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Analytic evaluation of Franck-Condon integrals for anharmonic vibrational wave functions

M. Carvajal, J. M. Arias, and J. Go´mez-Camacho
Departamento de Fı´sica Atómica, Molecular y Nuclear, Facultad de Fı´sica, Universidad de Sevilla, Apartado 1065,

41080 Sevilla, Spain
~Received 11 December 1998!

The problem of calculating Franck-Condon overlap integrals in molecular transitions between vibrational
states in different electronic configurations is addressed. An exact and easily applicable analytical expression is
obtained when the vibrational states can be approximated by eigenstates of Morse potentials with different
strengths and locations but identical ranges. An approximate analytical expression is obtained for the general
case. The method is applied to the stretching S-S mode corresponding toC̃1v2←X̃1v1 transitions in the S2O
molecule.@S1050-2947~99!09505-0#

PACS number~s!: 33.70.Ca, 31.15.2p, 02.60.2x
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I. INTRODUCTION

Molecular Franck-Condon factors@1# describe the depen
dence on the vibrational wave functions of vibronic tran
tions, which are transitions between vibrational states in
ferent electronic configurations. Assuming that the electro
transition moment is independent of the location of the
clei, the Franck-Condon factors are the square of the ove
integral between the initial and final vibrational wave fun
tions in the vibronic transition. The Franck-Condon facto
give the molecular structure information needed to evalu
the band intensities in emission and absorption. During
past few years the improvement in experimental techniq
has opened the possibility of measuring with reasona
resolution multidimensional Franck-Condon factors for tra
sitions between vibronic levels differing in up to around
quanta@2#. These new data are a challenge for the theory.
one side, the treatment of polyatomic molecules introdu
important complications in the theoretical description of t
corresponding multidimensional potential energy surfa
Those should be solved in order to understand the exis
data and produce accurate predictions for new experime
On the other hand, as the transitions measured populat
brational states with high excitation energy in a given pot
tial energy surface, one can explore the effect of anhar
nicity.

Up to now most of the work done along this line relies
the simplification of assuming simple harmonic oscilla
molecular potentials for the two electronic states involved
the transition@2–9#. This approximation, which has bee
proved to be sufficiently accurate for describing the data
volving few states around the bottom of the potential ene
surfaces, is expected to be poorer as one goes higher in
citation energy and consequently explores regions where
anharmonicity becomes important. A treatment in which
nuclear motion is governed by anharmonic potentials se
to be in order. However, the treatment of the Morse@10# or
the Pöschl-Teller@11# anharmonic potentials, which are th
most popular ones, do not provide in general, up to no
simple analytical expressions. In the case of the overlap
tegrals between states of Morse potentials with differ
strengths and locations but identical ranges, an analytica
pression has been recently presented@12#. However, that ex-
PRA 591050-2947/99/59~5!/3462~9!/$15.00
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pression, as it is mentioned in that reference, is not v
useful for applications to molecules because it has an a
nating series which becomes unstable for realistic streng
due to computational precision errors. In view of these pr
lems, an approximate treatment of anharmonicity has b
proposed that uses modified harmonic-oscillator wave fu
tions @2,12#. However it should be noted that these states
not orthogonal because the oscillator parameter depend
the vibrational quantum number.

It is worth mentioning that direct integration of the ove
lap integrals is difficult as far as highly excited states in t
Morse potentials are concerned. Computational errors in
evaluation of the integrals can appear since one has to
grate two rapidly oscillating functions. Nevertheless, eff
has been devoted to the correct numerical solution of
corresponding Schro¨dinger equation for a Morse potential b
several methods@13#.

In this paper we present an analytic formulation for t
overlap Franck-Condon integrals between states of Mo
potentials. This treatment is based on the idea of configu
tion localized Morse states recently introduced@14# and it is
closely related to the concept of quadrature in Gaussian
tegration. We deduce an exact analytic formula for Mo
potentials with different strengths and locations but identi
ranges. We demonstrate that the expression deduced he
equivalent to the one given in Ref.@12#, but in our presenta-
tion applications to realistic molecules are easy and there
no problems with possible numerical errors. In addition,
approximate analytic expression for the case of arbitrary
brational wave functions is also obtained.

The paper is structured as follows. In Sec. II, we rev
briefly the recently introduced idea of configuration localiz
Morse~CLM! states and the integration by quadratures in
Gauss method. In Sec. III we apply those concepts to
calculation of overlap Franck-Condon integrals. In Sec.
some applications of the results obtained in the preced
section are shown. Finally, the summary and conclusions
presented in Sec. V.

