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Continuum discretization using orthogonal polynomials
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A method for discretizing the continuum by using a transformed harmonic oscillator basis has recently been
presented@Phys. Rev. A63, 052111~2001!#. In the present paper, we propose a generalization of that formal-
ism which does not rely on the harmonic oscillator for the inclusion of the continuum in the study of weakly
bound systems. In particular, we construct wave functions that represent the continuum by making use of
families of orthogonal polynomials whose weight function is the square of the ground state wave function,
expressed in terms of a suitably scaled variable. As an illustration, the formalism is applied to one-dimensional
Morse, Po¨schl-Teller, and square well potentials. We show how the method can deal with potentials having
several bound states, and for the square well case we present a comparison of the discretized and exact
continuum wave functions.
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I. INTRODUCTION

For any realistic composite quantum-mechanical sys
~atoms, molecules, nuclei, etc.! the treatment of the continu
ous part of the spectrum is a difficult task. This is especia
so in the case of weakly bound systems, when both bo
and unbound states have to be treated on equal footing.
continuum wave functions depend on a continuously vary
parameter~the energy or the wave number! and are not nor-
malizable, which makes them awkward for actual appli
tions. Nevertheless, in some cases the exact n
normalizable continuum wave functions can be explici
used in the calculation. This is the case for the evaluation
excitation functions for an operator that connects a bo
state with the continuum states of a system. In this situat
the bound character of the state allows for an explicit eva
ation of the matrix elements. This is also the case in reac
calculations in a distorted-wave Born approximation a
proach. The transition amplitudes can be calculated from
matrix element of the relevant interaction between the ini
bound state and the final unbound state.

However, in general, the explicit inclusion of the co
tinuum states in structure or reaction calculations require
discretization of the continuum. Thus, the continuum is s
stituted by a discrete set of normalizable states which
comes a complete set as the number of states consid
tends to infinity. It is expected that a finite number of the
discrete states will appropriately model the effect of the t
continuum. This can be checked by investigating the con
gence of the calculation as the number of discrete state
cluded in the basis is increased.

Different methods are used to generate a discrete basi
the continuum. One of them is to use theR-matrix formalism
@1#. This is a successful procedure but for realistic system
computationally very demanding. Another possibility for d
cretizing the continuum is the use of a Sturmian basis. Gi
a potential, it is composed of the bound eigenstates obta
by rescaling the interaction under the constraint that t
have the same binding energy as the original bound s
1050-2947/2003/67~5!/052108~9!/$20.00 67 0521
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@2–4#. This basis is complete within the range of the pote
tial. The convergence of this basis is good for short ran
operators, with a similar range as the binding potent
which couple the ground state to states with relatively h
excitation energy. However, the Sturmian basis is not
equate for describing the low energy part of the continuu
which can be very important for weakly bound systems.

An analytical basis, such as the harmonic oscillator~HO!
basis, can be used to describe both the bound and contin
states of the system. However, in order to describe accura
the ground state of a weakly bound system, many HO w
functions are required. This is due to the fact that the tail
the bound wave function is an exponential, while the tails
the HO wave functions have Gaussian behavior. An alter
tive is to use the transformed harmonic oscillator~THO!
method@5#, which is based on a general local scale transf
mation ~LST! to the harmonic oscillator functions@6–10#.
The transformed harmonic oscillator basis retains the s
plicity of the harmonic oscillator expansion and includes t
correct asymptotic behavior for the ground state. We h
applied the THO method to describe bound and continu
states of weakly bound systems@5#.

In this work, we introduce the orthogonal polynomi
~OP! method, which is a generalization of the THO metho
In the same spirit as in Ref.@5#, a discrete basis is introduce
to take into account the continuum; however, this basis is
necessarily related to transformed harmonic oscillator w
functions. Moreover, we show that the OP method can
applied with an arbitrary choice of the local scale transf
mation.

In our previous paper we considered potentials with j
one bound state. Here we show how the method can be
cessfully applied to the multibound case. We show that
bound states are accurately described as we enlarge th
mension of the basis. In addition, we compare the disc
states that describe the continuum in the OP bases with
actual continuum states.

