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Continuum discretization using orthogonal polynomials
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A method for discretizing the continuum by using a transformed harmonic oscillator basis has recently been
presentedPhys. Rev. A63, 052111(2001)]. In the present paper, we propose a generalization of that formal-
ism which does not rely on the harmonic oscillator for the inclusion of the continuum in the study of weakly
bound systems. In particular, we construct wave functions that represent the continuum by making use of
families of orthogonal polynomials whose weight function is the square of the ground state wave function,
expressed in terms of a suitably scaled variable. As an illustration, the formalism is applied to one-dimensional
Morse, Pschl-Teller, and square well potentials. We show how the method can deal with potentials having
several bound states, and for the square well case we present a comparison of the discretized and exact
continuum wave functions.
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I. INTRODUCTION [2—4]. This basis is complete within the range of the poten-
tial. The convergence of this basis is good for short range
For any realistic composite quantum-mechanical systenoperators, with a similar range as the binding potential,
(atoms, molecules, nuclei, eX¢he treatment of the continu- which couple the ground state to states with relatively high
ous part of the spectrum is a difficult task. This is especiallyexcitation energy. However, the Sturmian basis is not ad-
so in the case of weakly bound systems, when both boundquate for describing the low energy part of the continuum,
and unbound states have to be treated on equal footing. Thehich can be very important for weakly bound systems.
continuum wave functions depend on a continuously varying An analytical basis, such as the harmonic oscill&®)
parametefthe energy or the wave numBeand are not nor- basis, can be used to describe both the bound and continuum
malizable, which makes them awkward for actual applica-states of the system. However, in order to describe accurately
tions. Nevertheless, in some cases the exact northe ground state of a weakly bound system, many HO wave
normalizable continuum wave functions can be explicitlyfunctions are required. This is due to the fact that the tail of
used in the calculation. This is the case for the evaluation ofhe bound wave function is an exponential, while the tails of
excitation functions for an operator that connects a boundhe HO wave functions have Gaussian behavior. An alterna-
state with the continuum states of a system. In this situatiortjve is to use the transformed harmonic oscillatdHO)
the bound character of the state allows for an explicit evalumethod[5], which is based on a general local scale transfor-
ation of the matrix elements. This is also the case in reactiomation (LST) to the harmonic oscillator functions—10].
calculations in a distorted-wave Born approximation ap-The transformed harmonic oscillator basis retains the sim-
proach. The transition amplitudes can be calculated from thelicity of the harmonic oscillator expansion and includes the
matrix element of the relevant interaction between the initialcorrect asymptotic behavior for the ground state. We have
bound state and the final unbound state. applied the THO method to describe bound and continuum
However, in general, the explicit inclusion of the con- states of weakly bound systerfts].
tinuum states in structure or reaction calculations requires a In this work, we introduce the orthogonal polynomial
discretization of the continuum. Thus, the continuum is sub{OP) method, which is a generalization of the THO method.
stituted by a discrete set of normalizable states which beln the same spirit as in Rdi5], a discrete basis is introduced
comes a complete set as the number of states consider&mitake into account the continuum; however, this basis is not
tends to infinity. It is expected that a finite number of thesenecessarily related to transformed harmonic oscillator wave
discrete states will appropriately model the effect of the trudunctions. Moreover, we show that the OP method can be
continuum. This can be checked by investigating the converapplied with an arbitrary choice of the local scale transfor-
gence of the calculation as the number of discrete states impation.
cluded in the basis is increased. In our previous paper we considered potentials with just
Different methods are used to generate a discrete basis fane bound state. Here we show how the method can be suc-
the continuum. One of them is to use tRematrix formalism  cessfully applied to the multibound case. We show that the
[1]. This is a successful procedure but for realistic systems ibound states are accurately described as we enlarge the di-
computationally very demanding. Another possibility for dis- mension of the basis. In addition, we compare the discrete
cretizing the continuum is the use of a Sturmian basis. Givestates that describe the continuum in the OP bases with the
a potential, it is composed of the bound eigenstates obtaineattual continuum states.
by rescaling the interaction under the constraint that they The paper is structured as follows. In Sec. I, the general
have the same binding energy as the original bound staterthogonal polynomial method is presented. In Sec. lll, par-
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ticular cases of the OP method are described, including thprocedure allows for a convenient description of both bound
THO method. In Sec. IV the application of the formalism and continuum states by means of a finite number of normal-
presented in the preceding sections is worked out for sever@able states.

