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Continuum coupling in one-dimensional scattering using a transformed harmonic oscillator basis
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The coupling to the continuum is studied in a one-dimensional problem that describes the interaction of a
weakly bound composite object with a wall in a semiclassical approach. A transformed harmonic oscillator
basis is introduced to provide an appropriate discrete and finite basis for treating the continuum part of the
spectrum. The convergence of the scattering magnitudes is investigated as the number of states in the basis is
increased. The role of bound-to-continuum and continuum-to-continuum coupling is investigated.
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[. INTRODUCTION which are orthogonal when weighted with the potentials. The
Siegert pseudostate formulati¢b] provides a finite basis
A composite quantum-mechanical object is described byepresentation of the outgoing wave solutions to the radial
an internal Hamiltonian that includes the kinetic energy ofSchralinger equation for cutoff potentials. The Gamow
the constituents, as well as the interactions between thesgtates6] are non-normalizable solutions of the Sdfiirger
The eigenstates of the internal Hamiltonian will be given, in€duation corresponding to outgoing boundary conditions
general, by a finiteor, at least, discrefenumber of bound characterized by complex energies. The method of con-
states, and a continuum of breakup states, which can be chdfouum discretization coupled channdlg] discretizes the
acterized by the relative momentum of the fragments. Whegontinuum by means of taking fixed intervals, or bins kof
such an object, initially in its ground state, which is bound,values in the continuum states. Finally, a complete basis of
undergoes a scattering process from a structureless target thi@gle particle wave functions, such as the harmonic oscilla-
dynamics of the system is governed by the total Hamiltoniad0!: can be used to expand both bound and scattering states
that includes the internal Hamiltonian of the object plus thel 8]-
interaction with the target. As a result, the object may be We have recently proposed the use of a transformed har-
excited to other bound states, or to the continuum of breakufonic oscillator(THO) basis to describe the effect of the
states. Even if the object ends up in the ground state, theontinuum[9,10]. The basic idea is to define a local scale
scattering magnitudes will be affected by the coupling totransformation[11-13, which is such that converts the
bound and breakup states. ground-state wave function of the weakly bound composite
The effect of coupling to bound states can be described bgbject #g(x) into a harmonic oscillator wave function
means of a coupled-channels calculation. In a time<(S) [9,10]. The functions(x), which defines the local
independent formalism, it involves the solution of a finite Scale transformation, is given, for a one-dimensional prob-
number of second-order coupled differential equations on théem, by
relative coordinate, which appear as a result of projecting the

Schralinger equation on the bound wave functions. In a  [* y (x’)|2dx’=fs | $HO(s") s’ = 1+erf(s)
semiclassical time-dependent formalism, one has to solve a B o 0 2 '
finite number of first-order coupled differential equations on 1)

the time variable. In both cases, the procedure is rather
straightforward, although it may be computationally difficult, ~_Then, one generates a set of orthogonal wave functions
if many bound states are considered. HTHO(x) =H,(s(x))¢g(X), such that the state with=0 co-

The effect of coupling to breakup states is more difficultincides with the ground state, and the states withO de-
to describe. The continuum wave functions have an infinitescribe the continuum, or other bound states if they exist.
range and are not normalizable. Thus, the coupling potential§hen, one takes a finite basis, which is uniquely determined
from bound states to the continuum states have a very longy the numbeMN+1 of THO states considered, and diago-
range, and the coupling potentials from continuum-to-nalizes the Hamiltonian in this basis. The resulting eigen-
continuum states have an infinite range. That makes it necstates and eigenvalues are taken as representatives of the
essary to use some discretization procedure to substitute tlventinuum. We showed that, as the number of states in the
continuum of breakup states by a finite number of normaliz-THO basis increases, the eigenstates appear more densely
able states, which, in the adequate limit, should represent theacked close to the breakup threshold, although there are
effect of coupling to the true continuum. Several methodseigenstates that appear at higher energies. Besides, we dem-
have been proposed for this purpose. Ramatrix method onstrated that global structure magnitudes related to the cou-
[1] solves the many-body problem in a box and then makepling to the continuum, such as sum rules, were very accu-
the matching with the adequate boundary conditions. Theately described using relatively small THO bases. Our
Sturmian basi$2—4] uses bound states of scaled potentialspurpose in this paper is to study the adequacy of the THO
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basis to describe the effect of the continuum in the scatteringxplicit expressions for the first few polynomials are, in
processes. We make use of the semiclassical approximatidgarms of the expectation valuesx¥in the ground state, and
in which the relative motion of projectile and target is de-assuming that/g(x) = ¢g(—X),

