
Membrane fission versus cell division: When membrane
proliferation is not enough

Luis F. Macías-Ramos, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez , Luis Valencia-Cabrera

Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Sevilla, 41012, Spain

 a b s t r a c t

Keywords:
Cell division
Membrane fission
Membrane computing
Symport/antiport rules
Tractability frontier

Cell division is a process that produces two or more cells from one cell by replicating
the original chromosomes so that each daughter cell gets a copy of them. Membrane
fission is a process by which a biological membrane is split into two new ones in such
a manner that the contents of the initial membrane get distributed or separated among
the new membranes. Inspired by these biological phenomena, new kinds of models were
considered in the discipline of Membrane Computing, in the context of P systems with active
membranes, and tissue P systems that use symport/antiport rules, respectively.
This paper combines the two approaches: cell-like P systems with symport/antiport rules
and membrane separation are studied, from a computational complexity perspective.
Specifically, the role of the environment in the context of cell-like P systems with
membrane separation is established, and additional borderlines between tractability and
NP-hardness are summarized.

1. Introduction

Cell division is one of the basic processes in the cell life cycle and it allows producing two or more cells from one
cell. Basically, there are three processes associated with cell division: binary fission (typical of prokaryotic cells), mitosis and
meiosis (these two taking place in eukaryotic cells). In eukaryotic cells, mitosis generally involves forming two identical
daughter cells by replicating and dividing the original chromosomes. Meiosis allows genetic variation through a process of
DNA shuffling while the cells are dividing.

Several cell division inspired mechanisms were introduced in Membrane Computing, a distributed parallel
computing paradigm inspired by the way the living cells process chemical substances, energy and information. In this
discipline these mechanisms are called cell division rules and membrane division rules that are triggered by an object which
is replaced in the two new cells by possibly new objects and the remaining objects are duplicated in both new cells/
membranes. These two ways have given rise to cell-like P systems based models (P systems with active membranes [21])
and tissue-like P systems based models (tissue P systems with cell division [20]), respectively.

Lipid membranes separate the interior of a cell from its environment or surround membrane compartments (mitochon-
dria, endosomes, Golgi complex, etc.) allowing the cells and compartments to have an identity. They serve as

concentrations

http://dx.doi.org/10.1016/j.tcs.2015.06.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:lfmaciasr@us.es
mailto:marper@us.es
mailto:ariscosn@us.es
mailto:lvalencia@us.es
http://dx.doi.org/10.1016/j.tcs.2015.06.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.025&domain=pdf

barriers allowing the incorporation of material from its environment, in the case of a cell, or exchange material between
compartments (from a donor membrane to an acceptor membrane), implemented by membrane carriers. The formation
of such carriers in cells follows a simple three-step process whose last step is membrane fission consisting in the splitting
of the membranes in two new ones [15]. The biological phenomenon of membrane fission was incorporated in Membrane
Computing through a new kind of rules, called membrane separation rules, in the framework of polarizationless P systems
with active membranes [3]. Originally, each of these separation rules could have their own partition of the working alpha-
bet. Nevertheless, in [16] a new definition of separation rules in the framework of P systems with active membranes was
introduced. In the new definition, all separation rules are associated with the same partition of the working alphabet in
two subsets, which is given in advance. By applying these kinds of rules, the object triggering them is consumed and the
remaining objects are distributed both in the created membranes.

Networks of membranes which compute by communication only, using symport/antiport rules were considered in [18].
By means of this kind of rules, a change of the places of objects with respect to the membranes of a system takes place
along computations but not a change/evolution of the objects themselves. Such rules are used both for communication with
the environment and for direct communication between different membranes. It is worth noting that, in these systems, the
environment plays an active role because we cannot only send objects outside the system, but we can also bring in objects
from the environment.

With respect to tissue-like approaches, from the seminal definitions of tissue P systems [13,14], one of the most interest-
ing variants of tissue P systems was presented in [20]. In that paper, the definition of tissue P systems with symport/antiport
rules is combined with the one of P systems with active membranes, yielding tissue P systems with cell division. One of the
latest studies on their computational power can be found in [22]. In tissue-like systems, the membrane fission phenomenon
has been considered together with symport/antiport rules [17] by means of cell separation rules. These models are called
tissue P systems with cell separation and its computational efficiency was investigated. Besides, a tractability border in terms
of upper bound of the length of communication rules was obtained: passing from 1 to 8 amounts to passing from non-
efficiency to efficiency, assuming that P �= NP [17]. Nevertheless, in [24] that frontier was refined in an optimal sense.

Cell-like P systems with symport/antiport rules were introduced in [19]. This kind of P systems was shown to be
computationally complete.1 In this paper we consider membrane separation in the framework of cell-like P systems with
symport/antiport rules, and the computational efficiency of these systems is investigated.