II. CONFIGURATION LOCALIZED MORSE STATES
AND GAUSSIAN INTEGRATION BY QUADRATURES

In this section we discuss briefly the concepts of config
ration localized Morse~CLM! states and the method o
3462 ©1999 The American Physical Society
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PRA 59 3463ANALYTIC EVALUATION OF FRANCK-CONDON . . .
Gauss integration by quadratures. These are the two ing
ents on which the derivation of the analytic expressions
the Franck-Condon overlap integrals presented in the n
section relies.

The Morse potential is

V~r !5D„$12exp@2b~r 2R!#%221…, ~1!

where2D is the value of the potential in its minimum,R is
the equilibrium position, andb is the inverse of the range o
the potential. Since the Morse Hamiltonian is related to
su~2! algebra@15#, its bound states can be labeled byu jm&.
The quantum numberj is an integer related to the depth
the potential whilem is related to the binding energy of th
state,

D5
\2b2

2m S j 1
1

2D 2

, em52
\2b2

2m
m2, ~2!

wherem is the reduced mass of the system. The labelm can
take the valuesm5 j , j 21, . . . ,1 ~the valuem50 is ex-
cluded since it corresponds to a state which is not norma
able and will not be considered in the rest of this paper!. The
state most tightly bound corresponds tom5 j . With this no-
tation the bound eigenstates of the Morse Hamiltonian
written as

^r u jm&5C jm~r !5N jm
21/2b1/2expF2

y

2GymL j 2m
(2m)~y!, ~3!

where Njm is a normalization constant, y5(2 j
11)exp@2b(r2R)# is the Morse variable, andLs

(p)(y) are
the generalized Laguerre polynomials of degrees and order
p.

A. Configuration localized Morse „CLM … states

The CLM states@14# are obtained from an orthogona
transformation of the Morse bound states~3! given by

u jk~CLM!&5 (
m51

j

^ jmu jk~CLM!&u jm&, ~4!

where

^ jmu jk~CLM!&5Nk
21/2N jm

21/2Pj 21
(m) ~yk!, ~5!

Nk5
j 11

yk
@L j 21

(1) ~yk!#
2, ~6!

Pj 21
(m) (y) are polynomials of degreej 21 defined by

Pj 21
(m) ~y!5ym21L j 2m

(2m)~y!, ~7!

andyk are the zeros of the polynomialL j
(1)(y). These CLM

states are orthogonal and can be used for calculating m
elements of any function ofr. Its properties are discussed
Ref. @14#, where it is shown that the CLM states are w
suited to describe anharmonic effects in infrared transitio

The CLM states can be written in coordinate represen
tion as
di-
f
xt

e

z-

re

rix

l
s.
a-

^r u jk~CLM!&5C jk~r !5Nk
21/2b1/2y expF2

y

2GQj 21
(k) ~y!,

~8!

whereQj 21
(k) (y) are (j 21)-degree polynomials defined by

Qj 21
(k) ~y!5L j 21

(1) ~yk!
L j

(1)~y!

y2yk
. ~9!

It is clear thatQj 21
(k) (y) vanishes wheny5yl is a zero of

L j
(1)(y) different fromyk . For the casey5yk ,

Nk5Qj 21
(k) ~yk!. ~10!

Note that from the orthogonality of these states one g
the relation

E
0

`

dy yexp@2y#QN21
(k) ~y!QN21

(l ) ~y!5QN21
(l ) ~yl !dk,l .

~11!

B. Gaussian integration by quadratures

Consider a family of orthogonal polynomialsPn(x) with
n51,2, . . . (n is the polynomial degree! in an interval a
<x<b with respect to a weight functionv(x),

E
a

b

dx v~x!Pn~x!Pm~x!5hndn,m . ~12!

Let us callxk , with k51,2, . . . ,N, to the zeros of one of
those polynomialsPN(x). From them,N polynomials of de-
greeN21 can be easily obtained,

QN21
(k) ~x!5

PN21~xk!

hN21

kN21

kN

PN~x!

~x2xk!
, ~13!

wherekN is the coefficient ofxN in PN(x). Note that Eq.~13!
is formally equivalent to Eq.~9!. These polynomials are or
thogonal in the same interval and relative to the same we
function as the original polynomials,

E
a

b

dxv~x!QN21
(k) ~x!QN21

(l ) ~x!5QN21
(l ) ~xl !dk,l . ~14!

Note that Eq.~11! is a particular case of this equation fo
v(x)5x exp@2x#.

