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Configuration localized wave functions: General formalism and applications
to vibrational spectroscopy of diatomic molecules
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A general formalism for constructing configuration localized states for one-dimensional potentials is pre-
sented. It allows the evaluation of accurate approximations to the vibrational matrix elements of the momentum
operator and of arbitrary functions of the coordinate. The formalism is applied to three potentials of interest in
molecular physics: the harmonic oscillator, Morse, and Po¨schl-Teller potentials. Quadratures specifically de-
signed for each potential are used. The infrared vibrational spectrum of12C16O is studied as a way to test the
results obtained for different potentials in connection with their ability to model the anharmonicity.

PACS number~s!: 31.15.2p, 03.65.Ca, 33.20.Tp, 33.20.Ea
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I. INTRODUCTION

Traditional approaches to molecular vibrational spectr
copy rely on the harmonic approximation, though it is w
known that a parabolic potential is a rather poor approxim
tion to the interatomic interaction in a diatomic molecu
~e.g., it does not allow dissociation!. On one hand, when on
explores a few states at the bottom of the potential well, t
approximation has been proven to be reasonable. On
other hand, the use of anharmonic potentials, which be
represent the interatomic interaction, implies greater d
culty. Consequently, the harmonic potential has been
usual reference in molecular physics. However, in the
few years the improvement of experimental techniques
led to the exploration of higher excitation energies in t
interatomic potential well@1#. This allows analysis of state
where the anharmonicity may be a necessary ingredient~e.g.,
local modes@2,3#!. Consequently, realistic anharmonic p
tentials that could be a reference for the study of the an
monicity role should be investigated in detail.

In this paper an approximate analytic method to treat
brational bound states of one-dimensional potentials~har-
monic as well as anharmonic! is presented. The method
based on the introduction of a basis of states that are par
lar linear combinations of the eigenstates of the poten
They have the property of localizing the system wave fu
tions in configuration space@4#, allowing the derivation of
closed analytic expressions for the matrix elements of
relevant operators. In a previous paper@4#, the method was
presented for the particular case of the Morse potential@5#.
In the present paper the formalism is generalized. While
Morse potential is revisited, two other potentials of inter
in molecular physics are worked out: the harmonic oscilla
and the Po¨schl-Teller potential@6#. In the Morse potential
case the approach presented is somewhat different from
discussed in Ref.@4#, although the main ideas are the sam
Differences between the two cases will be discussed in
following when appropriate. The formalism developed p
vides a tool to study in detail anharmonic behavior in vib
1050-2947/2000/61~4!/042504~10!/$15.00 61 0425
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tional molecular spectroscopy. An application to the study
the carbon monoxide infrared vibrational spectrum is p
sented, where the model and the sensitivity of the data to
analysis with different potentials are assessed.

The paper is structured as follows. In Sec. II, the gene
formalism of configuration localized states~CLS’s! for a
one-dimensional potential well is presented. In Sec. III t
general formalism is applied to the harmonic oscillat
Morse, and Po¨schl-Teller potentials. Section IV is devoted
testing the model in a realistic case, computing vibratio
dipole moment matrix elements for the CO molecule a
comparing them with experimental results. Finally, a su
mary and conclusions are presented in Sec. V.

II. CONFIGURATION LOCALIZED STATES:
GENERAL FORMALISM

The starting point are thej bound eigenstates of a one
dimensional potential. The cases considered are thos
which the wave function can be written as

c j v~x!5^xu j ,v&5N j v
21/2F~y!P v

( j )~y!,

v50,1,2, . . . ,j 21, ~1!

wherey is an arbitrary function ofx ~the physical coordinate!
well behaved in the region of interest (xmin ,xMax) ~continu-
ous, single valued, finite, and monotonically increasing
decreasing!. The values ofy at the extremes of this region ar
(y0 ,y1). N j v

21/2 is a normalization constant,F(y) is an arbi-
trary function ofy, andP v

( j )(y) is a polynomial of orderv in
y. The labelj is associated with the potential depth.

The orthogonality of the eigenfunctions implies that

E
xmin

xMax
dxc j v~x!c j v8~x!5dv,v8 , ~2!

which, changing variables, leads to
©2000 The American Physical Society04-1
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E
y0

y1
dyv~y!P v

( j )~y!P v8
( j )

~y!5Nj vdv,v8 , ~3!

where

v~y!5
@F~y!#2

dy/dx
. ~4!

Consequently, the set$P v
( j )(y);v50,1, . . . ,j 21% is a

family of j orthogonal polynomials in the intervaly0<y
<y1 with respect to the weight functionv(y). If v(y) is the
weight function for a family of the tabulated orthogon
polynomialsf v(y) ~see, e.g., Ref.@7#! then the polynomials
P v

( j )(y) are justf v(y) up to a normalization constant.
Since we are treating orthogonal polynomials t

Christoffel-Darboux formula@7# ~p. 785! can be applied:

(
v50

j 21
1

Nj v
P v

( j )~y!P v
( j )~z!