The paper is organized as follows. Next section briefly describes some preliminaries in order to make the work self-
contained. In Section 3, complexity classes of recognizer P systems with symport/antiport rules are introduced. In Section 4,
the main result is presented: only tractability problems can be solved by families of P systems with symport/antiport
rules, membrane separation and without environment. Section 5 summarizes different boundaries between tractability and
NP-hardness in the framework of recognizer P systems with symport/antiport rules. Finally, conclusions and some open
problems are drawn.

2. Preliminaries

An alphabet � is a non-empty set and their elements are called symbols. A string u over � is an ordered finite sequence
of symbols, that is, a mapping from a natural number n ∈ N onto �. Number n is called the length of string u and it is
denoted by |u|, that is, the length of a string is the number of occurrences of symbols it contains. The empty string (with
length 0) is denoted by λ. The set of all strings over an alphabet � is denoted by �∗ . A language over � is a subset of �∗ .

A multiset over an alphabet � is an ordered pair (�, f) where f is a mapping from � onto the set of natural numbers N.
The support of a multiset m = (�, f) is defined as supp(m) = {x ∈ � : f (x) > 0}. A multiset is finite (resp. empty) if its
support is a finite (resp. empty) set. We denote by ∅ the empty multiset.

Let m1 = (�, f1), m2 = (�, f2) be multisets over �, then the union of m1 and m2, denoted by m1 + m2, is the multiset
(�, g), where g(x) = f1(x) + f2(x) for each x ∈ �. We say that m1 is contained in m2 and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ �. The relative complement of m2 in m1, denoted by m1 \ m2, is multiset (�, g), where g(x) =
f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise.

A symport rule (respectively, antiport rule) over an alphabet � is an expression (u, out) or (u, in), where u is a finite
multiset over � such that |u| > 0 (resp. an expression (u, out; v, in), where u, v are finite multisets over � such that |u| > 0
and |v| > 0). The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u| +|v|). A division rule over �
is an expression [a]i → [b]i [c]i , where a, b, c ∈ �. A separation rule over � is an expression [a]i → [�0]i[�1]i where a ∈ �

and {�0, �1} is a partition of �.
Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected graph. A rooted tree is a tree in which one

of the vertices (called the root of the tree) is distinguished from the others. In a rooted tree the concepts of ascendants and
descendants are defined as follows. Given a node x (different from the root), if the last edge on the (unique) path from the
root to the node x is {x, y} (in this case, x �= y), then y is the parent of node x and x is a child of node y. The root is the
only node in the tree with no parent. A node with no children is called a leaf (see [4] for details).

1 In [2], the authors show that systems with s ≥ 2 symbols and m ≥ 1 membranes (such that m + s ≥ 6) are universal.

3. P systems with symport/antiport rules and membrane division/separation

In this section, we define specific cell-like models of Membrane Computing capturing the biological phenomena of trans-
membrane transport of couples of chemical substances, cell division, and membrane fission.

Definition 3.1. A P system with symport/antiport rules of degree q ≥ 1 is a tuple � = (�, E, μ, M1, . . . , Mq, R1, · · · , Rq,

iout), where:

1. � is a finite alphabet and E � �;
2. μ is a rooted tree whose nodes are injectively labeled with 1, . . . , q;
3. M1, . . . , Mq are finite multisets over �;
4. Ri , 1 ≤ i ≤ q, are finite sets of symport/antiport rules over �;
5. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules of degree q, can be viewed as a set of q membranes, labeled by 1, . . . , q, arranged
in a hierarchical (membrane) structure μ given by a rooted tree whose root is called the skin membrane, labeled by 1, such
that: (a) Mi , 1 ≤ i ≤ q, represent the finite multisets of objects (symbols of �) initially placed in the q membranes of the
system; (b) E is the set of objects initially located in the environment of the system, all of them available in an arbitrary
number of copies; (c) Ri , 1 ≤ i ≤ q, are finite sets of rules over � associated with the membranes labeled by i; (d) iout is
a label that represents the output region of the system. We use the term region i to refer to membrane i, in case 1 ≤ i ≤ q,
and to refer to the environment, in case i = 0. For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we
denote by p(i) the parent of membrane i in the rooted tree μ. We define p(1) = 0, that is, by convention the “parent” of
the skin membrane is the environment. The leaves of the rooted tree are called elementary membranes. If the alphabet of
the environment is an empty set then we say that the P system is without environment. This term means that there does
not exist any object initially located in the environment of the system available in an arbitrary number of copies, that is, in
P systems without environment there is an environment (labeled by 0 as usual) but in any moment each object in it has a
finite multiplicity.

In P systems with symport/antiport rules and membrane division (resp. membrane separation) also membrane division rules
(resp. membrane separation rules associated with the same partition of the working alphabet, which is given in advance)
are allowed.

