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Analytic evaluation of Franck-Condon integrals for anharmonic vibrational wave functions
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The problem of calculating Franck-Condon overlap integrals in molecular transitions between vibrational
states in different electronic configurations is addressed. An exact and easily applicable analytical expression is
obtained when the vibrational states can be approximated by eigenstates of Morse potentials with different
strengths and locations but identical ranges. An approximate analytical expression is obtained for the general
case. The method is applied to the stretching S-S mode corresponditig to- X'v, transitions in the $O
molecule.[S1050-294{@9)09505-0

PACS numbdss): 33.70.Ca, 31.15:p, 02.60-x

I. INTRODUCTION pression, as it is mentioned in that reference, is not very

useful for applications to molecules because it has an alter-

Molecular Franck-Condon factof&] describe the depen- nating series which becomes unstable for realistic strengths,
dence on the vibrational wave functions of vibronic transi-due to computational precision errors. In view of these prob-
tions, which are transitions between vibrational states in dif/féms, an approximate treatment of anharmonicity has been

ferent electronic configurations. Assuming that the electroni®oPosed that uses modified harmonic-oscillator wave func-
tions[2,12]. However it should be noted that these states are

transition moment is independent of the location of the nu- X
clei, the Franck-Condon factors are the square of the overla ot o.rthogonal because the oscillator parameter depends on
e vibrational quantum number.

integral between the initial and final vibrational wave func- It h ioning that di . . f th

tions in the vibronic transition. The Franck-Condon factors t_ IS wort _me'_“'_"”'”g that |rec_t mtegrat_lon of the over-
give the molecular structure information needed to evaluat p integrals IS difficult as far as highly exc[ted states in the
the band intensities in emission and absorption. During th orse potentials are concerned. Computational errors in the

past few years the improvement in experimental technique@v"’“u"’ltlon of Fhe mtegral_s can appear since one has to inte-
has opened the possibility of measuring with reasonabl rate two rapidly oscillating functions. Nevertheless, effort

resolution multidimensional Franck-Condon factors for tran-"25 been Qevoteq FO the corre_ct humerical SOIUt'On. of the
sitions between vibronic levels differing in up to around 20 c0rresponding Schdinger equation for a Morse potential by
guantg 2]. These new data are a challenge for the theory. Or?everal_methodBB]. . .

one side, the treatment of polyatomic molecules introduces In this paper we present an analytic formulation for the
important complications in the theoretical description of theoverlap Franqk-Condon mtegrals between. states of Morse
corresponding multidimensional potential energy surface.pOtent'als_' This treatment is based on the idea of co_nflgura-
Those should be solved in order to understand the existinfjo" localized Morse states recently introdudéd] and itis
data and produce accurate predictions for new experiment !osely related to the concept of quadrature in Gaussian in-
On the other hand, as the transitions measured populate

egration. We deduce an exact analytic formula for Morse
brational states with high excitation energy in a given potenpotentials with different strengths and locations but identical
tial energy surface, one can explore the effect of anharm

ganges. We demonstrate that the expression deduced here is
nicity equivalent to the one given in R¢fl2], but in our presenta-

Up. to now most of the work done along this line relies Ontion applications to realistic molecules are easy and there are
the simplification of assuming simple harmonic oscillator

no problems with possible numerical errors. In addition, an
molecular potentials for the two electronic states involved indPproximate analytic expression for the case of arbitrary vi-
the transition[2—9]. This approximation, which has been

brational wave functions is also obtained.
proved to be sufficiently accurate for describing the data in-

The paper is structured as follows. In Sec. I, we revise
volving few states around the bottom of the potential energbE‘nefly the recently introduced idea of configuration localized
surfaces, is expected to be poorer as one goes higher in ex:

orse(CLM) states and the integration by quadratures in the
citation energy and consequently explores regions where thgauss method. In Sec. lll we apply those concepts to the

anharmonicity becomes important. A treatment in which thecalculatlon of overlap Franck-Condon integrals. In Sec. IV,

nuclear motion is governed by anharmonic potentials seemMe applications Of the results obtained in the pr_eceding
to be in order. However, the treatment of the Mof$8] or section are_shown. Finally, the summary and conclusions are
the Pschl-Teller[11] anharmonic potentials, which are the presented in Sec. V.