5
kj 21

kjNj j 21

P j
( j )~y!P j 21

( j ) ~z!2P j
( j )~z!P j 21

( j ) ~y!

y2z
,

~5!

where kv is the coefficient of the term of orderv in the
explicit form of the polynomialP v

( j )(y). It is worth noticing
here that the polynomialP j

( j )(y) will not be normalizable in
general, but it is defined by its orthogonality with respect
the others withv, j . Making use of this relation a new set o
j polynomials of orderj 21 can be defined dividingP j

( j )(y)
by y2ys , whereys (s51, . . . ,j ) are thej roots ofP j

( j )(y).
These polynomials are constructed by makingz5ys in Eq.
~5!:

Qj 21
(s) ~y!5 (

v50

j 21
1

Nj v
P v

( j )~y!P v
( j )~ys!

5
kj 21

kjNj j 21

P j
( j )~y!P j 21

( j ) ~ys!

y2ys
, s51, . . . ,j .

~6!

Alternatively they can be expressed as

Qj 21
(s) ~y!5S kj 21P j 21

( j ) ~ys!

Nj j 21
D)

iÞs
~y2yi !. ~7!

The limit y5ys gives

Qj 21
(s) ~ys!5 (

v50

j 21
1

Nj v
@P v

( j )~ys!#
2

5
kj 21

kjNj j 21

g0~ys!

g2~ys!
@P j 21

( j ) ~ys!#
2, ~8!

whereg0(y) andg2(y) can be obtained from the differentia
relation of the corresponding orthogonal polynomial~see@7#,
Table 22.8, for tabulated polynomials!,
04250
g2~y!
d

dy
P j

( j )~y!5g1~y!P j
( j )~y!1g0~y!P j 21

( j ) ~y!. ~9!

These new polynomials are orthogonal with respect to
weight functionv(y) @8#:

E
y0

y1
dyv~y!Qj 21

(s) ~y!Qj 21
(s8) ~y!5Qj 21

(s) ~ys!ds,s8 . ~10!

TheseQj 21
(s) (y) polynomials can be used, as shown

Ref. @8#, to define quadratures for the integrals

E
y0

y1
dyv~y!F~y!5(

s51

j

F~ys!wjs1Rj , ~11!

whereF(y) is any function ofy andwjs are weight factors
given by

wjs5@Qj 21
(s) ~ys!#

21. ~12!

In Eq. ~11! Rj is the residual, which is proportional to the 2j
derivative ofF(y).

With the help of theQj 21
(s) (y) polynomials, configuration

localized states in the configuration space can be define

f js~x!5^xuCL; j ,s&5wjs
1/2F~y!Qj 21

(s) ~y!. ~13!

The name of these states comes from the fact that they
strongly localized aroundy5ys . In addition, the wave func-
tion f js(x) vanishes at all the pointsyl for lÞs. The states
can be written in terms of the original eigenstates given
Eq. ~1! as

uCL; j ,s&5 (
v50

j 21

^ j ,vuCL; j ,s&u j ,v&, ~14!

and the overlap factors can be computed from the defini
of the CLS’s and the polynomialsQj 21

(s) (y), giving

^ j ,vuCL; j ,s&5wjs
1/2N j v

21/2P v
( j )~ys!. ~15!

The CLS’s have the following properties.
~1! Orthogonality:

^CL; j ,suCL; j ,s8&5ds,s8 , ~16!

which stems directly from the orthogonality of theQj 21
(s) (y)

polynomials.
~2! Matrix elements ofy:

^CL; j ,suyuCL; j ,l &5E
y0

y1
dyv~y!wjs

1/2wjl
1/2Qj 21

(s) ~y!yQj 21
( l ) ~y!

5ysds,l . ~17!

This can be proved by writingy5(y2ys)1ys . Integration
of the factor (y2ys) cancels because it involves an integr
of P j

( j )(y) times a polynomial of order less thanj.
~3! Matrix elements of an arbitrary function ofy:
4-2
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^CL; j ,suG~y!uCL; j ,l &

5E
y0

y1
dyv~y!wjs

1/2wjl
1/2Qj 21

(s) ~y!G~y!Qj 21
( l ) ~y!

'G~ys!ds,l1Rj . ~18!

This result can be obtained by using integration by quad
tures ~11! noticing that the CLSf js(x) vanishes at all the
points of the quadrature except aty5ys . The residualRj is
proportional to the 2j derivative of the function
Qj 21

(s) (y)G(y)Qj 21
( l ) (y), which depends on the second deriv

tive of the functionG(y).
~4! Matrix elements of the momentump:

^CL; j ,supuCL; j ,l &'
i\

2

1

ys2yl
FAwjl

wjs

P j 21
( j ) ~yl !