A configuration Ct at an instant t of a P system with symport/antiport rules is described by the following elements:
(a) the membrane structure at instant t; (b) all multisets of objects over � associated with all the membranes present
in the system; and (c) the multiset of objects over � − E associated with the environment at that moment. The initial
configuration of the system is (μ, M1, · · · , Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t if membrane i is in Ct and multiset u is
contained in the multiset associated with such membrane. When applying a rule (u, out) ∈ Ri , the objects specified by u
are sent out of membrane i into the region immediately outside (the parent p(i) of i), this can be the environment in the
case of the skin membrane. A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant t if membrane i is
in Ct and multiset u is contained in the multiset associated with the parent of i. When applying a rule (u, in) ∈ Ri , the
multiset of objects u goes out from the parent membrane of i and enters into the region defined by membrane i.

An antiport rule (u, out; v, in) ∈Ri is applicable to a configuration Ct at an instant t if membrane i is in Ct and multiset
u is contained in such membrane, and multiset v is contained in the parent of i. When applying a rule (u, out; v, in) ∈ Ri ,
the objects specified by u are sent out of membrane i into the parent of i and, at the same time, bringing the objects
specified by v into membrane i.

A membrane division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration at an instant t , if there is an elementary
membrane i in that configuration and object a is contained in that membrane. When applying a division rule [a]i → [b]i[c]i ,
under the influence of object a, a membrane with label i is divided into two membranes with the same label; in the first
copy, object a is replaced by object b, in the second one, object a is replaced by object c; all the other objects residing in
membrane i are replicated and copies of them are placed in the two new membranes. The skin membrane and the output
membrane cannot be divided.

A membrane separation rule [a]i → [�0]i[�1]i ∈ Ri is applicable to a configuration Ct at an instant t , if there exists an
elementary membrane labeled by i in Ct , different from the skin membrane, such that it contains object a. When applying
a separation rule [a]i → [�0]i [�1]i ∈ Ri to a membrane labeled by i in a configuration Ct , in reaction with object a, that
membrane is separated into two membranes with the same label; at the same time, object a is consumed; all the other
objects residing in membrane i are distributed: the objects from �0 are placed in the first membrane, while those from �1
are placed in the second membrane. The skin membrane and the output membrane cannot be separated.

Note that, due to membrane division or membrane separation rules, several elementary membranes with the same label
i (i �= 1) can be present at a given configuration.

With respect to the semantics of these variants, the rules of such P systems are applied in a non-deterministic maximally
parallel manner (at each step we apply a multiset of rules which is maximal, no further applicable rule can be added), with
the following important remark: when a membrane i is divided/separated, the membrane division/separation rule is the

only one from Ri which is applied for that membrane at that step. The new membranes resulting from division/separation
could participate in the interaction with other membranes or the environment by means of communication rules at the
next step – providing that they are not separated once again. The label of a membrane identifies the rules which can be
applied to it precisely.

Let us consider a recognizer P system with symport/antiport rules �. We say that configuration Ct yields configuration
Ct+1 in one transition step, denoted by Ct ⇒� Ct+1, if we can pass from Ct to Ct+1 by applying the rules from the system
following the previous remarks. A computation of � is a (finite or infinite) sequence of configurations such that: (a) the
first term is the initial configuration of the system; (b) for each n ≥ 2, the n-th configuration of the sequence is obtained
from the previous one in one transition step; and (c) if the sequence is finite (called halting computation) then the last
term is a halting configuration (a configuration where no rule of the system is applicable to it). All the computations start
from an initial configuration and proceed as stated above; only halting computations give a result, which is encoded by the
objects present in the output region iout associated with the halting configuration. If C = {Ct}t<r+1 of � (r ∈ N) is a halting
computation, then the length of C , denoted by |C|, is r.

Definition 3.2. A recognizer P system with symport/antiport rules of degree q ≥ 1 is a tuple � = (�, E, �, μ, M1, . . . , Mq,

R1, · · · , Rq, iin, iout) where:

1. � = (�, E, μ, M1, . . . , Mq, R1, · · · , Rq, iout) is a P system with symport/antiport rules of degree q ≥ 1.
2. The working alphabet � has two distinguished objects yes and no, at least one copy of them present in some initial

multisets M1, . . . , Mq , but none of them is present in E .
3. � is an (input) alphabet strictly contained in � such that E ∩ � = ∅.
4. M1, . . . , Mq are finite multisets over � \ �.
5. iin ∈ {1, . . . , q} represents the input membrane.
6. The output region iout is the environment.
7. All computations halt.
8. If C is a computation of �, then either object yes or object no (but not both) must have been released into the

environment, and only at the last step of the computation.

Let us notice that if a recognizer P system has a symport rule of the type (u, in) associated with the skin membrane, then
the multiset u must contain some object from � \ E because on the contrary, this would lead to non-halting computations
of �.

For each finite multiset w over the input alphabet �, a computation of � = (�, �0, �1, E, �, μ, M1, . . . , Mq, R1, · · · , Rq,

iin, iout) with input multiset w starts from the configuration of the form (μ, M1, . . . , Miin + w, . . . , Mq, ∅), where the input
multiset w is added to the content of the input membrane iin . That is, we have an initial configuration associated with each
input multiset w over � in recognizer P systems with symport/antiport rules. We denote by � + w the P system � with
input multiset w .

