
Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

Counting Membrane Systems

Luis Valencia-Cabrera, David Orellana-Mart́ın,
Agust́ın Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: {lvalencia, dorellana, ariscosn, marper}@us.es

Abstract. A decision problem is one that has a yes/no answer, while
a counting problem asks how many possible solutions exist associated
with each instance. Every decision problem X has associated a counting
problem, denoted by #X, in a natural way by replacing the question
“is there a solution?” with “how many solutions are there?”. Counting
problems are very attractive from a computational complexity point of
view: if X is an NP-complete problem then the counting version #X is
NP-hard, but the counting version of some problems in class P can also
be NP-hard.
In this paper, a new class of membrane systems is presented in order
to provide a natural framework to solve counting problems. The class is
inspired by a special kind of non-deterministic Turing machines, called
counting Turing machines, introduced by L. Valiant. A polynomial-time
and uniform solution to the counting version of the SAT problem (a
well-known #P-complete problem) is also provided, by using a family
of counting polarizationless P systems with active membranes, without
dissolution rules and division rules for non-elementary membranes but
where only very restrictive cooperation (minimal cooperation and mini-
mal production) in object evolution rules is allowed.

Key words: Membrane Computing, polarizationless P systems with active
membranes, cooperative rules, the P versus NP problem, #SAT problem.

1 Introduction

Membrane Computing is a computational paradigm inspired by the structure
and functioning of the living cells as well as from the cooperation of cells in
tissues, organs, and organisms. This paradigm provides distributed parallel and
non-deterministic computing models. All of them share the main syntactical in-
gredients: a finite alphabet (the working alphabet whose elements are called ob-
jects), a finite set of processor units delimiting compartments (called membranes,
cells or neurons) interconnected by a graph-structure in such manner that ini-
tially each processor contains a multiset of objects, a finite set of evolution rules
which provides the dynamic of the system, and an environment.

– 359 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

According to the inspiration they come from, there are basically three ap-
proaches: cell-like P systems, where the compartments are arranged like in a
living cell (that is, in a hierarchical structure) [7]; tissue-like P systems, whose
inspiration comes from the living tissues, where cells bump into each other and
communicate through pores or other membrane mechanisms [20]; and neural-like
P systems, which mimic the way that neurons communicate with each other by
means of short electrical impulses, identical in shape (voltage), but emitted at
precise moments of time [10]. The term membrane system is used to refer to
cell-like P systems, tissue-like P systems or neural-like P systems indistinctly.

In cell-like and neural-like P systems the environment plays a “passive” role
in the sense that it only receives objects, but cannot contribute objects to the
system. However, in tissue-like P systems the role played by the environment is
“active”in the sense that it can receive objects from the system and also send
objects inside the system, and the objects initially placed in the environment
have an arbitrarily large number of copies.

Decision problems (those having a yes/no answer) have associated a language
in a natural way, in such manner that solving a decision problem is expressed
in terms of the recognition of the language associated with it. In this context,
recognizer membrane systems was introduced in order to define what solving a
decision problem means in the framework of Membrane Computing [12]. P sys-
tems with active membranes was introduced in [8, 9]. These cell-like models make
use of electrical charges associated with membranes and division rules. They have
the ability to provide efficient solutions to computationally hard problems, by
making use of an exponential workspace created in a polynomial time. The class
of decision problems which can be solved by families of P systems with active
membranes with dissolution rules and which use division for elementary and non-
elementary membranes is equal to PSPACE [14]. However, if electrical charges
are removed from the usual framework of P systems with active membranes,
then dissolution rules come to play a relevant role (without them, only problems
in class P can be solved in an efficient way, even in the case that division for
non-elementary membranes are permitted [5]). P systems with active membranes
and without polarizations were initially studied in [1, 2] by replacing electrical
charges by the ability to change the label of the membranes.