scribed by classical trajectories. This approach is valid when

the wavelength associated to the relative motion is small Po(x)=1, ®)

compared to the range of the interact[dd]. This is the case

for collisions of heavy nuclei, atoms, and molecules on a X

wide range of energies. P1(x)= m ©®)
In this paper we make use of the THO basis to describe

the effect of coupling to the continuum in a model one- X2 (x2)

dimensional problem. In Sec. Il we present the model Hamil- Py(X) =~ (7)

tonian, we introduce the semiclassical approximation to de- V(xH —(x?)?

scribe the scattering, and formulate the adiabatic and sudden ) )

approximations, which allow for an exact solution. In Sec. Thus, the interaction can be expanded as

[l we present the scattering calculation in the THO basis,

an_d_ i_nvestigate the convergence of_elastic and breal_<up p_rob- V(X,x)= 2 Vr(X)Pm(X), (8)
abilities as the number of states in the THO basis is in- m

creased. In Sec. IV we investigate the effect of including or

neglecting the effect of continuum-to-continuum coupling. V(X :f dxtra(3)2P (VXX 9
Sec. V is for the summary and conclusions. m(X) Y00 PmOOV(XX). ©

It should be noticed that the first term in this expansion,
Il. ONE-DIMENSIONAL SCATTERING MODEL which is independent of the internal variablecorresponds

In this work we discuss the application of the THO basis!® the expectation value of the interactisf(X,x) in the
to a scattering problem. We consider a one-dimensional confl’ound state of the composite object, which is the folding
posite object, characterized by two particles with masseBotential. This is given by
m,;,m,, and coordinatex; and x,. Their reduced mass is
pm=mym,/(m;+m,) and the total mass i =m;+m,. The Vi(X)=V(X)= f dxyg(X)2V(X,X). (10
relative coordinate ix=Xx;—X,, and the center of mass co-
ordinate isX=(m;x, + myx)/M. The corresponding Hamil- - The other terms give rise to the tidal forces, which can in-

tonian is given by duce the excitation of the composite object during the colli-
- sion. For the purpose of this paper, we will consider the case
he — ﬁ_ d_ +0g(X) @) in which the composite object consists on two identical par-
2, dx? velt) ticles. Then, the functioV(X,x) is even inx, and only the

polynomials of even order contribute to the expansion.
where thex is the relative coordinate ands(x) is the inter-  Moreover, for the sake of simplicity, we will retain only the
action that binds the particles. Initially, the composite objectterms up tom=2. Thus, we have
is in its ground statefg(x), which is an eigenstate di B
corresponding to an energg. This object collides with a VX, X)=Vi(X) +V2(X)P5(X). (1)
massive _part_lcle, or wall. Th_e interaction pf the system with, 5 semiclassical approaghd], the folding potential deter-
the wall is given by a functio/(X,x), which depends on mines the trajectori(t) of the center of mass of the object.

the center of mass as well as on the internal coordinate. If th?he trajectory can be obtained by solving the differential
particles interact independently with the wall, the(X,x)

o X . equation
=V, (Xx1) +V,(X5), but this will not be true in general, if
there are polarization effects. Thus, the complete Hamil- M (dX(t)\?
tonian can be written as 7(7) +Vi(X)=E—eg. (12)
h? d? The turning point of the classical trajectoy occurs when
=~ oM o FVXx)+h B E—eg=V((Xy). If the timet=0 is taken wherX(t)=X,,

then the trajectoryX(t) is an even function of the time. The
tidal potential, which is responsible for the projectile excita-

The x dependence of the interactidf(X,x) can be ex- % DU
P Ar(X,x) tion, is given by

panded in terms of a family of orthogonal polynomials

Pm(x), where m represents the order of the polynomial. _
These polynomials are orthogonal with respect to the weight V(X0 =Va(X)P2(x). (13
function given byyg(x)?, so that In a semiclassical treatment, the trajectotft) is used to

consider the tidal potential(X(t),x) as a time-dependent
operator that acts on the internal coordinatéd/loreover, in
the case that we are considering, the dependence in the cen-