We say that a computation C is an accepting computation (resp. rejecting computation) if object yes (resp. object no)
appears in the environment associated with the corresponding halting configuration of C , and neither object yes nor no
appears in the environment associated with any non-halting configuration of C .

For each natural number k ≥ 1, we denote by CDC(k) (resp. CSC(k)) the class of recognizer P systems with symport/an-
tiport rules and membrane division (resp. membrane separation) such that the length of the communication rules allowed
is at most k. In the case of P systems without environment we denote ̂CDC(k) or ̂CSC(k), respectively.

3.1. Complexity classes of recognizer P systems with symport/antiport rules

Let us recall that a decision problem X is one that has a yes/no answer, that is, is an ordered pair (I X , θX), where I X

is a language over a finite alphabet and θX is a total Boolean function over I X . The elements of I X are called instances of
the problem X . Next, we define what solving a decision problem by a family of recognizer P systems with symport/antiport
rules, in a uniform way, means (see [23] for details).

Definition 3.3. A decision problem X = (I X , θX) is solvable in polynomial time by a family � = {�(n) : n ∈N} of recognizer
P systems with symport/antiport rules if the following conditions hold:

• the family � is polynomially uniform by Turing machines;
• there exists a pair (cod, s) of polynomial-time computable functions over I X such that:

– for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u));
– for each n ∈N, s−1(n) is a finite set;
– the family � is polynomially bounded, sound and complete with regard to (X, cod, s).

We say that � provides a uniform solution to the problem X , and pair (cod, s) is a polynomial encoding from X in �. It
is worth pointing out that for each instance u, the system �(s(u)) + cod(u) is confluent, in the sense that all possible
computations of the system must give the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of all decision problems which can be solved in
polynomial time by means of recognizer P systems from R, according to Definition 3.3.

4. Tractability frontiers in P systems with symport/antiport rules

We say that a class of recognizer P systems with symport/antiport rules F is presumably efficient if there exists an
NP-complete problem that can be solved in polynomial time by a family of systems from F . From the properties of the
NP-completeness, we deduce that any NP-complete problem can be solved in polynomial time by families of a presumably
efficient class of recognizer membrane systems. Because class PMCF is closed under complement and polynomial-time
reductions (see [23] for details), if the class F is presumably efficient then NP ∪ co-NP ⊆ PMCF .

We say that a class of recognizer membrane systems F is feasible if only tractable problems can be solved in polynomial
time by a family of systems from F , that is, if PMCF = P. According with these definitions, if P = NP then a class F
is feasible if and only if it is presumably efficient. Besides, if P �= NP then each feasible class is not presumably efficient.
Nevertheless, under that hypothesis a non-feasible class could be non-presumably efficient (as a consequence of the Ladner
theorem by which if P �= NP then there exist NP-intermediate problems, that is, problems which are neither in the class P
nor in the class of NP-complete problems, see [7] for details).

A good strategy to prove that P = NP is the following: let us suppose we have two classes F1 and F2 of recognizer P
systems such that:

(a) F1 is feasible and F2 is presumably efficient.
(b) Each solution S of a decision problem X in F1 is also a solution in F2;

The syntactical ingredients which are required to be added to membrane systems in F1 in order to obtain membrane
systems in F2, provide a frontier between tractability and NP-hardness. Therefore, translating an efficient solution of an
NP-complete problem by a family of systems in F2, into an efficient solution by a family of systems in F1 amounts to
proving P = NP.

4.1. Feasibility of recognizer P systems from ̂CSC

In this section we will show that P = PMC
̂CSC . The proof is inspired on a similar result, obtained in the framework of

tissue P systems with symport/antiport rules and cell separation [12].
Let � = (�, �0, �1, �, μ, M1, . . . , Mq, R1, . . . , Rq, iin, iout) be a recognizer P system from ̂CSC of degree q ≥ 1.

• We denote by p(i) (resp., ch(i)) the label of the parent (resp., a child) of the membrane labeled by i, the parent of the
skin membrane is the environment (we write p(1) = 0). We denote by RC (resp., RS) the set of communication rules
(resp., separation rules) of �. We will fix total orders in RC and RS .

• Let C be a computation of �, and Ct a configuration of C . The application of a communication rule keeps the multiset
of objects of the whole system unchanged because only movement of objects between the regions of the system is
produced. On the other hand, the application of a separation rule causes that an object is removed from the system,
and since there is no objects replication, the rest remains unchanged. Thus, the multiset of objects of the system in
any configuration Ct is contained in M0 + . . . + Mq . Moreover, if M = |M0 + . . . + Mq| then the total number of
membranes having label i, 1 ≤ i ≤ q, at configuration C is, at most, M because the copies can only be produced by the
application of a separation rule, and each application of this kind of rule consumes one object. Consequently, M · q is
an upper bound of the number of membranes at any configuration of the system.

