the sum of words without any d0 and a word with exactly one d0 at the right.
More precisely, if the only trivial subscript is ij = 0 then

di1 · · · dij−1
d0dij+1

· · · din(xp,q) = (−1)n−jdi1 · · · dij−1
dij+1

· · · dind0(xp,q)

+

n−j∑

u=1

∑

s+t=ij+u

s,t>0

(−1)udi1 · · · dij−1
dij+1

· · · dij+u−1︸ ︷︷ ︸
u−1 factors

dsdt dij+2
dij+u+1

· · · din(xp,q)︸ ︷︷ ︸
n−j−u factors

.

One can straightforwardly check that the rewriting process consisting of replacing
the word on the left with the sum on the right, removing words di1 · · · din(xp,q) with
two 0 subscripts, and not changing words with no 0 subscript, sends the defining
relations of D̃p,q to 0. Consequently, for 0 ≤ s ≤ p and 1 ≤ n ≤ s+ 1, D̃p,q

p−s,q+s−n

is freely generated by

{di1 · · · din(xp,q)} i1,...,in>0
i1+···+in=s

∪ {di1 · · · din−1
d0(xp,q)} i1,...,in−1>0

i1+···+in−1=s

.

Hence, the rank of this D̃p,q
p−s,q+s−n is

(
s−1
n−1

)
+
(
s−1
n−2

)
if 1 < n ≤ s, and 1 if n = 1 or

n = s+ 1. The following picture gives a rough idea of how D̃4,0 looks like

1

1

1

1

1

1

1

2

3

4

1

3

6

1

4

1

The nodes indicate the rank of the non-trivial parts of the underlying bigraded
module. The non-trivial arrows are also depicted.
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Remark 5.5. One can define an analogous algorithm to move the d0 in a word to
the left. Therefore,

{di1 · · · din(xp,q)} i1,...,in>0
i1+···+in=s

∪ {d0di1 · · · din−1
(xp,q)} i1,...,in−1>0

i1+···+in−1=s

is an alternative basis of D̃p,q
p−s,q+s−n for 0 ≤ n− 1 ≤ s ≤ p.

For any k-module A, we can easily define D̃p,q(A) by degreewise tensoring with A,
which gives an analogous construction with copies of A instead of copies of k at
each node. By definition, this gives us an adjoint functor pair

D̃p,q : k-mod −−→←− tCh : evp,q,

where evp,q(X) = Xp,q. In particular, for any twisted complexX , we have a natural
isomorphism

tCh(D̃p,q, X) = Xp,q.

Lemma 5.6. Twisted disks have trivial total homology, H∗(Tot(D̃
p,q)) = 0.

Proof. Using the bases in Remark 5.5, the vertical homology d0 applied to a basis
element is either zero or of the form d0di1 · · · din−1

(xp,q). Thus, their vertical homol-

ogy vanishes, Hv(D̃p,q) = 0, since D̃p,q is vertically contractible. Using the spectral
sequence in Remark 5.3, this implies that the homology of the total complex is also
trivial. �

Definition 5.7. We define the vertical boundary ∂vD̃
p,q of the twisted (p, q)-disc,

p ≥ 0, q ∈ Z, as the twisted complex freely generated by a single element yp,q−1 ∈

∂vD̃
p,q
p,q−1 satisfying dv(yp,q−1) = 0 (i.e. a vertical cycle).

Arguing as in Definition 5.4, ∂vD̃
p,q
p,q−1 = k generated by yp,q−1, and for 0 ≤ s ≤ p

and 1 ≤ n ≤ s, ∂vD̃
p,q
p−s,q−1+s−n is freely generated by

{di1 · · · din(yp,q−1)} i1,...,in>0
i1+···+in=s

.

Hence its rank is
(
s−1

n−1

)
. Elsewhere, ∂vD̃

p,q is trivial.

We depict ∂vD̃
4,0 with the same conventions as in Definition 5.4,

11

1

1

1

1

2

3

1

3

1

Again, we can define ∂vD̃
p,q(A) for a k-module A in the analogous way and obtain

the following.
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Lemma 5.8. The pair of functors

∂vD̃
p,q : k-mod −−→←− tCh : Zv

p,q−1

is an adjoint pair. The inclusion of vertical boundaries ∂vD̃
p,q →֒ D̃p,q is the

morphism representing the natural map d0 : Xp,q → Zv
p,q−1(X).

