
Membrane Systems with Marked Membranes

Robert Brijdera,1 Matteo Cavaliereb,c,2

Agust́ın Riscos-Núñezb,3 Grzegorz Rozenberga,4

Dragoş Sburlanb,d,5

a Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Leiden, The Netherlands

b Department of Computer Science and Artificial Intelligence
University of Seville

Seville, Spain
c Microsoft Research – University of Trento

Centre for Computational and Systems Biology
Trento, Italy

d Faculty of Mathematics and Informatics
Ovidius University of Constantza

Constantza, Romania

Abstract

Membrane computing is a biologically inspired computational paradigm. Motivated by brane calculi we
investigate membrane systems which differ from conventional membrane systems by the following features:
(1) biomolecules (proteins) can move through the regions of the systems, and can attach onto (and de-attach
from) membranes, and (2) membranes can evolve depending on the attached molecules. The evolution of
membranes is performed by using rules that are motivated by the operation of pinocytosis (the pino rule)
and the operation of cellular dripping (the drip rule) that take place in living cells.
We show that such membrane systems are computationally universal. We also show that if only the second
feature is used then one can generate at least the family of Parikh images of the languages generated by
programmed grammars without appearance checking (which contains non-semilinear sets of vectors).
If, moreover, the use of pino/drip rules is non-cooperative (i.e., not dependent on the proteins attached
to membranes), then one generates a family of sets of vectors that is strictly included in the family of
semilinear sets of vectors.
We also consider a number of decision problems concerning reachability of configurations and boundness.

Keywords: Membrane Computing, Brane Calculi

1 Email: rbrijder@liacs.nl
2 Email: matteo.cavaliere@msr-unitn.unitn.it
3 Email: ariscosn@us.es
4 Email: rozenber@liacs.nl
5 Email: dsburlan@univ-ovidius.ro

mailto:rbrijder@liacs.nl
mailto:matteo.cavaliere@msr-unitn.unitn.it
mailto:ariscosn@us.es
mailto:rozenber@liacs.nl
mailto:dsburlan@univ-ovidius.ro
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Membrane computing is a biologically inspired computational paradigm introduced

by Gh. Păun in 1998, [10]. The model is based on a hierarchical structure of nested

membranes, inspired by the structure of living cells. In each region (enclosed by a

membrane) some objects are present, modeling the presence of molecules inside the

compartments of living cells. Moreover, each region has an associated set of multiset

rewriting rules. These rules are motivated by chemical reactions that occur inside

the regions of living cells. Membranes play a crucial role in living cells: the cell

membrane separates, and hence protects the cell from its environment and the

inner membranes delimit the structure of various organelles of the cell, e.g., the

nuclear membrane separates the nucleus from the rest of the cell.

Membranes are not only “containers” but they also regulate the flow of molecules

into and out of the cell. This is facilitated by proteins that are embedded in mem-

branes and which provide channels for the transport of molecules through mem-

branes.

In brane calculi, presented in [3], several operations (pino, exo, phago, mate,

drip, bud) involving membranes with embedded proteins are considered and formal-

ized in the framework of process calculi. The important difference with membrane

computing is that the evolution of the system happens on the membranes and not

inside the compartments (regions) delimited by them. The computational power

of several brane calculi operations has been investigated in [2] where universality

has been obtained for systems using phago and exo. In [4] these operations from

brane calculi have been represented in the membrane computing framework and

then studied by using tools from formal language theory.

In this paper we investigate operations involving membranes with embedded

proteins, but we also add the ability of proteins to attach/de-attach to/from the

membranes, and also to move through the membranes. Hence, in our case, the

evolution of the system takes place both on the membranes and inside the regions,

which is natural from a biological point of view.