P j 21
( j ) ~ys!

S dy

dxD
ys

1Awjs

wjl

P j 21
( j ) ~ys!

P j 21
( j ) ~yl !

S dy

dxD
yl

G ~19!

for sÞ l .
The diagonal matrix elements in the CLS basis vani

This is the case for any basis of wave functions that are
in configuration space. To derive this formula we use the f
that the matrix elementŝCL; j ,supuCL; j ,l & can be expresse
as

^CL; j ,supuCL; j ,l &

5E
xmin

xMax
dxf js~x!pf j l ~x!

5
i\

2 E
xmin

xMax
dxFf js~x!S df j l ~x!

dx D2f j l ~x!S df js~x!

dx D G ,
~20!

where the integral has been written in a symmetrical fo
and integrated by parts. It is clear that the diagonal ma
elements vanish. From now on, only the casesÞ l is consid-
ered. Expressing the integral and the derivative in terms
the variabley and evaluating the integral by quadratures,
following expression is obtained:

^CL; j ,supuCL; j ,l &'
i\

2 FAwjl

wjs
S dy

dxD
ys

S dQj 21
( l ) ~y!

dy D
ys

2Awjs

wjl
S dy

dxD
yl

S dQj 21
(s) ~y!

dy D
yl

G .

~21!

This expression will be exact ifdy/dx is a linear function of
y. Using the definition of theQ polynomials from Eq.~7! and
computing the corresponding derivatives we obtain
04250
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(s) ~y!

dy D
yl

5S kj 21P j 21
( j ) ~ys!

Nj j 21
D )

iÞ l ,s
~y2yi !

5
Qj 21

( l ) ~yl !

yl2ys

P j 21
( j ) ~ys!

P j 21
( j ) ~yl !

. ~22!

Substituting this last expression in Eq.~21! the stated result
in Eq. ~19! is obtained.

III. CLS’s FOR ONE-DIMENSIONAL POTENTIALS
OF RELEVANCE IN MOLECULAR PHYSICS

In this section the formalism presented in the preced
section is applied to three potentials of relevance in mole
lar physics.

A. Truncated harmonic oscillator

By a truncated harmonic oscillator we mean a truncat
of the model space to a finite number of the lowest harmo
oscillator states. In this case the starting point is the firj
states of a harmonic oscillator with Hamiltonian

H52
1

2

d2

dx2
1

1

2
x2. ~23!

The dimensionless variablex5(r 2r e)/a0 is introduced,
wherea05A\/mv is the oscillator length,r is the physical
coordinate, andr e is the equilibrium position. The solution
for the one-dimensional~1D! harmonic oscillator are

c j v~x!5N j v
21/2expS 2

x2

2 DHv~x!; v50, . . . ,j 21,

~24!

whereHv(x) are the Hermite polynomials. This set ofj wave
functions has the form required to apply the described p
cedure to form the CLS’s. This case is particularly simp
sincey5x. In Table I the relevant information to build th
CLS’s for the truncated harmonic oscillator is shown und
the label HO. In Fig. 1 the CLS states for a truncated h
monic oscillator withj 510 are shown. They are distribute
symmetrically with respect to the origin and each CLS wa
function is concentrated around a pointy5ys , vanishing for
the rest of the roots ofH j (y).

For the harmonic oscillator the vibrational matrix el
ments of the coordinatex and the momentump calculated by
using the corresponding CLS are exact due to the quadra
used. This has been checked by comparing the CLS res
with numerical ones obtained by integration with harmon
oscillator wave functions.

B. Morse potential

This case was presented previously in Ref.@4# using a
different quadrature. Here the CLS’s for a Morse poten
are reconstructed following the formalism presented abo
The Morse potential can be written as
4-3
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TABLE I. Relevant information to construct CLS’s for harmonic oscillator~HO!, Morse, and Po¨schl-
Teller ~P-T! potentials.

HO Morse P-T

y x (2 j 11)21 exp(xM) sinh(xPT)

(y0 ,y1) (2`,`) (0,̀ ) (2`,`)

Nj v Ap2vv!
(2 j 2v)!

(2 j 22v)v!
(2 j 2v)!
( j 2v)v!

F(y)
expS2 y2

2 D y2jexpS2 1

2yD (11y2)2 j /2

P v
( j )(y) Hv(y) T v

( j )(y) R v
( j )(y)

ys H j (y) roots Inverse ofL j (y) rootsa R j
( j )(y) roots

kj ,kj 21 2 j ,2j 21 1,
j ( j 11)

2
1,2

j ( j 11)
2

g2(y)
g0(y)

1
2 j

y

j

L j 21
(1) (1/y)

L j 21
(0) (1/y)

212y2

v(y) exp(2y2)
y22j21 expS21

yD (11y2)2( j 11/2)

Qj 21
(s) (y)

H j 21(ys)

Ap2 j ( j 21)!