J dxyp(X)*Pr(X) Po(X) = 8(n,m). (4)
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ter of mass and relative coordinates factorize, so that the The sudden approximationis opposite to the adiabatic
effect of the tidal forces are described by the operBifix),  one. It arises when the time scale of the interaction is much
which acts with an intensity(t) =V,(X(t)). The internal  shorter than that of the internal motion. Thus, the internal
state will evolve satisfying the equation coordinates are effectively frozen during the scattering. The
sudden approximation is obtained by ignoring the tdrm

. d —eg in Eqg. (14). That allows to integrate with respect to the
|ﬁa¢(x,t)=[h—e3+ FOP00]g(x.1), (14 timg varigble, to give ’ P

with the boundary condition that far— — o, the wave func- Psd X, 1) = gg(X)exp —i d(t) Pa(x)], (18
tion is that of the ground statgg(x).

Recapitulating, Eq(14) represents, within some reason-
able approximations, the time evolution of the internal state 1 (t
of a two-particle system that collides with a wall. This equa- P(t)= 7 dt'F(t’). (19
tion contains derivatives with respectt@ndx, and so it is -
difficult to solve it exactly. Besides, as the eigenstate$ of
contain both bound and continuum states, one cannot ju

where the phaseé(t) is given by

|I{1 the sudden approximation the object emerges from the
project on the eigenstates bfand solve the coupled equa- sé.catterlng process in a state whose density d|§tr|but|on is t_he
tions same as that of the ground state. However, it can be quite

’ different from the ground state because the additional phase

We will show in the following section that the THO . - ) i
method provides a finite basis of normalizable states, Whic'ﬁqe;iﬁiclgsir?rt]htgzX)Etr%bi;;[zeispg?\?:r?lgy amplitude for re

allow to find an approximate solution to E{.4). Besides, as
the number of THO states increases, the relevant scattering
magnitudes converge. <¢B|A(¢)|¢B>=f dxirg(x)? ex —iDP,(x)], (20)

We will also consider two dynamical approximations to
Eq. (14). Theadiabatic approximatiorarises when the char- \hered = ¢(x). If the configuration space is restricted, by
acteristic time scale of the interaction, given by the timemeans of some continuum discretization procedure, the ex-
range of the functiorF(t), is much longer than the time pression above will be modified. In the following section we
scale of the internal motio/eg . In this limit, the time- || evaluate the convergence of the elastic amplitudes in the
dependent wave function can be approximated by the expresHQ basis, as a function ob. Note that the®, which is

sion associated to the integral of the coupling potential along the
1 trajectory, is a dimensionless parameter that measures the
x,t)=N(t X)— F(t P.(x X importance of the coupling. Small values ®findicate that
Vad %) =N )[(//B( )—F )h_eB 2(%) Je(x) the elastic scattering dominates, while large value® am-
wexe] —i b(D)] (15 ply that excitation dominates.
where N(t) is a normalization factor, which varies slowly, IIl. SCATTERING CALCULATIONS IN THE THO BASIS
and the phase(t) satisfies the equation We make use of the THO basis to expand the wave func-
. tion ¢(x,t). The THO basi$9] is obtained from the ground-
B(t)=— %f dt'F(t")2. (16) state wave function by the expression
aHO(x) =H(s(x)) (%), (21)

The parametew is the polarizability associated to the opera- ) _ ) )
tor P,(x). It is given by the expression whereH (s) is a properly normalized Hermite polynomial,
and s(x) is given by Eqg.(1). For these calculations, the

1 binding interaction has been taken as @¢hd-Teller poten-
a:<¢B|P2(X)h_—esz(X)|¢B>- (17  tial [15], given by

=vo/cosht . 22
It should be noticed that, in the adiabatic approximation, the ve(X)=vo (BX) 22
object always emerges from the scattering process in it¥he potential depth,=—#%25% u is taken so that it only
grOUnd State. |ndeed, the fUnCti(Fl(t), which is associated accommodates one bound state, which has an ereygy

to the couplings, vanishes as-c. The only effect that —7232/2,, and that is given by the analytic wave function
arises from the coupling is a phase shift in the ground-state

wave function. This phase shift is determined by the value of rg(X) = NIcosh Bx). (23
the polarizability«. So, the adequacy of any approximate _ _
treatment of continuum discretization can be judged by com- We can use the THO basigl), with n=0,... N, to