one-dimensiona(1D) potentials. Section V is devoted to a  In previous work{5,11,13 the weight functionw(x) was
comparison of the wave functions representing the conehosen in such a way that the local scale transformaigh
tinuum obtained with this formalism with the actual con- mapped the ground state wave functigg(x) into the har-
tinuum wave functions. Finally, in Sec. VI the outlook and monic oscillator ground state wave functigiy©(s). In this

conclusions of this work are presented. case, the polynomial®,(x) were related to the Hermite
polynomials. The proposed method for continuum discretiza-
Il. THE GENERAL ORTHOGONAL POLYNOMIAL tion, called the transformed harmonic oscillator, seemed to
METHOD FOR ONE-DIMENSIONAL PROBLEMS be necessarily linked to the harmonic oscillator. One of the

) ) i o i purposes of this paper is to point out that the proposed
We consider a one-dimensional Hamiltonian that in apypnethod is not necessarily associated with the harmonic os-
propriate units can be written as cillator, although the THO method can be a good option.
d2 Different scale transformations(x) provide different dis-
— = —+uv(X), ) crete bases to diagonalize the Hamiltonian. The optimal se-
2 dx lection for s(x) depends on the particular observable that
should be more accurately described.
. . . Once the scale transformatig(x) is chosen, the discrete
wherer is the physical coordinate, aifit=Hp/f%a®, where basis¢,=|OP;n) can be generated and we can evaluate the

His the Haf“"“’”'f”‘”- . matrix elements of the Hamiltoniamin this basis:
The starting point of the proposed approach is to assume

h:

h, x, andv(x) here are dimensionless quantitiess ar,

that the ground state wave functi@p(x) is known, either
analytically or numerically, (OP,n|(h—e0)|OP,m):f dxepn(x)(h—e€g) pm(X). (7)
heo(X) = €oeo(X). (2) We can take into account Eq5) and that b—ep) do()
=0 to write

Then a weight functiorw(s) is defined as

nNm

(0Pl (h—e0)|OP )=~ [ dge)[Py(sx),

dx
(8)= 1<l@oX)[%, )

h—eg),Pm(s(x X). 8
wheres(x) is an arbitrary function that has to be continuous, [ 0)Pm(SC0)eo() ®
single valued, and monotonically increasing or decreasingThe double commutator is independent of the potential and
taking values in an intervdla,b]. Having defined the inter- gjves
val and the weight function, one can construct a family of

orthogonal polynomial$P,(s);n=0,1,2 ...} that satisfy [P (s(0).[(h—eq). Pu(s(X))]]= dPn(s(x)) dPp(s(x))
n ' nm dx dx

’ __ 1 )
dsw(S)Pn(S)Pm(S)= 177 dnm- (4)
2 e Taking this into account one gets

From these polynomials and the ground state wave functio
o ; 'OPN|(h— Pm
it is straightforward to construct a set of orthonormal wavg(O n|(h—eo)|OP.m)

functions NN dPp(s(x)) dPpy(s(x))
= 2 fdx|(100(x)|2 dx dx ' (10)
Bm(X) = (X|OP M) = Nn@o(X) Prm(S(X)) 5
. which can be written in terms of the variakde
that satisfy
. (OPn|(h—eq)|OPm)
f_w AXm(X) En(X) = 6 m- (6) NN, ds)\?2 dP,(s) dP.(s)
- fds<&> (S) ds ds (11

The functionseg,(Xx), exceptingepo(x) which is actually the

ground state wave function, are not eigenfunctions of thénce the LSTS(x) is selected, this expression can be easily
Hamiltonian, but constitute a basis in which the Hamiltonianevaluated using Gaussian quadratures. Note that the only in-
can be diagonalized. This basis, which has infinite element§prmation required is the derivative of the functis(x),

can be truncated to a few states, provided that the approprévaluated at the points, that define the quadrature.

ateness of the truncation is checked. In the particular case of The matrix elements witm=0 or m=0 vanish. This is
weakly bound systems the Hamiltonian has few bound statedue to the fact that the state n&0 is an eigenstate of the
and a continuum of unbound non-normalizable states. Thislamiltonian. Let us consider that we diagonalize the Hamil-
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tonian in anN-dimensional basis of OP states, from0 to  potentials in the next section. These will be special cases of
i=N—1. The eigenstates of the Hamiltonian, in this re-the general OP method.
stricted basis, are given by

A. Transformed harmonic oscillator method

IN,0y=|OP,0, (12) : L
In this case, the local scale transformation is selected so
N-1 that it transforms the ground state wave function of interest
IN,i)= >, |OP,j){OPj|N,i), (13)  into the ground state wave function of a harmonic oscillator,
j=1
. . . X |2 ’ s HO/ o’ \ |24 1+erf(S)
where the statelN,i) (i=1,... N—1) represent states dif- f l@o(x")|?dx =f |do (s")|?ds'= —
ferent from the ground state in the truncatédlimensional o - (16

OP basis. They can be expressed inxthepresentation as
Direct integration of Eq.16) provides the functiors(x).