In the next section we are interested in evaluating in
grals of the type

E
a

b

dx v~x!F~x!, ~15!

wherev(x) is a weight function andF(x) is any function of
x. F(x) can be written in the interval (a,b) as an expansion
in terms of quadratic forms of orthogonal polynomia
@Pn(x)# associated with the same weight function. Ignori
terms of the order of the 2N11 derivative ofF(x), we can
write

F~x!. (
n,m50

N

CnmPn~x!Pm~x!. ~16!
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It should be noted that the term (NN) is the only one con-
tributing to the 2N derivative ofF(x). Thus, the 2N deriva-
tive of F(x) is written as

F (2N)~x!.CNNkN
2 ~2N!!. ~17!

The polynomials$Pn(x);n50, . . . ,N21% can be expanded
in terms of the new set of orthogonal polynomia
$QN21

(k) (x);k51, . . . ,N% defined in Eq.~13!. Thus, up to the
same order as before,F(x) can be written as

F~x!. (
k,l 51

N

Bkl QN21
(k) ~x!QN21

(l ) ~x!

1 (
k51

N

Bk8QN21
(k) ~x!PN~x!1CNNPN~x!PN~x!.

~18!

If now we compute the integral in Eq.~15!, taking into ac-
count Eqs.~18! and ~14!,

E
a

b

dxv~x!F~x!. (
k51

N

BkkQN21
(k) ~xk!1CNNhN . ~19!

The coefficientsBkk can be evaluated, ignoring correction
of the order of the 2N11 derivative ofF(x) from Eq. ~18!,

F~xk!5Bkk@QN21
(k) ~xk!#

2. ~20!

Thus, finally, we obtain

E
a

b

dxv~x!F~x!5 (
k51

N

F~xk!vk1RN , ~21!

where the sum is extended to the zeros of the polynom
PN(x), F(xk) is the function evaluated at those zeros, an

vk5@QN21
(k) ~xk!#

21. ~22!

The residualRN can be easily evaluated to be

RN.
hN

kN
2 ~2N!!

F (2N)~j!, a,j,b. ~23!

Equation~21! will be of use in the next section.
In the particular case in which the interval is (0,`) and

the weight functionv(y)5ya exp@2y#, the appropriate poly-
nomialsPN(x) are the generalized Laguerre polynomials
ordera, LN

(a)(y). The application of Eqs.~21! and~22! to the
case of the generalized Laguerre polynomials can be
tained directly with kN /kN2152N21, hN215(N1a)!/
(N21)!, PN21(y)5LN21

(a) (y), and using the known relation
@16# ~Eq. 22.8.6!

y@LN
(a)~y!#85N@LN

(a)~y!#2~N1a!@LN21
(a) ~y!#. ~24!

With these expressions, Eq.~13! and Eq.~22!, we obtain

vk5
~N1a!!

N!

yk

~N1a!2@LN21
(a) ~yk!#

2
. ~25!
al

f

b-

It should be noted that in the particular case ofa50 listed in
Ref. @16# ~Equation 25.4.45! there is an erratum since anN!
is written in the numerator which should not be there. In t
next section the case ofa51 will be of special interest. In
that case,QN21

(k) (yk) are precisely theQN21
(k) (yk) introduced

in the preceding subsection, Eqs.~9! and ~10!, in relation to
the CLM,

Qj 21
(k) ~yk!5Qj 21

(k) ~yk!5Nk , ~26!

and then

vk5Nk
21 . ~27!

III. FRANCK-CONDON OVERLAP INTEGRALS

In this section we discuss the general problem of cal
lating the overlap integral of two wave functions. The int
gral that we want to evaluate is

I 5E
r (min)

r (max)

dr Fa1

(1)* ~r !Fa2

(2)~r !, ~28!

where the labela includes all the quantum numbers need
to identify the vibrational state. The superindex~1! or ~2!
identifies the electronic state. Herer indicates the coordinate
that describes the vibrational excitation. It will be the inte
atomic separation for stretching modes but it may corresp
to angles for a bending mode. Let us introduce a new v
able y(r ) which is a smooth function ofr with the proper
asymptotic behavior:y(r )→0 if r→r (max) andy(r )→` if
r→r (min). Then, the preceding equation is

I 5E
0

`

dy
1

S 2
dy

dr D
Fa1

(1)* „r ~y!…Fa2

(2)
„r ~y!…. ~29!

This integral can be rewritten as

I 5E
0

`

dy yexp@2y#F exp@y#

S 2
dy

dr D
1

y
Fa1

(1)* „r ~y!…Fa2

(2)
„r ~y!…G .