The paper is structured as follows. In Sec. II, the gene
orthogonal polynomial method is presented. In Sec. III, p
©2003 The American Physical Society08-1
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ticular cases of the OP method are described, including
THO method. In Sec. IV the application of the formalis
presented in the preceding sections is worked out for sev
one-dimensional~1D! potentials. Section V is devoted to
comparison of the wave functions representing the c
tinuum obtained with this formalism with the actual co
tinuum wave functions. Finally, in Sec. VI the outlook an
conclusions of this work are presented.

II. THE GENERAL ORTHOGONAL POLYNOMIAL
METHOD FOR ONE-DIMENSIONAL PROBLEMS

We consider a one-dimensional Hamiltonian that in a
propriate units can be written as

h52
1

2

d2

dx2 1v~x!, ~1!

h, x, and v(x) here are dimensionless quantities,x5ar ,
wherer is the physical coordinate, andh5Hm/\2a2 , where
H is the Hamiltonian.

The starting point of the proposed approach is to assu
that the ground state wave functionw0(x) is known, either
analytically or numerically,

hw0~x!5e0w0~x!. ~2!

Then a weight functionv(s) is defined as

v~s!5
dx

ds
uw0~x!u2, ~3!

wheres(x) is an arbitrary function that has to be continuou
single valued, and monotonically increasing or decreas
taking values in an interval@a,b#. Having defined the inter-
val and the weight function, one can construct a family
orthogonal polynomials$Pn(s);n50,1,2, . . . % that satisfy

E
a

b

dsv~s!Pn~s!Pm~s!5
1

NnNm
dn,m . ~4!

From these polynomials and the ground state wave funct
it is straightforward to construct a set of orthonormal wa
functions

fm~x!5^xuOP,m&5Nmw0~x!Pm„s~x!… ~5!

that satisfy

E
2`

1`

dxfm~x!fn~x!5dn,m . ~6!

The functionsfn(x), exceptingf0(x) which is actually the
ground state wave function, are not eigenfunctions of
Hamiltonian, but constitute a basis in which the Hamiltoni
can be diagonalized. This basis, which has infinite eleme
can be truncated to a few states, provided that the appro
ateness of the truncation is checked. In the particular cas
weakly bound systems the Hamiltonian has few bound st
and a continuum of unbound non-normalizable states. T
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procedure allows for a convenient description of both bou
and continuum states by means of a finite number of norm
izable states.

In previous work@5,11,12# the weight functionv(x) was
chosen in such a way that the local scale transformations(x)
mapped the ground state wave functionw0(x) into the har-
monic oscillator ground state wave functionf0

HO(s). In this
case, the polynomialsPn(x) were related to the Hermite
polynomials. The proposed method for continuum discreti
tion, called the transformed harmonic oscillator, seemed
be necessarily linked to the harmonic oscillator. One of
purposes of this paper is to point out that the propo
method is not necessarily associated with the harmonic
cillator, although the THO method can be a good optio
Different scale transformationss(x) provide different dis-
crete bases to diagonalize the Hamiltonian. The optimal
lection for s(x) depends on the particular observable th
should be more accurately described.

Once the scale transformations(x) is chosen, the discrete
basisfn5uOP;n& can be generated and we can evaluate
matrix elements of the Hamiltonianh in this basis:

^OP,nu~h2e0!uOP,m&5E dxfn~x!~h2e0!fm~x!. ~7!

We can take into account Eq.~5! and that (h2e0)f0(x)
50 to write

^OP,nu~h2e0!uOP,m&5
NnNm

2 E dxw0~x!†Pn„s~x!…,

@~h2e0!,Pm„s~x!…#‡w0~x!. ~8!

The double commutator is independent of the potential
gives

†Pn„s~x!…,@~h2e0!,Pm„s~x!…#‡5
dPn„s~x!…

dx

dPm„s~x!…

dx
.

~9!

Taking this into account one gets

^OP,nu~h2e0!uOP,m&

5
NnNm

2 E dxuw0~x!u2
dPn„s~x!…

dx

dPm„s~x!…

dx
, ~10!

which can be written in terms of the variables:

^OP,nu~h2e0!uOP,m&

5
NnNm

2 E dsS ds

dxD
2

v~s!
dPn~s!

ds

dPm~s!

ds
. ~11!

Once the LSTs(x) is selected, this expression can be eas
evaluated using Gaussian quadratures. Note that the onl
formation required is the derivative of the functions(x),
evaluated at the pointsxn that define the quadrature.