H j (y)
y2ys

( j 11)T j 21
( j ) (ys)

2

T j
( j )(y)

y2ys
2Rj 21

( j ) (ys)
R j

( j )(y)

y2ys

wjs

Ap2 j~ j 21!!

2 j
@H j 21~ys!#

22 ys

j

L j 21
(1) ~1/ys!

L j 21
(0) ~1/ys!

@T j 21
( j ) ~ys!#

22 2~11ys
2!@Rj 21

( j ) ~ys!#
22

aThese are the roots ofT j
( j )(y).
d
b- c

rit-

he
V~x!5D$@12exp~2xM !#221%, ~25!

where2D is the value of the potential at its minimum an
xM5b(r 2r e) is related to the separation from the equili
rium position (r e). The parameterb is the inverse of the
range of the potential,

FIG. 1. Configuration localized statesF jk(x) for a j 510 trun-
cated harmonic oscillator.
04250
b5
1

Aj 11/2a0

, ~26!

where the parametera0 is the oscillator length for a paraboli
approximation to the Morse potential. The coordinatexM can
be written in terms of the harmonic oscillator coordinatex as
xM5(1/Aj 11/2)x.

The bound eigenstates of the Morse Hamiltonian are w
ten as

C j v~z!5N j v
21/2expS 2

z

2D zj 2vLv
(2 j 22v)~z!, ~27!

where Nj v is a normalization constant, z5(2 j
11)exp(2xM) is the Morse variable, andLs

(p)(z) are the
generalized Laguerre polynomials of degrees and orderp.
To attain the form required to define CLS’s, we rewrite t
wave function in terms of a new variabley51/z as

C j v~y!5N j v
21/2y2 j expS 2

1

2yD yvLv
(2 j 22v)~1/y!. ~28!

A set of orthogonal polynomials$T v
( j )(y);v50,1, . . . ,j

21% in the variabley51/z5(2 j 11)21exp(xM) is defined as

T v
( j )~y!5yvLv

(2 j 22v)~1/y!. ~29!
4-4
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The fact that they are polynomials iny can be seen easil
since Lv

(2 j 22v)(1/y) is a polynomial of orderv in 1/y and
multiplying this by yv gives a polynomial of orderv in y.
The coefficients of this polynomial are those
Lv

(2 j 22v)(1/y) but in reversed order@e.g., the coefficient of
the term of ordern in T v

( j )(y) is the coefficient of orderv
2n in Lv

(2 j 22v)(y)#. The properties of polynomialsT v
( j )(y)

are discussed in Appendix A. In terms of these polynomi
the Morse wave functions are written as

C j v~y!5N j v
21/2y2 j expS 2

1

2yDT v
( j )~y!, ~30!

which have the form required to construct the CLS’s.
Table I the relevant information to build the CLS’s for th
Morse oscillator is shown under the label Morse. In Fig
the CLS states for a Morse oscillator withj 510 are shown.
They are distributed asymmetrically with respect to the o
gin as expected. Each wave functionf js(y) is concentrated
at specific values ofy5ys , and vanishes for the rest of th
inverse of the roots ofL j (y).

It is remarkable that the nature of the quadrature p
sented~as well as the quadrature of Ref.@4#! is such that the
matrix elements of the momentum operator are exact. Th
because the derivative of the variabley with respect to the
coordinatedy/dxM is a linear function ofy. The agreemen
between the CLS’s and numerical results has been chec
This is not the case for the coordinatexM , a nonlinear func-
tion of y, even though the results obtained by using CLS
provide a good approximation to the numerical results.
Table II numerical results for the matrix elements ofxM are
compared with the results obtained by the present quadra
and that of Ref.@4# for the casej 55. Even for this very
unfavorable case the approximation is correct and the m
differences are concentrated in the least bound state. In
cases the approximation improves with increasingj. A com-
ment on the differences between the quadratures used in

FIG. 2. Configuration localized statesF jk(x) for a j 510 Morse
oscillator.
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@4# and in this paper is in order here. The quadrature p
sented in Ref.@4# is such that it provides the exact result f
the matrix elements of the functionz5exp(2xM) while the
quadrature presented in this work gives the exact value
the matrix elements of the functiony5exp(xM). The fact that
the quadrature of Ref.@4# provides a better approximatio
for the matrix elements ofxM indicates simply thatxM(z)
52 log(z) is better expanded by a polynomial expressi
than xM(y)5 log(y) in the region where the Morse wav
functions are relevant. However, for realistic values ofj in
molecular physics~for instance,j 581 for the 12C16O mol-
ecule treated in the next section! both quadratures are ex
tremely accurate.

