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Configuration localized Morse wave functions: Application to vibrational transitions
in anharmonic diatomic molecules
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The bound states of a Morse potential are described in terms of a basis of states that are characterized for
being eigenstates of the Morse variable. These states are strongly localized in configuration space; thus they are
called configuration localized Mord€LM) wave functions. These are shown to provide a powerful tool to
calculate analytically, to a good approximation, matrix elements of arbitrary functions of the interatomic
separation between vibrational states of anharmonic diatomic molecules. Applications of CLM wave functions
to the calculation of vibrational transitions in HF and DF diatomic molecules are presented.
[S1050-294{@9)10402-3

PACS numbds): 31.15.Ar, 31.15.Hz, 03.65.Ca, 33.20.Tp

I. INTRODUCTION Il. REVISITING THE MORSE POTENTIAL
Since its introduction in 192p1], the Morse potential has The Morse potential can be written as
been a useful tool for representing more realistic potentials in
different branches of physics. It is a two-parameter anhar-
monic potential that allows for the complete analytical solu-
tion of the Schrdinger equation, hence providing wave i X S
functions for the eigenstates. They can be written in compact = 8(F ~Te) is related to the separation from the equilibrium
form by using the generalized Laguerre polynomials. How-POSition (). The parameteg is the inverse of the range of
ever, the use of these functions to calculate matrix elemeni® Potential. As mentioned in the Introduction, the Morse
of relevant operators is cumbersome and one has to be ek@miltonian can be related to the (8u algebra. Thus, its
tremely careful, especially when treating states high in exciPound states can be labeled [hyn). The quantum numbgr

tation energy, since the corresponding wave functions arl an integer related to the depth of the potential through

rapidly oscillating functions and their integration can pro-
duce numerical errors. Several methods have been published hp? 1,2
. ; i D= (j+3)4 2
in the past to deal with this problef2-6]. 2u

The Morse potential has been thoroughly used to model
the interatomic interaction in the field of molecular physics.whereu is the reduced mass of the system. A potential char-
Following the introduction of algebraic models in molecular acterized by a value db supportsj bound states plus one
spectroscopy the Morse potential has become even mokgate with zero energy. This last state is not normalizable
popular since the knowledge of the existence of an isomorand, since we are treating only bound states, it will not be
phism between it and the Lie algebra su(Z). This isomor-  considered in the rest of this paper. The laivgk related to
phism allows for a connection between the algebraic treatthe binding energy of the state,
ment and the description in configuration space.

In this paper we introduce a basis of configuration local- h2p?

V(x)=D[(1—exd —x])*—1], @

where —D is the value of the potential in its minimum and

ized Morse(CLM) states. These are particular combinations m=" o m?, (m=1.2,...)). ©)
of bound Morse eigenstates that localize the system in con-
ﬂguratlon space. Iq that basis, closed expressions for the mq"hus, the state more tightly bound correspondentej. As
trix elements of different operators of interest can be ob- ; . . .

: . . .~~~ is usual in molecular physics we are introducing the alterna-
tained. By using CLM wave functions good approximations_; e .

) . tive quantum numbep=j—m, which corresponds to the

to the matrix elements of arbitrary operators between MorsIemmber of anharmonic phonons. Conseauentivns from 0
eigenstates are obtained. P : q u

The paper is structured as follows: In Sec. I, we reviset0 j —1 and the ground state has-0. For a diatomic mol-

the analytic solution of the Schimger equation with a ecule the Morse parametgrand thej quantum number can

Morse potential to present consistently the notation. In Seé?e obtamgd from the usual spectroscopic harmoaig @nd
[ll the CLM states are introduced formally. Their properties anharmonic fpex.) constants through

are discussed and used to evaluate matrix elements of differ- ) 5
ent operators. In Sec. IV the formalism presented in the pre- ﬁ2=2—Mw X (j n }) :2,u_D: E( We
vious section is applied to the diatomic molecules HF and fh2 ene 2 h2p* 4