-\ _ N _ N—-1
(XIN,i)= g7 (x) = N; P~ 7(s(X)) o(X), 14 once thes(x) function is computed, Eq$3)—(5) define the
N . ) THO basis. In this case the relevant polynomials are Her-
whereP;" “(s) is a polynomial given by mite
N-1 THO(X) = Nppo(X)H(s(X)) (17)
PNI(9)= 3 NP(S)(OPIN). (19 ” e
i=1

whereN,,= (/72 "n!) 2. So the THO method is a particu-
The diagonalization of the Hamiltonian in the OP basis, Eqlar case of the OP method, where the relevant polynomials
(11), provides the eigenvalues and eigenfunctions, Eqgsare Hermite polynomials, the weight function is a Gaussian,
(14),(15). With them we can proceed to evaluate the matrixand the local scale transformation is one that converts the
elements of any arbitrary local operato(x) that connects ground state of the system in the ground state of a harmonic
bound with unbound states. In this paper, we concentrate odscillator.

the following observables:(a) total strength: S(O;N) In the case ok values restricted to positive values, as in
=Ei|(N,i|O|N,0)|2? (b) energy weighted sum rule: radial wave functions or semi-infinite potentials, it is more
Ew(O;N)=3;(eN—ep)[(N,i|O|N,0)[% and,(c) polarizabil- c_onvenient to take only (_)dd _harmonic oscillator wave func-
ity P(O;N)=2i£o(e{\'—eo)*1l<N,i|O|N,0>|2. tions, for which the LST is given by

For all of them the exact result, including the complete set « s
of bound and continuum states, can be calculated. Thus, we f |QDo(X’)|2dX'=f 5/2|¢go(s/)|2ds', (18
can compare the convergence of the OP results as the dimen- 0 0

sion of the basis is increased. . . .
In the following sections we consider as an example dif-2nd the THO basis is obtained by multiplying the ground

e i : 2 1117
ferent local scale transformations for multibound one-State by Laguerre polynomials in the varials{ex)” [11]:

dimensional potentials: the Morse, $&hl-Teller, and semi- THO' 12 )

infinite square well potentials. We examine in all cases the n o ()= Nago(X)La((s(x))?), (19
convergence of the bound states and global observables a B —12
the number of OP states included in the calculation is in_w%erej\/:]—[r(n+3/2)/n!] '
creased. With regard to the form of the operatO(x), we

consider two different cases as in the previous paper. First, B. Trivial orthogonal polynomial method

we takeO(x)=x as an example of a long range operator, |n this method the local scale transformation is taken as

suited to describe the effects of external fields, such as th@]e trivial transformatiors=x. The ground state wave func-
Coulomb field. Note that for an ideal pOlar diatomic mol- tion in terms ofs is just (PO(X)- The We|ght function is

ecule composed of two ions of definite charges propor-
tional to the electric dipole operator. In the second place, we w(X)=|e(x)|?. (20
consider a short range operato(x)=v(x), which could

describe possible effects of internal correlations with a rang@rthogonal polynomialsP,(x) in the interval (-, +)
similar to the potential. with respect to this weight function can be found by a Gram-

In addition, in the case of the semi-infinite square well, Schmidt procedure as sketched below. From these and the
we will show a comparison of the wave functions that rep-ground state wave function, the trivial orthogonal polyno-
resent the continuum provided by this method with the actuaiMial (TOP) basis wave functions are obtained as
continuum wave functions.