Counting problems (those asking how many possible solutions exist associ-
ated with each instance) have a natural number, instead of a yes/no, as an
answer. Each decision problem has associated a counting problem in a natu-
ral way by replacing “there exists a solution” with “how many solutions”. For
instance, the counting problem associated with the SAT problem (denoted by
#SAT) is the following: given a Boolean formula ϕ in conjunctive normal form,
how many truth assignments make true ϕ? It is worth pointing out that the
counting problem associated with a decision problem may be harder than the
decision problem, from a complexity point of view.

The main goal of this paper is twofold. On the one hand, to provide a formal
framework in Membrane Computing to solve counting problems by introducing
counting membrane systems. This approach was first initiated by A. Alhazov et

– 360 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

al. [3] and now, the computing model is formally defined inspired by counting
Turing machines introduced by L. Valiant in 1979: “a standard nondeterministic
TM with an auxiliary output device that (magically) prints in binary notation
on a special tape the number of accepting computations induced by the input”.
L. Valiant also introduced the complexity class #P of functions that can be
computed by counting Turing machines running in polynomial time [19]. The
concept of #P-complete problems is defined in a natural way by considering
parsimonious reduction, that is reduction which preserves the number of solu-
tions.

On the other hand, following the works initiated in [15–17], a uniform and
polynomial-time solution to the #SAT problem, a well-known #P-complete prob-
lem, is provided by means of a family of counting membrane systems from
DAM0

c(mcmp,+c,−d,−n) whose elements are (counting) polarizationless P sys-
tems with active membranes where labels of membranes keep unchanged by
the application of rules, but where dissolution rules and division rules for non-
elementary membranes are forbidden and some kind of very restrictive cooper-
ation in object evolution rules is allowed.

The paper is structured as follows. Next, we shortly recall some preliminary
basic definitions related to abstract problems. Section 3 introduces counting
membrane systems, and the concept of uniform polynomial-time solvability of
counting problems by means of families of counting membrane systems is pre-
sented (specifically, the class DAM0

c(mcmp,+c,−d,−n) is defined). Section 4 is
devoted to showing a uniform and polynomial-time solution of the #SAT by using
a family of counting polarizationless P systems with active membranes, without
dissolution rules and with division only for elementary membranes where min-
imal cooperation and minimal production is allowed in object evolution rules.
The paper ends with some conclusions and final remarks.

2 Abstract problems

Roughly speaking, an abstract problem is a “general question to be answered,
usually possessing several parameters whose values are left unspecified” [4]. Solv-
ing an abstract problem consists of answering the question associated with it.
Thus, an abstract problem consists of a (finite or infinite) set of concrete prob-
lems, called instances, obtained by specifying particular values for all parameters.
Each instance has an associated set (eventually empty) of possible solutions and
the answer to the general question of the problem is related to that set.

A search problem (or function problem) is an abstract problem such that the
question is to identify/find one solution from the set of possible solutions associ-
ated with each instance. For example, given a Boolean formula ϕ in conjunctive
normal form to find any truth assignment which makes it true, or if there is no
such truth assignment, answer “no”. That is, in this problem a “function” must
be computed in such manner that for every input formula ϕ, this “function”
may have many possible outcomes (any satisfying truth assignments) or none.

– 361 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

A decision problem is a particular case of search problem. Specifically, a deci-
sion problem can be viewed as an abstract problem that has a yes or no answer.
This kind of problems can be formulated by specifying a generic instance of the
problem and by stating a yes/no question concerning to the generic instance [4].
For example, the SAT problem is the following decision problem: given a Boolean
formula in conjunctive normal form, is there a truth assignment that makes the
formula true?

Informally, a counting problem is an abstract problem such that one asks how
many possible solutions exist associated with each generic instance, that is, in
this kind of problems the output is a natural number rather than just yes or no
as in a decision problem. For example, the #SAT problem previously defined is
a particular case of a counting problem.

In optimization problems we seek to find a best solution associated with each
instance among a collection of feasible solutions, according to a concept of op-
timality given by an objective function associated with the problem. For exam-
ple, the MAXSAT problem is the following optimization problem: given a Boolean
formula in conjunctive normal form and a natural number k, is there a truth
assignment that makes true at least k of the clauses?