The matrix elements withn50 or m50 vanish. This is
due to the fact that the state ofn50 is an eigenstate of the
Hamiltonian. Let us consider that we diagonalize the Ham
8-2
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tonian in anN-dimensional basis of OP states, fromi 50 to
i 5N21. The eigenstates of the Hamiltonian, in this r
stricted basis, are given by

uN,0&5uOP,0&, ~12!

uN,i &5 (
j 51

N21

uOP,j &^OP,j uN,i &, ~13!

where the statesuN,i & ( i 51, . . . ,N21) represent states dif
ferent from the ground state in the truncatedN-dimensional
OP basis. They can be expressed in thex representation as

^xuN,i &5c i
N~x!5Ni Pi

N21
„s~x!…f0~x!, ~14!

wherePi
N21(s) is a polynomial given by

Pi
N21~s!5 (

j 51

N21

Nj Pj~s!^OP,j uN,i &. ~15!

The diagonalization of the Hamiltonian in the OP basis, E
~11!, provides the eigenvalues and eigenfunctions, E
~14!,~15!. With them we can proceed to evaluate the mat
elements of any arbitrary local operatorO(x) that connects
bound with unbound states. In this paper, we concentrate
the following observables:~a! total strength: S(O;N)
5( i z^N,i uOuN,0& z2; ~b! energy weighted sum rule
EW(O;N)5( i(ei

N2e0) z^N,i uOuN,0& z2; and, ~c! polarizabil-
ity: P(O;N)5( i 5” 0(ei

N2e0)21z^N,i uOuN,0& z2.
For all of them the exact result, including the complete

of bound and continuum states, can be calculated. Thus
can compare the convergence of the OP results as the di
sion of the basis is increased.

In the following sections we consider as an example d
ferent local scale transformations for multibound on
dimensional potentials: the Morse, Po¨schl-Teller, and semi-
infinite square well potentials. We examine in all cases
convergence of the bound states and global observable
the number of OP states included in the calculation is
creased. With regard to the form of the operatorsO(x), we
consider two different cases as in the previous paper. F
we takeO(x)5x as an example of a long range operat
suited to describe the effects of external fields, such as
Coulomb field. Note that for an ideal polar diatomic mo
ecule composed of two ions of definite charge,x is propor-
tional to the electric dipole operator. In the second place,
consider a short range operatorO(x)5v(x), which could
describe possible effects of internal correlations with a ra
similar to the potential.

In addition, in the case of the semi-infinite square we
we will show a comparison of the wave functions that re
resent the continuum provided by this method with the ac
continuum wave functions.

III. SPECIAL CASES OF THE ORTHOGONAL
POLYNOMIAL METHOD

In this section we work out different selections for th
local scale transformations(x) that will be applied to various
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potentials in the next section. These will be special case
the general OP method.

A. Transformed harmonic oscillator method

In this case, the local scale transformation is selected
that it transforms the ground state wave function of inter
into the ground state wave function of a harmonic oscillat

E
2`

x

uw0~x8!u2dx85E
2`

s

uf0
HO~s8!u2ds85

11erf~s!

2
.

~16!

Direct integration of Eq.~16! provides the functions(x).
Once thes(x) function is computed, Eqs.~3!–~5! define the
THO basis. In this case the relevant polynomials are H
mite,

fn
THO~x!5Nnw0~x!Hn„s~x!…, ~17!

whereNn5(Ap2nn!) 21/2. So the THO method is a particu
lar case of the OP method, where the relevant polynom
are Hermite polynomials, the weight function is a Gaussi
and the local scale transformation is one that converts
ground state of the system in the ground state of a harm
oscillator.

In the case ofx values restricted to positive values, as
radial wave functions or semi-infinite potentials, it is mo
convenient to take only odd harmonic oscillator wave fun
tions, for which the LST is given by

E
0

x

uw0~x8!u2dx85E
0

s

s82uf0
HO~s8!u2ds8, ~18!

and the THO basis is obtained by multiplying the grou
state by Laguerre polynomials in the variables(x)2 @11#:

fn
THO8~x!5Nn8w0~x!Ln

1/2~„s~x!…2!, ~19!

whereNn85@G(n13/2)/n! #21/2.