most popular ones, do not provide in general, up to now,
simple analytical expressions. In the case of the overlap in-
tegrals between states of Morse potentials with different
strengths and locations but identical ranges, an analytical ex- In this section we discuss briefly the concepts of configu-
pression has been recently preserte?]. However, that ex- ration localized Morse(CLM) states and the method of

1. CONFIGURATION LOCALIZED MORSE STATES
AND GAUSSIAN INTEGRATION BY QUADRATURES

1050-2947/99/5%)/34629)/$15.00 PRA 59 3462 ©1999 The American Physical Society



PRA 59 ANALYTIC EVALUATION OF FRANCK-CONDON . .. 3463

Gauss integration by quadratures. These are the two ingredi- Yy Y]
ents on which the derivation of the analytic expressions of (r|jk(CLM))=W(r)=N, "84 exg — > QM (y),

the Franck-Condon overlap integrals presented in the next ®
section relies.
The Morse potential is whereQJ(")l(y) are ( —1)-degree polynomials defined by
V(r)=D({1-exd - B(r—R)J}*- 1), (1) L{Y(y)

QM (y)=LPy(yy) 9)

where—D is the value of the potential in its minimurR, is Y=Yk
the equilibrium position, an@ is the inverse of the range of |t is clear thatQJ(k_)l(y) vanishes whery=y, is a zero of
the potential. Since the Morse Hamiltonian is related to thq_(l)(y) different fromy, . For the casg/=vy,

su(2) algebra[15], its bound states can be labeled |fpm). ! '

The quantum numbgris an integer related to the depth of Nk:Q](k_)l(yk)_ (10)
the potential whilem is related to the binding energy of the
state, Note that from the orthogonality of these states one gets

- ) - the relation

h 1 h
D= 23 (j T2 emTT 2/3 m’, @ - (K () )

K K o Ay yexd —yIQN=1(Y)QK-1(Y) = QN1 (V) b -
whereu is the reduced mass of the system. The labekn 11
take the valuesn=j,j—1,...,1 (the valuem=0 is ex-
cluded since it corresponds to a state which is not normaliz- B. Gaussian integration by quadratures

able and will not be considered in the rest of this papEne . . . .
state most tightly bound correspondsnie= j. With this no- Consider a family of orthogonal polynomial,(x) with

tation the bound eigenstates of the Morse Hamiltonian ar@=12.. b is the polyno_m|al deg_re)eln an intervala
written as =x=<b with respect to a weight function(x),

dexw(X)Pn(X)Pm(X):hn5n,m- (12

. - y
(rlim)=Wjn(r)=Njn" ”exp[—g y"LEERY), (3

Let us callx,, with k=1,2,... N, to the zeros of one of
those polynomial$y(x). From themN polynomials of de-
greeN—1 can be easily obtained,

Pn—1(Xk) kn—1 Pn(X)
hn-1 Kn (X=X’

where N, is a normalization constant,y=(2j
+1)exg—B(r—R)] is the Morse variable, and{"(y) are
the generalized Laguerre polynomials of degsesnd order

p.

oL, (0= (13

A. Configuration localized Morse (CLM ) states

whereky, is the coefficient ok" in Py(x). Note that Eq(13)

is formally equivalent to Eq(9). These polynomials are or-
thogonal in the same interval and relative to the same weight

i function as the original polynomials,
|j|<(cuv|)>=mE:l (im|jk(CLM))|jm), (4

The CLM states[14] are obtained from an orthogonal
transformation of the Morse bound stat8s given by

b
f dxo(x) QW 1 (x) 921 (x)=91(x,) 8. (14
where é

o 102y U2 (m) Note that Eq.(11) is a particular case of this equation for
(Im[jk(CLM)) =N, NPT (yi), ®)  w(x)=xexg—x].
In the next section we are interested in evaluating inte-

j+1 rals of the type
Ne=—— Ly 12 6 ° P
Yk b
(m) ) . i f dx w(x)F(x), (15
P;71(y) are polynomials of degrep—-1 defined by a
pJ(T)l(y)zymflLJ(Z_n:%(y), (7)  wherew(x) is a weight function and(x) is any function of

