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Continuum coupling in one-dimensional scattering using a transformed harmonic oscillator basis
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The coupling to the continuum is studied in a one-dimensional problem that describes the interaction of a
weakly bound composite object with a wall in a semiclassical approach. A transformed harmonic oscillator
basis is introduced to provide an appropriate discrete and finite basis for treating the continuum part of the
spectrum. The convergence of the scattering magnitudes is investigated as the number of states in the basis is
increased. The role of bound-to-continuum and continuum-to-continuum coupling is investigated.
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I. INTRODUCTION

A composite quantum-mechanical object is described
an internal Hamiltonian that includes the kinetic energy
the constituents, as well as the interactions between th
The eigenstates of the internal Hamiltonian will be given,
general, by a finite~or, at least, discrete! number of bound
states, and a continuum of breakup states, which can be c
acterized by the relative momentum of the fragments. W
such an object, initially in its ground state, which is boun
undergoes a scattering process from a structureless targe
dynamics of the system is governed by the total Hamilton
that includes the internal Hamiltonian of the object plus
interaction with the target. As a result, the object may
excited to other bound states, or to the continuum of brea
states. Even if the object ends up in the ground state,
scattering magnitudes will be affected by the coupling
bound and breakup states.

The effect of coupling to bound states can be described
means of a coupled-channels calculation. In a tim
independent formalism, it involves the solution of a fin
number of second-order coupled differential equations on
relative coordinate, which appear as a result of projecting
Schrödinger equation on the bound wave functions. In
semiclassical time-dependent formalism, one has to sol
finite number of first-order coupled differential equations
the time variable. In both cases, the procedure is ra
straightforward, although it may be computationally difficu
if many bound states are considered.

The effect of coupling to breakup states is more diffic
to describe. The continuum wave functions have an infin
range and are not normalizable. Thus, the coupling poten
from bound states to the continuum states have a very
range, and the coupling potentials from continuum-
continuum states have an infinite range. That makes it n
essary to use some discretization procedure to substitute
continuum of breakup states by a finite number of norma
able states, which, in the adequate limit, should represen
effect of coupling to the true continuum. Several metho
have been proposed for this purpose. TheR-matrix method
@1# solves the many-body problem in a box and then m
the matching with the adequate boundary conditions. T
Sturmian basis@2–4# uses bound states of scaled potentia
1050-2947/2002/65~5!/052708~8!/$20.00 65 0527
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which are orthogonal when weighted with the potentials. T
Siegert pseudostate formulation@5# provides a finite basis
representation of the outgoing wave solutions to the ra
Schrödinger equation for cutoff potentials. The Gamo
states@6# are non-normalizable solutions of the Schro¨dinger
equation corresponding to outgoing boundary conditio
characterized by complex energies. The method of c
tinuum discretization coupled channels@7# discretizes the
continuum by means of taking fixed intervals, or bins, ok
values in the continuum states. Finally, a complete basis
single particle wave functions, such as the harmonic osc
tor, can be used to expand both bound and scattering s
@8#.

We have recently proposed the use of a transformed
monic oscillator~THO! basis to describe the effect of th
continuum@9,10#. The basic idea is to define a local sca
transformation@11–13#, which is such that converts th
ground-state wave function of the weakly bound compos
object cB(x) into a harmonic oscillator wave functio
f0

HO(s) @9,10#. The functions(x), which defines the loca
scale transformation, is given, for a one-dimensional pr
lem, by

E
2`

x

ucB~x8!u2dx85E
2`

s

uf0
HO~s8!u2ds85

11erf~s!

2
.

~1!

Then, one generates a set of orthogonal wave functi
fn

THO(x)5Hn„s(x)…cB(x), such that the state withn50 co-
incides with the ground state, and the states withn.0 de-
scribe the continuum, or other bound states if they ex
Then, one takes a finite basis, which is uniquely determi
by the numberN11 of THO states considered, and diag
nalizes the Hamiltonian in this basis. The resulting eige
states and eigenvalues are taken as representatives o
continuum. We showed that, as the number of states in
THO basis increases, the eigenstates appear more de
packed close to the breakup threshold, although there
eigenstates that appear at higher energies. Besides, we
onstrated that global structure magnitudes related to the
pling to the continuum, such as sum rules, were very ac
rately described using relatively small THO bases. O
purpose in this paper is to study the adequacy of the T
©2002 The American Physical Society08-1
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I. MARTEL et al. PHYSICAL REVIEW A 65 052708
basis to describe the effect of the continuum in the scatte
processes. We make use of the semiclassical approxima
in which the relative motion of projectile and target is d
scribed by classical trajectories. This approach is valid w
the wavelength associated to the relative motion is sm
compared to the range of the interaction@14#. This is the case
for collisions of heavy nuclei, atoms, and molecules on
wide range of energies.