B. Trivial orthogonal polynomial method

In this method the local scale transformation is taken
the trivial transformations5x. The ground state wave func
tion in terms ofs is just w0(x). The weight function is

v~x!5uw0~x!u2. ~20!

Orthogonal polynomialsPn(x) in the interval (2`,1`)
with respect to this weight function can be found by a Gra
Schmidt procedure as sketched below. From these and
ground state wave function, the trivial orthogonal polyn
mial ~TOP! basis wave functions are obtained as

fn
TOP~x!5Nnw0~x!Pn~x!. ~21!

Pn(x) can be written

Pn~x!5 (
k50

n

Cn,kx
k. ~22!
8-3



g

is
a

o
th

o
iv

rg

ta
re
ch
o

re

t
-

rs

in

e

f

ted

erre

ery

e

the

the
m

his
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The coefficientsCn,k can be efficiently calculated takin
Cn,n51 and defining the moments

Ln5E
2`

`

dxv~x!xn. ~23!

Orthogonality ofPn(x) implies that

(
k,k8

Cn,kCm,k8Lk1k850, ; m5” n, ~24!

which allows us to calculate the coefficients ofPn(x).
Summarizing, the trivial orthogonal polynomial method

a particular case of the OP method for which the local sc
transformation is the identitys5x, the weight function of
the polynomials is just the ground state density, and the
thogonal polynomials are calculated from knowledge of
moments ofx in the ground state.

The TOP method has the property that the inclusion
just one state apart from the ground state is sufficient to g
exactly the value of the total strength and the ene
weighted sum rule of the operatorO(x)5x on the ground
state. This is not surprising, because the second state in
TOP method is obtained by acting with thex operator on the
ground state and orthogonalizing.

C. Natural orthogonal polynomial method

The THO and TOP methods are applicable to ground s
wave functions derived from arbitrary Hamiltonians. He
we will consider two cases of analytic potentials for whi
there is a definite choice of natural variables in terms
which the wave functions acquire especially compact exp
sions @the natural orthogonal polynomial~NOP! method#.
These cases are the Morse and Po¨schl-Teller potentials.

1. Morse potential

The Morse potential@13# is

v~x!5D$@12exp~2x!#221%, ~25!

wherex5ar , with r the relative coordinate anda the in-
verse of the potential range, andD is the potential depth a
the minimum (x50). D can be written in terms of a param
eter j @14#, which is a positive real number, as

D5
1

2 S j 1
1

2D 2

. ~26!

The normalized ground state wave function for the Mo
potential characterized by the quantum numberj is,

f j 0
M ~x!5

1

AG~2 j !
~2 j 11! jexp~2 jx !exp@2~ j 11/2!

3exp~2x!#. ~27!
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With this one can proceed with the formalism presented
the preceding section by choosing a LSTs(x). In this case
the functions(x) is chosen as the natural variable for th
Morse potential

s5~2 j 11!exp~2x!. ~28!

The variables is defined between 0 and̀. Then, the nor-
malized Morse ground state wave function as a function os
is written as

f j 0
M ~s!5

1

AG~2 j !
sjexp~2s/2!. ~29!

Equations~3!–~5! define then the discrete basis associa
with this transformation. The weight function is

v~s!5
1

G~2 j !
s2 j 21exp~2s!, ~30!

and the discrete basis is related to the generalized Lagu
polynomialsLn

(2 j 21)(s),

f jn
NOP~s!5NjnLn

(2 j 21)~s!f j 0
M ~s!, ~31!

Njn5A n!G~2 j !

G~2 j 1n!
.

It should be noticed that the Morse potential has a v
simple expression in terms of the natural variable:

v~s!5
1

8
@s22~4 j 12!s#. ~32!

2. Pöschl-Teller potential

The Pöschl-Teller potential@15# is written as

v~x!52D
1

cosh2~x!
, ~33!

where2D is the value of the potential at its minimum. Th
variablex5ar , wherer is the relative coordinate anda is
the inverse of the range of the potential. The depth of
potentialD can be written as

D5
1

2
j ~ j 11!, ~34!

in terms of a new parameterj @16# which is a positive real
number. The normalized ground state wave function for
Pöschl-Teller ~PT! potential characterized by the quantu
numberj is

f j 0
PT~x!5A~2 j 21!!!