Next, we formally define the previous concepts. A search problem (or function
problem) X is a tuple (ΣX , IX , SX) such that: (a) ΣX is a finite alphabet; (b)
IX is a language over ΣX whose elements are called instances of X; and (c) SX

is a function whose domain is IX and for each u ∈ IX , SX(u) is a set whose
elements are called solutions for u. To solve a search problem X means the
following: for each instance u ∈ IX return one element of SX(u) in the case that
SX(u) 6= ∅; otherwise, return “no”. Each search problem X = (ΣX , IX , SX) has
an associated binary relation QX defined as follows: QX = {(u, z) | u ∈ IX ∧ z ∈
SX(u)}. Then, solving the search problem X can be interpreted as follows: given
an instance u ∈ X, find one element z such that (u, z) ∈ QX . We say that a
deterministic Turing machine M solves a search problem X if, given as input any
instance u ∈ IX , the machine M with input u returns some element belonging
to SX(u) (M accepts u) in the case that SX(u) 6= ∅; otherwise, it returns “no”
(M rejects u). That is, the Turing machine M computes a multivalued function
F on IX : this function may have many possible outcomes or none.

An optimization problem X is a tuple (ΣX , IX , SX , OX) such that:

– (ΣX , IX , SX) is a search problem.
– OX is a function whose domain is IX and for each instance u ∈ IX and for

each possible solution a ∈ SX(u) associated with u, OX(u, a) is a positive
rational number.

– For each instance u ∈ IX there exists a solution a ∈ SX(u) such that either
∀b (b ∈ SX(u)⇒ OX(u, b) ≤ OX(u, a)) (we say that a is a maximal solution
to instance u), or ∀b (b ∈ SX(u)⇒ OX(u, b) ≥ OX(u, a)) (we say that a is a
minimal solution to instance u).

To solve an optimization problem X means the following: for each instance
u ∈ IX , return a maximal solution or a minimal solution. We say that a de-
terministic Turing machine M solves an optimization problem X if, given an

– 362 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

instance u ∈ IX , the machine M with input u returns one optimal (maximal or
minimal) solution associated with that instance.

A decision problem X is a search problem (ΣX , IX , SX) such that for each
instance u ∈ IX , SX(u) = {0} or SX(u) = {1}. In the case SX(u) = {0} we say
that the answer of the decision problem is negative (no) for instance u. In the
case SX(u) = {1} we say that the answer of the decision problem is affirmative
(yes) for instance u. To solve a decision problem X means the following: for
each instance u ∈ IX , return yes in the case SX(u) = {1}, otherwise, return
no. Let us notice that a decision problem X = (ΣX , IX , SX) can be viewed as
an optimization problem (ΣX , IX , SX , OX) where OX(u, a) is constant, always
equal to 1 (recall that for each instance u ∈ IX the set of possible solutions SX(u)
is a singleton, either {0} or {1}). Each decision problem X = (ΣX , IX , SX)
has an associated language LX defined as follows: LX = {u ∈ Σ∗X | SX(u) =
{1}}. Conversely, each language L over an alphabet Γ has an associated decision
problem XL = (ΣXL

, IXL
, SXL

) defined as follows: ΣXL
= Γ , IXL

= Γ ∗ and
SXL

(u) = {1}, for each u ∈ L, and SXL
(u) = {0}, for each u /∈ L. According

to these definitions, for each decision problem X we have XLX
= X and for

each language L we have LXL
= L. A deterministic Turing machine M is said

to solve a decision problem X if machine M recognizes or decides the language
LX associated with the problem X, that is, for any string u over ΣX , if u ∈ LX ,
then the answer of M on input u is yes (that is, M accepts u), and the answer
is no otherwise (that is, M rejects u). A non-deterministic Turing machine M is
said to solve a decision problem X if machine M recognizes LX , that is, for any
string u over ΣX , u ∈ LX if and only if there exists at least one computation of
M with input u such that the answer is yes.