DF. In Sec. V we outline some further applications of the

CLM states. Finally, the summary and conclusions are preWith this notation the bound eigenstates of the Morse Hamil-
sented in Sec. VI. tonian are written as

4

WeXe
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y

_ - i j+1 j+1
<x|1v>=l1f,-v<x>=/v,-v”2exn{—5y’ LA2Ay). (5) Ni= 5~ [L 00 1P = =L P01 (19

wherej, is a normalization constany,=(2j+1)exd—x]  In deriving these expressions we have used the following
is the Morse variable, anti{P)(y) are the generalized La- known relations for the generalized Laguerre polynomials,
guerre polynomials of degregand orderp. For later pur- evaluated at the zeros bil(l)(y):

poses, it is useful to introduce a polynomial of degjeel

defined by LM (v = —LiYa(v),
P (y)=yl Tt 2(y). 6 d j+1
] l(y) y v (y) ( ) [d_l-fl)(y)} :_J LJ(];)l(yk). (14)
These polynomials satisfy the orthogonality condition, y Y Yi
°°d —y1P® () PE (W)= N S, 7 lIl. CONFIGURATION LOCALIZED
| “ayyeut-yIPu P = Mg, @ NFIGURATION LOCALL

derived from the orthogonality condition for the Morse wave  From the {—1) bound states of the Morse potential,
functions. At this point it is interesting to note that the gen-|iv), which form a basis of the corresponding Hilbert space

eralized Laguerre polynomials of orderl1!)(y), satisfy the W€ can change to another basis, the CLM StgteCLM)),
orthogonality condition which is given by the following combination of the former,

-1
fo dyyexd —yILPWLY(y)=(n+1)8ppr. (©) [k(CLM) =N 22, NP (ywljv), (19

Comparing the last two equations, it is clear that there is amwherey, are, as before, the zeros bfl)(y). The corre-
orthonormal transformation from the polynomials sponding wave functions in coordinate space are

(NP (y);0=0,1,...,j—1} to the generalized La-
guerre polynomials of order 1{(n+1)"*L{(y);n (XIK(CLM)) =@ },(x) = Ng ¥y exr{— y QM y(y),
=0,1,...,j—1}, which allows us to write 2
- - (16
> Nﬂ,lpj('i)l()’) P}”)l(z): > (n+1)" LB (y)L P (2). WhereQJ(k_)l(y) is a (j —1)-degree polynomial defined by
v=0 n=0
© (k) jil 1p(v) (v)
1. (y)= > NP, (y, )P
Combining this last expression with the Christoffel-Darboux Q=) s=o 1"} 1IP=(Y)
formula[8], it is obtained that -1
-1 =2 ()P ). aD
2, NiPEL(Y)P(2) )
o Using Eq.(10), we get
-1
=2 (n+ ) LPYLP(2) LiY(y)
= ne Q=L vy = = (18

LOy)LM (2) - LY (y)LP(z
= WLl )—zj 1Ly ). (10 It is clear thatQJ(k_)l(y) vanishes whery=y, is a zero of
y Lj(l)(y) different fromy,. In Fig. 1 the wave functions
Let us consider now the case in whighandz are zeros of ~Pik(X) are plotted for the case ¢#5. Each one of the five
L™(y): they will be denoted by, andy . There arg such functions is localized mainly around one zero of the gener-
J b 2

zeros. For the case in whigh#y,, Eq. (10) gives alized Laguerre polynomidl{"(y) and is null in the rest of

its zeros.
i-1 These CLM states have the following properties.
2 NPy P a(y) =0, (12) (a) Orthogonality.
For the case in whichy,=y,, taking the limit whenz (jk(CLM)Ij/(CLM))=f AXD i (X) D A(X) = bk -
—Y,, it is obtained that (19

-1 . .
~1p(v) () _ (b) Zeros @, (x) =0 forx=—In(y,/2j +1), wherey , is a
UZO Niy PiZa(Yi PiZa(yi) = Ni, 12 ero of L{M(y) different fromyy.