More specifically, we consider protein-membrane rules – rules that modify the

structure of (the membranes of) the system where the modifications are based on the

multisets of proteins embedded in the membranes (we say that such multisets mark

the membranes). In particular, we consider the pino and drip rules inspired by the

operation of pinocytosis and the operation of cellular dripping, respectively. Both

pinocytosis and dripping split off a membrane from another membrane, however,

in pinocytosis, this new (empty) membrane is found inside the original membrane,

while in dripping, this new membrane is found outside the original membrane. We

also use protein movement rules, that model the attachment, de-attachment and

movement of the proteins. Also these rules are applied according to the proteins

marking the involved membranes. The protein movement rules do not change the

membrane structure of the system, but they can change the multisets of embedded

proteins marking the membranes of the system.

The paper is structured in the following way. In Section 2 we provide preliminar-

ies concerning formal languages, recalling in particular the definition of programmed

grammars often used in the proofs. In Section 3 we recall the formal definition of

pino and drip rules, and introduce the protein movement rules, and in Section 4

we introduce membrane systems based on these rules which – the model is called

membrane system with marked membranes, protein-membrane rules, and protein

movement rules, abbreviated as Ppp system.

In Section 5, we investigate the computational power of Ppp systems which use

only protein movement rules, and in Section 6 of Ppp systems using only pino (or

drip) rules. In Section 7, we discuss Ppp systems using both types of rules. In Section

8 we prove several decidability results concerning reachability of configurations and

boundness of Ppp systems with pino, drip rules, and protein movement rules. In the

last section we discuss the results obtained in this paper and formulate a number

of research directions.

This paper does not contain any proofs – all the proofs can be found in the full

version of this paper [1].

2 Preliminaries

We will briefly recall the main notions and results of formal language theory used

in this paper. For more details the reader can consult standard books, such as [8],

[13], [7], and the handbook [12].

Given a set A, we denote by |A| its cardinality and by P(A) the power set of A.

The empty set is denoted by ∅.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set of

all strings over V . The empty string is denoted by λ. The length of a string w ∈ V ∗

is denoted by |w|, while the number of occurrences of a ∈ V in w is denoted by

|w|a. For a language L ⊆ V ∗, the set length(L) = {|w| | w ∈ L} is called the length

set of L. Given a string w, a string u is a subword of w if there exist two strings

x, y, possibly empty, such that w = xuy. The string u is a scattered subword of

w if and only if there exist strings x1, . . . , xk, and y0, . . . , yk, possibly empty, such

that u = x1 · · · xk, and w = y0x1y1 · · · xkyk. We use Sub(w) to denote the set of all

subwords of w, while Scub(w) denotes the set of the scattered subwords of w.

Given an alphabet V = {a1, a2, . . . , an}, with every string w ∈ V ∗ we can

associate the Parikh vector ΨV (w) = (|w|a1
, |w|a2

, . . . , |w|an
), where the ordering

(a1, . . . , an) of V is assumed. Given a language L ⊆ V ∗, the Parikh image of L is

defined as ΨV (L) = {ΨV (w) | w ∈ L}.

If FL is a family of languages, then PsFL denotes the family of Parikh images of

languages in FL (w.r.t. a given alphabet V), and NFL denotes the family of length

sets of languages in FL. Note that each L ∈ PsFL is a set of vectors with a fixed

dimension. We denote by FIN , REG, CF , CS, and RE the family of finite, regular,

context-free, context-sensitive, and recursively enumerable languages, respectively.

Accordingly, the family of Parikh images of languages in RE is denoted by PsRE

(this is the family of all recursively enumerable sets of vectors of natural numbers).

The family of all recursively enumerable sets of natural numbers is denoted by

NRE. As usual, two language generating/accepting devices are called equivalent if

they generate/accept the same language.

A context-free programmed grammar with appearance checking is a construct

G = (N,T, S, P), where N (T , resp.) is a finite set of nonterminals (terminals,

resp.), S ∈ N is the start symbol, and P is a finite set of productions of the form

(b : A → x,Eb, Fb), where b is a label, A → x with A ∈ N and x ∈ (N ∪ T)∗ is a

context-free production, and Eb, Fb are two sets of labels of productions of G (Eb

is called the success field and Fb the failure field of the production). A production

(b : A → x,Eb, Fb) is applied as follows: if A is present in the sentential form, then

the production A → x is applied and the next production is chosen from those with

the labels in Eb, otherwise, the sentential form remains unchanged and we choose

the next production from the set of productions labeled by some element of Fb.