• In order to identify the membranes created by the application of a separation rule, we modify the labels of the new
membranes in the following recursive manner:
– The label of a membrane will be a pair (i, σ) where 0 ≤ i ≤ q and σ ∈ {0, 1}∗ . At the initial configuration, the labels

of the membranes are (1, λ), . . . , (q, λ). The label of the environment is denoted by (0, λ).
– If a separation rule is applied to a membrane labeled by (i, σ), then the new created membranes will be labeled by

(i, σ0) and (i, σ1), respectively. Membrane (i, σ0) will only contain the objects of membrane (i, σ) which belong to
�0, and membrane (i, σ1) will only contain the objects of membrane (i, σ) which belong to �1. Only elementary
membranes can be separated, so if a membrane i is non-elementary then we denote it by the label (i, λ).

• If a membrane labeled by (i, σ) is engaged by a communication rule, then, after the application of the rule, the mem-
brane keeps its label.

• A configuration Ct of a P system from ̂CSC is described by the current membrane structure and the multisets of labeled
objects of the type

{(a, i,σ) : a ∈ �,0 ≤ i ≤ q,σ ∈ {0,1}∗}
The expression (a, i, σ) ∈ Ct means that object a belongs to membrane labeled by (i, σ). Let us notice that the number
of labels we need to identify all membranes appearing along any computation of a P system from CSC(2) is (in the
worst case) quadratic in the size of the initial configuration of the system and the length of the computation.

• Let r = (a1, . . . , as , out ; b1, . . . , bs′ , in) ∈ Ri be an antiport rule of �. We denote by n · LHS(r, (i, σ)), n ∈ N, the mul-
tiset of labeled objects (a1, i, σ)n · · · (as, i, σ)n(b1, p(i), τ)n · · · (bs′ , p(i), τ)n , where (p(i), τ) is the parent of membrane
(i, σ). Similarly, n · RHS(r, (i, σ)) denotes the multiset (a1, p(i), τ)n · · · (as, p(i), τ)n(b1, i, σ)n · · · (bs′ , i, σ)n , produced by
applying n times rule r over membrane (i, σ).

• Let r = (a1, . . . , as , out) ∈Ri be a symport rule of �. We denote by n ·LHS(r, (i, σ)), n ∈N, the multiset (a1, i, σ)n · · · (as,

i, σ)n . Similarly, n · RHS(r, (i, σ)) denotes the multiset (a1, p(i), τ)n · · · (as, p(i), τ)n , produced by applying n times rule
r over membrane (i, σ), where (p(i), τ) is the parent of membrane (i, σ).

• Let r = (a1, . . . , as , in) ∈ Ri be a symport rule of �. We denote by n · LHS(r, (i, σ)), n ∈ N, the multiset (a1, p(i), τ)n · · ·
(as, p(i), τ)n , where (p(i), τ) is the parent of membrane (i, σ). Similarly, n · RHS(r, (i, σ)) denotes the multiset
(a1, i, σ)n · · · (as, i, σ)n , produced by applying n times rule r over membrane (i, σ).

• Let Ct is a configuration of �, we denote by Ct +{(x, i, σ)/σ ′} the multiset obtained by replacing in Ct every occurrence
of (x, i, σ) by (x, i, σ ′). Besides, Ct + m (resp., Ct \ m) is used to denote that a multiset m of labeled objects is added
(resp., removed) to the configuration.

Next, we provide a deterministic algorithm A working in polynomial time that receives as input a recognizer P system
� from ̂CSC together with an input multiset m of �. Then algorithm A reproduces the behavior of a single computation of
such system.

The pseudocode of the algorithm A is described as follows:

Input: A recognizer P system � from ̂CSC and an input multiset m of �

Initialization stage: the initial configuration C0 of � + m
t ← 0
while Ct is a non-halting configuration do

Selection stage: Input Ct, Output (C′
t , A)

Execution stage: Input (C′
t , A), Output Ct+1

t ← t + 1
end while

Output: Yes if Ct is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a recognizer P system �. Specifically, the
selection stage receives as input a configuration Ct of � at an instant t . The output of this stage is a pair (C′

t , A), where
A encodes a multiset of rules selected to be applied to Ct , and C′

t is the configuration obtained from Ct once the labeled
objects corresponding to the application of rules from A have been consumed. The execution stage receives as input the
output (C′

t , A) of the selection stage, and the output is the next configuration Ct+1 of Ct . Specifically, at this stage, the
configuration Ct+1 is obtained from C′

t by adding the labeled objects produced by the application of rules from A.
Next, selection stage and execution stage are described in detail.

Selection stage.