In this paper we make use of the THO basis to desc
the effect of coupling to the continuum in a model on
dimensional problem. In Sec. II we present the model Ham
tonian, we introduce the semiclassical approximation to
scribe the scattering, and formulate the adiabatic and sud
approximations, which allow for an exact solution. In Se
III we present the scattering calculation in the THO bas
and investigate the convergence of elastic and breakup p
abilities as the number of states in the THO basis is
creased. In Sec. IV we investigate the effect of including
neglecting the effect of continuum-to-continuum couplin
Sec. V is for the summary and conclusions.

II. ONE-DIMENSIONAL SCATTERING MODEL

In this work we discuss the application of the THO ba
to a scattering problem. We consider a one-dimensional c
posite object, characterized by two particles with mas
m1 ,m2, and coordinatesx1 and x2. Their reduced mass i
m5m1m2 /(m11m2) and the total mass isM5m11m2. The
relative coordinate isx5x12x2, and the center of mass co
ordinate isX5(m1x11m2x2)/M . The corresponding Hamil
tonian is given by

h52
\2

2m

d2

dx2 1vB~x!, ~2!

where thex is the relative coordinate andvB(x) is the inter-
action that binds the particles. Initially, the composite obj
is in its ground statecB(x), which is an eigenstate ofh
corresponding to an energyeB . This object collides with a
massive particle, or wall. The interaction of the system w
the wall is given by a functionV(X,x), which depends on
the center of mass as well as on the internal coordinate. If
particles interact independently with the wall, thenV(X,x)
5V1(x1)1V2(x2), but this will not be true in general, i
there are polarization effects. Thus, the complete Ham
tonian can be written as

H52
\2

2M

d2

dX2 1V~X,x!1h. ~3!

The x dependence of the interactionV(X,x) can be ex-
panded in terms of a family of orthogonal polynomia
Pm(x), where m represents the order of the polynomia
These polynomials are orthogonal with respect to the we
function given bycB(x)2, so that

E dxcB~x!2Pm~x!Pn~x!5d~n,m!. ~4!
05270
g
ion

n
ll

a

e
-
l-
-
en
.
,
b-
-
r
.

-
s

t

e

l-

ht

Explicit expressions for the first few polynomials are,
terms of the expectation values ofxn in the ground state, and
assuming thatcB(x)5cB(2x),

P0~x!51, ~5!

P1~x!5
x

A^x2&
, ~6!

P2~x!5
x22^x2&

A^x4&2^x2&2
. ~7!

Thus, the interaction can be expanded as

V~X,x!5(
m

Vm~X!Pm~x!, ~8!

Vm~X!5E dxcB~x!2Pm~x!V~X,x!. ~9!

It should be noticed that the first term in this expansio
which is independent of the internal variablex, corresponds
to the expectation value of the interactionV(X,x) in the
ground state of the composite object, which is the foldi
potential. This is given by

Vf~X!5V0~X!5E dxcB~x!2V~X,x!. ~10!

The other terms give rise to the tidal forces, which can
duce the excitation of the composite object during the co
sion. For the purpose of this paper, we will consider the c
in which the composite object consists on two identical p
ticles. Then, the functionV(X,x) is even inx, and only the
polynomials of even order contribute to the expansio
Moreover, for the sake of simplicity, we will retain only th
terms up tom52. Thus, we have

V~X,x!5Vf~X!1V2~X!P2~x!. ~11!

In a semiclassical approach@14#, the folding potential deter-
mines the trajectoryX(t) of the center of mass of the objec
The trajectory can be obtained by solving the different
equation

M

2 S dX~ t !

dt D 2

1Vf~X!5E2eB . ~12!