A derivation step is denoted by ⇒ while ⇒∗ denotes the reflexive and transitive

closure of ⇒. If no failure field is given for any of the productions, then we obtain

a programmed grammar without appearance checking.

By PR we denote the family of languages generated by programmed grammars

without appearance checking, and by PRac we denote the family of languages gen-

erated by programmed grammars with appearance checking. Proofs of the following

results can be found in [7].

Lemma 2.1 CF ⊂ PR ⊂ PRac = RE.

We assume the reader to be familiar with the basic notions of membrane com-

puting, see, e.g., [11].

3 Membrane Operations with Marked Membranes

In [3] several membrane operations involving membranes and embedded proteins

have been modeled in the framework of process calculi. In [4] these operations have

been expressed in the framework of membrane systems.

We will briefly recall these operations, however in a slightly modified form: while

in [3] and [4] a region (enclosed by a membrane) can contain other membranes but

not objects, we allow a region to contain objects.

As usual in membrane computing, a membrane is represented by a pair of square

brackets, []. To each membrane [] we associate a multiset u (over a certain alphabet

V) and this is denoted by []u. We say that the membrane is marked with u (u

is called a marking). The objects of V are called proteins or, simply, objects. The

contents of a membrane can consist of proteins and/or other membranes.

The protein-membrane rules over V are of the following form (the subscript i

stands for internal, e for external):

pinoi : []uav → [[]ux]v,

pinoe : []uav → [[]v]ux,

drip : []uav → []ux[]v .

where a ∈ V , and u, x, v ∈ V ∗ (thus the restriction of having the right-hand sides

of the rules non-empty, as in [4], has been relaxed here). If uv = λ, then we have

a non-cooperative rule; we add the prefix (ncoo) to denote it. Thus (ncoo)pinoi :

[]a → [[]x] is a non-cooperative pinoi rule.

The described rules are applicable to any membrane whose marking includes the

multiset indicated in the left hand side of the rules; all the proteins not specified in

the rules are not affected by the use of the rules, but they are randomly distributed

between the two resulting membranes. When using any rule of any type, we say

that the membrane from its left hand side is involved in the rule; the membrane

involved is “consumed” while the membranes from the right hand side of the rule

are “produced”. Similarly, the protein a specified in the left hand side of the rules

is consumed, and it is replaced by the multiset of proteins x (that might be empty).

After the application of a pinoi or pinoe rule, the contents of the consumed

membrane is moved into the region of the created external membrane (thus, mem-

brane []v for pinoi and membrane []ux for pinoe), and after the application of a

drip rule, the contents of the consumed membrane is moved into the region of the

produced membrane []v.

We also define rules that can attach/de-attach proteins to/from the membranes,

and rules to move the proteins through the membranes of the system. The protein

movement rules over V can have one of the following forms (the subscript i stands

for inside, o for outside):

attachi : [a]u → []ua, attacho : []ua → []ua,

de−attachi : []ua → [a]u, de−attacho : []ua → []ua,

moveout : [a]u → []ua,

movein : []u a → [a]u,

with a ∈ V , u ∈ V ∗.

The effect of the rules attachi and attacho is to attach the protein a to the

corresponding membrane if the marking of the membrane includes u.

The rules moveout (movein) move the protein a outside (inside, resp.) if the

marking of the corresponding membrane includes u. We use prot to denote the set

of protein movement rules.

4 Membrane Systems with Marked Membranes

In this section we define membrane systems (also called P systems) having mem-

branes marked with multisets of proteins, and using the protein-membrane rules

and the protein movement rules introduced in Section 3.