(c) Matrix elements of.yThese can be easily evaluated
where from the explicit integration sincg can be rewritten ay
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1.5 v v TABLE I. Exact matrix elements of operataifor Morse eigen-
k=1 statesj=5.
--------------- k=2
""" k=3 v\v’ 0 1 2 3 4
10 ——— k=4
T k=5 0 0.1461 0.3143 -0.0722 0.0275 -0.0129
1 0.4934 0.4666 —0.1361 0.0582
x 2 0.9596 0.6000 —0.2004
& 3 16513  0.7127
4 2.9251

F(exp(—x)) is any continuous and derivable function of

y/2j+1 in the region in which the zeros af"(y) are lo-

-05 : : cated, then the approximate calculation of its diagonal and
« off-diagonal matrix elements can be evaluated by using a

third order polynomial approximation. Using the results ob-
FIG. 1. Configuration localized Morse wave functiofs, (x) tained above we get

for j=5.
. y iy
=y, +(y—y). The contribution to the integral of the part <Jk(C|—M)’F 2+1 ‘J/(CLM)>
(y—yw is zero, since ¥—y,)Q{Y;(y) is proportional to
L{M(y) [Eq. (18)] and its integral with any polynomial of I B L D PR S b [ e i 1
degree less thanvanishes. Thus, only the contribution com- S l2j+1 k+a(=1) (2] +1)2 2j+1)’
ing fromy, is left and the orthogonality of the CLM wave
functions gives the final result (24)
(iK(CLM)|y|jZ(CLM)) =Yy, 8¢ - (20) whereyy,=[y+Y,+ (2] +2)]/3. For largej the term con-

taining F”(y/(2j+1)) can be neglected compared to the
Thus, the CLM states are eigenstates of the Morse varjable other one. Thus the matrix elements of any functiory ¢br
in the basis of the bound states. X) between CLM states are, to a good approximation, just the
(d) Matrix elements ofy—y,)(y—Y,). These can be eas- values of the function evaluated in the corresponding zeros
ily evaluated using the previous expressions. The result is of the ponnomiaIL}l)(y).
(g) Approximate expressions of the matrix elements of a

(ik(CLM)[(y =y (y=y)iZ(CLM)) function f(r) in a basis of Morse eigenstate&ny function

of r=r.+(x/B) is also a function ofy/(2j+1), asr=r,

LiZay  LiPay)  — i i ignori i
-1k -1~ vEvp —(1/B)In[y/2j+1]. Using Eq.(24), and ignoring the term in

- VLY (012 VILP iy )12 F”, one gets

=Sl el =)y, Golf(Dlio )= (elik(CLM)(r (kLM jo)
= =Dy, (21) (25)

To obtain this last expression one has to realize that th

@herer,=r.— (1/8)In[y,/2j+1] is determined by the zeros,
zeros of the polynomialé (M, (y) alternate with those of <=ro~ (L) N2 +1] y

- yk. of the Laguerre polynomial{"(y), as well as by the

L&(y). Thus,L{";(y,) evaluated at the zeros &fi)(y)  equilibrium positionr,, the size paramete8, and the pa-
change sign as+{1)“"! if the usual standardizatiof8] is rameterj.

used. The accuracy of Eq(25) will be better for largerj, and

(e) Matrix elements of(y—y)(y—y,)y—(2j+2)].  also whenf(r) is a smooth function of close tor,. Be-
These can be evaluated using the previous expressions, &gles, we might expect that the oscillating nature of Bie
well as the recurrence relations for the Laguerre polynomicorrection in Eq(24) due to the factor £ 1)~ will tend to

als, from which cancel the corrections evaluated for the lower Morse eigen-

o Dron s 1) 1) states, which have few nodes.
Ly=(2j+2)ILi7(y)=—(+ DILi=(Y) +LjFa(y)]. In order to test how good the approximations done are, in
(220 Tables I and Il we show the matrix elements of the operator

x for the casg =5. In Table | the eigenstates of the Morse
potential are used and exact integration is performed while in
(K(CLM)|(y=y)(y=y)[y—(2j +2)1|j/(CLM))=0. Table Il Eq.(25) is used. It can be observed that even for this