The turning point of the classical trajectoryX0 occurs when
E2eB5Vf(X0). If the time t50 is taken whenX(t)5X0,
then the trajectoryX(t) is an even function of the time. Th
tidal potential, which is responsible for the projectile excit
tion, is given by

VT~X,x!5V2~X!P2~x!. ~13!

In a semiclassical treatment, the trajectoryX(t) is used to
consider the tidal potentialVT„X(t),x… as a time-dependen
operator that acts on the internal coordinatex. Moreover, in
the case that we are considering, the dependence in the
8-2
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CONTINUUM COUPLING IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 65 052708
ter of mass and relative coordinates factorize, so that
effect of the tidal forces are described by the operatorP2(x),
which acts with an intensityF(t)5V2„X(t)…. The internal
state will evolve satisfying the equation

i\
d

dt
c~x,t !5@h2eB1F~ t !P2~x!#c~x,t !, ~14!

with the boundary condition that fort→2`, the wave func-
tion is that of the ground statecB(x).

Recapitulating, Eq.~14! represents, within some reaso
able approximations, the time evolution of the internal st
of a two-particle system that collides with a wall. This equ
tion contains derivatives with respect tot andx, and so it is
difficult to solve it exactly. Besides, as the eigenstates oh
contain both bound and continuum states, one cannot
project on the eigenstates ofh and solve the coupled equa
tions.

We will show in the following section that the THO
method provides a finite basis of normalizable states, wh
allow to find an approximate solution to Eq.~14!. Besides, as
the number of THO states increases, the relevant scatte
magnitudes converge.

We will also consider two dynamical approximations
Eq. ~14!. Theadiabatic approximationarises when the char
acteristic time scale of the interaction, given by the tim
range of the functionF(t), is much longer than the time
scale of the internal motion,\/eB . In this limit, the time-
dependent wave function can be approximated by the exp
sion

cAd~x,t !5N~ t !FcB~x!2F~ t !
1

h2eB
P2~x!cB~x!G

3exp@2 if~ t !#, ~15!

whereN(t) is a normalization factor, which varies slowl
and the phasef(t) satisfies the equation

f~ t !52
a

\E2`

t

dt8F~ t8!2. ~16!

The parametera is the polarizability associated to the oper
tor P2(x). It is given by the expression

a5^cBuP2~x!
1

h2eB
P2~x!ucB&. ~17!

It should be noticed that, in the adiabatic approximation,
object always emerges from the scattering process in
ground state. Indeed, the functionF(t), which is associated
to the couplings, vanishes ast→`. The only effect that
arises from the coupling is a phase shift in the ground-s
wave function. This phase shift is determined by the value
the polarizabilitya. So, the adequacy of any approxima
treatment of continuum discretization can be judged by co
paring the value ofa obtained from the discretization wit
the exact value. We will make this comparison in the follo
ing section for the THO basis.
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The sudden approximationis opposite to the adiabati
one. It arises when the time scale of the interaction is m
shorter than that of the internal motion. Thus, the inter
coordinates are effectively frozen during the scattering. T
sudden approximation is obtained by ignoring the termh
2eB in Eq. ~14!. That allows to integrate with respect to th
time variable, to give

cSu~x,t !5cB~x!exp@2 if~ t !P2~x!#, ~18!

where the phasef(t) is given by

f~ t !5
1

\E2`

t

dt8F~ t8!. ~19!

In the sudden approximation the object emerges from
scattering process in a state whose density distribution is
same as that of the ground state. However, it can be q
different from the ground state because the additional ph
depends on the variablex. The probability amplitude for re-
maining in the ground state is given by

^fBuA~F!ufB&5E dxcB~x!2 exp@2 iFP2~x!#, ~20!

whereF5f(`). If the configuration space is restricted, b
means of some continuum discretization procedure, the
pression above will be modified. In the following section w
will evaluate the convergence of the elastic amplitudes in
THO basis, as a function ofF. Note that theF, which is
associated to the integral of the coupling potential along
trajectory, is a dimensionless parameter that measures
importance of the coupling. Small values ofF indicate that
the elastic scattering dominates, while large values ofF im-
ply that excitation dominates.