Input: A configuration Ct of � at instant t
C′

t ← Ct; A ← ∅; B ← ∅
for each membrane (i, σ) of C′

t according to the lexicographical order do
for each r ∈ RC ∩Ri according to the order chosen do

nr ← maximum number of times that r is applicable to (i, σ)

if nr > 0 then
C′

t ← C′
t \ nr · LHS(r, (i, σ))

A ← A ∪ {(r, nr , (i, σ))}

B ← B ∪ {(i, σ)}
end if

end for
for r ≡ [a]i → [�0]i [�1]i ∈ Ri according to the order chosen do

if (i, σ) /∈ B then
for each (a, i, σ) ∈ C′

t according to the lexicographical order do
C′

t ← C′
t \ {(a, i, σ)}

A ← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end for
end if

end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the cost in time is polynomial in the size of �
because the number of cycles of the external main for loop is of order O (M · q), and the number of cycles of the two
internal main for loops are of order O (|R|) and O (|R| · |�|), respectively. Besides, the last loop includes a membership test
of order O (M · q).

In order to complete the simulation of a computation step of the system �, the execution stage takes care of the effects
of applying the rules selected in the previous stage: updating the objects according to the RHS of the rules.

Execution stage.

Input: The output C′
t and A of the selection stage

for each (r, nr , (i, σ)) ∈ A do
if r ∈ RC ∩Ri then

C′
t ← C′

t + nr · RHS(r, (i, σ))

else if r ∈ RS ∩Ri then
C′

t ← C′
t + {(λ, i, σ)/σ0}

C′
t ← C′

t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C′

t according to the lexicographical order do
if x ∈ �0 then

C′
t ← C′

t + {(x, i, σ)/σ0}
else

C′
t ← C′

t + {(x, i, σ)/σ1}
end if

end for
end if

end for
Ct+1 ← C′

t

This algorithm is deterministic and works in polynomial time. Indeed, the cost in time is polynomial in the size of �
because the number of cycles of the main for loop is of order O (|R| · |�| · M · q). Besides, inside the body of the last loop
there is a membership test of order O (|�|).

Theorem 4.1. P = PMC
̂CSC .

Proof. It suffices to prove that PMC
̂CSC ⊆ P. Let k ∈ N such that X ∈ PMC

̂CSC(k) and let {�(n) : n ∈ N} be a family of P
systems from ̂CSC(k) solving X according to Definition 3.3. Let (cod, s) be a polynomial encoding associated with that
solution. Let us recall that instance u ∈ I X of the problem X is processed by the system �(s(u)) + cod(u).

Let us consider the following algorithm A′:

Input: an instance u of the decision problem X
Construct the system �(s(u)) + cod(u)

Run algorithm A with input �(s(u)) + cod(u)

Output: Yes if �(s(u)) + cod(u) has an accepting computation, No otherwise

Given an instance u of the decision problem X = (I X , θX), the following assertions are equivalent:

1. θX (u) = 1, that is, the answer of problem X to instance u is affirmative.
2. Every computation of �(s(u)) + cod(u) is an accepting computation.
3. The output of the algorithm with input u is Yes.

Therefore, algorithm A′ provide a solution of the decision problem X . Bearing in mind that A′ works in polynomial time,
we finally deduce that X ∈ P. �

5. On efficiency of P systems with symport/antiport rules

Let us recall three important techniques that have been used to study the efficiency of classes of membrane systems in
the literature: dependency graph technique, simulation technique, and algorithmic technique.

The dependency graph technique consists on the construction of a directed graph (dependency graph) G� associated with a
P system � verifying the following: there exists an accepting computation of � if and only if there exists a path between
two distinguished nodes in the dependency graph associated with it (see [5] and [6] for more details). This property is
verified by recognizer P systems with symport/antiport rules where all its communication rules are of length 1. In this case,
each rule of � can be activated by a single object and then we can interpret that there exists a dependency between the
object triggering the rule and the objects produced by its application. By using this technique, it has been shown (see [9]
for details) that only tractable problems can be efficiently solved by using families of recognizer P systems with membrane
division or membrane separation which use communication rules of length 1, that is, P = PMCCDC(1) = PMCCSC(1) .

By using the algorithmic technique, it has been shown that the class of recognizer P systems with membrane separation
which use communication rules with length at most 2 is feasible from the computational complexity point of view [10].
Specifically, a deterministic algorithm A working in polynomial time receives a P system � from CSC(2) and an input
multiset m of �, as input. Then, algorithm A reproduces the behavior of a computation of � + m. In particular, if the
given P system is confluent then the algorithm will provide the same answer than the system, that is, the answer of
algorithm A is affirmative if and only if the system � + m has an accepting computation (and then, any computation is an
accepting one). Nevertheless, in the context of recognizer P systems which use communication rules with length at most
2, the use of membrane division allows us to solve NP-complete problems in polynomial time (in [11] an efficient solution
of HAM-CYCLE by means of a family from CDC(2) is provided). Therefore, it is observed that the behavior of the classes
of systems highly depends on the type of rules used for create new membranes: division rules where original objects
are replicated in the two new membranes, or separation rules where original objects are distributed in the membranes
created.