(23 very unfavorable case of smalthe agreement is good, es-
pecially for the lowest states in the potential. The agreement
(f) Approximate expressions of the matrix elements of amproves greatly whepincreases. In Fig. 2 matrix elements
generic function of ¥2j+1). If F/(2j+1))= of the operatorx are shown for the valug=22. They are

Using orthogonality, we get
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TABLE Il. Approximate matrix elements of operatarusing tial energy function/10]. The dipole moment function in a
CLM states.j=5. diatomic molecule is given as a function of the interatomic
separatiorr by

v\v' 0 1 2 3 4
0 01461 03146 -0.0730  0.0290 —0.0146 p(n)=(Vg(n| X ez|¥(n), (27)
1 0.4920 0.4706 —0.1440 0.0683 !
2 0.9468 0.6299 —0.2453 . . .
3 15646 0.8886 Where|\If3(r)) is the electronic wave function for the lowest
4 ' 2'2608 electronic state, the sum anruns over all electrons and

nuclei, ; are their charges, arg] are the projections of the
their coordinates along the interatomic direction. The dipole
moment function can be determined in principle frah
Snitio calculations. However, it is found to be very sensitive
to the choice of basis functions. Hence it has been obtained

evaluated exactly by direct integration using the Morse wav

functions (symbolg and approximately by using the CLM

states(lines). Three different cases){=v;, v¢=v;+1, and by fitting experimental data of vibrational transitiof&.

vy=v;+2) are presented as a functionwf. Agreement is We will use the properties of the CLM states to obtain

seen to be good and deviations only occur when we are ap- . . . . '

proaching very close to the dissociation limit. Note that in¢losed expressions for the vibrational matrix elemétjtsas

the harmonic limit all the transitions withy # 1 would van- @ function of the dipole moment function. Let us assume that

ish. The agreement foAv=0,2 indicates that the CLM the Morse potential is a good representation of the inter-

states are well suited to describe anharmonic effects. atomic interaction. Hence, we substitute the vibrational wave
functions¥,(r) by Morse wave functions. Then one has to
evaluate the following integral:

IV. APPLICATIONS TO THE DIATOMIC

MOLECULES HF AND DF Rz'(Morse)=f VOO 0dx, (28

In this section we will show how to exploit some of the

possibilities of the CLM wave functions by studying vibra- _ _ _ .
tional dipole matrix elements in the diatomic molecules Htherex B(r—re) and¥;,(x) are Morse wave functions
I

and DF. For these molecules a rather complete experiment ,]:_q_ (3)]. As the dipole moment function is a smoathly vary-

. . ) o : function ofx, and hence also of the Morse varial|éq.
information exists[9]. Within the Born-Oppenheimer ap- 9 ' L :
proximation, the vibrational transitions for the electronic (25) can be used as an approximation to the evaluation of Eq

ground state band are determined by the matrix elements, (28),

. Ry (CLM) =2 (jolik(CLM)) u(ro (ik(CLM)[jo").
R/ = [wromnw,mren @9 00

This expression only requires the knowledge of the value of
The vibrational wave functionsl (r) are calculated by the dipole moment at certain points., determined by the
solving the Schrdinger equation for the interatomic poten- zeros of the appropriate generalized Laguerre polynomial,
and the overlapéjv|jk(CLM)). These have simple analyti-
10' : , cal forms that are obtained directly from the definition of the
CLM stateg Eq. (15)].

With the information available from spectroscopic data,
the values of ,=0.9172 A j =22 and8=2.261 A" for HF
andr,=0.9170 A, j=32 andB=2.222 A1 for DF are ob-
tained. In Fig. 3 the dipole moment functions for HF and DF
are plotted as given in Rdf9], up to 1.7 A, and it is linearly
extrapolated beyond. Full squares correspond to the values of
r, determined from the zeros of the generalized Laguerre
ponnomiaIL(zlz)(y), which is the relevant one for HF. Open
triangles correspond to the valuesrgfdetermined from the
zeros of the generalized Laguerre polynonig§)(y) which
is the relevant one for DF. Since some zeroﬂi@(y) [and
L)(y)] correspond to interatomic separations larger than
0 10 20 1.7 A, a simple linear extrapolation has been done. We have

v checked that the results presented below are not sensitive
to a different reasonable extrapolatioiexponential,
Gaussian,. . .).

