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Configuration localized Morse wave functions: Application to vibrational transitions
in anharmonic diatomic molecules

M. Carvajal, J. M. Arias, and J. Go´mez-Camacho
Departamento de Fı´sica Atómica, Molecular y Nuclear, Facultad de Fı´sica, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Sp

~Received 16 September 1998!

The bound states of a Morse potential are described in terms of a basis of states that are characterized for
being eigenstates of the Morse variable. These states are strongly localized in configuration space; thus they are
called configuration localized Morse~CLM! wave functions. These are shown to provide a powerful tool to
calculate analytically, to a good approximation, matrix elements of arbitrary functions of the interatomic
separation between vibrational states of anharmonic diatomic molecules. Applications of CLM wave functions
to the calculation of vibrational transitions in HF and DF diatomic molecules are presented.
@S1050-2947~99!10402-5#

PACS number~s!: 31.15.Ar, 31.15.Hz, 03.65.Ca, 33.20.Tp
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I. INTRODUCTION

Since its introduction in 1929@1#, the Morse potential has
been a useful tool for representing more realistic potential
different branches of physics. It is a two-parameter anh
monic potential that allows for the complete analytical so
tion of the Schro¨dinger equation, hence providing wav
functions for the eigenstates. They can be written in comp
form by using the generalized Laguerre polynomials. Ho
ever, the use of these functions to calculate matrix elem
of relevant operators is cumbersome and one has to be
tremely careful, especially when treating states high in ex
tation energy, since the corresponding wave functions
rapidly oscillating functions and their integration can pr
duce numerical errors. Several methods have been publi
in the past to deal with this problem@2–6#.

The Morse potential has been thoroughly used to mo
the interatomic interaction in the field of molecular physic
Following the introduction of algebraic models in molecu
spectroscopy the Morse potential has become even m
popular since the knowledge of the existence of an isom
phism between it and the Lie algebra su(2)@7#. This isomor-
phism allows for a connection between the algebraic tre
ment and the description in configuration space.

In this paper we introduce a basis of configuration loc
ized Morse~CLM! states. These are particular combinatio
of bound Morse eigenstates that localize the system in c
figuration space. In that basis, closed expressions for the
trix elements of different operators of interest can be
tained. By using CLM wave functions good approximatio
to the matrix elements of arbitrary operators between Mo
eigenstates are obtained.

The paper is structured as follows: In Sec. II, we rev
the analytic solution of the Schro¨dinger equation with a
Morse potential to present consistently the notation. In S
III the CLM states are introduced formally. Their properti
are discussed and used to evaluate matrix elements of d
ent operators. In Sec. IV the formalism presented in the p
vious section is applied to the diatomic molecules HF a
DF. In Sec. V we outline some further applications of t
CLM states. Finally, the summary and conclusions are p
sented in Sec. VI.
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II. REVISITING THE MORSE POTENTIAL

The Morse potential can be written as

V~x!5D@~12exp@2x# !221#, ~1!

where2D is the value of the potential in its minimum an
x5b(r 2r e) is related to the separation from the equilibriu
position (r e). The parameterb is the inverse of the range o
the potential. As mentioned in the Introduction, the Mor
Hamiltonian can be related to the su~2! algebra. Thus, its
bound states can be labeled byu jm&. The quantum numberj
is an integer related to the depth of the potential through

D5
\2b2

2m
~ j 1 1

2 !2, ~2!

wherem is the reduced mass of the system. A potential ch
acterized by a value ofD supportsj bound states plus on
state with zero energy. This last state is not normaliza
and, since we are treating only bound states, it will not
considered in the rest of this paper. The labelm is related to
the binding energy of the state,

em52
\2b2

2m
m2, ~m51,2, . . . ,j !. ~3!

Thus, the state more tightly bound corresponds tom5 j . As
is usual in molecular physics we are introducing the alter
tive quantum numberv5 j 2m, which corresponds to the
number of anharmonic phonons. Consequentlyv runs from 0
to j 21 and the ground state hasv50. For a diatomic mol-
ecule the Morse parameterb and thej quantum number can
be obtained from the usual spectroscopic harmonic (ve) and
anharmonic (vexe) constants through

b25
2m

\2 vexe , S j 1
1

2D 2

5
2mD

\2b25
1

4S ve

vexe
D 2

. ~4!