In the definition of P systems with symport/antiport rules, the objects in the alphabet of the environment appear at
the initial configuration of the system in an arbitrarily large number of copies. This property seems an unfair tool when
designing efficient solutions to computationally hard problems in the framework of membrane computing, by performing a
space-time trade-off. In the previous section we have shown that the environment is relevant in the framework of P systems
with symport/antiport rules and membrane separation in the following sense: with environment we can solve efficiently
NP-complete problems but without environment only tractable problems can be efficiently solved. Nevertheless, if we use
division instead of separation, then the environment is irrelevant from a complexity point of view.2 More precisely, by using
the simulation technique, it has been shown that for all k ≥ 1 we have PMCCDC(k) = PMC

̂CDC(k) (see [8] for details).
The simulation technique can be informally described as follows. Given two recognizer P systems, � and �′ , we say that

�′ simulates � in an efficient way if the following holds: (a) �′ can be constructed from � by a deterministic Turing machine
working in polynomial time; and (b) there exists an injective function, f , from the set Comp(�) of computations of � onto
the set Comp(�′) of computations of �′ such that:

	 There exists a deterministic Turing machine that constructs computation f (C) from computation C in polynomial time.
	 A computation C ∈ Comp(�) is an accepting computation if and only if f (C) ∈ Comp(�′) is an accepting one.
	 There exists a polynomial function p(n) such that for each C ∈ Comp(�) we have | f (C)| ≤ p(|C|).

5.1. Tractability frontiers

Next, based on Theorem 4.1 and results from the previous section, we present different borderlines between tractability
and NP-hardness in terms of syntactical ingredients of recognizer P systems with communication rules. (See Table 1.)

1. Classes CDC(1) and CSC(2) are feasible, while classes CDC(2) and CSC(3) are presumably efficient. So, in the framework
of recognizer P systems with membrane division (resp. membrane separation), passing from 1 to 2 (resp. from 2 to 3)
in the bound of the length of communication rules amounts to passing from tractability to NP-hardness.

2. Class CSC(2) is feasible, while class CDC(2) is presumably efficient. Hence, in the framework of recognizer P systems
with the length of communication rules bounded by 2, allowing division rules instead of separation rules is a tractability
border.

3. Class ̂CSC(3) is feasible, while class CSC(3) is presumably efficient. Hence, in the framework of recognizer P systems with
cell separation and communication rules with length at most 3, the use of objects with infinite multiplicity provides a
tractability frontier.

4. For each k ≥ 2, class ̂CSC(k) is feasible and class ̂CDC(k) is presumably efficient. Hence, in the framework of recognizer
P systems without environment, using division rules instead of separation rules amounts to passing from tractability to
NP-hardness.

2 In [1], a solution to SAT was provided, by using symport/antiport P systems with membrane division and with empty environment.

Table 1
Frontiers of the efficiency.

Feasible Presumably efficient

CDC(1) CDC(2) (length of rules)
CSC(2) CSC(3) (length of rules)
CSC(2) CDC(2) (kind of rules)
̂CSC(3) CSC(3) (environment)
̂CSC(k),k ≥ 2 ̂CDC(k),k ≥ 2 (kind of rules)

6. Conclusions

Abstractions of the biological phenomena of cell division and membrane fission have been studied in cell-like models of
Membrane Computing, an unconventional bio-inspired computing framework. The different behaviors associated with the
replication of objects (cell division) with respect to the distribution/separation of objects (membrane fission) from a compu-
tational complexity point of view, have been highlighted. Specifically, in the framework of P systems with symport/antiport
rules the role of the environment has been shown to be relevant. Nevertheless, the environment is not relevant when we
use membrane division instead of membrane separation.

Different boundaries between tractability and NP–hardness have been summarized. The borderlines have been expressed
in terms of syntactical ingredients of the computing models: the length of communication rules, the kind of rules, and the
use or not of the environment. Finally, it is worth pointing out that each such boundary provides a tool to attack the P
versus NP problem.

Acknowledgements

This work has been supported by Project TIN2012-37434 of the Ministerio de Economía y Competitividad of Spain,
cofinanced by FEDER funds.

References

[1] A. Alhazov, Solving SAT by symport/antiport P systems with membrane division, in: M.Á. Gutiérrez-Naranjo, et al. (Eds.), Cellular Computing (Complex-
ity Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla, 2005, pp. 1–6.

[2] A. Alhazov, R. Freund, M. Oswald, Symbol/membrane complexity of P systems with symport/antiport rules, Lecture Notes in Computer Science 3850
(2006) 96–113.