2 j~ j 21!!

1

coshj x
. ~35!

As in the case of the Morse potential, we present in t
subsection the LST in which the functions(x) is chosen as
the natural variable for the Po¨schl-Teller potential:
8-4
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s5tanh~x!. ~36!

Then the normalized ground state wave function is written

f j 0
PT~s!5A~2 j 21!!!

2 j~ j 21!!
~12s2! j /2. ~37!

Equations~3!–~5! define the discrete basis associated w
this transformation. The weight function is

v~s!5
~2 j 21!!!

2 j~ j 21!!
~12s2! j 21, ~38!

and the discrete basis is related to the Gegenbauer pol
mials Cn

( j 21/2)(s):

f jn
NOP~s!5NjnCn

( j 21/2)~s!f j 0
PT~s!, ~39!

Njn5An! ~n1 j 21/2!@G~ j 21/2!#2

p2222 jG~2 j 1n21!
A2 j~ j 21!!

~2 j 21!!!
.

Note that the potential can be written here also as a quad
expression in terms of the natural variable:

v~s!5
j ~ j 11!

2
~s221!. ~40!

IV. APPLICATION TO MULTIBOUND POTENTIALS IN
ONE DIMENSION

We have applied the formalism presented above to th
cases of interest: the Morse potential, the Po¨schl-Teller po-
tential, and the semi-infinite square well. In each case
have used the THO, TOP, and NOP methods and have
culated the convergence of global observables that con
the ground state with the states in the continuum. In t
section we present some of these results as an illustratio

A. Morse potential

We consider a Morse potential characterized byj 54,
which has four bound states, and analyze the three met
discussed in the preceding section: THO, TOP, and NOP

First the selected local scale transformation has to
computed: Eq.~16! for THO, s5x for TOP, or Eq.~28! for
NOP. Then the corresponding basis is constructed. In Fi
we present the bases for THO, TOP, and NOP. It can
observed that the basis provided by NOP, due to the beha
of the corresponding LST, is concentrated close to the ra
of the potential, while THO and TOP allow a spreading ov
larger distances compared to the range of the ground s
wave function. This would suggest that the NOP transform
tion is well suited for describing short range operators.
the other hand, the THO and TOP transformations would
more appropriated to describe long range operators.

Once the basis is obtained the Hamiltonian matrix is c
structed by evaluating Eq.~11!. Hamiltonian diagonalization
in each basis provides us with eigenvalues and eigenfu
tions. We plot in Fig. 2 the energies obtained for the th
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methods on increasing the dimension of the basis fromN
54 to 12. The ground state energy lies always at its ex
value e052 j 2/2528. The other three bound states mo
down in energy as the basis dimension is increased, and
convergence to the exact values is fast for THO and TOP
slower for NOP. In Table I the overlaps squared of the c
culatedn53 state with the known least bound eigenfuncti
for the Morse potential are shown at the left. It can be se
that the THO and, especially, the TOP methods give app
priate descriptions of the least bound state. The NOP met
converges very slowly.

We have investigated the convergence of the to
strength, energy weighted sum rule, and polarizability for

FIG. 1. N56 basis for the Morse potential withj 54 in the
THO, TOP, and NOP cases (x is dimensionless!.

FIG. 2. Energy eigenvalues~dimensionless! for the Morse po-
tential with j 54 in the THO, TOP, and NOP cases, as a function
the size of the basis.
8-5
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TABLE I. Overlap squared of the calculated states withn53 with the corresponding exact least boun
state in the Morse, Po¨schl-Teller, and SISW potentials as a function of the discrete basis dimension. All
potentials are taken to have four bound states~see text!. Three cases are presented for the LST: THO, TO
and NOP.N is the total number of basis states.