7 P00 =Na@o(X)Pp(). (29)
Ill. SPECIAL CASES OF THE ORTHOGONAL P, (x) can be written
POLYNOMIAL METHOD
n
In this section we work out dlfferent sel_ectlons fc_)r the P (X)= 2 Cp &, (22)
local scale transformatios(x) that will be applied to various k=0
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The coefficientsC, , can be efficiently calculated taking With this one can proceed with the formalism presented in

C,n=1 and defining the moments the preceding section by choosing a L§(X). In this case
the functions(x) is chosen as the natural variable for the
o Morse potential
Ln=J dxw(x)x". (23
- s=(2j+1)exp —X). (28
Orthogonality ofP,(x) implies that The variables is defined between 0 and. Then, the nor-
malized Morse ground state wave function as a functios of
is written as
> CoiCrmwliiw=0, ¥ m#n, (24)

K.k’ .
slexp(—s/2). (29

1
$lo(s) = ——=

which allows us to calculate the coefficientsRf(x). r@p

Summarizing, the trivial orthogonal polynomial method is Equations(3)—(5) define then the discrete basis associated
a particular case of the OP method for which the local scalgyith this transformation. The weight function is
transformation is the identitg=x, the weight function of
the polynomials is just the ground state density, and the or- _ 2j-1
thogonal polynomials are calculated from knowledge of the w(s)= r2j)° exp(—s), (30
moments ofx in the ground state.

The TOP method has the property that the inclusion ofand the discrete basis is related to the generalized Laguerre
just one state apart from the ground state is sufficient to givgolynomialsL (% ~1)(s),
exactly the value of the total strength and the energy

weighted sum rule of the operat@(x)=x on the ground B’ T(5)=Njs L ~V(s) pii(9), (3D
state. This is not surprising, because the second state in the
TOP method is obtained by acting with th@perator on the n'I'(2j)
ground state and orthogonalizing. Njn= T(2j+n)
C. Natural orthogonal polynomial method It should be noticed that the Morse potential has a very

) simple expression in terms of the natural variable:
The THO and TOP methods are applicable to ground state

wave functions derived from arbitrary Hamiltonians. Here 1 .

we will consider two cases of analytic potentials for which v(s)= 5[32—(41 +2)s]. (32
there is a definite choice of natural variables in terms of
which the wave functions acquire especially compact expres-

. . 2. Paschl-Teller potential
sions [the natural orthogonal polynomidNOP) method. P

These cases are the Morse anddhd-Teller potentials. The Pachl-Teller potentia[15] is written as
1. Morse potential _ 1
v(X) D m, (33

The Morse potentig]13] is

where—D is the value of the potential at its minimum. The
v(x)=D{[1—exp —x)]*—1}, (25 variablex= ar, wherer is the relative coordinate and is
the inverse of the range of the potential. The depth of the
wherex=ar, with r the relative coordinate and the in-  potentialD can be written as
verse of the potential range, afis the potential depth at

the minimum &=0). D can be written in terms of a param- 1
eterj [14], which is a positive real number, as D= EJ(J +1), (34
1 12 in terms of a new paramet@f16] which is a positive real
D= > j+ 3] - (26) ngmber. The normalized ground state wave function for the
Paoschi-Teller (PT) potential characterized by the quantum
numberj is
The normalized ground state wave function for the Morse
potential characterized by the quantum numpbisy, 2j-nn 1
b0 () ="\ 51— (35
2!(j—1)! cosHx

(2j+D)lexp(—jx)exd —(j+1/2) As in the case of the Morse potential, we present in this

1
T
: subsection the LST in which the functi@x) is chosen as
xexp(—x)]. (270  the natural variable for the Bohl-Teller potential:
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s=tanh(x). (36)

Then the normalized ground state wave function is written as

2j—1! .
o (s)=\/ %J;j_—l))!u—sz)“? (37)

Equations(3)—(5) define the discrete basis associated with
this transformation. The weight function is 5/: 0

(S)_M(l_SZ)J*l (39 b
A ' :

1
and the discrete basis is related to the Gegenbauer polyno-

mials C{~¥2)(s):

inoT(8)=N;nCY Y A(s) g (s), (39
. \/n!(n+j—1/2)[F(j—1/2)]2 2T —1)
n w2277 (2j+n—1) (2j=n FIG. 1. N=6 basis for the Morse potential with=4 in the

THO, TOP, and NOP caseg (s dimensionlegs

Note that the potential can be written here also as a quadratic

expression in terms of the natural variable: methods on increasing the dimension of the basis fiém
=4 to 12. The ground state energy lies always at its exact