[3] A. Alhazov, T.O. Ishdorj, Membrane operations in P systems with active membranes, in: Gh. Păun, et al. (Eds.), Proceedings of the Second Brainstorming
Week on Membrane Computing, RGNC, Technical report 01/2004, Fénix Editora, pp. 37–44.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, An Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts, 1994.
[5] R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font, Characterizing tractability by tissue-like P systems, Lecture Notes in Computer Science 5957

(2010) 289–300.
[6] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, On the power of dissolution in P systems with active membranes,

Lecture Notes in Computer Science 3850 (2006) 224–240.
[7] R.E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1) (1975) 155–171.
[8] L.F. Macías-Ramos, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, On efficiency of P systems with symport/antiport and membrane division, 2015,

submitted for publication.
[9] L.F. Macías-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, Limits on efficient computation in P systems with symport/antiport

rules, 2015, submitted for publication.
[10] L.F. Macías-Ramos, L. Valencia-Cabrera, B. Song, L. Pan, M.J. Pérez-Jiménez, Complexity aspects of membrane fission, 2015, submitted for publication.
[11] L.F. Macías-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, On efficiency of minimal cooperation in P Systems with symport/an-

tiport rules, 2015, submitted for publication.
[12] L.F. Macías-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, The efficiency of tissue P systems with cell separation relies on the environment,

Lecture Notes in Computer Science 7762 (2013) 243–256.
[13] C. Martín Vide, J. Pazos, Gh. Păun, A. Rodríguez Patón, A New Class of Symbolic Abstract Neural Nets: Tissue P Systems, Lecture Notes in Computer

Science, vol. 2387, 2002, pp. 290–299.
[14] C. Martín-Vide, J. Pazos, Gh. Păun, A. Rodríguez-Patón, Tissue P systems, Theoret. Comput. Sci. 296 (2) (2003) 295–326.
[15] S. Morlot, A. Roux, Mechanics of dynamic-mediated membrane fission, Annu. Rev. Biophys. 42 (2013) 629–649.
[16] L. Pan, T.-O. Ishdorj, P systems with active membranes and separation rules, J. Univers. Comput. Sci. 10 (5) (2004) 630–649.
[17] L. Pan, M.J. Pérez-Jiménez, Computational complexity of tissue-like P systems, J. Complexity 26 (3) (2010) 296–315.
[18] A. Păun, Gh. Păun, G. Rozenberg, Computing by communication in networks of membranes, Internat. J. Found. Comput. Sci. 13 (6) (2002) 779–798.
[19] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Gener. Comput. 20 (3) (2002) 295–305.
[20] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P system with cell division, Int. J. Comput. Commun. Control III (3) (2008) 295–303.
[21] Gh. Păun, Attacking NP-complete problems, in: I. Antoniou, C. Calude, M.J. Dinneen (Eds.), Unconventional Models of Computation, UMC’2K, Springer-

Verlag, 2000, pp. 94–115.
[22] M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, F.J. Romero-Campero, A polynomial alternative to unbounded environment for tissue P systems with

cell division, Int. J. Comput. Math. 90 (4) (2013) 760–775.
[23] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity classes in models of cellular computing with membranes, Nat. Comput. 2 (3)

(2003) 265–285.
[24] M.J. Pérez-Jiménez, P. Sosík, Improving the efficiency of tissue P systems with cell separation, in: M. García-Quismondo, et al. (Eds.), Proceedings of the

Tenth Brainstorming Week on Membrane Computing, vol. II, Report RGNC 01/2012, Fénix Editora, pp. 105–140.

http://refhub.elsevier.com/S0304-3975(15)00535-6/bib617274696F6D2D657366s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib617274696F6D2D657366s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib617274696F6Ds1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib617274696F6Ds1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib636F726D656Es1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib63686172616374s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib63686172616374s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib646973736F6C7574696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib646973736F6C7574696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib6C61646E6572s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib73657061726174696F6E2D73696E2D656E746F726E6Fs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib73657061726174696F6E2D73696E2D656E746F726E6Fs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061746F6E31s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061746F6E31s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061746F6E32s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib6D6F726C6F74s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib73657061726174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib4A436F6D706Cs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061756E546973737565s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061756E41s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib536576s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061756E416374697665s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib5061756E416374697665s1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib6469766973696F6E2D73696E2D656E746F726E6Fs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib6469766973696F6E2D73696E2D656E746F726E6Fs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib4E61436Fs1
http://refhub.elsevier.com/S0304-3975(15)00535-6/bib4E61436Fs1

	Membrane ﬁssion versus cell division: When membrane proliferation is not enough
	1 Introduction
	2 Preliminaries
	3 P systems with symport/antiport rules and membrane division/separation
	3.1 Complexity classes of recognizer P systems with symport/antiport rules

	4 Tractability frontiers in P systems with symport/antiport rules
	4.1 Feasibility of recognizer P systems from CSĈ

	5 On efﬁciency of P systems with symport/antiport rules
	5.1 Tractability frontiers

	6 Conclusions
	Acknowledgements
	References