X. F(x) can be written in the intervala(b) as an expansion

andy, are the zeros of the ponnomiBfl)(y). These CcLM in terms of quadratic forms of orthogonal _polynomigls
states are orthogonal and can be used for calculating matrhfn(X)] associated with the same weight function. Ignoring
elements of any function af. Its properties are discussed in €rms of the order of thei2+1 derivative ofF(x), we can
Ref. [14], where it is shown that the CLM states are well Wrt€

suited to describe anharmonic effects in infrared transitions. N
The CLM states can be written in coordinate representa- F(x)= E CrnPr(X)P(X). (16)
tion as n,m=0
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It should be noted that the ternN{) is the only one con- It should be noted that in the particular casexef O listed in
tributing to the N derivative ofF(x). Thus, the N deriva-  Ref.[16] (Equation 25.4.4bthere is an erratum since &l

tive of F(x) is written as is written in the numerator which should not be there. In the
2N 5 next section the case ef=1 will be of special interest. In
FIV (%) =CnnKR(2N)!. (17 that caseQ{ ,(y)) are precisely the@{? ,(y,) introduced

. in the preceding subsection, Eq9) and(10), in relation to
The polynomials{P,(x);n=0,... N—1} can be expanded o CLFI)\/I g ) (10

in terms of the new set of orthogonal polynomials

(k) Y . .
{ON21(X);k=1,... N} defined in Eq..(13). Thus, up to the Qj(k—)l(yk):QJ(Ii)l(yk): Ny, (26)
same order as beforg,(x) can be written as

N and then
= (k) ()
FOO= 2 B0, N @7
N
+> By O 1 (X)Pn(X) + CynPr(X) Pr(X). Ill. FRANCK-CONDON OVERLAP INTEGRALS
k=1

In this section we discuss the general problem of calcu-
(18) lating the overlap integral of two wave functions. The inte-

If now we compute the integral in Eq415), taking into ac- gral that we want to evaluate is

count Eqs(18) and(14), r(max)
|:f dr &% (n@(r), (28)
r

N
b (min)
f de(x)F(x)szl BicQ 1 (X )+ Canhn - (19)
2 - where the labelr includes all the quantum numbers needed

The coefficientsB,, can be evaluated, ignoring corrections t0 identify the vibrational state. The superindel or (2)

of the order of the R+ 1 derivative ofF(x) from Eq.(18), identifies the electronic state. Heréndicates the coordinate
that describes the vibrational excitation. It will be the inter-
F(X) =By QF\lk)—l(Xk)]z- (20) atomic separation for stretching modes but it may correspond
to angles for a bending mode. Let us introduce a new vari-
Thus, finally, we obtain able y(r) which is a smooth function of with the proper
asymptotic behaviowy(r)—0 if r—r(max) andy(r)—oe if
N . . . .
b r—r(min). Then, the preceding equation is
f dxw(X)F(X)= >, F(X) o+ Ry, (21)
a k=1
= f dy W (r(y)@Pr(y). (29
where the sum is extended to the zeros of the polynomial 0 dy| <« @2
Pn(X), F(xy) is the function evaluated at those zeros, and T dr
—_rok -1
“’k_[Q(N)fl(Xk)] : 22 This integral can be rewritten as
The residuaRy can be easily evaluated to be - exdy] 1
A I= fo dy yexdl —yl| 7 m L @ (P (V) |-
~ N (2N) < i< ( — —)

Equation(21) will be of use in the next section. o _ )
In the particular case in which the interval is €),and  This integral can be evaluated approximately by Gaussian

the weight functions(y) =y ex —y], the appropriate poly- intggration withn points, whergn is a large number. By
nomialsPy(x) are the generalized Laguerre polynomials ofUSing Eqs(21) and(27) we obtain

ordere, L(N“)(y). The application of Eq421) and(22) to the N

case of the generalized Laguerre polynomials can be ob- | _ 1 exdyid iq)(l)* T (y))PA( (y0)

tained directly with ky/ky_1=—N"%, hy_;=(N+a)!/ SN T dy) o TP T
(N=1)!, Py_1(y)=L{(y), and using the known relation (_ ﬁ)