Remark 5.9. On bidegree (p, q − 1), the inclusion of vertical boundaries is defined
by yp,q−1 7→ d0(xp,q). Hence it is clearly injective since it maps bijectively the bases
in Definition 5.7 to the second factors of the unions defining the bases in Definition
5.4. Moreover, this observation also proves that the cokernel of ∂vD̃

p,q →֒ D̃p,q is
∂vD̃

p,q+1.

Corollary 5.10. We have the following natural isomorphisms for any twisted com-
plex X, p ≥ 0, and q ∈ Z:

tCh(∂vD̃
p,q →֒ D̃p,q, X) = Ch(Sq−1 →֒ Dq, Xp,∗).

We need to know that, analogously to our previous model categories, the vertical
boundary of the disc is actually acyclic, which requires more work than proving it
for the disc itself.

Lemma 5.11. For p > 0, H∗(Tot(∂vD̃
p,q)) = 0.

Proof. The vertical differential d0 on ∂vD̃
p,q is given by

d0di1 · · · din(yp,q−1) =

n∑

j=1

(−1)j
∑

ij,1+ij,2=ij

di1 · · · dij−1
dij,1dij,2dij+1

· · · din(yp,q−1),

see Definition 5.4 and recall that d0(yp,q−1) = 0.

We will see that, up to degree shift and change of sign in the differential, the chain
complex ∂vD̃

p,q
p−s,∗, s ≥ 2, is isomorphic to C∗(∆s−2, k), the coaugmented simplicial

cochain complex of the indicated simplex with coefficients in our ground ring, which
is contractible.
Recall that the augmented simplicial chain complex C∗(∆

n, k), n ≥ 0, is freely
generated in each degree −1 ≤ t ≤ n by the strictly increasing sequences [v0, . . . , vt]
of length n+ 1 formed by integers 0 ≤ vi ≤ n. The rank of Ct(∆

n, k) is therefore(
n+1

t+1

)
for −1 ≤ t ≤ n. The complex is zero elsewhere. Its differential is defined by

d([v0, . . . , vt]) =
t∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vt],

where v̂i means vi removed. The cochain complex C∗(∆n, k) is the k-linear dual
of C∗(∆

n, k), hence it is freely generated by the dual basis elements [v0, . . . , vt]
∗,

whose differentials are

d([v0, . . . , vt]
∗) =

t+1∑

i=0

∑

vi−1<u<vi

(−1)i[. . . , vi−1, u, vi, . . . ]
∗.

Here, in the index of the second summation we understand that v−1 = −1 and
vt+1 = n+ 1.

As we have seen in Definition 5.7, the rank of ∂vD̃
p,q
p−s,q−1+s−n is

(
s−1
n−1

)
, the same

as the rank of Cn−2(∆s−2, k). Moreover, we have an isomorphism

∂vD̃
p,q
p−s,q−1+s−n

∼= Cn−2(∆s−2, k)

given by the basis bijection

di1 · · · din(yp,q−1) 7→

[
i2 − 1, i2 + i3 − 1, · · · ,

n∑

j=2

ij − 1

]∗
.



HOMOTOPY THEORY OF BICOMPLEXES 21

This isomorphism is clearly compatible with differentials up to a −1 sign.
Therefore,

Hv
p−s,∗(∂vD̃

p,q) = 0 if s ≥ 2.

The remaining non-trivial part of Hv(∂vD̃
p,q) reduces to

Hv
p,q−1(∂vD̃

p,q) = Hv
p−1,q−1(∂vD̃

p,q) = k.

The differential d1 on Hv(∂vD̃
p,q) is an isomorphism between these two modules,

i.e. Hv(∂vD̃
p,q) = ∂vD

p,q, hence

Hh(Hv(∂vD̃
p,q)) = 0.

As this is the E2-term of the spectral sequence in Remark 5.3, this implies

H∗(Tot(∂vD̃
p,q)) = 0

as claimed. �

We note that Lemma 5.6 for p > 0 could also have been derived from Lemma 5.11
and Remark 5.9. Furthermore, the isomorphism

∂vD̃
p,q
p−s,∗

∼= C∗(∆s−2, k), s ≥ 2,

in the previous proof is of course a great convenience, but we are not aware of a
conceptual reason as to why simplicial cochains appear in this proof.
We now consider the monoidal structure on twisted complexes, attributed by Meyer
[Mey78] to Liulevicius [Liu67].