A counting problem X is a tuple (ΣX , IX , SX , FX) such that (ΣX , IX , SX)
is a search problem and FX is the function whose domain is IX , defined as
follows: FX(u) = |SX(u)|, where |SX(u)| denotes the number of elements of the
set SX(u), for each instance u ∈ IX . A counting problem X can be considered
as a particular case of a search problem expressed as follows: given an instance
u ∈ IX , how many z are there such that (u, z) ∈ QX? (where QX is the binary
relation associated with the search problem). A counting Turing machine M is
said to solve a counting problem X if, given an instance u ∈ IX , the number
of the accepting computations of M with input u is equal to the number of
elements of the set SX(u), that is, the number of possible solutions associated
with u.

3 Counting membrane systems

The main purpose of computational complexity theory is to provide bounds on
the amount of computational resources necessary for any mechanical procedure
that solves an abstract problem. Usually, this theory deals with languages en-
coding/representing decision problems. The solvability of decision problems is
expressed in terms of recognize/decide the languages associated with them. In
order to formally define what it means to solve decision problems in Membrane

– 363 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

Computing, a new variant called recognizer membrane systems was introduced in
[12] (so-called accepting P systems) for cell-like P systems, in [11] for tissue-like
P systems, and in [6] for neural-like P systems (so-called accepting spiking neural
P systems). Next, a new class of membrane systems, called counting membrane
systems, is introduced as a framework where counting problems can be solved
in a natural way. These systems are inspired from counting Turing machines
introduced by L. Valiant [19] and from recognizer membrane systems where the
Boolean answer of these systems is replaced by an answer encoded by a natural
number expressed in a binary notation (placed in the environment associated
with the halting configuration).

Definition 1. A counting membrane system Π is a membrane system such that:

– There exist two distinguished disjoint alphabets Σ (input alphabet) and Φ
(final alphabet) both of them strictly contained in the working alphabet Γ of
Π. Furthermore, a total order in the final alphabet Φ = {a0, a1, . . . , an} is
considered.

– The membrane system has an input compartment labelled by iin.

– All computations of the system halt.

– For each computation of the system, the environment associated with the
corresponding halting configuration, may contain objects from Φ, but each of
them with multiplicity at most one.

According to Definition 1, the result of any computation C of a counting P sys-
tem is a natural number whose binary expression is encoded by the objects from
the final alphabet placed in the environment associated with its halting config-
uration, according to the following criterion: (a) if the set of objects in Φ placed
in the environment of the corresponding halting configuration is {ai1 , . . . , air},
then the answer of C is the natural number 2i1 + . . .+ 2ir ; and (b) if that set is
the empty set then the answer of C is 0.

Many different classes of counting membrane systems depending on the kind
of rules can be considered. For example, transition counting P systems, polariza-
tionless counting P systems with active membranes, tissue counting P systems
with symport/antiport rules can be defined in a natural way. Then, we will
use a subscript c to emphasize that we are dealing with some kind of count-
ing membrane system. For instance, DAM0

c(+e,+c,−d,−n) denotes the class
of all polarizationless counting P systems with active membranes which use ob-
ject evolution rules, communication rules and division rules only for elementary
membranes, but dissolution rules are not allowed.

It is worth pointing out that any recognizer membrane system Π can be
considered as a “particular case” of counting membrane system, where the final
alphabet Φ is a singleton alphabet {a0} and the rules of the counting system
are obtained from the rules of the recognizer system replacing yes with a0 and
replacing object no with a garbage object \ different from a0.

– 364 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

3.1 Polynomial complexity classes for counting membrane systems

The concept of polynomial encoding in recognizer membrane systems was in-
troduced in [13] and polynomial encodings are stable under polynomial-time
reductions. This concept can be translated to counting membrane systems in a
natural way.