Formally, a membrane system with marked membranes, protein-membrane rules,

and protein movement rules, in short Ppp system, is a construct

Π = (V, μ, u1, . . . , um, R, F),

• V is a finite, nonempty alphabet of proteins;

• μ is a membrane structure with m ≥ 1 membranes;

• u1, · · · , um ∈ V ∗ are the markings of the m membranes of μ at the beginning of

the computation (the initial markings of Π);

• R is a finite set of protein-membrane rules and protein movement rules over the

alphabet V ;

• F ⊆ V is the set of protein-flags, simply called flags (marking the output mem-

branes).

We will also use VΠ, μΠ, RΠ, and FΠ to denote V , μ, R, and F respectively.

A configuration of Π consists of a membrane structure, the markings of the

membranes, and the multisets of proteins present inside the regions. In what follows,

configurations are denoted by writing the markings as subscripts of the right hand

parentheses which identify the membranes, e.g., [[]ab[aaa]b[]bb]a is an example of

a configuration.

We suppose that in the initial configuration the regions are empty, thus the

initial configuration is defined by μ and u1, . . . , um.

As standard for membrane systems, we assume the existence of a global clock

which marks the timing of steps (single transitions) for the whole system.

A single transition of Π from a configuration to a new one is performed by apply-

ing, to each membrane of the system, either (i) the protein movement rules in the

nondeterministic maximally parallel manner, or (ii) one of the protein-membrane

rules.

The choice between using protein movement rules or using a protein-membrane

rule, for each membrane, is done in a nondeterministic way if both types of rules

can be applied for a given membrane. A membrane remains unchanged (only) if no

rules can be applied to it.

The application in the nondeterministic maximally parallel manner of the pro-

tein movement rules means that, for the chosen membrane, the proteins (the ones

marking the membrane and those present in the enclosed region) are assigned with

the rules in such a way that, after the assignment is done, no other protein movement

rule is applicable to the proteins that have no rules assigned to them. If a protein

can be used by several rules, then it is assigned to one of them in a nondeterministic

way.

As usual, a sequence of transitions forms a computation. A computation which

starts from the initial configuration is successful if it halts, that is, it reaches a

halting configuration, i.e., a configuration where no rule can be applied, anywhere

in the system. In the halting configuration we consider the output membranes –

these are membranes whose markings contain at least one flag from F .

Then, the result of a successful computation is the set of vectors describing the

multiplicities of proteins present in the markings of the output membranes. Because

of the non-determinism in the choice of rules, one can get a set of (successful)

computations, and thus a set of results.

Collecting all the results, for all possible successful computations, we get the set of

vectors generated by Π, and denoted by Ps(Π).

Note that in a Ppp system one computation can deliver a finite family of vectors

as its output because several membranes can be “flagged” as output membranes.

This differs from assigning the output in “standard” membrane systems. However

since the set of vectors Ps(Π) generated by a Ppp system is taken over the union of

results of all successful computations, this difference “disappears” when we consider

Ps(Π).

We denote by PPm(α, prot), with α ∈ {pinoi, pinoe, drip, (ncoo)pinoi,

(ncoo)pinoe, (ncoo)drip}, m ≥ 1, the class of Ppp systems using protein-membrane

rules of type α, protein movement rules, and at most m membranes (α or prot are

removed if the corresponding rules are not used). Therefore PsPPm(α, prot) is the

family of sets of vectors generated by Ppp systems from PPm(α, prot) (α or prot

are removed if the corresponding rules not used). If m is substituted by ∗ then the

number of membranes considered is arbitrary.

Since one cannot mark the empty multiset by a flag, we consider the equality of

families of multisets modulo the empty multiset, i.e., if two families differ only by

the empty multiset, then we consider them to be equal.

A configuration of a Ppp system Π that can be reached by a (possibly empty)

sequence of transitions, starting from the initial configuration, is called reachable.

A multiset w of proteins is a reachable marking for Π if there exists a reachable

configuration of Π which contains a membrane marked by w.