III. SCATTERING CALCULATIONS IN THE THO BASIS

We make use of the THO basis to expand the wave fu
tion c(x,t). The THO basis@9# is obtained from the ground
state wave function by the expression

fn
THO~x!5Hn„s~x!…cB~x!, ~21!

whereHn(s) is a properly normalized Hermite polynomia
and s(x) is given by Eq.~1!. For these calculations, th
binding interaction has been taken as a Po¨schl-Teller poten-
tial @15#, given by

vB~x!5v0 /cosh2~bx!. ~22!

The potential depthv052\2b2/m is taken so that it only
accommodates one bound state, which has an energyeB5
2\2b2/2m, and that is given by the analytic wave functio

cB~x!5N/cosh~bx!. ~23!

We can use the THO basis~21!, with n50, . . . ,N, to
diagonalize the Hamiltonianh. This gives rise toN11
eigenstatesc j

h(x), whose corresponding eigenvalues areej ,
for j 50 to N. The state withj 50 is precisely the ground
8-3
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I. MARTEL et al. PHYSICAL REVIEW A 65 052708
statecB(x), which coincides withf0
THO(x). The other states

are normalizable states, which represent the continuum in
THO basis.

In Fig. 1 we present the values of the energiesei obtained
from the diagonalization of the internal Hamiltonian in th
THO basis as a function of the number of states included
the THO basis. The energy scale is in units of\2b2/m, so
that the bound state haseB521/2. In Fig. 2 we present the
ten eigenfunctions ofh constructed from the THO basis wit
N11510 ~nine continuum states plus the bound grou
state!. We only had to include the wave functions with pos
tive parity, which are the ones connected by the interact

The matrix elements of the interaction are proportiona
the matrix elements of the operatorP2(x). These matrix el-
ements can be calculated in the THO basis as

^fn
THOuP2ufm

THO&5E dxcB~x!2Hn„s~x!…P2~x!Hm„s~x!….

~24!

FIG. 1. Energy eigenvalues of the Hamiltonian of the compo
object as a function of the number of states,N11, in the THO
basis. Energies are given in units of (\2b2/m).

FIG. 2. Wave functions of the composite object in the TH
basis withN11510, expressed as a function ofbx ~dimension-
less!.
05270
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From this matrix, one can also calculate the matrix eleme
of P2 in the basis of eigenstates of the Hamiltonianuc j

h&.
Note that one can diagonalize the operatorP2(x) in the THO
basis. Let us label the eigenstates byuck

P2& and the eigenval-
uesP2(k).

We will study the adequacy of the THO basis to descr
the polarizability a. As we have argued in the precedin
section, this is relevant to the description of the scatter
process in the adiabatic limit. In the THO basis, the expr
sion for the polarizability is

a~THO!5(
j 5” 0

^cBuP2uc j
h&^c j

huP2ucB&

ej2eB

. ~25!

In Table I we present the convergence of this magnitu
expressed in units ofueBu21, as a function of the number o
THO states. As we can see, the convergence is very fas

We will next consider the THO basis to describe the el
tic scattering amplitudes in the sudden approximation. T
expression corresponding to Eq.~20! in the THO basis can
be formulated using the eigenstates of the operatorP2(x) as

^fBuA~F!ufB&5(
k

^cBuck
P2&2 exp@2 iFP2~k!#.

~26!

The probability of remaining in the ground state is giv
by the square of this amplitude. The results are plotted
Fig. 3, as a function ofF. They indicate that the number o
THO states needed to obtain the full sudden calculation
creases as the coupling strengthF increases.

We finally consider the general case, in which we do n
make use of the adiabatic or sudden approximations. For
purpose of the calculations, we assume that the folding
tential can be approximated by an exponential form, for d
tances beyond the turning point

VF~X!5VF~X0!exp@2~X2X0!/a#. ~27!

It is straightforward to obtain the trajectory in this case.
terms of the variabley5(X2X0)/a, one gets

tanh~vt/2a!56A12exp@2y~ t !#, ~28!

wherev5A2(E2eB)/M is the asymptotic velocity. In this
equation, t50 corresponds to the distance of closest a

TABLE I. Convergence of the polarizabilitya, in units of
(2m/\2b2), as a function of the number of positive parity co
tinuum states in the THO basis.

N a

1 0.52155
2 0.70895
3 0.71720
4 0.71721
5 0.71721
Exact 0.71721

e

8-4
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CONTINUUM COUPLING IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 65 052708
proach,y50. It should be noticed that the depth of the p
tential VF only determines the distance of closest approa
The trajectory, measured with respect toX0, only depends on
the rangea.