[16] (Eq. 22.8.6 y

yILE (W1 =NLP(y)]— (N+ ) [LE()]. (29

(31

where the sum is extended to the zeros of the generalized

With these expressions, E(L3) and Eq.(22), we obtain Laguerre polynomials of order L{M(y). The approxima-
tion is better as gets larger. It should be noticed that this
(N+ @)! Vi approximation can be applied in the case in which the elec-
W= (25) tronic dipole matrix element is considered to be a function of

NY (N )Ly ] the interatomic separation. Then,
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r(max) o0
":fr(mm) dr @ (1) ®EX(r)pa(r) I=Ldr\If,ﬁml(/sl,Rl;rwjzmz(ﬁz,rez;r). (36)
1| exdyel 1 (1)* If one considers the form of the Morse wave functi¢8sin
= 2 N, v Pa, r(yW) terms of the polynomial®{™; defined in Eq(7), introduces
k=1 Ny dy) vk -1 .
~dr the Morse variables associated to each Morse potential
Yk
y1=(2j1+1)exd — B1(r—Ry)],
X D2y r . 32 .
az( (Vi (r(yi) (32 vo=(2j,+ L)exd — Bo(r—Ry)1, 37)

and defines the new variabjgr) as stated in Eq(29), the

original integral can be rewritten as
Let us now consider the following set of orthogonal

states: Jlrlrff\/_leﬁg\/—f dy yexd —y] Y1Y2
(rInk(CLM))=W(r) Y< dr)
; dy 1/2 1/2 ® N
=N 4 - -5 m m
M ( dr) (y> yeXp[ }Q ) XeXil(y—ylzyz) PM Py [ (39
(33

These are formally equivalent to the CLM states discusse@hen, Eq.(31) gives in this case
before. Note that ify=(2n+1)exg —B(r—Ry)], then they

will just be CLM states of a Morse potential with bound / / o (yDk(y2)
states, Eq(8). The overlap of these states with the original I~N; 1#5\/_/\/ zrlnf\/—zkzl Ny 1—dy
states in Eq(29) can be calculated by Gaussian integration yk( - a)
to be k
+
_ 1 1 12 Yk P(ml p(mz) 39
NG MT’?(R) p[ }q,m* ).  (YDPZ, ((¥2)0: (39)
S dr This is the final expression in whick/,, are the normaliza-

tion constants of the Morse wave functions, the sum is ex-

(34 tended to the number of zeros of the polynontif(y) (an
o - . appropriate election gfis [(j;+],)/2], as justified above
and similarly forCI)a2 . Thus, Eq.(31) can be written as and ;) and (y,), are the values obtained for, andy,

with the valuer =r,, r, obtained fromy(r,) =Y.

n The choice of the functiog(r) is arbitrary, but it should

I~ > (®W|nk(CLM))(nk(CLM)|®®). (35  be chosen so that the expression in brackets in(&).can
k=1 ' : be approximated by a polynomial. Taking=(y;,+Y,)/2,

the exponential in Eq39) is 1, leading to the expression
Consequently, the overlap integral of a product of arb|trary

functions can be written in terms of a product of overlaps of [ ~N rlrfz\/_ N %2

these functions with a basis of states which are formally 1My 122

equivalent to CLM states. Moreover, we can choose the i 2 1

: . e _12(YD(Y2)k

functiony(r) in Eq. (30) so that the expression in brackets X 2 Ny n )
can be approximated by a polynomial of ordem{21) in k=1 Yk Byt Ba(Ya)
the variabley. If so, the sum can be understood as a projec- (ml) (My) 40
tion on the space generated bYCLM states. If there arg; P 1((y1)k)P “1((y2)w- (40
vibrational wave functionsbgll)(r) andj, vibrational wave