<V ]|x]|v>

----- V=v+2

FIG. 2. Matrix elements of the operatefor Morse vibrational
states as a function af;, for j=22. Symbols correspond to the
exact integration using Morse wave functions. Lines correspond to In Figs. 4 and 5 vibrational dipole matrix elements for HF
the approximate analytic expression derived from CLM states. and DF are presented as a functionvgf The results ob-
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FIG. 3. Dipole moment function versus internuclear separation FIG. 5. Dipole matrix elements for the vibrational states of DF.
for HF and DF. The dipole moment function up to internuclear The notation is the same as in Fig. 4.
separations of 1.7 A is taken from R¢€] and a linear extrapola-
tion for larger values has been do(eee text Full squares corre- vibrational wave functions in Ref9] are not exactly Morse
spond to the zeros of the generalized Laguerre polynomiajyave functions and so it is not surprising that in the evalua-
L3 (y). Open triangles correspond to the zeros of the generalizegion of the matrix elementé0|x|6), for which delicate can-
Laguerre polynomiaL §3(y). celations occur, the present work and Héi. give different

results.

tained in[9] using Eq.(26) are compared with our E¢29).
Note that not only the matrix elements wittw =1, domi-
nant in the harmonic limit, are well reproduced, but also the
terms with Av =0,2. Besides, the transitions to the vibra- The use of CLM states to evaluate matrix elements is
tional ground state =0, which change over several orders closely related, from the mathematical point of view, to the
of magnitude, are well reproduced. The agreement is remarkapproximate evaluation of integrals by using quadrat[8&s
able, considering that E@26) implies the calculation of vi- In particular, we have derived the expression
brational wave functions solving the ScHinger equation, '
as well as performing the radial integration with the dipole o !
moment function, while Eq(29) is just a sum of the dipole f dx xexp[ —x]f(x)= >, w(j,kf(x), (30
moment function evaluated at certain points, multiplied by 0 k=1
some analytic coefficients. It is worth noting that all the com- . _
puted matrix elements have the same signs as written in Ref/NEreXx are the zeros dijgl,)(x)_’ andw(j k) =N, * [see Eq.
[9] except for the transitions from the ground state to the 13)]. This expression, Wh_'Ch IS very accgr@tbe error is of
state withv =6 in both HF and DF, for which also the mag- the order of the P derivative of the functiorf(x)], can be

nitudes are rather different. This is due to the fact that thé!Sed to evaluate, for example, Franck-Condon factors, which
are proportional to overlap integrals of vibrational wave

. functions corresponding to different potential wells. This

V. OUTLOOK

T work is in progress.
10° PN " | The usefulness of configuration localized states is not re-
3 \‘r”“f P S —— stricted to Morse wave functions. Previougiyl,12, a simi-
oY \_‘_,___-*----0--"*”"""" ] lar procedure was used for studying rotational states in nu-
8 ig2 ¢ S ] clei, giving rise to states with definite orientation in space,
o ~ ; . .
- “a —Vv=v that was determined by the zeros of Legendre polynomials
P AN VA I [11] for a K=0 band, and the zeros of other families of
Zot L AN ——v =0 ] orthogonal polynomials foK+#0 bands[12]. These states
. A were very useful to describe the effect of quadrupole cou-
S 10 AN 3 pling in the collisions of deformed nuclei. Coming back to
Yot L HE N T T~ ] molecular physics, the method presented here can be ex-
tended to other potentials of interest in this field as it is the
107 ¢ : Poschl-Teller potential.
107 . ‘ . , Although in this paper the simple case of diatomic mol-
0 2 4 6 8 10 ecules has been treated to illustrate the usefulness of the