~30!

This integral can be evaluated approximately by Gauss
integration with n points, wheren is a large number. By
using Eqs.~21! and ~27! we obtain

I' (
k51

n
1

NkF exp@yk#

S 2
dy

dr D
yk

1

yk
Fa1

(1)* „r ~yk!…Fa2

(2)
„r ~yk!…G ,

~31!

where the sum is extended to the zeros of the general
Laguerre polynomials of order 1,Ln

(1)(y). The approxima-
tion is better asn gets larger. It should be noticed that th
approximation can be applied in the case in which the e
tronic dipole matrix element is considered to be a function
the interatomic separation. Then,
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I 85E
r (min)

r (max)

dr Fa1

(1)* ~r !Fa2

(2)~r !m~r !

'(
k51

n
1

NkF exp@yk#

S 2
dy

dr D
yk

1

yk
Fa1

(1)* „r ~yk!…

3Fa2

(2)
„r ~yk!…m„r ~yk!…G . ~32!

Let us now consider the following set of orthogon
states:

^r unk~CLM!&5Cnk~r !

5Nk
21/2S 2

dy

dr D
1/2S 1

yD 1/2

y expF2
y

2GQn21
(k) ~y!.

~33!

These are formally equivalent to the CLM states discus
before. Note that ify5(2n11)exp@2b(r2R0)#, then they
will just be CLM states of a Morse potential withn bound
states, Eq.~8!. The overlap of these states with the origin
states in Eq.~29! can be calculated by Gaussian integrati
to be

^nk~CLM!uFa1

(1)&

5Nk
21/2 1

S 2
dy

dr D
yk

1/2S 1

yk
D 1/2

expFyk

2 GFa1

(1)* „r ~yk!…,

~34!

and similarly forFa2

(2) . Thus, Eq.~31! can be written as

I'(
k51

n

^Fa1

(1)unk~CLM!&^nk~CLM!uFa2

(2)&. ~35!

Consequently, the overlap integral of a product of arbitr
functions can be written in terms of a product of overlaps
these functions with a basis of states which are forma
equivalent to CLM states. Moreover, we can choose
function y(r ) in Eq. ~30! so that the expression in bracke
can be approximated by a polynomial of order (2n21) in
the variabley. If so, the sum can be understood as a proj
tion on the space generated byn CLM states. If there arej 1

vibrational wave functionsFa1

(1)(r ) and j 2 vibrational wave

functions Fa2

(2)(r ), then a polynomial approximation to it

product will require polynomials of order at least (j 11 j 2
22). Then, takingn as the closer integer to (j 11 j 2) /2, the
overlap integral can be approximated by a sum ofn terms.

Now we will apply the general ideas discussed above
the case of Morse wave functions corresponding to differ
Morse potentials@in general, different strengths (j ), loca-
tions (R), and ranges (b)],
d

l

y
f
y
e

-

o
t

I 5E
2`

`

dr C j 1m1
* ~b1 ,R1 ;r !C j 2m2

~b2 ,R2 ;r !. ~36!

If one considers the form of the Morse wave functions~3! in
terms of the polynomialsPj 21

(m) defined in Eq.~7!, introduces
the Morse variables associated to each Morse potential

y15~2 j 111!exp@2b1~r 2R1!#,

y25~2 j 211!exp@2b2~r 2R2!#, ~37!

and defines the new variabley(r ) as stated in Eq.~29!, the
original integral can be rewritten as

I 5N j 1m1

21/2Ab1N j 2m2

21/2Ab2E
0

`

dy yexp@2y#F y1y2

yS 2
dy

dr D
3expS y2

y11y2

2 D Pj 121
(m1)

~y1!Pj 221
(m2)

~y2!G . ~38!

Then, Eq.~31! gives in this case

I'N j 1m1

21/2Ab1N j 2m2

21/2Ab2(
k51

j

Nk
21 ~y1!k~y2!k

ykS 2
dy

dr D
k

3expFyk2
~y1!k1~y2!k

2 G
3Pj 121

(m1)
„~y1!k…Pj 221

(m2)
„~y2!k…. ~39!

This is the final expression in whichNjm are the normaliza-
tion constants of the Morse wave functions, the sum is
tended to the number of zeros of the polynomialL j

(1)(y) ~an
appropriate election ofj is @( j 11 j 2)/2#, as justified above!,
and (y1)k and (y2)k are the values obtained fory1 and y2
with the valuer 5r k , r k obtained fromy(r k)5yk .