We will also assume that the coupling term is also ex
nential, with the same range as the folding potential. The

V2~X!5V2~X0!exp@2~X2X0!/a#. ~29!

If this is expressed in terms of the time, one gets

F~ t !5V2„X~ t !…5V2~X0!cosh22~vt/2a!. ~30!

From this expression, one gets that the characteristic tim
the collision is given byTc5a/v. This time is to be com-
pared with a characteristic time for the internal motio
which isTi5\/ueBu. So, we define an adiabaticity parame
j5Tc /Ti . Small values ofj correspond to the sudden limi
and large values to the adiabatic limit. Besides, we will d
fine a dimensionless timet5t/Ti . The value ofF for F(t)
is 4V2(X0)a/(\v). Thus, we can write the interaction, i
terms of suitable dimensionless parameters, as

F~t!5
FueBu

4j
cosh22@t/~2j!#. ~31!

With this expression, the equation of the evolution can
written as

i
d

dt
c~x,t!5Fh2eB

ueBu
1

F

4j
cosh22@t/~2j!#P2~x!Gc~x,t!.

~32!

We expand the function in terms of the eigenstates ofh in a
THO basis. This gives

c~x,t!5(
j 50

N

cj~t!c j
h~x!exp@2 i t~ej2eB!/ueBu#. ~33!

FIG. 3. Ground-state probability in the sudden limit as a fun
tion of the parameterF ~dimensionless!. The thick full line is the
full sudden result. The dashed lines correspond to the THO disc
zation, for several numbers of states. The thin full line is the sud
calculation excluding continuum-to-continuum coupling.
05270
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Substituting this expansion in the previous equation, and p
jecting with c i

h(x) one gets,

i
d

dt
ci~t!5(

j 50

N
F

4j
cosh22@t/~2j!#^c i

huP2uc j
h&cj~t!

3exp@2 i t~ej2ei !/ueBu#, ~34!

with the boundary condition that, fort→2`, only c0(t)
51 and the other components vanish.

The probability of remaining in the ground state, after t
scattering, is given byuc0(`)u2. This value depends on th
parameterF, which measures the coupling strength, and
parameterj, which measures the degree of adiabaticity.
Fig. 4 we represent the value of the ground-state probab
versusj, for a fixed value of the coupling strength parame
F51, calculated in the THO basis. We see that the res
converge rapidly as the number of THO states increa
Only when the adiabaticity parameter is very smallj
,0.1) the convergence is not so fast. We have perform
calculations for other values of the coupling strength, and
find that the convergence of the THO scattering calculati
is very good except for the cases in which both the coupl
strength is large and the adiabaticity parameter is small,
is, for strong coupling very close to the sudden limit.

We have evaluated the average value of the energy of
breakup states that are produced after the scattering pro
weighted by the corresponding excitation probabilities. T
results in Fig. 5 show that the average excitation energy
creases as one goes to the sudden limit. That indicates
one should be careful when applying the sudden approxi
tion, which implies neglecting the excitation energy, even
cases in which the adiabaticity parameter is small. We fi
that the convergence of the THO calculation is satisfacto

-

ti-
n

FIG. 4. Breakup probability as a function of the adiabatic
parameterj ~dimensionless!, for a fixed value of the coupling pa
rameterF51. Lines corresponding to those marked in the lege
box as THO are the full THO results for different numbers of sta
included in the basis. The thin full line is the converged res
excluding continuum-to-continuum coupling.
8-5
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I. MARTEL et al. PHYSICAL REVIEW A 65 052708
except forj'0.5. There the breakup probabilities are ve
small, and this induces uncertainties in the evaluation of
average energy.

We have investigated the breakup probability distribut
obtained making use of the THO discretization. We ha
calculated approximately the differential probability of exc
tation as a function of the relative momentum of the break
fragments. The evaluation of this function requires to e
mate the interval that corresponds, in the true continuum
each eigenstate of the internal Hamiltonian in the THO ba
The average momentum of our continuum states can be
tained in terms of the energy by means ofpi

2/2m5ei . A
simple interpolation procedure yields the range in terms
the momenta of the neighboring states,

D i5
1

2
pi 112

1

2
pi 21 , 2, i ,N, ~35!