paring the value ofr obtained from the discretization with diagonalize the Hamiltoniarh. This gives rise toN+1
the exact value. We will make this comparison in the follow-eigenstatesb?(x), whose corresponding eigenvalues eje
ing section for the THO basis. for j=0 to N. The state withj=0 is precisely the ground
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8 — T —T— TABLE I. Convergence of the polarizabilityr, in units of
(2u/?B?), as a function of the number of positive parity con-
_ tinuum states in the THO basis.
6_ —_— —]
- N o
24l — | 1 0.52155
§ - o 2 0.70895
i3l _ _ 3 0.71720
2 - — — 4 0.71721
o - - 5 0.71721
. . —_—— Exact 0.71721
o —_— = .
0 5 ' zlt ' (IS ' iI; ' 1|0 12 From this matrix, one can also calculate the matrix elements
N+1 of P, in the basis of eigenstates of the Hamiltoni|afyf)

FIG. 1. Energy eigenvalues of the Hamiltonian of the compositgVOte that one can diagonalize the opereRQfx) in the THO
object as a function of the number of statés+ 1, in the THO  basis. Let us label the elgenstates|br¥2) and the eigenval-
basis. Energies are given in units @f23%/ u). uesP,(K).

We will study the adequacy of the THO basis to describe
stateys(x), which coincides withp,"(x). The other states the polarizability «. As we have argued in the preceding
are normalizable states, which represent the continuum in thgection, this is relevant to the description of the scattering
THO basis. process in the adiabatic limit. In the THO basis, the expres-

In Fig. 1 we present the values of the energigsbtained ~ Sion for the polarizability is
from the diagonalization of the internal Hamiltonian in the ho ok
THO basis as a function of the number of states included in (THO)= S <"”B|P2|‘/’J ><‘/’J P2l ys) 25)
the THO basis. The energy scale is in units#é{3?/ u, so @ %o e —ep '
that the bound state hag= —1/2. In Fig. 2 we present the
ten eigenfunctions df constructed from the THO basis with In Table | we present the convergence of this magnitude,
N+1=10 (nine continuum states plus the bound groundexpressed in units deg| %, as a function of the number of
statg. We only had to include the wave functions with posi- THO states. As we can see, the convergence is very fast.
tive parity, which are the ones connected by the interaction. We will next consider the THO basis to describe the elas-

The matrix elements of the interaction are proportional totic scattering amplitudes in the sudden approximation. The
the matrix elements of the operatBp(x). These matrix el- expression corresponding to EQO) in the THO basis can

ements can be calculated in the THO basis as be formulated using the eigenstates of the operaigk) as
p .
<¢IH°|P2|¢;“°>=f dxerg(X)2Hn(S(X))Po(X) Hin(S(X)). <¢B|A((D)|¢B>:Ek (el 2)? exd =1 DP,(K)].
(24 (26)
——————y —————— The probability of remaining in the ground state is given
/\ =0 =1 by the square of this amplitude. The results are plotted in
Fig. 3, as a function ofb. They indicate that the number of
g A THO states needed to obtain the full sudden calculation in-

— N~ — N creases as the coupling strengthincreases.

, We finally consider the general case, in which we do not
=4 i=5 make use of the adiabatic or sudden approximations. For the
purpose of the calculations, we assume that the folding po-
tential can be approximated by an exponential form, for dis-

v, "(Bx)

_’\/\/\/\/\/\/J_\_’—\/\/\N\A’\N tances beyond the turning point
st j=é:3 ——t——f——t j=: Ve(X)=Ve(Xg)exd — (X—Xg)/a]. (27
- “\M v Y Jwb ’ It is straightforward to obtain the trajectory in this case. In
20 0 0 10 20 50 00 10 20 terms of the variablg= (X—X;)/a, one gets

Bx

tanHvt/2a)=*=J1—exd —y(1)], (28
FIG. 2. Wave functions of the composite object in the THO

basis withN+1=10, expressed as a function gk (dimension- Wherev=\2(E—eg)/M is the asymptotic velocity. In this
less. equation,t=0 corresponds to the distance of closest ap-
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1 — 77— .
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--- THO N=9 I
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----- THO N=7 -
;p - — No CC Coupling = o
= . 2 L
§ 0.6 N . S 107
[<] B e 2 E
a & :\:\ e i . a, L
Q e S =
% o4 N sl = % 10 3 3 E
m 2
| -~ THO N=7 1
021 . T I THO N=8 \ / .
— THO N=9 L4 3
— no CC
0 . 1 . 1 . f | s | s . ! . ! . 1 . 1 .
0 0.5 1 . L5 2 2.5 3 0 0.2 0.4 0.6 0.8 1
Coupling strength (®) Adiabaticity parameter (§)