. 2 ) o ~ It should be noted that there is room to investigate whether
functions ®;7/(r), then a polynomial approximation to its gjterative choices of the functiop(r) could improve the
product will require polynomials of order at least;¢j,  calculation of the integrall.
—2). Then, takingn as the closer integer tg{+j,) /2, the Expression(40) is approximate in general. We will show
overlap integral can be approximated by a surm ¢érms. now that it becomes exact for the caseBat= 3, if j is taken
Now we will apply the general ideas discussed above tasj=(j;+],)/2 or larger. The exact evaluation of that case
the case of Morse wave functions corresponding to differentan be done by using the method of Gaussian integration by
Morse potentialdin general, different strengthg)( loca- quadratures sketched in the preceding section. In this case
tions (R), and rangesg)], the integral to be done is
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TABLE I. Franck-Condon matrix elements between states in identical Morse potentials but displaced one
respect to the othetj,m,|j,m,): j;=j,=5, B1=8,=0.90 A", R,=2.67 A, andR,=3.60 A . Succes-
sive entries correspond to the exact calculation making the integration of the Morse wave fuffatbns
line), which is identical to our results given in E46), the calculation using harmonic oscillator wave

functions with oscillator lengtha,=[(j +3)*28]~

harmonic-oscillator wave functions as given in Rédf2] (third line).

! (second ling and the calculation with modified

m;\m, 5 4 3 2 1
5 0.42687 —0.34228 0.27839 —0.21679 0.14889
0.38163 —0.52971 0.51990 —0.41663 0.28915
0.38163 ~0.45147 0.49396 —0.52002 0.50695
4 0.79048 ~0.12775 0.04693 —0.00110 ~0.01166
0.52971 ~0.35362 ~0.02750 0.32220 —0.43193
0.62781 —0.28358 0.05443 0.16330  —0.38378
3 0.41678 0.74799 ~0.13014 0.13408 —0.08036
0.51990 0.02750 —0.38061 0.28255 0.03174
0.23717 0.51298 —0.40591 0.24204 0.01297
2 ~0.12667 0.44613 0.77692 0.04596 0.09256
0.41663 0.32220 ~0.28255 ~0.15417 0.35170
~0.09261 0.32338 0.41678  —0.40496 0.29047
1 0.02807 —0.24277 0.21095 0.81696 0.36737
0.28915 0.43193 0.03174  —0.35170 0.08991
0.05862 ~0.19434 0.36082 0.38247  —0.39483

I:Jlmdr\If]*lml(,B,Rl;r)\Iszmz(,B,Rz;r)

_N 1/2N 1/2ﬁledryly2

IEUL R UL

YitYa| _(mp p(m2)
XeX;{ > }ij_ll( VP2 (Y2), (41)

where we have used Eq8) and(7) and have introduced the
Morse variables

y1=(2j1+exd —B(r—Ry)]=ciexd —pr], (42
Y2=(2j,+1)exd — B(r—Ry)]=cexd —pr]. (43
Introducing a new variablg=(y;+YV,)/2, we have
1+Cz

exd — Br]=cexd —Br]. (44
In terms of this new variable Eq41) can be rewritten as

N7 1/2 e 1/2 102

iimy?Y jomy T2

dyy

Cc
xexpl —y] meﬂl( . y) P,?;"z)l(fy). (45)

+j,—2. Then, if we takg =[(j;+]2)/2] so thatRy in Eq.
(23) is zero, the result of the quadrature is exact and gives
[see Eq(27)]

c.C
1/2 1/2°1%2 1p(my) (my)
lemlezmz C 2 Nk lej]_( yk) P]Z—zl( yk)
(46)

where we have used E¢f). Equation(46) is the exact result
and it is precisely what is obtained from E@O) for B

= B,. It can be evaluated simply since it involves the sum of
products of polynomials evaluated at the zeros of other poly-
nomials[in this case the generalized Laguerre polynomials
of order 1,L{"(y)]. In the appendix it is shown that this
expression is equivalent to E¢.5 in Ref. [12], avoiding
the problems with numerical errors.