C. Pöschl-Teller potential

The Pöschl-Teller potential can be written as

V~x!52D
1

cosh2@xPT#
, ~31!

where2D is the value of the potential at its minimum. Th
variablexPT5a(r 2r e) is related to the separation from th
equilibrium position (r e). The parametera is the inverse of
the range of the potential,a51/Aj 11/2 a0, wherea0 is the
oscillator length for the harmonic approximation to th
Pöschl-Teller potential. Then, as in the Morse case, the
ordinatexPT can be written in terms of the harmonic osc
lator coordinatex as

xPT5
1

Aj 11/2
x. ~32!

TABLE II. Matrix elements of the operatorxM in a Morse po-
tential with j 55. Successive entries correspond to the exact ca
lation integrating with the Morse eigenfunctions~first line!, an ap-
proximate calculation using CLS’s defined in Ref.@4# ~second line!,
and the approximate calculation using the CLS’s defined in
paper~third line!.

v\v8 0 1 2 3 4

0 0.1461 0.3143 20.0722 0.0275 20.0129
0.1461 0.3146 20.0730 0.0290 20.0146
0.1469 0.3116 20.0662 0.0181 20.0030

1 0.4934 0.4666 20.1361 0.0582
0.4920 0.4706 20.1440 0.0683
0.5031 0.4437 20.0979 0.0157

2 0.9596 0.6000 20.2004
0.9468 0.6299 20.2453
1.0176 0.4933 20.0691

3 1.6513 0.7127
1.5646 0.8886
1.8785 0.3731

4 2.9251
2.2608
3.6559
4-5
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F. PÉREZ-BERNAL et al. PHYSICAL REVIEW A 61 042504
The bound eigenstates of the Po¨schl-Teller Hamiltonian are
written as

C j v~z!5N j v
21/2Pj

( j 2v)~z!, ~33!

where Nj v is a normalization constant,z5tanh(xPT), and
Ps

(p)(y) are the associated Legendre functions. These st
do not have the form required to define CLS’s@Eq. ~1!# but it
can be achieved by defining a new variable,

y5sinh~xPT!5
z

A12z2
. ~34!

With this variable a new class of orthogonal polynomia
R v

( j )(y) can be defined by

Pj
( j 2v)~z!5~11y2!2 j /2R v

( j )~y!. ~35!

In Appendix B it is demonstrated thatR v
( j )(y) are j polyno-

mials of orderv (v50,1, . . . ,j 21) in the variabley that are
orthogonal with respect to the weight function (
1y2)2( j 11/2). The values ofNj v and kj are also calculated
there. With these new polynomials the Po¨schl-Teller wave
functions can be written as

C j v~y!5N j v
21/2~11y2!2 j /2R v

( j )~y!. ~36!

These states now have the appropriate form to define
CLS’s. In Table I the relevant information to build the CLS
for the Pöschl-Teller oscillator is shown under the label P-
In this tablePj (y) are the Legendre polynomials andPj

(1)(y)
the associated Legendre function~see Appendix B!. In Fig. 3
the CLS’s for a Po¨schl-Teller potential with j 510 are
shown. They are distributed symmetrically with respect
the origin and each wave function is concentrated aroun
specific value ofy5ys vanishing for the rest of the roots o
R j

( j )(y).

FIG. 3. Configuration localized statesF jk(x) for a j 510
Pöschl-Teller oscillator.
04250
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The quadrature presented is such that the matrix elem
of the momentum operator are not exact, sincedy/dxPT

5A11y2 is not a linear function ofy, but it gives a good
approximation. In Table III numerically computed matrix e
ements ofp, in units of i\a, are compared with the result
obtained by using the CLS’s presented here in the casej
55. In the case of the coordinatexPT , the results obtained
by using CLS’s are a good approximation to the numeri
results too. In Table IV numerically computed matrix el
ments ofxPT are compared with the results obtained by us
the quadrature presented here for the casej 55. Again, even
for this very unfavorable case, the approximation is good a
the main differences are concentrated in the least bo
state. As for the Morse potential, the approximation becom
better asj increases.

IV. APPLICATION TO THE DIATOMIC MOLECULE CO

In a previous paper@4# the Morse potential CLS’s were
used to compute infrared transition matrix elements for
diatomic species HF and DF. In that reference was shown
possibility of computing the intensities once the dipole m
ment function was known in terms of the internuclear d
tance. In this section, vibrational dipole matrix elements
the carbon monoxide CO diatomic molecule, in particular,
the isotopomer12C16O, are computed, assuming different i
teratomic potentials. It is shown that the experimental d

TABLE III. Matrix elements of the operatorp in units of i\a in
a Pöschl-Teller potential withj 55. The exact calculation, integrat
ing with the Po¨schl-Teller eigenfunctions, and the approximate c
culation using CLS’s defined in this paper are presented. Pa
conservation implies thatDv has to be odd for the matrix elemen
of any odd parity operator.

v\v8

v11 v13

Exact CLS approx. Exact CLS approx.