FIG. 3. Ground-state probability in the sudden limit as a func- FIG. 4. Breakup probability as a function of the adiabaticity
tion of the paramete® (dimensionless The thick full line is the  parameter (dimensionless for a fixed value of the coupling pa-
full sudden result. The dashed lines correspond to the THO discretrameter® =1. Lines corresponding to those marked in the legend
zation, for several numbers of states. The thin full line is the suddemox as THO are the full THO results for different numbers of states
calculation excluding continuum-to-continuum coupling. included in the basis. The thin full line is the converged result

excluding continuum-to-continuum coupling.
proach,y=0. It should be noticed that the depth of the po-
tential Vg only determines the distance of closest approach
The trajectory, measured with respecitg only depends on
the rangea.

We will also assume that the coupling term is also expo-

Substituting this expansion in the previous equation, and pro-
jecting with zpih(x) one gets,

nential, with the same range as the folding potential. Then, N g
i—c(r = —cosh2 h hye.
Vy(X) =V Xo)exi] — (X—Xo)/a]. 29 I g7Ci1(7)= 24 ggeosh 2[71(26) Kyl P2l y)e(n)
If this is expressed in terms of the time, one gets Xexf —ir(ej—e)|eg|], (34

F(t)=V,(X(1))=V,(Xg)cosh 2(vt/2a). (30
with the boundary condition that, for— —o, only cy(7)

From this expression, one gets that the characteristic time of 1 and the other components vanish.
the collision is given byT.=a/v. This time is to be com- The probability of remaining in the ground state, after the
pared with a characteristic time for the internal motion,scattering, is given bycy(=)|?. This value depends on the
which isT;=1/|eg|. So, we define an adiabaticity parameter parameterb, which measures the coupling strength, and the
§=T./T;. Small values of correspond to the sudden limit, parameter¢, which measures the degree of adiabaticity. In
and large values to the adiabatic limit. Besides, we will de-Fig_ 4 we represent the value of the ground-state probability
fine a dimensionless time=t/T;. The value of® for F(t)  versus¢, for a fixed value of the coupling strength parameter
is 4V,(Xp)a/(hv). Thus, we can write the interaction, in & =1, calculated in the THO basis. We see that the results

terms of suitable dimensionless parameters, as converge rapidly as the number of THO states increases.
®ley| Only when the adiabaticity parameter is very smafl (
e .
F(r)= B cosh [ 7/(2&)]. (31) <0.1) t_he convergence is not so fast. We have performed
4¢ calculations for other values of the coupling strength, and we

) _ ) ) ) find that the convergence of the THO scattering calculations
With this expression, the equation of the evolution can bes very good except for the cases in which both the coupling

written as strength is large and the adiabaticity parameter is small, this
q o @ is, for strong coupling very close to the sudden limit.
; ~ -8B — We have evaluated the average value of the energy of the
i— (X, 7) = | — + —cosh 2[ 7/(2&)]P»(X) | (X, 7). g 9y
dTlM ) leg| — 4¢ [7/(28)1P200 | g(x.7) breakup states that are produced after the scattering process,

(32)  weighted by the corresponding excitation probabilities. The
results in Fig. 5 show that the average excitation energy in-
creases as one goes to the sudden limit. That indicates that
one should be careful when applying the sudden approxima-

N tion, which implies neglecting the excitation energy, even in

_ _ h A cases in which the adiabaticity parameter is small. We find

Y1) j§=:O ¢(nyj(xexd —ir(e es)/lesl]. (33 that the convergence of the THO calculation is satisfactory,

We expand the function in terms of the eigenstateb f a
THO basis. This gives
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. — no CC Coupling /5
of
P
° £
é‘ - S 0.1+ i
&
/M
- 0.05 -
. | . | . 1 . | . 0
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Breakup momentum
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FIG. 5. Average of the energy of the breakup states, in units of FIG. 6. Probability of excitation to the continuum, in units of
(AB) 1, as a function of the breakup momentum, in units By,

(A?B?/ 1), as a function of the adiabaticity paramefeidimension- , ; , )

less, for a fixed value of the coupling parameter=1. The lines  [of different numbers of states in the THO basis. The coupling

correspond to the THO discretization, for several numbers of stateSt'ength isb=1 and the adiabaticity parametertis 0.15. The thin