IV. APPLICATIONS

In order to test how good different approximations are for
the evaluation of the Franck-Condon overlap integrals, we
have performed a first calculation for a simple case in which
the anharmonicity should be important. In Table | we show a
calculation in which both electronic configurations involved
in the vibronic transition give rise to identical Morse poten-
tials in depth and strength but somehow displaced. We have
chosen a small value f¢rso as to see clearly the anharmonic
effects. In this casg,=j,=5, B;=8,=090A"1 R

This last integral can be evaluated by quadratures by=267 A andR,=3.60 A . Different entries in the table for

using the orthogonal polynomials in the interval %D,
with weight function w(y)=yexd—y]. In our case

P(ml)l((cllc)y)Pj _)1((c2/c)y) is a polynomial of ordeij,

m; and m, fixed are the following. The first entry is the
exact result obtained by direct integration of the correspond-
ing Morse wave functions, which coincides with our analytic
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TABLE Il. Franck-Condon matrix elements between states in different Morse potefitialg|j,m,):
j1=5,R;=2.67A,B3,=0.90A 'andj,=5,R,=3.60 A, 3,=0.60 A~1. Successive entries correspond
to the exact calculation making the integration of the Morse wave functiinss line), our approximate
results given by Eq(40) (second ling the calculation using harmonic-oscillator wave functions with oscil-
lator lengthay=[(] +%)1’2,8]’1 (third line), and the calculation with modified harmonic-oscillator wave
functions as given in Ref12] (fourth line).

m;\m, 5 4 3 2 1

5 0.52851 —0.48137 0.37794 —0.27795 0.18265
0.52857 —0.48161 0.37851 —0.27883 0.18355
0.53110 —0.68046 0.47203 —0.13547 —0.07045
0.53108 ~0.61175 0.61258 ~0.55162 0.40091

4 0.69643 ~0.11240 ~0.11346 0.16657 —0.13819
0.69619 ~0.11130 ~0.11617 0.17091 —0.14264
0.45363 ~0.09097 —0.48511 0.63898 ~0.31027
0.47415 ~0.11648 ~0.01808 0.41928 ~0.56771

3 0.47491 0.57459 —0.30630 0.12814 —0.04358
0.47557 0.57139 —0.29778 0.11368 —0.02814
0.41843 0.05608 —0.24858 ~0.19935 0.62758
0.29134 0.25698 —0.25966 0.08329 0.17547

2 0.09588 0.64689 0.47316  —0.26552 0.15657
0.09470 0.65327 0.45393  —0.22820 0.11179
0.34881 0.22208 —0.23267 ~0.12709 —0.00045
0.06602 0.38994 —0.02755 ~0.11715 0.08620

1 —0.02603 0.04474 0.69961 0.57982  —0.08986

—0.02477 0.03707 0.72679 0.51106 0.03469

0.28834 0.27451 ~0.03721 —0.30668 0.09155
0.00203 0.13429 0.38065  —0.22119 0.09124

expression(46) as stated before. The second entry is ob+jg of the transitions involving the least bound states.
tained from a harmonic approximation, where the Morse e we have shown that the approximation given by Eq.
wave functions are approximated by harmonic wave func-(40) is good, we would like to apply it to a realistic system.

. . . _ . 1 1/2 -1
tions with oscillator lengtra,=[(j +5)""A] °. We see that We have chosen the stretching S-S mode in th@ 8ol-
even for the vibronic transition between the vibrational

ground states in each Morse an error of the order of 10% igcule for which recently new extensive results have been

obtained. As soon as higher vibrational states are involvecfeported[z]' The S-S streiching mode seems to be rather
rather important errors, as expected, occur, including ecoupled from the other modes and that allows us to con-

change in signs. The third entry is a calculation with modi-Sider it independently. However, we should have in mind
fied harmonic-oscillator wave functions as given in Ref.that mixing with other modes may play a role as one goes up
[12]. It is seen that this calculation brings the results in thel" €xcitation energy. In Fig. 1, we plot the relative dispersed
correct direction but not much. In addition it should be notedfluorescence intensity versus the final state vibrational quan-
that the sum of the squares of the matrix elements in the thirtbm number ¢,) for three different progressions:glz(a),
entry corresponding ten; =5 are larger than 1. This is due 2! (p), and 2 (c).! The relative intensity is related to the
to the fact that the modified harmonic oscillator wave func- "* !
tions for each electronic state are not orthogonal.