()= j(j+1) (£—1) (a0 Vvalueeo= —j?/2=—8. The other three bound states move

2 ' down in energy as the basis dimension is increased, and the

convergence to the exact values is fast for THO and TOP and
IV APPLICATION TO MULTIBOUND POTENTIALS IN slower for NOP. In Table | the overlaps square_d of the g:al-
ONE DIMENSION culatedn= 3 state with the known least bound eigenfunction

for the Morse potential are shown at the left. It can be seen
We have applied the formalism presented above to threthat the THO and, especially, the TOP methods give appro-
cases of interest: the Morse potential, thes¢td-Teller po-  priate descriptions of the least bound state. The NOP method
tential, and the semi-infinite square well. In each case weonverges very slowly.
have used the THO, TOP, and NOP methods and have cal- We have investigated the convergence of the total
culated the convergence of global observables that connestrength, energy weighted sum rule, and polarizability for the
the ground state with the states in the continuum. In this
section we present some of these results as an illustration.

100 = Morse ]
A. Morse potential sol _ — |
We consider a Morse potential characterized jby4, -
which has four bound states, and analyze the three methods === == ==
discussed in the preceding section: THO, TOP, and NOP.
First the selected local scale transformation has to be 100= Top
computed: Eq(16) for THO, s=x for TOP, or Eq.(28) for = | i
NOP. Then the corresponding basis is constructed. In Fig. 1 0=
we present the bases for THO, TOP, and NOP. It can be
observed that the basis provided by NOP, due to the behavior S Elera i Rl o R e R E—
of the corresponding LST, is concentrated close to the range 200 - — |
of the potential, while THO and TOP allow a spreading over | NOP -
larger distances compared to the range of the ground state —_ —_—
wave function. This would suggest that the NOP transforma- -
tion is well suited for describing short range operators. On —_— ————_——

the other hand, the THO and TOP transformations would be === ss-———~————___=
more appropriated to describe long range operators. N

Once the basis is obtained the Hamiltonian matrix is con-
structed by evaluating Eq11). Hamiltonian diagonalization FIG. 2. Energy eigenvalueglimensionlessfor the Morse po-
in each basis provides us with eigenvalues and eigenfungential withj=4 in the THO, TOP, and NOP cases, as a function of
tions. We plot in Fig. 2 the energies obtained for the threeahe size of the basis.
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TABLE I. Overlap squared of the calculated states with3 with the corresponding exact least bound
state in the Morse, Rahl-Teller, and SISW potentials as a function of the discrete basis dimension. All these
potentials are taken to have four bound stdge® text Three cases are presented for the LST: THO, TOP,
and NOPN is the total number of basis states.

N Morse Pwschl-Teller SISwW

THO TOP NOP THO TOP NOP THO TOP
6 0.202629 0.500192 0.000151944 0.819445 0.911 0.510256 0.254974 0.955693
8 0.508298 0.84243 0.0170537 0.927228 0.978336 0.624862 0.644374 0.997276
10 0.746842 0.964903 0.0562563 0.971845 0.995182 0.704354 0.930997 0.998823
12 0.884909 0.993699 0.10753 0.989412 0.998981 0.761336 0.985486 0.999810

operatorsx andv (x) using the different discretization proce- Note that when the basis is increased by a state of a given
dures as the dimension of the basis is increased. We find thagarity, the eigenvalues and eigenstates of the opposite parity
the convergence is satisfactory in all cases. In Tables Il ando not change.

[l we show the values obtained fof =10 for THO, TOP, With the eigenfunctions we have performed the conver-
and NOP compared to the exact values. For the long ranggence tests for the observables total strength, energy
operatorx, the TOP method gives the exact result for theweighted sum rule, and polarizability. As for the Morse po-
total strength and energy weighted sum rule, while for thefential, convergence is faster in the TOP method for long
short range operatar(x), it is the NOP method that gives range operators and in the NOP method for the short range
the exact values for these magnitudes. The THO metho@perator, while the THO method is good in both cases. As
gives rapid convergence to the exact results in all cases. Ishown in Tables Il and Ill, the agreement of the calculation
anycase, the three methods give deviations that are less thégt N=10 in THO, TOP, and NOP methods with the exact
1 per thousand for the three observables calculated. values is better than 3 per thousand. As in the previous case,
for the long range operatat, the TOP method gives the
exact result for the total strength and energy weighted sum
i . rule, while for the short range operato(x), it is the NOP

We have also performed calculations for aséld-Teller — eihod that gives the exact values for these magnitudes. The

potential withj =4 that has four bound states, two with posi- T method gives rapid convergence to the exact results in
tive parity and two with negative parity. In this case the local ;| cases.