The thin line is the converged result excluding continuum—to-“?e is the converged result excluding continuum-to-continuum cou-
pling.

continuum coupling.

except foré~0.5. There the breakup probabilities are Verysonable convergence of the calculations with different num-

small, and this induces uncertainties in the evaluation of th@€r Of states. We have also performed calculations with dif-
average energy. ferent values of the coupling strength and the adiabaticity

We have investigated the breakup probability distributionP@rameter. We find that Iarge_r coupling strength increases the
obtained making use of the THO discretization. We havePréakup, but does not modify the form of the momentum
calculated approximately the differential probability of exci- distribution of the fragments. However, larger adiabaticity
tation as a function of the relative momentum of the breakug?@ametersicorresponding to slower collisionsnove the
fragments. The evaluation of this function requires to esti;nomentum distribution to smaller values. The structure of
mate the interval that corresponds, in the true continuum, t§1€ Preakup distribution shows a single maximum at certain
each eigenstate of the internal Hamiltonian in the THO basisomentum distribution, with the exception of certain values

The average momentum of our continuum states can be olof the adiabaticity parameter for each coupling strength, for
tained in terms of the energy by means p:fﬂz,u=e- A Which the breakup probability is very small, and the distri-
-

simple interpolation procedure yields the range in terms OPUI'OnS shows two maxima.

the momenta of the neighboring states,
IV. EFFECT OF CONTINUUM-TO-CONTINUUM

1 1 COUPLING IN THE THO BASIS

Ai=5Pit1~ 5Pi-1, 2<i<N, (35 _ _ o
Having established that the THO basis is an adequate

1 method to describe the continuum of breakup states, we want
A=Zp,, (36) to assess the question of whether the continuum-to-
2 continuum coupling is important. For that, we have per-
3 1 formed calculations in the THO basis where we have ignored
continuum-to-continuum coupling, both diagonal and nondi-
An=2Pn-1t PNt ZPN-2- 37 agonal. Our first observatiorl? isgthat the c?alculation in the
_ ) o ~ THO basis converges much faster in the cases in which
Thus, we can express the differential excitation probability atqntinuum-to-continuum coupling is neglected. Usually, it is

energies close to the THO eigenvalues by enough to introduce 3 or 4 continuum states in the THO
basis to get convergence. In Fig. 3 we have presented the
dpP P; ; ; ;
_ =_1 (38)  exact sudden result excluding continuum-to-continuum cou-
dp p=p, Iy pling. We have presented in Figs. 4, 5, and 6 the calculations

with nine continuum states in the THO basis, which practi-
In Fig. 6 we present the breakup probability distribution ob-cally coincide with the calculations with 7 or 8 continuum

tained in THO calculations using different number of statesstates.