In Table Il we show a calculation in which both electronic | o . .
configurations involved in the vibronic transition give rise to 1 he vibrational states in;® are given by three labels .o vs.s
displaced Morse potentials with different depth and strengthV'sso in a local basis. The labels., gives the number of quanta in
In this casej;=j,=5, B,=0.90 AL Ry=2.67 A B, _the stretchlng S-O mode, the laheg] g gives thg number of quanta
—-0.60 AL, and R,=3.60 A The first entry here is the in the stretching S-S mode, and the labgo gives the number of

exact calculation. The second entry is our analytic calculaguanta in the bending mode. The notation for Franck-Condon tran-

tion obtained by using Eq40). The third entry is the har- SItons s fUZZZZSZZ and represents a vibronic transition between the
monic approximation to the wave functions. The fourth entryvibrational state ¢,,vp,v¢) in the excited electronic configuration
is the modified harmonic-oscillator approximatiph2]. It ~ C'A’) and the vibrational states(,vp,v.) in the fundamental elec-
can be seen that our analytic expression,(B), reproduces tronic configuration X*A’). In the case in whichy;=v/=0 the

accurately(including sign$ the exact results, with the excep- corresponding term is omitted.
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accepted that, for the stretching S-S mode in th® &ol-
ecule, the bond S-O is rather stiff and the reduced mass can
be evaluated ag = M M 5o/ (M s+ M g0) . With this approxi-
mation the valueg;=1.744 A~ and8,=1.718 A~ are
obtained. From the experimental data the equilibrium S-S
separation in the electronic ground state is known tdRbe
=1.8845 A and for the equilibrium separation in the elec-
tronic excited state it iR,=R;+AR, with AR=0.26 A

[17] obtained from an analysis of the rotational structure of
the SO molecule. With this input we have calculated the
fluorescence intensity, which is presented in Fig. 1. It can be
seen that the main structure of the relative intensity in all
cases is reproduced correctly, although it is overestimated for
large final vibrational quantum numbers,j. One reason for
this disagreement is the fact that we are treating the stretch-
ing S-S mode as isolated. This should be a good approxima-
tion for small values ob; but mixing with the other modes

in the molecule is expected to be more importanv asn-
creases. Another reason could be the calculation of the
Franck-Condon factor by using the usual approximation of
replacing the electronic transition moment, which should be
a function of the internuclear separationby a constant.
This may not be a good approximation when considering
vibrational states with large;. In that case the electronic
transition moment written as an appropriate functionr of
should be included in the overlap integral, such as presented
in Eq. (32). We have performed a calculation of this type just
to show the effect of such a term. The electronic transition
: moment has been taken as proportional to[ e@Br]. The

I ] result of this calculation is shown in Fig. 1 with a dashed

! line. It is seen that a term of this kind moves all the results in
the correct direction, although, of course, it is not able to
correct all discrepancies at large since mixing should also

FIG. 1. Relative dispersed fluorescence intengimension- € important.
lesg of the stretching S-S mode in the& molecule versus the
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final vibrational quantum numbew () for three different progres- V. SUMMARY AND CONCLUSIONS
sions: ZSI (a), 2&1 (b), and ﬁl (c). Experimental data are from Ref. ' ' _
[2]. Full line is the result of applying Eq40). Dashed line is In this paper we present an approximate analytic expres-

the result of including in the overlap integral a function of Sion to evaluate Franck-Condon overlap integrals for anhar-
r (exg—2pr] in this examplg representing the variation of the monic wave functions. This expression is based on the
electronic transition moment with Gaussian method of integration by quadratures and on the

recently introduced configuration localized Morse states. The
Franck-Condon factorsSgiar,, x1arv, (the square of the expression is shown to be exact for Morse wave functions

overlap integral by with. Fhe_ same range parameferand differeljt valugs of the
4 equilibrium position R; andR,) and depthsj; andj,) and
L1y, X1y, XV SE1AT, XIA 0 s (47 itis a very good approximation for general Morse wave