N Morse Po¨schl-Teller SISW
THO TOP NOP THO TOP NOP THO TOP

6 0.202629 0.500192 0.000151944 0.819445 0.911 0.510256 0.254974 0.95
8 0.508298 0.84243 0.0170537 0.927228 0.978336 0.624862 0.644374 0.99
10 0.746842 0.964903 0.0562563 0.971845 0.995182 0.704354 0.930997 0.99
12 0.884909 0.993699 0.10753 0.989412 0.998981 0.761336 0.985486 0.99
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operatorsx andv(x) using the different discretization proce
dures as the dimension of the basis is increased. We find
the convergence is satisfactory in all cases. In Tables II
III we show the values obtained forN510 for THO, TOP,
and NOP compared to the exact values. For the long ra
operatorx, the TOP method gives the exact result for t
total strength and energy weighted sum rule, while for
short range operatorv(x), it is the NOP method that give
the exact values for these magnitudes. The THO met
gives rapid convergence to the exact results in all cases
anycase, the three methods give deviations that are less
1 per thousand for the three observables calculated.

B. Pöschl-Teller potential

We have also performed calculations for a Po¨schl-Teller
potential withj 54 that has four bound states, two with pos
tive parity and two with negative parity. In this case the loc
scale transformations for THO, TOP, and NOP are obtai
from Eq. ~16!, s5x, and Eq.~36! respectively. All of them
are odd functions ofx. As in the preceding case we hav
studied the convergence of the calculated energies for
bound states to the exact values and the overlaps of the
lowest calculated excited states with the correspond
known bound eigenfunctions. In Table I the overlaps squa
of the calculatedn53 state with the known least boun
eigenfunction for the Po¨schl-Teller potential are shown. I
this case also, the convergence is faster in the THO and
methods, compared to the NOP method. Similarly to
Morse case presented above, we have computed the e
values and the eigenfunctions of the Hamiltonian for ea
LST. The energy spectrum presents in this case a dou
structure. This fact reflects the alternating parity of the sta
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Note that when the basis is increased by a state of a g
parity, the eigenvalues and eigenstates of the opposite p
do not change.

With the eigenfunctions we have performed the conv
gence tests for the observables total strength, ene
weighted sum rule, and polarizability. As for the Morse p
tential, convergence is faster in the TOP method for lo
range operators and in the NOP method for the short ra
operator, while the THO method is good in both cases.
shown in Tables II and III, the agreement of the calculati
for N510 in THO, TOP, and NOP methods with the exa
values is better than 3 per thousand. As in the previous c
for the long range operatorx, the TOP method gives the
exact result for the total strength and energy weighted s
rule, while for the short range operatorv(x), it is the NOP
method that gives the exact values for these magnitudes.
THO method gives rapid convergence to the exact result
all cases.

C. Semi-infinite square well in one dimension

As an additional example we develop here the formali
presented above for the semi-infinite square well~SISW! in
one dimension~note that this is equivalent to solving th
three-dimensional problem of a square well considering o
,50 states!,

h5H ` if x<0,

2v0 if 0 ,x,a,

0 if x.a.

~41!

We choose the parametersa52 andv0518, so that there are
in each

3592
675

3684
TABLE II. Values of the total strength (S), energy weighted sum rule (EW), and polarizability~P! for the operatorx in a basis with 10
states (N510) for Morse, Po¨schl-Teller, and SISW Hamiltonians with four bound states each. Three cases are presented for the LST
case: THO, TOP, and NOP. In the total strength (S) the diagonal contribution coming from the ground state has been removed.

N510 S(x,N) EW(x,N) P(x,N)
Morse PT SISW Morse PT SISW Morse PT SISW

THO 0.133137 0.141911 0.155092 0.5 0.5 0.496718 0.0366355 0.0404303 0.049
TOP 0.133137 0.141911 0.155241 0.5 0.5 0.5 0.0366355 0.0404303 0.0493
NOP 0.133136 0.141911 0.500044 0.500016 0.0366236 0.040426
Exact Value 0.133137 0.141911 0.155241 0.5 0.5 0.5 0.0366355 0.0404303 0.049
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TABLE III. Same as Table II but for the short range operatorv(x).

N510 S(x,N) EW(x,N) P(x,N)
Morse PT SISW Morse PT SISW Morse PT SISW

THO 2.25 1.7957 1.10480 24.75 12.4313 32.4966 0.28125 0.274348 0.057
TOP 2.25 1.79518 0.942975 24.75 12.4013 22.4319 0.28125 0.274347 0.05
NOP 2.25 1.79574 24.75 12.432 0.281146 0.274247
Exact value 2.25 1.79574 1.4872 24.75 12.432 ` 0.28125 0.274348 0.058242
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four bound states at energiese05216.9504, e15
213.8231, e2528.705 46, ande3521.950 92. Defining
k15A2(v01e0), k25A22e0,

f0
SISW~x!5H N1sin~k1x! if x<a,

N2exp~2k2x! if x.a,
~42!

whereN1 andN2 are fixed by continuity at the boundary an
normalization.