Definition 5.12. The tensor product X ⊗ Y of two twisted complexes X and Y

is the twisted complex with the same underlying bigraded module as in Definition
2.7, such that the differential on Tot(X ⊗ Y ) = Tot(X) ⊗ Tot(Y ) is the standard
tensor product differential. This is equivalent to saying that the maps di on X ⊗Y

are given by

di(x⊗ y) = di(x)⊗ y + (−1)|x|x⊗ di(y), i ≥ 0.

This tensor product equips tCh with a closed symmetric monoidal structure with
obvious associativity and unit constraints. The unit and symmetry constraints are
the same as in Definition 2.7. The mapping objects are defined by the submodules

HomtCh(X,Y )p,q ⊂
∏

s≥0
t∈Z

Homk(Xs,t, Ys+p,t+q), p ≥ 0, q ∈ Z,

formed by the elements f such that, for i > p,

dif = (−1)|f |fdi.

The maps di are defined by

di(f) = dif − (−1)|f |fdi.

The totalisation functor on twisted complexes is strong symmetric monoidal in the
obvious naive way.

We will now construct the total model structure on tCh by checking that the given
weak equivalences, generating cofibrations, and generating trivial cofibrations sat-
isfy [Hov99, Theorem 2.1.29].
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These are

W = {f ∈ tCh | Tot(f) is a quasi-isomorphism in Ch},

I = {∂vD̃
p,q →֒ D̃p,q}p≥0

q∈Z

,

J = {0 →֒ D̃0,q}q∈Z ∪ {∂vD̃
p,q →֒ D̃p,q}p>0

q∈Z

.

Theorem 5.13. The category of twisted complexes tCh can be equipped with a
proper combinatorial abelian model category structure such that:

• f : X → Y is a weak equivalence if Tot(f) is a quasi-isomorphism in Ch,
• f is a (trivial) fibration if it is pointwise surjective and Hv

p,q(f) is an iso-
morphism for all p > 0 (resp. p ≥ 0) and q ∈ Z,

• f : X ֌ Y is a cofibration in tCh if and only if it is injective with cofibrant
cokernel. Cofibrant implies degreewise projective.

Proof. This proof is essentially the same as that of Theorem 3.1. The character-
isation of (trivial) fibrations in the statement follows from Lemma 5.10 instead of
Lemma 2.4. (Trivial) fibrations and surjective weak equivalences can be detected
by their kernels for exactly the same reason.
A pushout along a generating cofibration adds copies of k in certain degrees, see
Remark 5.9. Therefore, cofibrations are monomorphisms with pointwise projective
cokernel.
Properties (4), (5), and (6) in [Hov99, Theorem 2.1.19] follow by the same argu-
ments, using here the spectral sequence in Remark 5.3, which is the twisted analog
of that in Remark 2.11.
The argument for properness is literally the same. The fact that Tot takes I to
cofibrations in Ch follows easily from Remark 5.9.

�

Remark 5.14. As in the total model structure on bicomplexes, a twisted complex
X is fibrant in tCh whenever its vertical homology is concentrated in horizontal
degree 0, and it is trivially fibrant if the vertical homology vanishes completely.

Proposition 5.15. The total model structure on tCh is monoidal, has a cofibrant
tensor unit, and satisfies the monoid axiom.

Proof. As tCh is an abelian model category, we can use [Hov07, Theorem 4.2]
to prove monoidality. Hypothesis (1) follows from the fact that cofibrant twisted
complexes are pointwise projective. The tensor unit is cofibrant since it is the
cokernel of the generating cofibration ∂vD̃

0,0 →֒ D̃0,0, which gives us (4).

With (2) and (3) we do not proceed in the same way as in the proof of Theorem
3.1, since it would be even more complicated than what follows. By adjunction, the
claims are equivalent to prove that, for any cofibrant twisted complex X and any
(trivial) fibration f , HomtCh(X, f) is a (trivial) fibration of the mapping objects,
and for any trivially cofibrant twisted complex Y and any fibration f , HomtCh(Y, f)
is a trivial fibration, compare [Hov99, Lemma 4.2.2]. As remarked in the proof of
Theorem 3.1, it suffices to take X to be the cokernel of a generating cofibration
and to take Y to be the cokernel of a generating trivial cofibration. This strategy
has the advantage that we do not have to have an explicit characterisation of the
cofibrations in tCh.