With this notation the bound eigenstates of the Morse Ham
tonian are written as
1852 ©1999 The American Physical Society
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^xu j v&5C j v~x!5N j v
21/2expF2

y

2Gyj 2vLv
~2 j 22v !~y!, ~5!

whereNj v is a normalization constant,y5(2 j 11)exp@2x#
is the Morse variable, andLs

(p)(y) are the generalized La
guerre polynomials of degrees and orderp. For later pur-
poses, it is useful to introduce a polynomial of degreej 21
defined by

Pj 21
~v ! ~y!5yj 2v21Lv

~2 j 22v !~y!. ~6!

These polynomials satisfy the orthogonality condition,

E
0

`

dyyexp@2y#Pj 21
~v ! ~y!Pj 21

~v8!~y!5Nj vdv,v8 , ~7!

derived from the orthogonality condition for the Morse wa
functions. At this point it is interesting to note that the ge
eralized Laguerre polynomials of order 1,Ln

(1)(y), satisfy the
orthogonality condition

E
0

`

dyyexp@2y#Ln
~1!~y!Ln8

~1!
~y!5~n11!dn,n8 . ~8!

Comparing the last two equations, it is clear that there is
orthonormal transformation from the polynomia
$N j v

21/2Pj 21
(v) (y);v50,1,. . . ,j 21% to the generalized La

guerre polynomials of order 1$(n11)21/2Ln
(1)(y);n

50,1,. . . ,j 21%, which allows us to write

(
v50

j 21

N j v
21Pj 21

~v ! ~y!Pj 21
~v ! ~z!5 (

n50

j 21

~n11!21Ln
~1!~y!Ln

~1!~z!.

~9!

Combining this last expression with the Christoffel–Darbo
formula @8#, it is obtained that

(
v50

j 21

N j v
21Pj 21

~v ! ~y!Pj 21
~v ! ~z!

5 (
n50

j 21

~n11!21Ln
~1!~y!Ln

~1!~z!

52
L j

~1!~y!L j 21
~1! ~z!2L j 21

~1! ~y!L j
~1!~z!

y2z
. ~10!

Let us consider now the case in whichy andz are zeros of
L j

(1)(y); they will be denoted byyk andyl . There arej such
zeros. For the case in whichykÞyl , Eq. ~10! gives

(
v50

j 21

N j v
21Pj 21

~v ! ~yk!Pj 21
~v ! ~yl !50. ~11!

For the case in whichyk5yl , taking the limit whenz
→yk , it is obtained that

(
v50

j 21

N j v
21Pj 21

~v ! ~yk!Pj 21
~v ! ~yk!5Nk , ~12!

where
-

n

Nk5
j 11

yk
@L j 11

~1! ~yk!#
25

j 11

yk
@L j 21

~1! ~yk!#
2. ~13!

In deriving these expressions we have used the follow
known relations for the generalized Laguerre polynomia
evaluated at the zeros ofL j

(1)(y):

L j 21
~1! ~yk!52L j 11

~1! ~yk!,

F d

dy
L j

~1!~y!G
yk

52
j 11

yk
L j 21

~1! ~yk!. ~14!

III. CONFIGURATION LOCALIZED
MORSE „CLM … STATES

From the (j 21) bound states of the Morse potentia
u j v&, which form a basis of the corresponding Hilbert spa
we can change to another basis, the CLM statesu jk(CLM)&,
which is given by the following combination of the forme

u jk~CLM!&5Nk
21/2(

v50

j 21

N j v
21/2Pj 21

~v ! ~yk!u j v&, ~15!

where yk are, as before, the zeros ofL j
(1)(y). The corre-

sponding wave functions in coordinate space are

^xu jk~CLM!&5F jk~x!5Nk
21/2y expF2

y

2GQj 21
~k! ~y!,

~16!

whereQj 21
(k) (y) is a (j 21)-degree polynomial defined by

Qj 21
~k! ~y!5 (

v50

j 21

N j v
21Pj 21

~v ! ~yk!Pj 21
~v ! ~y!

5 (
n50

j 21

~n11!21Ln
~1!~yk!Ln

~1!~y!. ~17!

Using Eq.~10!, we get

Qj 21
~k! ~y!5L j 21

~1! ~yk!
L j

~1!~y!

y2yk
. ~18!