5 Preliminary Results

We begin with some preliminary results that follow directly from the definitions and

from the Turing-Church thesis.

Theorem 5.1

PsPP∗(α, prot) ⊆ PsRE, PsPP∗(α) ⊆ PsPP∗(α, prot).

PsPP∗((ncoo)α, prot) ⊆ PsPP∗(α, prot),

PsPP∗((ncoo)α) ⊆ PsPP∗(α),

α ∈ {pinoi, pinoe, drip}.

First we consider Ppp systems that use only the protein movement rules. The

power of such systems is very restricted, even when there is no bound on the number

of membranes to be used.

Theorem 5.2 PsPP∗(prot) = PsFIN.

6 Membrane Systems Using Protein-Membrane Rules

As stated by Theorem 5.2 the use of only protein movement rules results in a very

limited generative power. In this section we turn to the dual situation: the use of

protein-membrane rules only.

In this case the membrane structure can change during the computation, but

the proteins cannot move through the regions of the system.

First we investigate Ppp systems using the non-cooperative versions of the pino

and of the drip rules. In this case the power of the system is still very limited: the

family of the so generated sets of vectors is strictly included in the family of Parikh

images of context-free languages. Then we will study Ppp systems using only pino

and drip rules; in this case the power of the system increases: one can generate now

at least the family of Parikh images of the languages generated by programmed

grammars without appearance checking.

Theorem 6.1 PsPP∗((ncoo)α) ⊂ PsCF,α ∈ {pinoi, pinoe, drip}.

The computational power of this class increases when one uses cooperative

pinoi, pinoe or drip rules. In this case the systems can generate at least the family

of Parikh images of languages generated by programmed grammars without ap-

pearance checking – it is known that PsPR strictly contains PsCF because it also

contains non-semilinear vectors of natural numbers (see [7] for further details).

Formally, we have the following result.

Theorem 6.2 PsPR ⊆ PsPP∗(α), α ∈ {pinoi, pinoe, drip}.

7 Membrane Systems Using Protein-Membrane and Pro-

tein Movement Rules

We will investigate now membrane systems using both protein-membrane rules and

protein movement rules. As we will demonstrate the ability to attach, de-attach,

and move proteins across the system in a controlled fashion increases the generative

power of the systems.

The first indications of the increased generative power is given by Theorem 7.1:

Ppp systems from PsPP∗((ncoo)αi, prot), α ∈ {pinoi, pinoo, drip}, can generate at

least the family of Parikh images of context-free languages (compare this result with

Theorem 6.1).

Theorem 7.1 PsCF ⊆ PsPP∗((ncoo)α, prot), α ∈ {pinoi, pinoe, drip}.

If Ppp systems are equipped with both protein-membrane and protein movement

rules, then they are computationally complete, in the sense that they are able to

generate the family of Parikh images of recursively enumerable languages.

So, informally, it seems that the ability to move the proteins (in a controlled

way) through the regions of the system is important for reaching computational

completeness. On the other hand, it is interesting to notice that the generative

power of protein movement rules, when used alone, is very “weak” (Theorem 5.2).

By comparing the following proof with the proof of Theorem 6.2 we clearly notice

similarities. The main difference is the second group of rules, used to simulate the

appearance checking mechanism present in the programmed grammar.

Theorem 7.2 PsPP∗(α, prot) = PsRE, α ∈ {pinoi, pinoe, drip}.

8 Decision Problems

Since the set of proteins attached to a membrane determines the set of rules that can

be applied to this membrane, we will consider now the following decision problem:

Is it decidable whether or not an arbitrary multiset w is a reachable marking for an

arbitrary Ppp system?

We will demonstrate that this problem is decidable for Ppp systems using (i)

only pino and/or drip rules, or (ii) only protein movement rules, while it is not

decidable for Ppp systems using both pino (or drip) rules and protein movement

rules.

Theorem 8.1 It is undecidable whether or not, for any Ppp system Π and any

multiset w of proteins over VΠ, w is a reachable marking of Π.