scale transformations for THO, TOP, and NOP are obtained
from Eq. (16), s=x, and Eq.(36) respectively. All of them
are odd functions ok. As in the preceding case we have
studied the convergence of the calculated energies for the As an additional example we develop here the formalism
bound states to the exact values and the overlaps of the thr@gesented above for the semi-infinite square W@IBW) in
lowest calculated excited states with the correspondin@ne dimension(note that this is equivalent to solving the
known bound eigenfunctions. In Table | the overlaps squarethree-dimensional problem of a square well considering only
of the calculatedn=3 state with the known least bound ¢ =0 stateg
eigenfunction for the Pschl-Teller potential are shown. In

B. Poschl-Teller potential

C. Semi-infinite square well in one dimension

this case also, the convergence is faster in the THO and TOP « if  x<0,
methods, compared to the NOP method. Similarly to the h={ —vp if 0<x<a, (41
Morse case presented above, we have computed the eigen- 0 i x>a

values and the eigenfunctions of the Hamiltonian for each
LST. The energy spectrum presents in this case a doublet
structure. This fact reflects the alternating parity of the statesiVe choose the parametexrs-2 andv =18, so that there are

TABLE II. Values of the total strengthS), energy weighted sum ruléE(y), and polarizability(P) for the operatox in a basis with 10
states N=10) for Morse, Pechl-Teller, and SISW Hamiltonians with four bound states each. Three cases are presented for the LST in each
case: THO, TOP, and NOP. In the total streng8) the diagonal contribution coming from the ground state has been removed.

N=10 S(x,N) Ew(x,N) P(x,N)

Morse PT SISW Morse PT SISW Morse PT SISW
THO 0.133137 0.141911 0.155092 0.5 0.5 0.496718 0.0366355 0.0404303 0.0493592
TOP 0.133137 0.141911 0.155241 0.5 0.5 0.5 0.0366355 0.0404303 0.0493675
NOP 0.133136 0.141911 0.500044 0.500016 0.0366236 0.040426
Exact Value 0.133137 0.141911 0.155241 0.5 0.5 0.5 0.0366355 0.0404303 0.0493684
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TABLE lll. Same as Table Il but for the short range operat¢x).

N=10 S(x,N) Ew(x,N) P(x,N)

Morse PT SISW Morse PT SISW Morse PT SISW
THO 2.25 1.7957 1.10480 24.75 12.4313 32.4966 0.28125 0.274348 0.0579506
TOP 225 1.79518 0.942975 24.75 12.4013 22.4319 0.28125 0.274347 0.0560974
NOP 225 1.79574 2475 12.432 0.281146 0.274247

Exact value 2.25 1.79574 1.4872 2475 12432 « 0.28125 0.274348 0.0582423

four bound states at energieg,=—16.9504, e;= We have calculated for the THO and TOP the conver-
—13.8231, e,= —8.70546, ande;=—1.95092. Defining gence of the total strength, energy weighted sum rule
ki=v2(@o+ep), ko=+—26ey, (EWSR), and polarizability for the operatossandv(x) as
the dimension of the basis is increased. It should be noticed
sis N sin(kix) if x=a, that the square well potential has a sharp edge, and this pro-
5 " (x)= (42)  duces the divergence of the EWSR. As a reflection of this, in

Noexp(—kpx) i x>a, our calculation the EWSR is larger and larger as the dimen-

sion of the basis is increased. In Tables Il and Ill we show
the calculated values fa¥= 10 in the THO, TOP, and NOP
methods compared with the exact values. For the long range
rE)peratorx the exact results for the total strength and EWSR
gre obtained in the TOP case, and the convergence is very

whereN; andN, are fixed by continuity at the boundary and
normalization.

In this case, the THO method makes use only of eve
polynomials, as shown in Eq19). In Fig. 3 the basis func-

tions are presented. The Hamiltonian matrix is constructe :

by evaluating Eq(11). Hamiltonian diagonalization in the good in the THO Cﬁse' For ;he ﬁhort r?nge Opﬁrﬁmb rt]he |
THO or TOP basis provides us with eigenvalues and eigen(-:]E)r]r\]/er(~:]e|nC.e 'Sb.rl?‘t er F’SOF o(rjt (_ertlpta f”?“%; utt elva ue
functions. We plot in Fig. 4 the energies obtained by increasgurat?oﬂo arizability is obtained within 2% in thé=10 cal-
ing the dimension of the basis frol=4 to 12. In both '
cases the ground state energy lies at its exact vaye,