The choice of the functiony(r ) is arbitrary, but it should
be chosen so that the expression in brackets in Eq.~38! can
be approximated by a polynomial. Takingy5(y11y2)/2,
the exponential in Eq.~39! is 1, leading to the expression

I'N j 1m1

21/2Ab1N j 2m2

21/2Ab2

3 (
k51

j

Nk
21 2~y1!k~y2!k

yk

1

b1~y1!k1b2~y2!k

3Pj 121
(m1)

„~y1!k…Pj 221
(m2)

„~y2!k…. ~40!

It should be noted that there is room to investigate whet
alternative choices of the functiony(r ) could improve the
calculation of the integralI.

Expression~40! is approximate in general. We will show
now that it becomes exact for the case ofb15b2 if j is taken
as j 5( j 11 j 2)/2 or larger. The exact evaluation of that ca
can be done by using the method of Gaussian integration
quadratures sketched in the preceding section. In this c
the integral to be done is
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TABLE I. Franck-Condon matrix elements between states in identical Morse potentials but displac
respect to the other,^ j 1m1u j 2m2&: j 15 j 255, b15b250.90 Å21, R152.67 Å , andR253.60 Å . Succes-
sive entries correspond to the exact calculation making the integration of the Morse wave function~first
line!, which is identical to our results given in Eq.~46!, the calculation using harmonic oscillator wav
functions with oscillator lengtha05@( j 1 1

2 )1/2b#21 ~second line!, and the calculation with modified
harmonic-oscillator wave functions as given in Ref.@12# ~third line!.

m1\m2 5 4 3 2 1

5 0.42687 20.34228 0.27839 20.21679 0.14889
0.38163 20.52971 0.51990 20.41663 0.28915
0.38163 20.45147 0.49396 20.52002 0.50695

4 0.79048 20.12775 0.04693 20.00110 20.01166
0.52971 20.35362 20.02750 0.32220 20.43193
0.62781 20.28358 0.05443 0.16330 20.38378

3 0.41678 0.74799 20.13014 0.13408 20.08036
0.51990 0.02750 20.38061 0.28255 0.03174
0.23717 0.51298 20.40591 0.24204 0.01297

2 20.12667 0.44613 0.77692 0.04596 0.09256
0.41663 0.32220 20.28255 20.15417 0.35170

20.09261 0.32338 0.41678 20.40496 0.29047

1 0.02807 20.24277 0.21095 0.81696 0.36737
0.28915 0.43193 0.03174 20.35170 0.08991
0.05862 20.19434 0.36082 0.38247 20.39483
e

b

ves

of
ly-

als
s

for
we
ich

a
d

n-
ave
ic

r
e
nd-
tic
I 5E
2`

`

dr C j 1m1
* ~b,R1 ;r !C j 2m2

~b,R2 ;r !

5N j 1m1

21/2N j 2m2

21/2bE
2`

`

dr y1y2

3expFy11y2

2 GPj 121
(m1)

~y1!Pj 221
(m2)

~y2!, ~41!

where we have used Eqs.~3! and~7! and have introduced th
Morse variables

y15~2 j 111!exp@2b~r 2R1!#5c1 exp@2br #, ~42!

y25~2 j 211!exp@2b~r 2R2!#5c2 exp@2br #. ~43!

Introducing a new variabley5(y11y2)/2, we have

y5
c11c2

2
exp@2br #5cexp@2br #. ~44!

In terms of this new variable Eq.~41! can be rewritten as

I 5N j 1m1

21/2N j 2m2

21/2c1c2

c2 E
0

`

dy y

3exp@2y#Pj 121
(m1) S c1

c
yD Pj 221

(m2) S c2

c
yD . ~45!

This last integral can be evaluated by quadratures
using the orthogonal polynomials in the interval (0,`)
with weight function v(y)5y exp@2y#. In our case
Pj 121

(m1)
„(c1 /c)y…Pj 221

(m2)
„(c2/c)y… is a polynomial of orderj 1
y

1j222. Then, if we takej 5@( j 11 j 2)/2# so thatRN in Eq.
~23! is zero, the result of the quadrature is exact and gi
@see Eq.~27!#

I 5N j 1m1

21/2N j 2m2

21/2c1c2

c2 (
k51

j

Nk
21Pj 121

(m1) S c1

c
ykD Pj 221

(m2) S c2

c
ykD ,

~46!

where we have used Eq.~6!. Equation~46! is the exact result
and it is precisely what is obtained from Eq.~40! for b1
5b2. It can be evaluated simply since it involves the sum
products of polynomials evaluated at the zeros of other po
nomials @in this case the generalized Laguerre polynomi
of order 1,L j

(1)(y)]. In the appendix it is shown that thi
expression is equivalent to Eq.~4.5! in Ref. @12#, avoiding
the problems with numerical errors.