By Remark 5.9, those cokernels are

X = ∂vD̃
0,q, Y = ∂vD̃

p,q, Y = D̃0,q, p > 0, q ∈ Z.
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We start with the two easy cases.

The twisted complex ∂vD̃
0,q is k concentrated in bidegree (0, q − 1), hence for any

A ∈ tCh we have natural isomorphisms

HomtCh(∂vD̃
0,q, A)s,t = As,t+q−1,

Hv
s,t(HomtCh(∂vD̃

0,q, A)) = Hv
s,t+q−1(A).

The claim for X = ∂vD̃
0,q is an obvious consequence of these formulas as a map

is a (trivial) fibration if and only if it is surjective and an isomorphism on Hv
p,q for

p > 0 (resp. p ≥ 0).

Next, since D̃0,q is Dq concentrated in horizontal degree 0, we have natural isomor-
phisms of chain complexes, s ≥ 0,

HomtCh(D̃
0,q, A)s,∗ = HomCh(D

q, As,∗),

the first having differential d0. The object D
q is trivially cofibrant in Ch and hence

mapping out of it preserves (trivial) fibrations in Ch. If f : A→ B is a fibration in
tCh then

fs,∗ : As,∗ −→ Bs,∗

is a fibration of chain complexes, which implies that HomCh(D
q, fs,∗) is a trivial

fibration of complexes for all s ≥ 0. Hence HomtCh(D̃
0,q, A) is a trivial fibration in

tCh.

Let p > 0. We now consider the most difficult case, Y = ∂vD̃
p,q, which requires

more calculations. Recall the basis of the underlying bigraded module of ∂vD̃
p,q in

Definition 5.7. For each s ≥ 0, we consider the bigraded submodule

∂vD̃
p,q,s ⊂ ∂vD̃

p,q

generated by the elements yp,q−1 and di1 · · · din(yp,q−1) with i1 ≤ s. The inclusion

∂vD̃
p,q,s ⊂ ∂vD̃

p,q is compatible with the vertical differential d0, see the formula at
the beginning of the proof of Lemma 5.11.
Using this basis and the definition of the mapping object tCh we see that, for all
Z ∈ tCh, s ≥ 0, and t ∈ Z, the composite

HomtCh(∂vD̃
p,q, Z)s,t ⊂

∏

u≥0
w∈Z

Homk(∂vD̃
p,q
u,w, Zu+s,w+t) ։

∏

u≥0
w∈Z

Homk(∂vD̃
p,q,s
u,w , Zu+s,w+t)

is an isomorphism. In particular, HomtCh(∂vD̃
p,q,−) preserves surjections since

∂vD̃
p,q,s is pointwise free. Our model structure is abelian, which means that (trivial)

fibrations are exactly the surjections with (trivially) fibrant kernel. Hence, it suffices

to prove that HomtCh(∂vD̃
p,q, Z) is trivially fibrant for any fibrant twisted complex

Z.

A twisted complex is trivially fibrant if it has trivial vertical homology. For any
s ≥ 0, the previous isomorphism yields an identification of chain complexes

HomtCh(∂vD̃
p,q, Z)s,∗ =

∏

u≥0

HomCh(∂vD̃
p,q,s
u,∗ , Zu+s,∗),

the first having differential d0 again. The twisted complex ∂vD̃
p,q is concentrated

in horizontal degrees ≤ p. Hence the previous product is actually indexed by
0 ≤ u ≤ p. We must prove that each factor of the product is acyclic. We distinguish
the possible cases.
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s = 0

If s = 0, ∂vD̃
p,q,0
p,∗ is k concentrated in vertical degree q − 1 and ∂vD̃

p,q,0
u,∗ = 0 for

u 6= p. In the latter case,

HomCh(∂vD̃
p,q,0
u,∗ , Zu,∗) = 0,

and in the former,

Ht(HomCh(∂vD̃
p,q,0
p,∗ , Zp,∗)) = Ht+q−1(Zp,∗) = Hv

p,t+q−1(Z) = 0.