In this case, the THO method makes use only of ev
polynomials, as shown in Eq.~19!. In Fig. 3 the basis func-
tions are presented. The Hamiltonian matrix is construc
by evaluating Eq.~11!. Hamiltonian diagonalization in the
THO or TOP basis provides us with eigenvalues and eig
functions. We plot in Fig. 4 the energies obtained by incre
ing the dimension of the basis fromN54 to 12. In both
cases the ground state energy lies at its exact value,e05
216.9504. The other three bound states move down as
basis dimension is increased, and the convergence to th
act values is fast. The convergence of the overlaps of thn
53 calculated excited state with the corresponding kno
least bound eigenfunction for the semi-infinite square w
potential is very fast for both THO and TOP cases, as sho
in Table I. However, although both methods are very go
the TOP method is better for the purpose of reproducing
bound states.

FIG. 3. N56 basis for the SISW potential considered in t
THO and TOP cases (x is dimensionless!.
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We have calculated for the THO and TOP the conv
gence of the total strength, energy weighted sum r
~EWSR!, and polarizability for the operatorsx and v(x) as
the dimension of the basis is increased. It should be noti
that the square well potential has a sharp edge, and this
duces the divergence of the EWSR. As a reflection of this
our calculation the EWSR is larger and larger as the dim
sion of the basis is increased. In Tables II and III we sh
the calculated values forN510 in the THO, TOP, and NOP
methods compared with the exact values. For the long ra
operatorx the exact results for the total strength and EWS
are obtained in the TOP case, and the convergence is
good in the THO case. For the short range operatorv(x) the
convergence is rather poor for the total strength but the va
of the polarizability is obtained within 2% in theN510 cal-
culation.

V. RELATION WITH THE TRUE CONTINUUM

We investigate the relation of the wave functions obtain
in the OP methods that represent the continuum with the
continuum wave functions for the square well potential.

As the statesn51,2,3 reproduce the excited bound sta
accurately, the rest of the states, fromn54 onward, corre-
spond to continuum states, with a very small admixture
excited bound states.

For the case of the semi-infinite square well the true c
tinuum wave functions are known. However, a direct co
parison of the OP wave functions with the continuum wa
functions requires one to take care of the issue of normal
tion of the true continuum wave function. The true bou
statescb(r ) and the true continuum wave functionsc(k,r )
have to satisfy closure:

(
b

cb~r !cb~r 8!1E dkc~k,r !c~k,r 8!5d~r 2r 8!.

~43!

This implies that, for large distances, beyond the range of
potential, the continuum wave functions behave as

c~k,r !→A2

p
sin~kr1dk!. ~44!

For the OP wave functions, the condition of closure becom

(
n50

`

fn~r !fn~r 8!5d~r 2r 8!. ~45!
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When only a finite number of OP states are considered,
condition of closure will not be satisfied exactly, but one c
have an arbitrarily accurate approximation. We can calcu
the overlap between the eigenstates of the Hamiltonian
finite OP basis with the true bound states, as well as with
true continuum states,

^N,i ub&5E drc i
N~r !cb~r !, ~46!

^N,i uk&5E drc i
N~r !c~k,r !. ~47!

The condition of orthogonality of these overlap functions

(
b

^N,i ub&^buN, j &1E dk^N,i uk&^kuN, j &5d~ i , j !.

~48!

In addition, in order to perform a comparison we slice t
continuum into bins in such a way that each bin is char
terized by an interval of momentum (ki

2 ,ki
1). The bin wave

function is then obtained as a superposition of continu
wave functions within the bin

F i
bin~x!5A 2

p~ki
12ki

2!
E

ki
2

ki
1

dkc~k,x!. ~49!