IV. APPLICATIONS

In order to test how good different approximations are
the evaluation of the Franck-Condon overlap integrals,
have performed a first calculation for a simple case in wh
the anharmonicity should be important. In Table I we show
calculation in which both electronic configurations involve
in the vibronic transition give rise to identical Morse pote
tials in depth and strength but somehow displaced. We h
chosen a small value forj so as to see clearly the anharmon
effects. In this casej 15 j 255, b15b250.90 Å21, R1
52.67 Å , andR253.60 Å . Different entries in the table fo
m1 and m2 fixed are the following. The first entry is th
exact result obtained by direct integration of the correspo
ing Morse wave functions, which coincides with our analy
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TABLE II. Franck-Condon matrix elements between states in different Morse potentials^ j 1m1u j 2m2&:
j 155, R152.67 Å , b150.90 Å21 and j 255, R253.60 Å , b250.60 Å21. Successive entries correspon
to the exact calculation making the integration of the Morse wave functions~first line!, our approximate
results given by Eq.~40! ~second line!, the calculation using harmonic-oscillator wave functions with os
lator lengtha05@( j 1 1

2 )1/2b#21 ~third line!, and the calculation with modified harmonic-oscillator wa
functions as given in Ref.@12# ~fourth line!.

m1\m2 5 4 3 2 1

5 0.52851 20.48137 0.37794 20.27795 0.18265
0.52857 20.48161 0.37851 20.27883 0.18355
0.53110 20.68046 0.47203 20.13547 20.07045
0.53108 20.61175 0.61258 20.55162 0.40091

4 0.69643 20.11240 20.11346 0.16657 20.13819
0.69619 20.11130 20.11617 0.17091 20.14264
0.45363 20.09097 20.48511 0.63898 20.31027
0.47415 20.11648 20.01808 0.41928 20.56771

3 0.47491 0.57459 20.30630 0.12814 20.04358
0.47557 0.57139 20.29778 0.11368 20.02814
0.41843 0.05608 20.24858 20.19935 0.62758
0.29134 0.25698 20.25966 0.08329 0.17547

2 0.09588 0.64689 0.47316 20.26552 0.15657
0.09470 0.65327 0.45393 20.22820 0.11179
0.34881 0.22208 20.23267 20.12709 20.00045
0.06602 0.38994 20.02755 20.11715 0.08620

1 20.02603 0.04474 0.69961 0.57982 20.08986
20.02477 0.03707 0.72679 0.51106 0.03469

0.28834 0.27451 20.03721 20.30668 0.09155
0.00203 0.13429 0.38065 20.22119 0.09124
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expression~46! as stated before. The second entry is o
tained from a harmonic approximation, where the Mo
wave functions are approximated by harmonic wave fu
tions with oscillator lengtha05@( j 1 1

2 )1/2b#21. We see that
even for the vibronic transition between the vibration
ground states in each Morse an error of the order of 10%
obtained. As soon as higher vibrational states are involv
rather important errors, as expected, occur, including
change in signs. The third entry is a calculation with mo
fied harmonic-oscillator wave functions as given in R
@12#. It is seen that this calculation brings the results in
correct direction but not much. In addition it should be not
that the sum of the squares of the matrix elements in the t
entry corresponding tom155 are larger than 1. This is du
to the fact that the modified harmonic oscillator wave fun
tions for each electronic state are not orthogonal.

In Table II we show a calculation in which both electron
configurations involved in the vibronic transition give rise
displaced Morse potentials with different depth and streng
In this case j 15 j 255, b150.90 Å21, R152.67 Å , b2
50.60 Å21, and R253.60 Å . The first entry here is th
exact calculation. The second entry is our analytic calcu
tion obtained by using Eq.~40!. The third entry is the har-
monic approximation to the wave functions. The fourth en
is the modified harmonic-oscillator approximation@12#. It
can be seen that our analytic expression, Eq.~40!, reproduces
accurately~including signs! the exact results, with the excep
-
e
-

l
is
d,
a
-
.
e
d
rd

-

h.