It is clear thatQj 21
(k) (y) vanishes wheny5yl is a zero of

L j
(1)(y) different from yk . In Fig. 1 the wave functions

F jk(x) are plotted for the case ofj 55. Each one of the five
functions is localized mainly around one zero of the gen
alized Laguerre polynomialL5

(1)(y) and is null in the rest of
its zeros.

These CLM states have the following properties.
(a) Orthogonality.

^ jk~CLM!u j l ~CLM!&5E dxF jk~x!F j l ~x!5dkl .

~19!

(b) Zeros.F jk(x)50 for x52 ln (yl /2j 11), whereyl is a
zero ofL j

(1)(y) different fromyk .
(c) Matrix elements of y. These can be easily evaluated

from the explicit integration sincey can be rewritten asy
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1854 PRA 59M. CARVAJAL, J. M. ARIAS, AND J. GÓMEZ-CAMACHO
5yk1(y2yk). The contribution to the integral of the pa
(y2yk) is zero, since (y2yk)Qj 21

(k) (y) is proportional to
L j

(1)(y) @Eq. ~18!# and its integral with any polynomial o
degree less thanj vanishes. Thus, only the contribution com
ing from yk is left and the orthogonality of the CLM wav
functions gives the final result

^ jk~CLM!uyu j l ~CLM!&5ykdkl . ~20!

Thus, the CLM states are eigenstates of the Morse variaby
in the basis of the bound states.

(d) Matrix elements of(y2yk)(y2yl ). These can be eas
ily evaluated using the previous expressions. The result

^ jk~CLM!u~y2yk!~y2yl !u j l ~CLM!&

5
L j 21

~1! ~yk!

A@L j 21
~1! ~yk!#

2

L j 21
~1! ~yl !

A@L j 21
~1! ~yl !#2

Aykyl

5sgn@L j 21
~1! ~yk!#sgn@L j 21

~1! ~yl !#Aykyl

5~21!k2l Aykyl . ~21!

To obtain this last expression one has to realize that
zeros of the polynomialsL j 21

(1) (y) alternate with those o
L j

(1)(y). Thus, L j 21
(1) (yk) evaluated at the zeros ofL j

(1)(y)
change sign as (21)k11 if the usual standardization@8# is
used.

(e) Matrix elements of(y2yk)(y2yl )@y2(2 j 12)#.
These can be evaluated using the previous expression
well as the recurrence relations for the Laguerre polyno
als, from which

@y2~2 j 12!#L j
~1!~y!52~ j 11!@L j 21

~1! ~y!1L j 11
~1! ~y!#.

~22!

Using orthogonality, we get

^ jk~CLM!u~y2yk!~y2yl !@y2~2 j 12!#u j l ~CLM!&50.
~23!

(f) Approximate expressions of the matrix elements o
generic function of y/(2 j 11). If F„y/(2 j 11)…[

FIG. 1. Configuration localized Morse wave functionsF jk(x)
for j 55.
e

as
i-

a

F„exp(2x)… is any continuous and derivable function
y/2 j 11 in the region in which the zeros ofL j

(1)(y) are lo-
cated, then the approximate calculation of its diagonal a
off-diagonal matrix elements can be evaluated by usin
third order polynomial approximation. Using the results o
tained above we get

K jk~CLM!UFS y

2 j 11D U j l ~CLM!L
.FS yk

2 j 11D dkl 1 1
2 ~21!k2l

Aykyl

~2 j 11!2
F9S y0

2 j 11D ,

~24!

wherey05@yk1yl 1(2 j 12)#/3. For largej the term con-
taining F9„y/(2 j 11)… can be neglected compared to th
other one. Thus the matrix elements of any function ofy ~or
x) between CLM states are, to a good approximation, just
values of the function evaluated in the corresponding ze
of the polynomialL j

(1)(y).
(g) Approximate expressions of the matrix elements o

function f(r ) in a basis of Morse eigenstates.Any function
of r 5r e1(x/b) is also a function ofy/(2 j 11), as r 5r e
2(1/b)ln@y/2j11#. Using Eq.~24!, and ignoring the term in
F9, one gets

^ j vu f ~r !u j v8&.(
k

^ j vu jk~CLM!& f ~r k!^ jk~CLM!u j v8&

~25!

wherer k5r e2(1/b)ln@yk /2j11# is determined by the zeros
yk , of the Laguerre polynomialL j

(1)(y), as well as by the
equilibrium positionr e , the size parameterb, and the pa-
rameterj.

