
P systems are massively parallel computing devices studied
under Membrane Computing, and that are inspired by the
structure and functioning of living cells [8]. Although many
types and variants have been defined, the main common
ingredients are a compartmentalized structure given by
membranes, and multiset of objects within each region that
evolve by a pre-defined set of rules. Simulating P systems is of
huge importance for developing validation and verification
tools [9]. In order to accelerate these simulations, it is possible
to leverage High Performance Computing technologies to
handle their massively parallel nature. Implementing P system
parallelism is a hard task on some platforms, but we have
shown that GPUs present a high-level of parallelism that can be
employed successfully for this task [4][5]. In this short abstract,
we discuss the need of defining P systems with ingredients that
ease the design of parallel simulators on GPUs.

A. Nature of P system parallelism
Membrane system devices are inherently parallel in the

sense that objects within membranes evolve according to the
defined rules in parallel, and this holds to all membranes
simultaneously too [8]. It is possible also to transfer objects
between membranes, and the membrane structure can evolve.
However, the following key aspects are inherent to P systems:

 Synchronization: a P system computation consists of
transitions steps governed by a global clock. The state
of a P system at a given moment is called configuration.

 Maximal parallelism: objects that can evolve in a
transition step must do it. That is, after applying all
rules, there are no remaining applicable rules.

 Non-determinism: the computation of a P system is a
tree where there might be many computation paths. It is
possible that different multisets of rules can be applied
to a configuration.

Many P system models have been defined in the literature,
by building up models with different ingredients: electrical
charges associated to membranes, promoters, proteins,
symport/antiport rules, division rules, dissolution rules,
cooperation, etc. Moreover, three main flavors have been
introduced: cell-like P systems (where the membrane structure
is a tree), tissue-like P systems (a directed graph), and spiking-
neural-like P systems (a directed graph).

B. GPU simulators for P systems
In previous work, we have shown that the simulation of P

systems is bounded by memory and memory bandwidth [5][7].
Indeed, selecting and executing rules requires not much
computation, but instead memory storage and transfers. This
issue has constrained the performance of simulators. In order to
get some acceleration, the bio-inspired parallelism of P systems
can be leveraged. Today, we can take advantage of high
performance computing platforms, so that we can map the
massive parallelism of membrane systems into parallel
architectures. In this concern, GPUs [4] have been shown to be
a good platform, for the following reasons [5]:

(1) the shared memory system helps to synchronize the
simulation;

(2) the double parallelism present on a GPU can be used to
directly map the double parallelism of P systems;

(3) the fast memory system of GPUs reduces the main
bottleneck of simulating a P system.

Table I summarizes some simulators so far implemented on
GPUs. The first column indicates the codename given to the
project. The second column shows the P system model that is
simulated, and the coverage (G for generic, so for the whole
type, and S for specific, so for just one family for a certain
problem). The third column shows the peak speedup achieved
in the experiments (T for stressing tests, R for real examples).
The last column says the GPU employed.

TABLE I. DEVELOPED P SYSTEM SIMULATORS ON GPUS

Simulator
Codename

P system model and
coverage

Peak
speedup GPU tested

PCUDA [1] (G) Active membranes 7x (T)
1.67x (R) C1060

PCUDASAT
[3] (S) Active membranes 63x (R) C1060

TSPCUDASAT
[6] (S) Tissue w/ cell division 10x (R) C1060

ABCDGPU [7] (G) Population Dynamics 18.1x (T)
5x (R) K40

ENPS-GPU (G) Enzimatic Numerical 10x (T) GTX460M

CuSNP [1] (G) Spiking Neural 50x (R) GTX750

G= Generic, S=Specific, T=Stress testing, R=Real examples.

On GPU-Oriented P systems
M.A. Martínez-del-Amor, D. Orellana-Martín, A. Riscos-Núñez, M.J. Pérez-
Jiménez

Dept. of Computer Science and Artificial Intelligence
Universidad de Sevilla

Seville, Spain
mdelamor@us.es, dorellana@us.es, ariscosn@us.es, marper@us.es

INVITED TALK EXTENDED ABSTRACT

C. Performance characterization for the GPU
When analyzing the development and design of P system

simulators on the GPU, it is possible to identify the key
features that can dramatically affect the performance [5]:

 Object density: if it is not possible to previously
estimate an upper bound for the number of different
objects that might appear in a membrane, the design has
to allocate space for the whole set of possible objects
(alphabet). Normally, this leads to sparse arrays, and so,
many idle threads.

 Rule intensity: related to the object density, not all
defined rules are applied at every transition steps, so
threads need time to explore which ones are applicable.

 Rule competition: when rules can have several objects
in the left-hand side, it might happen, that a set of rules
compete for a same object. In this situation, specific and
very elaborated algorithms, such as DCBA, have to be
defined and spend much time to decide which rules use
the competing objects.