D15
1

2
p2 , ~36!

DN522pN211
3

2
pN1

1

2
pN22 . ~37!

Thus, we can express the differential excitation probability
energies close to the THO eigenvalues by

S dP

dpD
p5pj

5
Pj

D j
. ~38!

In Fig. 6 we present the breakup probability distribution o
tained in THO calculations using different number of stat
The coupling parameter is taken asF51 as in the preceding
calculation. The adiabaticity parameter is taken asj50.15,
which correspond to an intermediate situation between
adiabatic and sudden limits. We can see that there is a

FIG. 5. Average of the energy of the breakup states, in unit
(\2b2/m), as a function of the adiabaticity parameterj ~dimension-
less!, for a fixed value of the coupling parameterF51. The lines
correspond to the THO discretization, for several numbers of sta
The thin line is the converged result excluding continuum-
continuum coupling.
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sonable convergence of the calculations with different nu
ber of states. We have also performed calculations with
ferent values of the coupling strength and the adiabati
parameter. We find that larger coupling strength increases
breakup, but does not modify the form of the momentu
distribution of the fragments. However, larger adiabatic
parameters~corresponding to slower collisions! move the
momentum distribution to smaller values. The structure
the breakup distribution shows a single maximum at cert
momentum distribution, with the exception of certain valu
of the adiabaticity parameter for each coupling strength,
which the breakup probability is very small, and the dist
butions shows two maxima.

IV. EFFECT OF CONTINUUM-TO-CONTINUUM
COUPLING IN THE THO BASIS

Having established that the THO basis is an adequ
method to describe the continuum of breakup states, we w
to assess the question of whether the continuum
continuum coupling is important. For that, we have p
formed calculations in the THO basis where we have igno
continuum-to-continuum coupling, both diagonal and non
agonal. Our first observation is that the calculation in t
THO basis converges much faster in the cases in wh
continuum-to-continuum coupling is neglected. Usually, it
enough to introduce 3 or 4 continuum states in the TH
basis to get convergence. In Fig. 3 we have presented
exact sudden result excluding continuum-to-continuum c
pling. We have presented in Figs. 4, 5, and 6 the calculati
with nine continuum states in the THO basis, which prac
cally coincide with the calculations with 7 or 8 continuu
states.

It should also be noticed that, comparing the calculatio
in Fig. 3, the breakup probability is considerably enhanc
when continuum-to-continuum coupling is neglected. This
due, in our calculations, to the properties of the opera

f

s.
-

FIG. 6. Probability of excitation to the continuum, in units o
(\b)21, as a function of the breakup momentum, in units of (\b),
for different numbers of states in the THO basis. The coupl
strength isF51 and the adiabaticity parameter isj50.15. The thin
line is the converged result excluding continuum-to-continuum c
pling.
8-6
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P2(x) in the tidal potential. The expectation value of th
operator vanishes for the ground state. However, for c
tinuum states, with a large spatial extension, the expecta
value is positive, and hence the tidal potential has a repul
effect in these states, and this decreases the probabilit
breakup.

We have observed that this effect does not only occu
the sudden limit. For finite values of the adiabaticity para
eter, the calculations that ignore continuum-to-continu
coupling give in general larger breakup probabilities. This
shown in Fig. 4. This effect is more acute as the coupl
strength is larger. For weak coupling strengthF!1, the ef-
fect of continuum-to-continuum coupling gets smaller.

We have also investigated the energy distribution of
breakup states obtained in calculations that ign
continuum-to-continuum coupling. As it is shown in Fig.
the average energy of the breakup states is lower in the
culations that neglect continuum-to-continuum coupling. B
sides, as the collision is faster~adiabaticity paramete
smaller! the increase in the excitation energy is smaller th
when continuum-to-continuum coupling is considered.

The momentum distribution of the breakup fragments
also very different in the calculations neglecting continuu
to-continuum coupling, as it is shown in Fig. 6. These cal
lations give much larger breakup probabilities, which a
concentrated on small values of the fragment momenta.