The accuracy of Eq.~25! will be better for largerj, and
also whenf (r ) is a smooth function ofr close tor e . Be-
sides, we might expect that the oscillating nature of theF9
correction in Eq.~24! due to the factor (21)k2l will tend to
cancel the corrections evaluated for the lower Morse eig
states, which have few nodes.

In order to test how good the approximations done are
Tables I and II we show the matrix elements of the opera
x for the casej 55. In Table I the eigenstates of the Mors
potential are used and exact integration is performed whil
Table II Eq.~25! is used. It can be observed that even for th
very unfavorable case of smallj the agreement is good, es
pecially for the lowest states in the potential. The agreem
improves greatly whenj increases. In Fig. 2 matrix elemen
of the operatorx are shown for the valuej 522. They are

TABLE I. Exact matrix elements of operatorx for Morse eigen-
states.j 55.

v\v8 0 1 2 3 4

0 0.1461 0.3143 20.0722 0.0275 20.0129
1 0.4934 0.4666 20.1361 0.0582
2 0.9596 0.6000 20.2004
3 1.6513 0.7127
4 2.9251
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evaluated exactly by direct integration using the Morse w
functions ~symbols! and approximately by using the CLM
states~lines!. Three different cases (v f5v i , v f5v i11, and
v f5v i12) are presented as a function ofv i . Agreement is
seen to be good and deviations only occur when we are
proaching very close to the dissociation limit. Note that
the harmonic limit all the transitions withDvÞ1 would van-
ish. The agreement forDv50,2 indicates that the CLM
states are well suited to describe anharmonic effects.

IV. APPLICATIONS TO THE DIATOMIC
MOLECULES HF AND DF

In this section we will show how to exploit some of th
possibilities of the CLM wave functions by studying vibr
tional dipole matrix elements in the diatomic molecules H
and DF. For these molecules a rather complete experime
information exists@9#. Within the Born-Oppenheimer ap
proximation, the vibrational transitions for the electron
ground state band are determined by the matrix element

Rv
v85E

0

`

Cv* ~r !m~r !Cv8~r !r 2dr. ~26!

The vibrational wave functionsCv(r ) are calculated by
solving the Schro¨dinger equation for the interatomic pote

TABLE II. Approximate matrix elements of operatorx using
CLM states.j 55.

v\v8 0 1 2 3 4

0 0.1461 0.3146 20.0730 0.0290 20.0146
1 0.4920 0.4706 20.1440 0.0683
2 0.9468 0.6299 20.2453
3 1.5646 0.8886
4 2.2608

FIG. 2. Matrix elements of the operatorx for Morse vibrational
states as a function ofv i , for j 522. Symbols correspond to th
exact integration using Morse wave functions. Lines correspon
the approximate analytic expression derived from CLM states.
e

p-

tal

tial energy function@10#. The dipole moment function in a
diatomic molecule is given as a function of the interatom
separationr by

m~r !5^Cg
e~r !u(

i
eizi uCg

e~r !&, ~27!

whereuCg
e(r )& is the electronic wave function for the lowe

electronic state, the sum oni runs over all electrons and
nuclei,ei are their charges, andzi are the projections of the
their coordinates along the interatomic direction. The dip
moment function can be determined in principle fromab
initio calculations. However, it is found to be very sensiti
to the choice of basis functions. Hence it has been obtai
by fitting experimental data of vibrational transitions@9#.

We will use the properties of the CLM states to obta

closed expressions for the vibrational matrix elementsRv
v8 as

a function of the dipole moment function. Let us assume t
the Morse potential is a good representation of the in
atomic interaction. Hence, we substitute the vibrational wa
functionsCv(r ) by Morse wave functions. Then one has
evaluate the following integral:

Rv
v8~Morse!5E

2`

`

C j v* ~x!m~r !C j v8~x!dx, ~28!

where x5b(r 2r e) and C j v(x) are Morse wave functions
@Eq. ~5!#. As the dipole moment function is a smoothly var
ing function ofx, and hence also of the Morse variabley, Eq.
~25! can be used as an approximation to the evaluation of
~28!,

Rv
v8~CLM!5(

k
^ j vu jk~CLM!&m~r k!^ jk~CLM!u j v8&.