The coupling parameter is taken@s=1 as in the preceding It should also be noticed that, comparing the calculations
calculation. The adiabaticity parameter is takenfadd.15, in Fig. 3, the breakup probability is considerably enhanced
which correspond to an intermediate situation between thghen continuum-to-continuum coupling is neglected. This is
adiabatic and sudden limits. We can see that there is a redue, in our calculations, to the properties of the operator
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P,(x) in the tidal potential. The expectation value of this We find that the dynamics of the collision can be charac-
operator vanishes for the ground state. However, for conterized within a semiclassical approximation in terms of two
tinuum states, with a large spatial extension, the expectatiodimensionless parameters. One is the coupling strength,
value is positive, and hence the tidal potential has a repulsiv@hich is defined as the time integral of the coupling form-
effect in these states, and this decreases the probability gictor along the trajectory and the other is the adiabaticity
breakup. parameter, which is the ratio of the collision time and the
We have observed that this effect does not only occur igharacteristic time for the internal motion.
the sudden limit. For finite vglues of the_adiabaticity param-  when the collision is slow, the adiabaticity parameter is
eter, the calculations that ignore continuum-to-continuumgge and one is in the adiabatic limit. In this case, the effect
coupling give in general larger breakup probabilities. This isyf coupling to the continuum is just to induce a phase change
shown in Fig. 4. This effect is more acute as the couplingp, the elastic wave function. The calculations in the THO
strength is larger. For weak coupling strengtk<1, the ef- a5 converge very quickly to the exact results in this case.
fect of continuum-to-continuum coupling gets smaller. When the collision is fast, the adiabaticity parameter is
We have also investigated the energy distribution of thesmga| and one is in the sudden limit. In this case, the number
breakup states obtained in calculations that ignoreys THO states needed to obtain convergence in the elastic
continuum-to-continuum coupling. As it is shown in Fig. 5, hropability depends on the value of the coupling strength.
the average energy of the breakup states is lower in the cal- \we nave performed calculations in intermediate situa-
culations that neglect continuum-to-continuum coupling. Beyjons, for different values of the coupling strength and the
sides, as the collision is fastefadiabaticity parameter agiapaticity parameters. We find that the convergence in the
smalley the increase in the excitation energy is smaller thanrio pasis is satisfactory, except in situations in which both
when continuum-to-continuum coupling is considered.  the coupling strength is large and the adiabaticity parameter
The momentum distribution of the breakup fragments issmg||; this is, in situations of strong coupling close to the
also very different in the calculations neglecting continuum-g,qden limit.
to-continuum coupling, as it is shown in Fig. 6. These calcu-  \ye have used the THO basis to evaluate different scatter-
lations give much larger breakup probabilities, which aréing magnitudes in our model problem. We find that the prob-
concentrated on small values of the fragment momenta. ability of breakup increases, in general, as the coupling
strength increases, and as the adiabaticity parameter de-
creases. However, there are certain values of the adiabaticity
parameter, for each coupling strength, for which the breakup
In this work we have made use of a recently proposedrobability gets very small. We find that the THO calcula-
method to discretize the continuum of breakup states fotions, with different numbers of states, present consistently
weakly bound systems. The method, named THO, provides this feature.
basis of normalizable wave functions, which are generated We have used the THO basis to evaluate the energy dis-
by multiplying the ground state of the composite object by atribution of the breakup states. We find that the average ex-
numberN+1 of Hermite polynomials on a variabl&(x). citation energy of the breakup states does not depend very
This variable is obtained as a local scale transformation fronmuch on the coupling strength, and increases significantly as
the physical variable. As the numbeN increases, the basis the adiabaticity parameter decreases. We have also evaluated
approaches completeness, and the true continuum of breaktipe energy distribution of the breakup states, finding that the
states should be accurately described in terms of the THdistribution is wider for the lower adiabaticity parameter.
basis. We have investigated the role of continuum-to-continuum
We have investigated the adequacy of the THO basis teoupling in this problem. We find that the THO method con-
describe the effect of the coupling to breakup states on theerges very fast when continuum-to-continuum coupling is
scattering of a composite object. We have considered a on@eglected, even in the sudden limit. We find that, when
dimensional problem in which a composite object, made ugontinuum-to-continuum coupling is neglected, the breakup
of two structureless fragments that are initially bound, col-probabilities are, in general, overestimated. Also, the energy
lides with a repulsive potential that depends both on the cerdistribution of the breakup states becomes narrower. We in-
ter of mass coordinate and on the relative coordinate of théerpret these results as a consequence that, due to the form of
fragments. This potential is approximated as the sum of &he P,(x) operator that generates the coupling, the effect of
folding potential, which acts on the center of mass coordi-continuum-to-continuum coupling is repulsive for the
nate, and determines the classical trajectory, and a tidal pdeakup states, and this reduces the effect of the coupling in
tential, which is written as the product of a coupling form- the full calculations. We also find that, if continuum-to-
factor times an operator acting on the relative coordinate. Asontinuum coupling is neglected, we do not get the special
a result of the collision, the composite object can breakupalues of the adiabaticity parameter for which breakup is
producing fragments with a certain energy distribution. Wevery small. So, we can conclude that, at least in the scatter-
use a semiclassical approximation, by which the center oing problem under discussion, continuum-to-continuum cou-
mass describes a trajectory that is determined by the foldingling is very important, and that the THO basis is a useful
potential. The evolution of the internal state of the compositemethod to study its effect. It should be noticed that both
system is determined by a time-dependent Sdinger equa-  calculations, with continuum-to-continuum coupling and
tion, which is projected on a finite THO basis. without it, converge satisfactorily in the THO basis.

V. SUMMARY AND CONCLUSIONS
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We conclude that the THO basis is adequate to describplied this method to describe the scattering of deuterons on
the coupling to breakup states in scattering problems that cameavy targets with satisfactory results].
be treated within the semiclassical approximation. For a full
guantum-mechanical calculation the THO basis provides ACKNOWLEDGMENTS
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