If Ppp systems use only protein movement rules, only pino rules, or only drip

rules, then the above problem becomes decidable.

Theorem 8.2 It is decidable whether or not, for any Ppp system Π from PP∗(prot)

and any multiset w of proteins over VΠ, w is a reachable marking of Π.

Theorem 8.3 It is decidable whether or not, for any Ppp system Π from PP∗(α), α ∈

{pinoi, pinoe, drip}, and any multiset w of proteins over VΠ, w is a reachable mark-

ing of Π.

We conclude this section by investigating two more decision problems. The first

problem concerns the reachability of a configuration in Ppp systems. The second

problem concerns the boundness of Ppp systems.

First, we observe that, given an arbitrary Ppp system Π and an arbitrary con-

figuration C of Π, one can compute an upper bound mapΠ(C) on the number of

applications of pino and drip rules that can be used in deriving C from the initial

configuration of Π (in case that C is reachable in Π).

Clearly, one can generate in a systematic fashion all reachable configurations of

Π containing no more than r membranes. Since each application of a pino or drip

rule increases the number of membranes this generation process takes a bounded

number of steps. If C appears among these configurations, then it is reachable,

otherwise C is not reachable in Π.

Thus, we have the following result:

Theorem 8.4 It is decidable whether or not, for any Ppp system Π and any con-

figuration C of Π, C is a reachable configuration of Π.

It is perhaps worthwhile to discuss Theorem 8.4 in the light of the universality

result stated in Theorem 7.2. The reason that Theorem 8.4 holds is that, for a

given configuration C, one can, a priori, provide an upper bound mc such that C is

reachable in Π if and only if it is reachable by computations that do not exceed mc

steps.

On the other hand, if we want to check whether or not a particular multiset

w is in the output of a successful computation of Π, then, in general, there is no

w/o prot prot

w/o pinoi PsFIN

(ncoo)pinoi ⊂ PsCF ⊇ PsCF

pinoi ⊇ PsPR PsRE

Table 1
Computational power for Ppp systems using pinoi and protein movement rules (prot). The same table

holds also for pinoe and drip operations.

upper bound mw such that: w ∈ Ps(Π) if and only if w is an output of a successful

computation which takes no more than mw steps.

In fact, in general, there is no relationship between the size of w and the maximal

size of a halting configuration in which w is marking one of the output membranes.

A Ppp system Π is bounded if there exists an integer k, such that, any reachable

configuration of Π has less than k membranes.

Theorem 8.5 It is decidable whether or not an arbitrary Ppp system Π from PP∗(α),

α ∈ {pinoi, pinoe, drip}, is bounded.

9 Concluding Remarks

We have investigated membrane systems using operations involving membranes

marked with multisets of proteins. These systems use two different kinds of op-

erations: the ones that involve membranes and proteins (pino and drip operations)

and the ones that attach, de-attach, and move the proteins across the regions of the

system (protein movement operations).

Membrane systems using both types of operations are shown to be computa-

tionally complete. When the protein-membrane rules are restricted to be non-

cooperative, then one generates at least the family of Parikh images of context-free

languages.

We have also analyzed membrane systems whose evolution is based on only one

of the two types of operations.

In particular we have shown that (in terms of Parikh sets) membrane systems

using only pino (or only drip) rules are at least as powerful as programmed grammars

without appearance checking.

Our current knowledge about the computational power of membrane systems

considered in this paper is summarized in Table 1.

A number of problems have to be settled in order to get a more complete un-

derstanding of membrane systems with marked membranes. Some of them are

suggested by the results obtained in this paper.

1. Is the inclusion of PsCF ⊆ PsPP∗((ncoo)α, prot) α ∈ {pinoi, pinoe, drip},

strict?

2. Is the inclusion PsPP∗((ncoo)α, prot) ⊆ PsRE, α ∈ {pinoi, pinoe, drip},

strict?