-

y

tion of the transitions involving the least bound states.
Once we have shown that the approximation given by

~40! is good, we would like to apply it to a realistic system
We have chosen the stretching S-S mode in the S2O mol-
ecule for which recently new extensive results have b
reported@2#. The S-S stretching mode seems to be rat
decoupled from the other modes and that allows us to c
sider it independently. However, we should have in mi
that mixing with other modes may play a role as one goes
in excitation energy. In Fig. 1, we plot the relative dispers
fluorescence intensity versus the final state vibrational qu
tum number (v1) for three different progressions: 2v1

0 ~a!,

2v1

1 ~b!, and 2v1

2 ~c!.1 The relative intensity is related to th

1The vibrational states in S2O are given by three labels (vS-O, vS-S,
vSSO! in a local basis. The labelvS-O gives the number of quanta in
the stretching S-O mode, the labelvS-S gives the number of quanta
in the stretching S-S mode, and the labelvSSO gives the number of
quanta in the bending mode. The notation for Franck-Condon t

sitions is 1
va8

va2
vb8

vb3
vb8

vc and represents a vibronic transition between

vibrational state (va,vb,vc) in the excited electronic configuratio
C̃1A8) and the vibrational state (va8,vb8,vc8) in the fundamental elec-
tronic configuration (X̃1A8). In the case in whichv i5v i850 the
corresponding term is omitted.
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Franck-Condon factorsSC̃1A8v1 ,X̃1A8v2
~the square of the

overlap integral! by

I C̃1v2←X̃1v1
}n4SC̃1A8v2 ,X̃1A8v1

, ~47!

wheren is the frequency of the transition and the factorn4

includes the dependencen3 of the spontaneous emission an
an extra factorn related to the detector response@2#. The
results obtained from Eq.~40! properly normalized are plot
ted as solid line and the experimental data@2# as full dots.
The detection limit of the experiment is 1024. The param-
eters used to characterize the two Morse potentials implie
our calculation are the following: The valuesj 15128 and
j 2580 are taken from Ref.@2#. The range parameters a
obtained from the experimental energy of the first exci
S-S stretching state in each Morse potential. In a simple
proximatione i(v51)2e i(v50)5\2b i

2(2j i21)/2m. This al-
lows us to obtainb i from the experimental energies provide
the reduced massm is known. For the reduced mass we ha

FIG. 1. Relative dispersed fluorescence intensity~dimension-
less! of the stretching S-S mode in the S2O molecule versus the
final vibrational quantum number (v1) for three different progres-
sions: 2v1

0 ~a!, 2v1

1 ~b!, and 2v1

2 ~c!. Experimental data are from Re
@2#. Full line is the result of applying Eq.~40!. Dashed line is
the result of including in the overlap integral a function
r (exp@22br# in this example! representing the variation of th
electronic transition moment withr.
in

d
p-

accepted that, for the stretching S-S mode in the S2O mol-
ecule, the bond S-O is rather stiff and the reduced mass
be evaluated asm5MSMSO/(MS1MSO). With this approxi-
mation the valuesb151.744 Å21 andb251.718 Å21 are
obtained. From the experimental data the equilibrium S
separation in the electronic ground state is known to beR1
51.8845 Å and for the equilibrium separation in the ele
tronic excited state it isR25R11DR, with DR50.26 Å
@17# obtained from an analysis of the rotational structure
the S2O molecule. With this input we have calculated th
fluorescence intensity, which is presented in Fig. 1. It can
seen that the main structure of the relative intensity in
cases is reproduced correctly, although it is overestimated
large final vibrational quantum numbers (v1). One reason for
this disagreement is the fact that we are treating the stre
ing S-S mode as isolated. This should be a good approxi
tion for small values ofv1 but mixing with the other modes
in the molecule is expected to be more important asv1 in-
creases. Another reason could be the calculation of
Franck-Condon factor by using the usual approximation
replacing the electronic transition moment, which should
a function of the internuclear separationr, by a constant.
This may not be a good approximation when consider
vibrational states with largev1. In that case the electroni
transition moment written as an appropriate function or
should be included in the overlap integral, such as prese
in Eq. ~32!. We have performed a calculation of this type ju
to show the effect of such a term. The electronic transit
moment has been taken as proportional to exp@22br#. The
result of this calculation is shown in Fig. 1 with a dash
line. It is seen that a term of this kind moves all the results
the correct direction, although, of course, it is not able
correct all discrepancies at largev1 since mixing should also
be important.