0 1.4948 1.4944 20.1744 20.1701
1 1.8493 1.8529 20.3032 20.3229
2 1.8724 1.8557
3 1.5605 1.6170

TABLE IV. Matrix elements of the operatorxPT in a Pöschl-
Teller potential withj 55. The exact calculation, integrating wit
the Pöschl-Teller eigenfunctions, and the approximate calculat
using CLS’s defined in this paper are presented. Parity conserva
implies thatDv has to be odd for the matrix elements of any o
parity operator.

v\v8

v11 v13

Exact CLS approx. Exact CLS approx.

0 20.3322 20.3312 0.0166 0.0124
1 20.5284 20.5386 0.0404 0.0656
2 20.7490 20.6865
3 21.0403 21.3244
4-6
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are well reproduced by modeling the interatomic interact
with a Morse potential, while major discrepancies are o
tained by using harmonic oscillator and Po¨schl-Teller poten-
tials. This is not surprising, but the main goal is to provide
example of how CLS’s can be a useful tool to study t
relevance of different interatomic potentials to describe
anharmonicity in a particular problem.

The CO molecule is of great spectroscopic and as
physical interest. The rovibrational intensities of this m
ecule have received considerable attention and much wo
devoted to their calculation@9–12#. In particular, the experi-
mental data set used in this section is taken from Ref.@9#.
The purpose of this work is far from competing with tho
extensive rovibronic calculations, but, focusing our attent
on the purely vibrational problem, we aim to check t
CLS’s formalism presented and show its applicabili
Within the Born-Oppenheimer approximation the vibration
transition intensities for the electronic ground state band
defined by the matrix elements

R~v→v8!5^Cvum̂uCv8&5E
0

`

Cv* ~r !m~r !Cv8~r !r 2dr,

~37!

whereCv(r ) are the vibrational wave functions andm(r ) is
the expectation value of the dipole moment for internucl
distancer and electronic ground state functions.

It is assumed, as in Ref.@4#, that the vibrational wave
functions can be approximated as the eigenfunctions of a
potential ~with j bound states! and that the dipole momen
function is a well behaved function of the internuclear se
ration. Using the orthogonality of CLS’s and Eq.~18!, Eq.
~37! can be rewritten as

R~v→v8!'(
s51

j

^ j ,vuCL; j ,s&m~r s!^CL; j ,su j ,v8&.

~38!

It is worth noting that the evaluation of this expression
simple, requiring solely the knowledge of the dipole mome
function at certain internuclear distances determined by
zeros of the appropriate orthogonal polynomial and the ov
lap factors defined in Eq.~15!.

There are several references that tackle the problem
computing the dipole moment function of the CO molecu
either with a phenomenological approach@13# or as anab
initio calculation@14,15#. In the present work an analytica
dipole moment function taken from the literature@13# is em-
ployed. With this input the vibrational matrix elements of t
dipole moment are computed using the CLS’s formalism
the different potentials presented. The corresponding res
for each potential are then compared with the experime
ones.

The form of the dipole moment function is shown in Fi
4, where the equilibrium value (r e51.1279 Å) has been
marked. The CO molecule static dipole moment is small b
as the figure shows, its first derivative is large. This is one
the reasons why the CO spectrum is so widely known. T
energies for the fundamental and first overtone are@10#
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E152143.407 cm21, E254260.279 cm21; ~39!

thus the spectroscopic parametersve andvexe are

Ev5ve~v11/2!2ve xe~v11/2!2,

ve52169.94 cm21,

ve xe513.2675 cm21. ~40!

From these spectroscopic data the correspondingj parameter
can be obtained@4#:

2 j 115
ve

ve xe
5163.55. ~41!

Thus, the valuej 581 has been used to compute the CLS
for the different potentials. Calculations have been carr
out for truncated harmonic oscillator, Morse, and Po¨schl-
Teller potentials. First, the dipole moment function from@13#
has to be evaluated at the points corresponding to roots o
polynomials linked to the CLS’s for the different potential
These values are included in Eq.~38! together with the cor-
responding overlap factors to compute the vibrational ma
elements of the dipole function.

For the Morse oscillator the relation betweenxM and the
physical coordinate isxM5b(r 2r e) and Eq. ~26! can be
used to estimate theb value, with the resultb52.327 Å21.
Once them(r k) values are computed, Eq.~38! allows us to
obtain the full spectrum. The comparison between compu
and experimental@9# values of the square of the dipole mo
ment matrix elements,R2, is shown in Fig. 5. The differen
panels present transitions changing the number of quant
0, 1, 2, and 3 units. Good agreement between the experim
tal and Morse CLS’s dipole matrix elements is obtained,
largest discrepancies arising for someDv50 transitions.