This is indeed zero since p > 0 and Z is a fibrant twisted complex.

s > 0, u = p, p− 1

Both ∂vD̃
p,q,s
p,∗ and ∂vD̃

p,q,s
p−1,∗ are k concentrated in vertical degree q− 1, son we can

check as right above that HomCh(∂vD̃
p,q,s
u,∗ , Zu+s,∗) is acyclic.

s > 0, p− s ≤ u ≤ p− 2

The restriction i1 ≤ s is empty in horizontal degrees ≥ p− s in ∂vD̃
p,q because in

bidegree (p− j, q− 1+ j−n) it is generated by di1 · · · din(yp,q−1) with i1, · · · in > 0
and i1 + · · ·+ in = j. Hence,

∂vD̃
p,q,s
u,∗ = ∂vD̃

p,q
u,∗ for u ≥ p− s.

In the proof of Lemma 5.11, for u ≤ p − 2 we have established an identification
between ∂vD̃

p,q
u,∗ and the coaugmented cochain complex of a simplex C∗(∆p−u−2, k),

which is trivially cofibrant in Ch. Therefore HomCh(∂vD̃
p,q,s
u,∗ , Zu+s,∗) is also acyclic

for p− s ≤ u ≤ p− 2.

s > 0, u = p− s− 1

This is the first case where the condition i1 ≤ s is meaningful, but it only discards
ds+1(yp,q−1), the topmost non-trivial free generator of the trivially cofibrant com-

plex ∂vD̃
p,q
p−s−1,∗. Therefore, ∂vD̃

p,q,s
p−s−1,∗ contains k concentrated in vertical degree

q + s− 2 as a strong deformation retract. Hence,

Ht(HomCh(∂vD̃
p,q,s
p−s−1,∗, Zp−1,∗)) = Ht+q+s−2(Zp−1,∗) = Hv

p−1,t+q+s−2(Z) = 0,

since Z is fibrant and u ≥ 0, so p ≥ s+ 1 > 1, i.e. p− 1 > 0.

s > 0, 0 ≤ u < p− s− 1

Using the explicit identification of ∂vD̃
p,q
u,∗ with C∗(∆p−u−2, k) in the proof of

Lemma 5.11, we can identify the vertical subcomplexes

∂vD̃
p,q,s
u,∗
∼= C∗(∆p−u−2,∆p−u−s−2, k).

This follows from the fact that, by the constraint
∑n

j=1 ij = p− u for the elements

di1 · · · din(yp,q−1) of the basis of ∂vD̃
p,q,s
u,∗ , the condition i1 ≤ s is equivalent to

n∑

j=2

i2 − 1 ≥ p− u− s− 1.

Hence the basis elements of ∂vD̃
p,q,s
u,∗ correspond to the duals of the simplices in

∆p−u−2 which are not in ∆p−u−s−2. The latter simplex makes sense by the upper
bound of u.
This shows that ∂vD̃

p,q,s
u,∗ is trivially cofibrant under the current hypotheses, so

HomCh(∂vD̃
p,q,s
u,∗ , Zu+s,∗) is also acyclic. Therefore, we have finally proved that tCh

is monoidal.
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Lastly, the functor Tot takes generating trivial cofibrations in tCh to cofibrations
in Ch, compare Remark 5.9, which are trivial by Lemmas 5.6 and 5.11. Hence the
monoid axiom for tCh follows from the validity of the monoid axiom in Ch.

�

Proposition 5.16. The inclusion of chain complexes as twisted complexes con-
centrated in horizontal degree 0 is the left adjoint of a strong symmetric monoidal
Quillen equivalence,

Ch ⇄ tCh .

Proof. As in the proof of Proposition 3.4, the left adjoint obviously preserves the
tensor product and the tensor unit, and the right adjoint is

tCh→ Ch: X 7→ X0,∗.

Clearly, this right adjoint preserves (trivial) fibrations. This shows that the adjoint
pair is a Quillen pair.
The same argument as in Proposition 3.4 shows that it is a Quillen equivalence.
Here we should use the spectral sequence in Remark 5.3 instead of Remark 2.11. �

Corollary 5.17. The adjoint pair in Remark 5.3 defines a strong symmetric monoidal
Quillen equivalence

tCh ⇄ bChTot .

Proof. The right adjoint, which is the full inclusion bCh ⊂ tCh, obviously preserves
(trivial) fibrations, so the adjoint pair in the statement is a Quillen pair. This
Quillen pair and the Quillen equivalence in Proposition 5.16

Ch ⇄ tCh ⇄ bChTot

compose to the Quillen equivalence in Proposition 3.4. Hence the corollary follows
from the 2-out-of-3 property for Quillen equivalences [Hov99, Corollary 1.3.15]. �
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