 Membrane synchronization: when assigning GPU
thread blocks to membranes, and the membranes
exchange objects at every step, the synchronization
must be done after every transition. If we know
beforehand that there is not much object exchanging, it
would be possible to process membranes in parallel
without much synchronization.

D. Ingredients for GP systems
Bearing in mind the performance characterization discussed

above, it is possible to analyze which P system ingredients can
help to the design of simulators. In this sense, the aim of a
recent accepted project (MABICAP) is to define a new P
system model that contains features that ease the simulation on
GPU. We named these systems GPU-oriented P systems (GP
systems for short).

The first ingredient to be identified was the electrical
charges [6]. By implementing two specific solutions to SAT
problem, using a cell-like and a tissue-like approach, we found
that having charges associated to membranes helps to codify
information, and therefore, save on object definitions. The less
objects are defined, the lower object density gets.

Another key feature we found recently is that having rules
with minimal production (i.e. up to one object in the right-hand
side) can help to define an upper bound in situations where
there is limited membrane communication: the maximum
number different objects to appear in a membrane is less or
equal to the size of the input multiset.

Other ingredients are to be explored, such as minimal
cooperation (up to two objects in the left-hand side of rules),
asynchronous computation (membranes evolve independently),
and minimal parallelism (not all objects must evolve).
However, the main restriction to impose here is that the
constructed model must be powerful enough in the theoretical
meaning. Finally, we plan to define flavors of GP systems that
can be employed for applications such as real ecosystem
modelling.

Keywords - P systems; Simulation; Parallelism; GPU;

ACKNOWLEDGMENT
The authors acknowledge the support from the research

project TIN2017-89842-P, cofinanced by “Ministerio de
Economía, Industria y Competitividad” of Spain, through the
“Agencia Estatal de Investigación”, and by FEDER funds of
the European Union.

BIOGRAPHIES
M.Á. MARTÍNEZ-DEL-AMOR received his Ph.D.

degree in 2013 from the University of Seville, Seville, Spain.
Today, he is an assistant professor at the same university, and
a member of the Research Group on Natural Computing.

D. ORELLANA-MARTÍN received his master’s degree
in 2016 from the University of Seville. Today, he is
developing his Ph.D. at the Research Group on Natural
Computing at the University of Seville.

A. RISCOS-NÚÑEZ received his Ph.D. degree from the
University of Seville in 2004. He is currently a Professor at the
University of Seville, and a member of the Research Group on
Natural Computing.

M.J. PÉREZ-JIMÉNEZ received his Ph.D. degree from
the University of Seville in 1992. Currently, he is a numerary
member of the Academia Europaea (The Academy of Europe),
a full Professor at the University of Seville, and head of the
Research Group on Natural Computing.

REFERENCES
[1] J.P. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.Á.

Martínez-del-Amor. “CuSNP: Spiking Neural P Systems Simulators in
CUDA”. Romanian Journal of Information Science and Technology,
vol. 20, 1, pp. 57-70, 2017.

[2] J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I.
Pérez-Hurtado, M.J. Pérez-Jiménez. “Simulation of P systems with
active membranes on CUDA”. Briefings in Bioinformatics, vol. 11, 3,
pp. 313-322, 2010.

[3] J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I.
Pérez-Hurtado, M.J. Pérez-Jiménez. “Simulating a P system based
efficient solution to SAT by using GPUs”. Journal of Logic and
Algebraic Programming, vol. 79, pp. 317-325, 2010.

[4] D. Kirk, W. Hwu. PROGRAMMING MASSIVELY PARALLEL
PROCESSORS: A HANDS ON APPROACH. Morgan Kauffman, 2010.

[5] M.A. Martínez-del-Amor, M. García-Quismondo, L.F. Macías-Ramos,
L. Valencia-Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. “Simulating
P systems on GPU devices: a survey”. Fundamenta Informaticae, vol.
136, 3, pp. 269-284, 2015.

[6] M.A. Martínez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez.
“Characterizing the parallel simulation of P systems on the GPU”.
International Journal of Unconventional Computing, vol. 9, 5-6, pp.
405-424, 2013.

[7] M.A. Martínez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C.
Elster, M.J. Pérez-Jiménez. “Population Dynamics P systems on
CUDA”. Lecture Notes in Bioinformatics, vol. 7605, pp. 247-266, 2012.

[8] Gh. Paun. “Computing with membranes”, Journal of Computer and
System Sciences, vol. 61, 1, 108-143, 2000.

[9] L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor,
M.J. Pérez-Jiménez. “From Super-cells to Robotic Swarms: Two
Decades of Evolution in the Simulation of P Systems”. The International
Membrane Computing Society Bulletin (IMCS Bulletin), Number 4,
December 2017, pp. 65-88.