3. Is the inclusion PsPR ⊆ PsPP∗(α), α ∈ {pinoi, pinoe, drip}, strict?

4. Is the inclusion PsPP∗(α) ⊆ PsRE, α ∈ {pinoi, pinoe, drip}, strict?

Also the following “natural” decision problem should be settled for membrane

systems with marked membranes: is it possible to decide whether or not an arbi-

trary multiset of proteins is a reachable marking for an arbitrary Ppp system from

PP∗((ncoo)α, prot), with α ∈ {pinoi, pinoe, drip}?

The problem is challenging since it is proved to be decidable for Ppp systems from

PP∗(prot), i.e., using only protein movement rules (see Theorem 8.2), and for Ppp

systems from PP∗(α), α ∈ {pinoi, pinoe, drip}, i.e., using only protein-membrane

rules (see Theorem 8.3), while it is undecidable for arbitrary Ppp systems (Theorem

8.1).

A more general line of research involves the study of membrane systems having

floating molecules and proteins attached to the internal or/and to the external side

of a membrane (following, for instance, the idea introduced in [6] where projective

brane calculus, with directed actions, has been introduced).

Interesting is also the idea to associate a time of execution to the considered

protein rules (following, for instance, the idea of timed P systems introduced in [5]).

We expect several interesting results along these lines of research, bridging mem-

brane systems and brane calculi.

Acknowledgments

The authors are indebted to the European Research Network SegraVis for support-

ing this research. R. Brijder and G. Rozenberg are supported by the Netherlands

Organization for Scientific Research (NWO) project 635.100.006 “VIEWS”.

References

[1] R. Brijder, M. Cavaliere, A. Riscos-Núñez, G. Rozenberg, D. Sburlan, Membrane Systems with Proteins
Embedded in Membranes. Submitted.

[2] N. Busi, R. Gorrieri, On the Computational Power of Brane Calculi. Proceedings Third Workshop on
Computational Methods in Systems Biology. Edinburgh, 2005.

[3] L. Cardelli, Brane Calculi. Interactions of Biological Membranes. Proceedings Computational Methods
in System Biology 2004 (V. Danos, V. Schächter, eds.), Lecture Notes in Computer Science, 3082,
Springer-Verlag, Berlin, 2005, pp. 257–278.

[4] L. Cardelli, Gh. Păun, An Universality Result for a (Mem)Brane Calculus Based on Mate/Drip
Operations. Proceedings of the ESF Exploratory Workshop on Cellular Computing (Complexity
Aspects), (M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.), Fénix Ed., Seville, Spain,
pp. 75–94. The proceedings can be found at the address http://www.gcn.us.es/ .

[5] M. Cavaliere, D. Sburlan, Time-Independent P Systems. Membrane Computing, 5th International
Workshop, WMC2004 (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.),
Lecture Notes in Computer Science, 3365, Springer-Verlag, Berlin, 2005, pp. 239–258.

[6] V. Danos, S. Pradalier, Projective Brane Calculus. Proceedings Computational Methods in System
Biology 2004 (V. Danos, V. Schächter, eds.), Lecture Notes in Computer Science, 3082, Springer-Verlag,
Berlin, 2005, pp. 134–148.

[7] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin, 1989.

http://www.gcn.us.es/

[8] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[9] H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology.
Freeman, Fifth Edition.

[10] Gh. Păun, Computing with Membranes. Journal of Computer and System Sciences, 61, 1 (2000), pp.
108–143. First circulated as TUCS Research Report No 28, 1998.

[11] Gh. Păun, Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.

[12] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages. Springer-Verlag, Berlin, 1997.

[13] A. Salomaa, Formal Languages. Academic Press, New York, 1973.

[14] http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

	Introduction
	Preliminaries
	Membrane Operations with Marked Membranes
	Membrane Systems with Marked Membranes
	Preliminary Results
	Membrane Systems Using Protein-Membrane Rules
	Membrane Systems Using Protein-Membrane and Protein Movement Rules
	Decision Problems
	Concluding Remarks
	References