—16.9504. The other three bound states move down as the V- RELATION WITH THE TRUE CONTINUUM

basis dimension is increased, and the convergence to the ex-\ye jnvestigate the relation of the wave functions obtained
act values is fast. The convergence of the overlaps ohthe i, ihe OP methods that represent the continuum with the true
=3 calculated excited state with the corresponding knownyqniinyum wave functions for the square well potential.

least bound eigenfunction for the semi-infinite square well Aq the statesi=1.2.3 reproduce the excited bound states
potential is very fast for both THO and TOP cases, as ShOW'&ccurater, the rest of the states, frans4 onward, corre-

in Table I. However, although both methods are very goodgpong to continuum states, with a very small admixture of
the TOP method is better for the purpose of reproducing the, .ited bound states.

bound states. For the case of the semi-infinite square well the true con-
tinuum wave functions are known. However, a direct com-
parison of the OP wave functions with the continuum wave
functions requires one to take care of the issue of normaliza-
tion of the true continuum wave function. The true bound
statesy,(r) and the true continuum wave functioggk,r)
have to satisfy closure:

. % lﬂb(f)lﬁb(f’HJ dky(k,r)p(k,r")=8(r—r").

(43

This implies that, for large distances, beyond the range of the
potential, the continuum wave functions behave as

2
- w(k,r)a\gsin(kw 5. (44)
5 For the OP wave functions, the condition of closure becomes
FIG. 3. N=6 basis for the SISW potential considered in the r rY=8(r—r'). 45
THO and TOP cases«(is dimensionless nZO $n(r) alr') =2 ) 49
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= — - Bin wave function
SISW k=1222
50 — .
_ ! . !
251 —_— = n=5 k=2.448
THO —_— — -
— — = ) TS
ok _ —_——— e ———_| < ~
I — _ ! . !
= - n=6 k=3.567
m 251 ] 1 ] ] 1 | -
300 |- - — o
i 1 | L |
| —_— ] 10 15
200 <
i i FIG. 5. Comparison of the first few continuum eigenstates of the
100 |~ — SISW Hamiltonian in the TOP basis with the bin continuum wave
| TOP E— i functions constructed as a superposition of true continuum wave
N  — functions as explained in the text. The quantities plotted are dimen-
() e ——————— —— I sionless.

four bound statés the bins will be [ki ,k; ]=[0,(Ks
+ky)/2], [Ky ks 1=[(Ks+kg)/2,(ks+ks)/2], ... . We
have approximated the integrafl9 by a sum over 50
‘f(—equidistant points inside the bin and present a comparison
of the first few continuum bin functions with the wave func-
gons obtained with the TOP method in Fig(&milar results

When only a finite number of OP states are considered, th .
condition of closure will not be satisfied exactly, but one can%re obtained for the THO methpdt can be seen that the

FIG. 4. Energy eigenvalue@imensionlessfor the SISW po-
tential in the THO and TOP cases, as a function of the size of th
basis.

have an arbitrarily accurate approximation. We can calculat 2F::<\),\r/?evse Lunndﬁgon;na\:\?ai/nerﬁj %i?igﬁglyegoggi;?r?rrne?gtti\gllth
the overlap between the eigenstates of the Hamiltonian in P 9 » €SP Y y

finite OP basis with the true bound states, as well as with thgmall distances. Thi; indicatgs that the OP method is closely
true continuum states ’ related to the continuum discretized method as used for

coupled channels calculatiof@DCC). It should also be no-

ticed that the OP wave functions do not display the long
(N,i|b):j dryNr) g(r), (46)  range oscillatory behavior that is characteristic of the bin
wave functions. This can be an advantage when using OP
wave functions as an alternative to bin wave functions in
(N,i|k>=f drylr)y(k,r). (470  CDCC calculations.
The condition of orthogonality of these overlap functions is IZ\ THO =4  K=0918 [~ TOP n=4 k1222
0 : . . . .
) . ) ) o 1= n=5  k=1765 [ n=5  k;=2.448
% <N,|Ib><bIN,J>+f dk(N,i[K)(KIN,j)=&(i,]). ({A/\ . k5 — N\ —
C n= =2 C n=6 =3
49 o ol T N =
=1 | n=7 k=3598 [ n=7 k=4807
In addition, in order to perform a comparison we slice the i:‘{_ : _' — = ' - —
! ) orde we n=8  k=5063 n=8 k=6.104
continuum into bins in such a way that each bin is charac-— AN _ ] /\ . ,
terized by an interval of momentunk;{ ,k;"). The bin wave r An™ ky=5.668 " n=0  k;=7.404
function is then obtained as a superposition of continuum 9E ' w10 K, =8769 010 k10514
wave functions within the bin 0 eI~ : - : .
- n=11  k;;=9.761 [ n=11 k;=20.961
A ~ N\
. 2 Kt 0 ' ' ' > T '
q)bm X) = \/ _ f i dk k,X ] 49 0 5 10 15 0 5 10 15
"00= Ve iy )y a0 @9 K K