FIG. 4. Phenomenological dipole moment for the12C16O mol-
ecule from Ref.@13# .
4-7
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In order to reflect the quality of the results obtained
Fig. 5, Fig. 6 shows the corresponding errors. The quan
plotted isxv→v8 defined as

xv→v85
Rtheor

2 ~v→v8!2Rexpt
2 ~v→v8!

sexpt~v→v8!
, ~42!

wheresexpt(v→v8) is an estimation of the experimental e
ror of the data that takes into account the Poissonian cha

FIG. 5. Experimental and CLS results for the square of
carbon monoxide dipole moment matrix elements,R2, expressed in
units of D2. CLS results are obtained by assuming a Morse ty
interatomic interaction. Different panels present transitions cha
ing the number of quanta by 0~top left panel!, 1 ~top right panel!, 2
~bottom left panel!, and 3~bottom right panel! units. Symbols rep-
resent the experimental data as taken from Ref.@9#; full lines give
the CLS results.

FIG. 6. Statistical errorsx (v→v8) ~see text! for the square of the
dipole moment matrix elements for carbon monoxide. The theo
ical calculation corresponds to that presented in Fig. 5 and is
formed assuming a Morse potential as interatomic interaction
using the CLS approach.
04250
ty

c-

ter of the measurement. Thus, the experimental error
signed to the matrix element between statesv and v8 is
related to the experimental error of the transition 0→1 by

sexpt~v→v8!5sexpt~0→1!ARexpt
2 ~v→v8!

Rexpt
2 ~0→1!

. ~43!

In addition, it has been assumed arbitrarily~although this
affects onlyxv→v8 on a global scale! thatsexpt(0→1) is 5%
of the experimental valueRexpt

2 (0→1). With this definition
xv→v8 is a dimensionless quantity.

In order to analyze the sensitivity of the results to t
assumed interatomic potential, similar calculations have b
done employing CLS’s for the truncated harmonic oscilla
and anharmonic Po¨schl-Teller potentials.

In the harmonic case the relation between the phys
coordinate andx is the usual one given in Sec. III, and thu

x521.004~r 2r e!, ~44!

wherer is given in Å andr e is the equilibrium position. The
statistical errorsxv→v8 for this calculation are presented i
Fig. 7. Be aware of the different scaling on the ordinate a
compared to Fig. 6. The errors are considerably larger, e
cially for Dv50,2. It should be noted that some values f
Dv50 are out of scale.

For the Po¨schl-Teller case the relation with the physic
coordinate is given by Eq.~32!,

xPT52.327~r 2r e!, ~45!

with r assumed to be expressed in Å. The statistical err
for this case are shown in Fig. 8, where again one sho
notice the different scaling with respect to the Morse ca
and the large discrepancies that arise in some cases, e
cially again forDv50,2. Some values forDv50 are out of
scale too.

e

e
g-

t-
r-
d

FIG. 7. Statistical errorsx (v→v8) ~see text! for the square of the
dipole moment matrix elements for carbon monoxide. The theo
ical calculation is performed assuming a harmonic oscillator pot
tial as interatomic interaction and using the CLS formalism.
4-8
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As expected, the best results are obtained for the Mo
calculations, as this potential is closer to a realistic molecu
interatomic interaction for a diatomic molecule than t
other two cases examined. However, this might not be
case when dealing with polyatomic molecules. For instan
it has been suggested that the bending mode in a triato
molecule is better represented by a Po¨schl-Teller potential
@16#. The CLS formalism could help in clarifying which kin
of anharmonicity is more relevant. It can be concluded t
the CLS formalism allows one to obtain analytical formul
that ease the calculations, and it is sufficiently accurate
discriminate between harmonicity and anharmonicity as w
as between different types of anharmonicity~Morse and
Pöschl-Teller!.

V. SUMMARY AND CONCLUSIONS

In this paper the general formalism for building config
ration localized states is presented. Their properties are
lyzed and analytical expressions for the matrix elements
the operators of interest, including the momentump and a
generic function of the coordinateG(x), are computed.

The CLS states are the eigenfunctions of a certain fu
tion of the coordinate in the basis formed by the bound sta
of the appropriate one-dimensional potential. They provid
simple and numerically appropriate tool to face the probl
of molecular vibrations and allow one to reach analyti
expressions even for anharmonic wells.

The CLS formalism is worked out for three potentials
interest in molecular physics, providing the necessary
ments to build the CLS’s in each case. Finally, we ha
applied the formalism presented to a real case, the analys
the 12C16O vibrational intensity spectrum. The results o
tained through comparison of the calculations carried
with the three examples presented show the sensitivity of
formalism, at the same time reducing the numerical co
plexity of the problem and providing a valuable tool f
these problems. In addition, the CLS’s may help in so
numerically extensive calculations that make use of a grid

FIG. 8. Same as Fig. 7 but assuming a Po¨schl-Teller potential as
interatomic interaction.
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points where the wave functions are evaluated. In particu
the Morse oscillator CLS’s could provide for these calcu
tions a very interesting alternative to the harmonic approa
as the momentum matrix elements are exact due to
quadrature employed.
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APPENDIX A

In this appendix we show that the polynomialsT v
( j )(y)

introduced in Eq.~29! are in fact orthogonal polynomials an
their standardization and differential relations are deduc
The starting point is Eq.~30! for the Morse eigenfunctions
with the redefined variabley5exp(xM)/(2j11), bounded be-
tween zero and infinity, and the polynomials

T v
( j )~y!5yvLv

(2 j 22v)~1/y!. ~A1!