~29!

This expression only requires the knowledge of the value
the dipole moment at certain points (r k), determined by the
zeros of the appropriate generalized Laguerre polynom
and the overlapŝj vu jk(CLM) &. These have simple analyti
cal forms that are obtained directly from the definition of t
CLM states@Eq. ~15!#.

With the information available from spectroscopic da
the values ofr e50.9172 Å,j 522 andb52.261 Å21 for HF
and r e50.9170 Å, j 532 andb52.222 Å21 for DF are ob-
tained. In Fig. 3 the dipole moment functions for HF and D
are plotted as given in Ref.@9#, up to 1.7 Å, and it is linearly
extrapolated beyond. Full squares correspond to the value
r k determined from the zeros of the generalized Lague
polynomialL22

(1)(y), which is the relevant one for HF. Ope
triangles correspond to the values ofr k determined from the
zeros of the generalized Laguerre polynomialL32

(1)(y) which
is the relevant one for DF. Since some zeros ofL22

(1)(y) @and
L32

(1)(y)] correspond to interatomic separations larger th
1.7 Å, a simple linear extrapolation has been done. We h
checked that the results presented below are not sens
to a different reasonable extrapolation~exponential,
Gaussian,. . . ).

In Figs. 4 and 5 vibrational dipole matrix elements for H
and DF are presented as a function ofv i . The results ob-

to
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tained in@9# using Eq.~26! are compared with our Eq.~29!.
Note that not only the matrix elements withDv51, domi-
nant in the harmonic limit, are well reproduced, but also
terms with Dv50,2. Besides, the transitions to the vibr
tional ground statev f50, which change over several orde
of magnitude, are well reproduced. The agreement is rem
able, considering that Eq.~26! implies the calculation of vi-
brational wave functions solving the Schro¨dinger equation,
as well as performing the radial integration with the dipo
moment function, while Eq.~29! is just a sum of the dipole
moment function evaluated at certain points, multiplied
some analytic coefficients. It is worth noting that all the co
puted matrix elements have the same signs as written in
@9# except for the transitions from the ground state to
state withv56 in both HF and DF, for which also the mag
nitudes are rather different. This is due to the fact that

FIG. 3. Dipole moment function versus internuclear separa
for HF and DF. The dipole moment function up to internucle
separations of 1.7 Å is taken from Ref.@9# and a linear extrapola
tion for larger values has been done~see text!. Full squares corre-
spond to the zeros of the generalized Laguerre polynom
L22

(1)(y). Open triangles correspond to the zeros of the general
Laguerre polynomialL32

(1)(y).

FIG. 4. Dipole matrix elements for the vibrational states of H
as a function ofv i . Symbols correspond to Ref.@9#. Lines corre-
spond to the analytic expression derived from CLM states.
e

k-

y
-
ef.
e

e

vibrational wave functions in Ref.@9# are not exactly Morse
wave functions and so it is not surprising that in the eval
tion of the matrix elementŝ0umu6&, for which delicate can-
celations occur, the present work and Ref.@9# give different
results.

V. OUTLOOK

The use of CLM states to evaluate matrix elements
closely related, from the mathematical point of view, to t
approximate evaluation of integrals by using quadratures@8#.
In particular, we have derived the expression

E
0

`

dx xexp@2x# f ~x!. (
k51

j

w~ j ,k! f ~xk!, ~30!

wherexk are the zeros ofL j
(1)(x), andw( j ,k)5Nk

21 @see Eq.
~13!#. This expression, which is very accurate@the error is of
the order of the 2j derivative of the functionf (x)], can be
used to evaluate, for example, Franck-Condon factors, wh
are proportional to overlap integrals of vibrational wa
functions corresponding to different potential wells. Th
work is in progress.

The usefulness of configuration localized states is not
stricted to Morse wave functions. Previously@11,12#, a simi-
lar procedure was used for studying rotational states in
clei, giving rise to states with definite orientation in spac
that was determined by the zeros of Legendre polynom
@11# for a K50 band, and the zeros of other families
orthogonal polynomials forKÞ0 bands@12#. These states
were very useful to describe the effect of quadrupole c
pling in the collisions of deformed nuclei. Coming back
molecular physics, the method presented here can be
tended to other potentials of interest in this field as it is
Pöschl-Teller potential.