V. SUMMARY AND CONCLUSIONS

In this paper we present an approximate analytic exp
sion to evaluate Franck-Condon overlap integrals for anh
monic wave functions. This expression is based on
Gaussian method of integration by quadratures and on
recently introduced configuration localized Morse states. T
expression is shown to be exact for Morse wave functio
with the same range parameterb and different values of the
equilibrium position (R1 andR2) and depths (j 1 and j 2) and
it is a very good approximation for general Morse wa
functions. In particular it has been applied to the S-S stret
ing mode in the S2O molecule leading to a correct descri
tion of the experimentally observed fluorescence intensit
In addition, it has been shown that the removal of the C
don approximation so as to include explicitly the depende
of the electronic transition dipole moment on the internucl
distance, which is straightforward in our treatment, improv
the description of the experimental data.

We consider that the approximation presented here c
stitutes a useful starting point in order to obtain analyti
approximations for Franck-Condon factors in polyatom
molecules. In that case it can be used in connection with
algebraic models recently developed in terms of the su~2!
algebra, which take into account the interactions betw
different local modes of the molecules, and provide fina
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the wave functions as combinations of products of algeb
local wave functions. These algebraic local wave functio
can be written in a coordinate representation as Morse w
functions, or possibly Po¨schl-Teller wave functions for the
bending modes. The formalism presented here can be
then to calculate the overlap integrals. In relation with t
last point, it is worth mentioning that the approximatio
presented here can be extended to other anharmonic p
tials of interest in molecular physics, such as, for examp
the Pöschl-Teller potential, which has been suggested to
more appropriate for representing bending modes in p
atomic molecules.
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APPENDIX

In this appendix we are showing that Eq.~46! is equiva-
lent to the form recently reported in Ref.@12# for Morse
wave functions of potentials with the same rangeb. We start
from Eqs.~46!. We will use Eqs.~42!–~44! and the explicit
expression of the generalized Laguerre polynomials,

Ln
(a)~y!5 (

l 50

n
~21! l

l ! S n1a

n2l
D yl . ~A1!

Taking into account the relation between our notation a
the one used in Ref.@12#, N52 j , n5 j 2m, z5c1 /c2, the
previous equation, and Eq.~7!, we can write Eq.~46! as
n

I 5NN1 ,n1

21/2 NN2 ,n2

21/2 c1c2

c2 (
k51

j

Nk
21Fc1

c
ykG (N1/2)2n121Fc2

c
ykG (N2/2)2n221

(
l 150

n1 ~21! l 1

l 1! S N12n1

n12l 1
D

3Fc2

c
ykG l 1

(
l 250

n2 ~21! l 2

l 2! S N22n2

n22l 2
D Fc2

c
ykG l 2

. ~A2!

Sincec1 /c5@2/(11z)#z andc2 /c52/(11z), we can rewrite the preceding equation as

I 5NN1 ,n1

21/2 NN2 ,n2

21/2 z
N1

2 2n1S 2

11z D (N11N2 /2)2n12n2

(
l 150

n1

(
l 250

n2 ~21! l 11l 2

l 1! l 2! S N12n1

n12l 1
D S N22n2

n22l 2
D z l 1S 2

11z D l 11l 2

3 (
k51

j

Nk
21yk

l 11l 21(N11N2/2)2n12n222. ~A3!

Remembering that the indexk labels the zeros of the generalized Laguerre polynomialL j
(1)(y), the expression of the Gaussia

integration by quadratures, Eqs.~21!, ~22!, and the definition of theG function, the sum onk can be written as

(
k51

j

Nk
21yk

l 11l 21(N11N2/2)2n12n222
5E

0

`

dy yexp@2y#yl 11l 21(N11N2/2)2n12n2225GS N11N2

2
2n12n21l 11l 2D .

~A4!

Substituting this last result in the expression ofI, the final result is obtained,

I 5NN1 ,n1

21/2 NN2 ,n2

21/2 z
N1

2 2n1S 2

11z D (N11N2/2)2n12n2

(
l 150

n1

(
l 250

n2 ~21! l 11l 2

l 1! l 2! S N12n1

n12l 1
D S N22n2

n22l 2
D z l 1S 2

11z D l 11l 2

3GS N11N2

2
2n12n21l 11l 2D , ~A5!

which is precisely Eq.~4.5! in Ref. @12#.
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@2# T. Müller, P. Duprè, P. H. Vaccaro, F. Pe´rez-Bernal, M. Ibra-
him, and F. Iachello, Chem. Phys. Lett.292, 243 ~1998!.
@3# T. E. Sharp and H. M. Rosenstock, J. Chem. Phys.41, 3453

~1964!.
@4# A. Warshel and M. Karplus, Chem. Phys. Lett.17, 7 ~1972!;



.

.

um

.

3470 PRA 59M. CARVAJAL, J. M. ARIAS, AND J. GÓMEZ-CAMACHO
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