The interval of the bins@ki
2 ,ki

1# is defined by thek values
of the eigenstates obtained in the OP discretization. If we
k4 ,k5 ,k6 , . . . the momentum of the OP eigenstates in
continuum~remember that for the cases considered we h

FIG. 4. Energy eigenvalues~dimensionless! for the SISW po-
tential in the THO and TOP cases, as a function of the size of
basis.
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four bound states!, the bins will be @k1
2 ,k1

1#5@0,(k5

1k4)/2#, @k2
2 ,k2

1#5@(k51k4)/2,(k61k5)/2#, . . . . We
have approximated the integral~49! by a sum over 50
k-equidistant points inside the bin and present a compar
of the first few continuum bin functions with the wave fun
tions obtained with the TOP method in Fig. 5~similar results
are obtained for the THO method!. It can be seen that the
TOP wave functions are in reasonably good agreement w
the corresponding bin wave functions, especially at relativ
small distances. This indicates that the OP method is clo
related to the continuum discretized method as used
coupled channels calculations~CDCC!. It should also be no-
ticed that the OP wave functions do not display the lo
range oscillatory behavior that is characteristic of the
wave functions. This can be an advantage when using
wave functions as an alternative to bin wave functions
CDCC calculations.

e

FIG. 5. Comparison of the first few continuum eigenstates of
SISW Hamiltonian in the TOP basis with the bin continuum wa
functions constructed as a superposition of true continuum w
functions as explained in the text. The quantities plotted are dim
sionless.

FIG. 6. Expansion of the THO~left hand side panels! and TOP
~right hand side panels! continuum (n54 to n511) wave functions
squared in terms of the asymptotic momentumk for the SISW po-
tential considering a basis withN512 states. The quantities plotte
are dimensionless.
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In Fig. 6 we represent, for the case of a base withN
512 states, the square of the OP wave functions that re
sent the continuum as a function of the asymptotic mom
tum of the states. The left panels correspond to the T
method while the right panels are for the TOP method
should be noticed that the OP states correspond to a su
position of true continuum states which is extended to a r
tively narrow range of momenta. This range is reduced as
size of the OP basis is increased, so that, in the limit of la
N, the OP states should coincide with the true continu
states. In the TOP case, the wave functions correspond
relatively narrow range of momentum values, except for
state with the higher energies. Thus, the TOP wave funct
can be interpreted as localized wave packets of momen
states. In the THO case, the wave functions of low excitat
energy do correspond to a narrow range of momenta. H
ever, for the higher energies, the THO wave functions d
play a structure in momentum space that indicates that
are not just wave packets.

VI. SUMMARY AND CONCLUSIONS

We have formulated a general orthogonal polynom
method to discretize the continuum in one-dimensional pr
lems. The method generates a complete discrete basis of
malizable states. These are obtained by multiplying
ground state of the system by a family of orthogonal po
nomials on a suitable variables, which is obtained from a
local scale transformations(x) on the physical variablex.
The local scale transformation, along with the ground st
of the system, determines the weight function for the fam
of orthogonal polynomials.

We obtain the transformed harmonic oscillator method
a particular case of the OP method, for which the relev
polynomials are Hermite. Also, we derive the trivial orthog
nal polynomial method by taking the local scale transform
tion as the identitys(x)5x. For special potentials, such a
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the Morse and and Po¨schl-Teller potentials, a natural or
thogonal polynomial method can be used, using the nat
variables of these potentials to define the local scale tra
formations. The relevant polynomials are Laguerre in
Morse case and Gegenbauer in the Po¨schl-Teller case.

The different OP methods are compared by checking
convergence of relevant sum rules of long and short ra
operators which couple the ground state to the other bo
states and the continuum states. It is found that the T
method is optimal for long range operators, while the NO
method is more adequate for short range operators. The T
method appears as a good compromise option which wo
well in both cases.

We have also investigated the description of exci
bound states in the different variants of the OP method.
find that the THO and TOP methods give fast converge
for both energies and wave functions of bound states, w
for the NOP method the convergence is slower.

For the case of the semi-infinite square well potential,
true continuum states and the states obtained from c
tinuum discretization by the TOP and THO methods a
compared. The radial behavior of the THO and TOP wa
functions compares reasonably well with the radial behav
of bins built from the continuum wave functions. It is foun
that the lower states obtained from continuum discretizat
in a finite basis can be understood as wave packets of the
continuum states, the width of which decrease as the siz
the basis is made larger. For the states of higher excita
energy, the wave packet interpretation is still adequate for
TOP method, but not so for the THO states.
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