The interval of the bingk; ,k;"] is defined by thek values

FIG. 6. Expansion of the TH@eft hand side panelsand TOP
(right hand side panelgontinuum =4 ton=11) wave functions

of the eigenstates obtained in the OP discretization. If we calbquared in terms of the asymptotic momentiifior the SISW po-

Kq,ks,Kg, ...
continuum(remember that for the cases considered we havare dimensionless.
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the momentum of the OP eigenstates in theential considering a basis with= 12 states. The quantities plotted




CONTINUUM DISCRETIZATION USING ORTHOGONA . .. PHYSICAL REVIEW A 67, 052108 (2003

In Fig. 6 we represent, for the case of a base with the Morse and and Bohl-Teller potentials, a natural or-
=12 states, the square of the OP wave functions that repréhogonal polynomial method can be used, using the natural
sent the continuum as a function of the asymptotic momenvariables of these potentials to define the local scale trans-
tum of the states. The left panels correspond to the THGormations. The relevant polynomials are Laguerre in the
method while the right panels are for the TOP method. ItMorse case and Gegenbauer in thes¢hd-Teller case.
should be noticed that the OP states correspond to a super- The different OP methods are compared by checking the
position of true continuum states which is extended to a relaconvergence of relevant sum rules of long and short range
tively narrow range of momenta. This range is reduced as theperators which couple the ground state to the other bound
size of the OP basis is increased, so that, in the limit of largestates and the continuum states. It is found that the TOP
N, the OP states should coincide with the true continuunmethod is optimal for long range operators, while the NOP
states. In the TOP case, the wave functions correspond toraethod is more adequate for short range operators. The THO
relatively narrow range of momentum values, except for themethod appears as a good compromise option which works
state with the higher energies. Thus, the TOP wave functiongell in both cases.
can be interpreted as localized wave packets of momentum We have also investigated the description of excited
states. In the THO case, the wave functions of low excitatiorbound states in the different variants of the OP method. We
energy do correspond to a narrow range of momenta. Howfind that the THO and TOP methods give fast convergence
ever, for the higher energies, the THO wave functions disfor both energies and wave functions of bound states, while
play a structure in momentum space that indicates that thefpr the NOP method the convergence is slower.
are not just wave packets. For the case of the semi-infinite square well potential, the
true continuum states and the states obtained from con-
tinuum discretization by the TOP and THO methods are
~ compared. The radial behavior of the THO and TOP wave

We have formulated a general orthogonal polynomiakynctions compares reasonably well with the radial behavior
method to discretize the continuum in one-dimensional probof pins built from the continuum wave functions. It is found
lems. The method generates a complete discrete basis of Nqfrat the lower states obtained from continuum discretization
malizable states. These are obtained by multiplying then 3 finite basis can be understood as wave packets of the true
ground state of the system by a family of orthogonal poly-continuum states, the width of which decrease as the size of
nomials on a suitable variabke which is obtained from a the pasis is made larger. For the states of higher excitation

local scale transformatios(x) on the physical variable.  energy, the wave packet interpretation is still adequate for the
The local scale transformation, along with the ground staterop method, but not so for the THO states.

of the system, determines the weight function for the family
of orthogonal polynomials.

We obtain the transformed harmonic oscillator method as
a particular case of the OP method, for which the relevant This work was supported in part by the Spanish DGICYT
polynomials are Hermite. Also, we derive the trivial orthogo- under Projects No. BFM2002-03315 and No. FPA2002-
nal polynomial method by taking the local scale transforma-04181-C04-04. We acknowledge useful discussions with A.
tion as the identitys(x) =x. For special potentials, such as Vitturi, C. H. Dasso, A. Frank, R. Lemus, and R. Liotta.

VI. SUMMARY AND CONCLUSIONS
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