Although in this paper the simple case of diatomic m
ecules has been treated to illustrate the usefulness of
CLM states, this method can be applied to polyatomic m
ecules. In that case the dipole operator is a function of
relevant interatomic separationsr i j . Thus, its matrix ele-
ments are approximately diagonal in a basis obtained as

n
r

al
d

FIG. 5. Dipole matrix elements for the vibrational states of D
The notation is the same as in Fig. 4.
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tensor product of the CLM wave functions for all separatio
r i j . If the vibrational wave functions for the polyatomic mo
ecule are expanded in terms of product of local Morse w
functions corresponding tor i j , then the evaluation of the
dipole matrix elements can done analytically. Indeed,
coefficients of the expansion in terms of the Morse lo
basis can be obtained from recent algebraic treatment
molecular vibrational structure within the su~2! model @13#.

In the context of the su~2! algebraic models the calcula
tion of dipole vibrational transitions is a complex proble
since the algebraic expression of the dipole operator in te
of generators of the relevant algebra is not known. In R
@14#, the matrix elements of the dipole operator are para
etrized with a suitable function and the parameters are fi
to reproduce the experimental data. The CLM method can
used as a hybrid model in which, from the knowledge of
dipole moment functionm(r ), obtained fromab initio cal-
culations or using experimental information, one can obt
an operator

m̂5(
k

u jk~CLM!&m~r k!^ jk~CLM!u ~31!

suitable for an algebraic approach.
The CLM states provide us also with a scheme to re

the description of operators in terms of coordinates and
terms of an expansion of the generators of the dynam
algebra. For the Morse potential, an algebraic treatm
based in the su~2! group will describe all operators as a
expansion in terms of powers of the generatorsĴi ,i 50,6.
Thus,

Ôalg5c01(
i

ci Ĵi1(
i j

ci j Ĵi Ĵ j1•••. ~32!

In terms of coordinates, a momentum-independent oper
is given by a functionO(r ). However, we can approximat

O~r !.(
k

u jk~CLM!&O~r k!^ jk~CLM!u. ~33!

Thus, a mapping between both expressions for the opera
can be achieved. The coordinate representation of an a
braic operator will be given by

O~r k!5^ jk~CLM!uÔalgu jk~CLM!&. ~34!

Note that this gives the functionO(r ) at certain pointsr
5r k . The function at other values ofr could be obtained by
s

e

e
l
of
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f.
-
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e
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e-

interpolation and extrapolation. The algebraic representa
of a coordinate operator can be obtained by fitting the
rameters in the expansion ofÔalg so that the matrix element
of O(r ) are reproduced.

VI. SUMMARY AND CONCLUSIONS

In this paper the configuration localized Morse~CLM!
states are introduced and their properties are analyzed.
CLM states are the eigenfunctions of the Morse variable
the basis generated by the bound states of the Morse po
tial. The CLM states are analytically determined in terms
the zeros of the polynomialL j

(1)(y). They are strongly local-
ized in configuration space, providing us with a power
tool to calculate analytically, to a good approximation, m
trix elements of arbitrary functions of the coordinate betwe
Morse wave functions.

Using the properties of CLM, the matrix elements b
tween vibrational states of the dipole operator for a diatom
molecule can be calculated. The necessary input, that ma
obtained from the vibrational spectrum, is the dipole mom
functionm(r ), the equilibrium separationr e , and the param-
etersj andb. Then, the matrix elements are given by a line
combination of the dipole moment function evaluated at c
tain separations that are determined by the zeros
L j

(1)(y). It should be noticed that in this method the vibr
tional wave functions do not have to be explicitly calculate
nor does the radial integration have to be performed. T
method has been applied to the calculation of vibratio
transitions in HF and DF giving very similar results to co
ventional calculations where realistic vibrational wave fun
tions are used@9#.

We consider that the CLM states constitute a useful st
ing point in order to obtain analytical approximations f
different magnitudes, such as vibrational transitions inten
ties and Franck–Condon factors. It would be very interest
to extend their application to polyatomic molecules, whe
the simplicity of the associated expressions can be essen
Besides, the CLM states could provide us with a connect
between algebraic models and coordinate descriptions of
lecular properties.
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