V. SUMMARY AND CONCLUSIONS

In this work we have made use of a recently propos
method to discretize the continuum of breakup states
weakly bound systems. The method, named THO, provid
basis of normalizable wave functions, which are genera
by multiplying the ground state of the composite object b
numberN11 of Hermite polynomials on a variables(x).
This variable is obtained as a local scale transformation fr
the physical variablex. As the numberN increases, the basi
approaches completeness, and the true continuum of bre
states should be accurately described in terms of the T
basis.

We have investigated the adequacy of the THO basi
describe the effect of the coupling to breakup states on
scattering of a composite object. We have considered a
dimensional problem in which a composite object, made
of two structureless fragments that are initially bound, c
lides with a repulsive potential that depends both on the c
ter of mass coordinate and on the relative coordinate of
fragments. This potential is approximated as the sum o
folding potential, which acts on the center of mass coor
nate, and determines the classical trajectory, and a tidal
tential, which is written as the product of a coupling form
factor times an operator acting on the relative coordinate
a result of the collision, the composite object can break
producing fragments with a certain energy distribution. W
use a semiclassical approximation, by which the cente
mass describes a trajectory that is determined by the fold
potential. The evolution of the internal state of the compos
system is determined by a time-dependent Schro¨dinger equa-
tion, which is projected on a finite THO basis.
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We find that the dynamics of the collision can be char
terized within a semiclassical approximation in terms of tw
dimensionless parameters. One is the coupling stren
which is defined as the time integral of the coupling form
factor along the trajectory and the other is the adiabatic
parameter, which is the ratio of the collision time and t
characteristic time for the internal motion.

When the collision is slow, the adiabaticity parameter
large and one is in the adiabatic limit. In this case, the eff
of coupling to the continuum is just to induce a phase cha
in the elastic wave function. The calculations in the TH
basis converge very quickly to the exact results in this ca

When the collision is fast, the adiabaticity parameter
small and one is in the sudden limit. In this case, the num
of THO states needed to obtain convergence in the ela
probability depends on the value of the coupling strength

We have performed calculations in intermediate situ
tions, for different values of the coupling strength and t
adiabaticity parameters. We find that the convergence in
THO basis is satisfactory, except in situations in which bo
the coupling strength is large and the adiabaticity param
small, this is, in situations of strong coupling close to t
sudden limit.

We have used the THO basis to evaluate different sca
ing magnitudes in our model problem. We find that the pro
ability of breakup increases, in general, as the coupl
strength increases, and as the adiabaticity parameter
creases. However, there are certain values of the adiaba
parameter, for each coupling strength, for which the brea
probability gets very small. We find that the THO calcul
tions, with different numbers of states, present consiste
this feature.

We have used the THO basis to evaluate the energy
tribution of the breakup states. We find that the average
citation energy of the breakup states does not depend
much on the coupling strength, and increases significantl
the adiabaticity parameter decreases. We have also evalu
the energy distribution of the breakup states, finding that
distribution is wider for the lower adiabaticity parameter.

We have investigated the role of continuum-to-continuu
coupling in this problem. We find that the THO method co
verges very fast when continuum-to-continuum coupling
neglected, even in the sudden limit. We find that, wh
continuum-to-continuum coupling is neglected, the break
probabilities are, in general, overestimated. Also, the ene
distribution of the breakup states becomes narrower. We
terpret these results as a consequence that, due to the fo
the P2(x) operator that generates the coupling, the effect
continuum-to-continuum coupling is repulsive for th
breakup states, and this reduces the effect of the couplin
the full calculations. We also find that, if continuum-to
continuum coupling is neglected, we do not get the spe
values of the adiabaticity parameter for which breakup
very small. So, we can conclude that, at least in the sca
ing problem under discussion, continuum-to-continuum c
pling is very important, and that the THO basis is a use
method to study its effect. It should be noticed that bo
calculations, with continuum-to-continuum coupling an
without it, converge satisfactorily in the THO basis.
8-7
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We conclude that the THO basis is adequate to desc
the coupling to breakup states in scattering problems that
be treated within the semiclassical approximation. For a
quantum-mechanical calculation the THO basis provi
with a finite set of normalized states that represent the c
tinuum of breakup states. These wave functions are use
evaluate diagonal and transition potentials, which enter
standard coupled channel calculation. We have already
v

S.

r,

,
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plied this method to describe the scattering of deuterons
heavy targets with satisfactory results@16#.
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