functions. In particular it has been applied to the S-S stretch-
wherev is the frequency of the transition and the factdr ing mode in the SO molecule leading to a correct descrip-
includes the dependencé of the spontaneous emission and tion of the experimentally observed fluorescence intensities.
an extra factorv related to the detector respongd. The  |n addition, it has been shown that the removal of the Con-
results obtained from Eq40) properly normalized are plot- don approximation so as to include explicitly the dependence
ted as solid line and the experimental dg2 as full dots.  of the electronic transition dipole moment on the internuclear
The detection limit of the experiment is 1@ The param- distance, which is straightforward in our treatment, improves
eters used to characterize the two Morse potentials implied ithe description of the experimental data.
our calculation are the following: The valugs=128 and We consider that the approximation presented here con-
j»=80 are taken from Refl2]. The range parameters are stitutes a useful starting point in order to obtain analytical
obtained from the experimental energy of the first excitedapproximations for Franck-Condon factors in polyatomic
S-S stretching state in each Morse potential. In a simple apmolecules. In that case it can be used in connection with the
proximationei(v=1)—ei(v=0)=ﬁzﬁi2(2ji—1)/2,u. This al-  algebraic models recently developed in terms of th€@)su
lows us to obtainB; from the experimental energies provided algebra, which take into account the interactions between
the reduced mass is known. For the reduced mass we havedifferent local modes of the molecules, and provide finally
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the wave functions as combinations of products of algebraicussions with F. Rez-Bernal, A. Frank, and R. Lemus.
local wave functions. These algebraic local wave functions

can be written in a coqrdinate representation as Morse wave APPENDIX

functions, or possibly Pszhl-Teller wave functions for the

bending modes. The formalism presented here can be used In this appendix we are showing that Eg6) is equiva-
then to calculate the overlap integrals. In relation with thislent to the form recently reported in Ref12] for Morse
last point, it is worth mentioning that the approximationswave functions of potentials with the same raryéVe start
presented here can be extended to other anharmonic poteinem Egs.(46). We will use Eqs(42)—(44) and the explicit
tials of interest in molecular physics, such as, for examplegxpression of the generalized Laguerre polynomials,
the Pschl-Teller potential, which has been suggested to be

more appropriate for representing bending modes in poly- " (1) (nta
atomic molecules. LE(y)=2 —— |y (A1)
/=0 /) n—/
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(Ny/2)-ng—1

= A 1/2/\/ 12 clc2 1 &y zy (Np/2)—np—1 Ny (—=1)"1(N;—n,
Npng?Npnp 02 e k| o Tk c K 2o /b \ni—/4
/1 N2 / _
C2 ! (1) Z(Nz nz\ic, 2
X< 0 — A2
Cyk /=0 /2! n —/2 Cyk ( )
Sincec,/c=[2/(1+¢{)]{ andc,/c=2/(1+ ), we can rewrite the preceding equation as
=A< 1/2N 12 Ny n, 2 |\ (Na+N2/2)=ny = el 22 (_1)/1+/2 N;—nq\ [No—n, / 2 /117
TN TN, ”25_ 1+¢ /120 /520 W n—~1 /sy 1T§
i
-1,,/1t7 /2)—N1—No—
XZ Nk 1yk1+ 2+(N1+N22) ni—nyp 2 (A3)

Remembering that the indd«dabels the zeros of the generalized Laguerre polynohfi’ai(y), the expression of the Gaussian
integration by quadratures, Eq21), (22), and the definition of th&" function, the sum ork can be written as

]
—ni—ny— * N;+N
> Nyt 2 (N2 mmmng =2 fo dyyexr[—y]y/l*/Z*(Nl*NZ’z)”1”22=F( MmN .
(Ad)
Substituting this last result in the expressionl othe final result is obtained,
N;+No/2)—nq— Ny n2 _1\/1+7/ — — O +/
= NSV2 pro2 ggnl( : )( B _( 1)71772(Ny—ng| [No—n, /1( : ) o
Noona Na.nz 1+¢ A0 20 A Ang=/1)\np—/5 1+7
N;,+N,
XF 2 —I’ll—n2+/1+/2 ) (AS)
which is precisely Eq(4.5) in Ref.[12].
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