CLM states, this method can be applied to polyatomic mol-
FIG. 4. Dipole matrix elements for the vibrational states of HF €cules. In that case the dipole operator is a function of all

as a function ofv; . Symbols correspond to ReP]. Lines corre-  relevant interatomic separatioms . Thus, its matrix ele-

spond to the analytic expression derived from CLM states. ments are approximately diagonal in a basis obtained as the
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tensor product of the CLM wave functions for all separationsinterpolation and extrapolation. The algebraic representation
rij . If the vibrational wave functions for the polyatomic mol- of a coordinate operator can be obtained by fitting the pa-
ecule are expanded in terms of product of local Morse wavgameters in the expansion 69 so that the matrix elements
functions corresponding to;;, then the evaluation of the of O(r) are reproduced.

dipole matrix elements can done analytically. Indeed, the

coefficients of the expansion in terms of the Morse local VI. SUMMARY AND CONCLUSIONS
basis can be obtained from recent algebraic treatments of ) i ) .
molecular vibrational structure within the (@ model[13]. In this paper the configuration localized Mor¢€LM)

In the context of the <@) algebraic models the calcula- States are introduced and their properties are analyzed. The
tion of dipole vibrational transitions is a complex problem CLM states are the eigenfunctions of the Morse variable in
since the algebraic expression of the dipole operator in termd1€ basis generated by the bound states of the Morse poten-
of generators of the relevant algebra is not known. In Reftial. The CLM states are analytically determined in terms of
[14], the matrix elements of the dipole operator are paramthe zeros of the polynomial{")(y). They are strongly local-
etrized with a suitable function and the parameters are fitteized in configuration space, providing us with a powerful
to reproduce the experimental data. The CLM method can btool to calculate analytically, to a good approximation, ma-
used as a hybrid model in which, from the knowledge of thelrix elements of arbitrary functions of the coordinate between

dipole moment functionu(r), obtained fromab initio cal- ~ Morse wave functions. _
culations or using experimental information, one can obtain Using the properties of CLM, the matrix elements be-
an operator tween vibrational states of the dipole operator for a diatomic

molecule can be calculated. The necessary input, that may be
obtained from the vibrational spectrum, is the dipole moment

M= ; [IK(CLM) (1) (jk(CLM))] (31) function w(r), the equilibrium separation,, and the param-
etersj andB. Then, the matrix elements are given by a linear
suitable for an algebraic approach. combination of the dipole moment function evaluated at cer-

The CLM states provide us also with a scheme to relatéain separations that are determined by the zeros of
the description of operators in terms of coordinates and in_J(l)(y), It should be noticed that in this method the vibra-
terms of an expansion of the generators of the dynamicalonal wave functions do not have to be explicitly calculated,
algebra. For the Morse potential, an algebraic treatmentor does the radial integration have to be performed. This
based in the @) group will describe all operators as an method has been applied to the calculation of vibrational
expansion in terms of powers of the generatiyrs=0,=.  transitions in HF and DF giving very similar results to con-
Thus, ventional calculations where realistic vibrational wave func-
tions are used9].

We consider that the CLM states constitute a useful start-
ing point in order to obtain analytical approximations for
different magnitudes, such as vibrational transitions intensi-
In terms of coordinates, a momentum-independent operataies and Franck—Condon factors. It would be very interesting
is given by a functiorO(r). However, we can approximate to extend their application to polyatomic molecules, where

the simplicity of the associated expressions can be essential.
- ; ; Besides, the CLM states could provide us with a connection
o) ; [Tk(CLM)O(r(jk(CLM)]. 33 between algebraic models and coordinate descriptions of mo-

_ _ lecular properties.
Thus, a mapping between both expressions for the operators

can be achieved. The coordinate representation of an alge- ACKNOWLEDGMENTS
braic operator will be given by

éalg:CO‘f'z Ciji+z Cijjijj+"" (32)
i i
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