It is worth noting that the polynomialsT v
( j )(y) have the

same coefficients as the LaguerreLv
(2 j 22v)(y) but in reversed

order; thus the independent term inLv
(2 j 22v)(y) corresponds

to the poweryv in T v
( j )(y). From the orthonormality of the

wave function~30! the following orthogonality relation for
the T v

( j )(y) polynomials can be derived:

E
0

`

dyy22 j 21e21/yT v
( j )~y!T v8

( j )
~y!5Nj vdv,v8 . ~A2!

Thus theT v
( j )(y) are orthogonal polynomials in the interva

@0,̀ # with weight functionv(y)5y22 j 21e21/y and normal-
ization Nj v . The values ofkj andkj 21 can be derived in a
straightforward way from the information on Laguerre pol
nomials@7#,

kj51, ~A3!

kj 215
j ~ j 11!

2
. ~A4!

The differential relation of theT ( j ) polynomials can be
shown to be

g2~y!
d

dy
T j

( j )~y!5g1~y!T j
( j )~y!1g0~y!T j 21

( j ) ~y!,

~A5!

with

g2~y!5y(
i 50

j 21

~21! j 1 i 21S j 21

i D j !

~ j 2 i !!
yi

5~ j 21!! yjL j 21
(1) ~1/y!, ~A6!
4-9
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g1~y!5 j (
i 50

j 21

~21! j 1 i 21S j 21

i D j !

~ j 2 i 21!!
yi

5 j j ! yj 21L j 21
(0) ~1/y!, ~A7!

g0~y!5(
i 50

j 21

~21! j 1 i 21S j 21

i D j !

~ j 2 i 21!!
yi

5 j ! yj 21L j 21
(0) ~1/y!. ~A8!

APPENDIX B

In this appendix it is shown that the functionsR v
( j )(y)

introduced in Eq.~35! are in fact orthogonal polynomials an
their standardization and differential relations are deduc
The starting point is Eq.~35!,

R v
( j )~y!5~11y2! j /2Pj

( j 2v)~z!. ~B1!

We use the definition of the associated Legendre functio

Pj
( j 2v)~z!5~21! j 2v~12z2!( j 2v)/2

dj 2vPj~z!

dzj 2v
, ~B2!

wherePj (z) is the Legendre polynomial which can be wr
ten as

Pj~z!5 (
n50

[ j /2]

Cn
( j )zj 22n. ~B3!

Taking the corresponding derivatives and using the re
tion betweenz andy variablesz25y2/(11y2), Eq. ~B1! can
be rewritten as

R v
( j )~y!5~21! j 2v (

n50

[v/2]

Cn
( j ) ~ j 22n!!

~v22n!!
yv22n~11y2!n,

~B4!
-

04250
d.

,

-

which shows thatR v
( j )(y) is a polynomial of orderv in the

variable y. Straightforward computation of the integral o
two of these polynomials with weight functionv(y)5(1
1y2)2( j 11/2) gives

E
2`

`

~11y2!2( j 11/2)R v
( j )~y!R v8

( j )
~y!dy5Nj vdv,v8 ,

~B5!

whereNj v5(2 j 2v)!/( j 2v)v!. It is worth noting that the
polynomialR j

( j )(y) is orthogonal to all the others even if
cannot be normalized. The coefficients ofyj in R j

( j )(y) and
of yj 21 in R j 21

( j ) (y) are easily obtained by using Eq.~B4!
and Eq.~B3!:

kj5Pj~1!51, ~B6!

kj 2152Pj8~1!52
j ~ j 11!

2
. ~B7!

Direct computation gives the differential relation of theR ( j )

polynomials,

g2~y!
d

dy
R j

( j )~y!5g1~y!R j
( j )~y!1g0~y!R j 21

( j ) ~y!,

~B8!

with

g2~y!511y2, ~B9!

g1~y!5 jy , ~B10!

g0~y!521. ~B11!
and
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@6# G. Pöschl and E. Teller, Z. Phys.83, 143 ~1933!.
@7# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. Stegun~Dover, New York, 1972!.
@8# M. Carvajal, J.M. Arias, and J. Go´mez-Camacho, Phys. Rev. A

59, 3462~1999!.
@9# D. Goorvitch, Astrophys. J., Suppl. Ser.95, 535 ~1994!.
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