Definition 2. Let X be a counting problem whose set of instances is IX . Let
Π = {Π(n) : n ∈ N} be a family of counting membrane systems. A polynomial
encoding of X in Π is a pair (cod, s) of polynomial-time computable functions
over IX such that s(u) is a natural number (obtained by means of a reasonable
encoding scheme) and cod(u) is a multiset over the input alphabet of Π(s(u)),
for each instance u ∈ IX .

Definition 3. A counting problem X = (ΣX , IX , SX , FX) is solvable in poly-
nomial time and in a uniform way by a family of counting membrane systems
Π = {Π(n) : n ∈ N} from a class Rc, denoted by X ∈ PCMSRc , if the following
holds:

– The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N (in unary).

– There exists a polynomial encoding (cod, s) of X in Π such that:
• The family Π is polynomially bounded with respect to (X, cod, s), that is,

there exists a natural number k ∈ N such that for each instance u ∈ IX ,
every computation of the system Π(s(u)) with input cod(u) performs at
most |u|k steps.

• For each instance u ∈ IX and for each computation C of Π(s(u)) with
input cod(u) we have the result of C is FX(u).

Having in mind that any recognizer membrane system Π can be considered as a
“particular case” of counting membrane system, we have PMCR ⊆ PCMSR,
for any class of recognizer systems R.

3.2 Counting membrane systems from DAM0
c(mcmp,+c,−d,−n)

Let us recall that DAM0(+e,+c,−d,−n) denotes the class of all recognizer
polarizationless P systems with active membranes (µ denotes the membrane
structure, Γ denotes the working alphabet and H denotes the set of labels) such
that the set of rules is of the following forms:

? [a → u]h for h ∈ H, a ∈ Γ , u is a finite multiset over Γ (object evolution
rules).

? a []h → [b]h for h ∈ H, a, b ∈ Γ and h is not the label of the root of µ
(send-in communication rules).

? [a]h → b []h for h ∈ H, a, b ∈ Γ (send-out communication rules).

– 365 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

? [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ and h is the label of an elementary
membrane different of the root of µ (division rules for elementary mem-
branes).

It is well known [5] that only problems in class P can be solved in polynomial
time (and in a uniform way) by means of families from DAM0(+e,+c,−d,−n).
Moreover, this holds even in the case that division rules for elementary and
non-elementary membranes are permitted.

By incorporating a restricted cooperation in object evolution rules, a uni-
form polynomial-time solution to the SAT problem, a well-known NP-complete
problem [4], has been provided [17]. Specifically, minimal cooperation and mini-
mal production (mcmp) in object evolution rules has been considered, that is,
rules of the forms [a → b]h or [a b → c]h, where a, b, c ∈ Γ , but at least one
object evolution rule is of the second type. The corresponding class of recog-
nizer P systems was denoted by DAM0(mcmp,+c,−d,−n). Then we denote
by DAM0

c(mcmp,+c,−d,−n) the class of all counting polarizationless P sys-
tems with active membranes, with minimal cooperation and minimal production
in object evolution rules, with communication rules and division rules only for
elementary membranes, but without dissolution rules.

4 A solution to #SAT in DAM0
c(mcmp,+c,−d,−n)

In this section a uniform and polynomial-time solution to the counting problem
#SAT problem, a well-known #P-complete problem, is provided by means of
a family of counting membrane systems from DAM0

c(mcmp,+c,−d,−n). For
that, the solution to the SAT problem given in [17] by using a family of membrane
systems from DAM0(mcmp,+c,−d,−n) is adapted, basically, in what concerns
to the output stage.

Let us recall that the polynomial-time computable function (the Cantor pair
function) 〈n, p〉 = ((n+p)(n+p+1)/2)+n is a primitive recursive and bijective
function from N × N to N. The family Π = {Π(t) | t ∈ N} is defined in such
a manner that system Π(t) will process any Boolean formula ϕ in conjunctive
normal form (CNF) with n variables and p clauses, where t = 〈n, p〉, provided
that the appropriate input multiset cod(ϕ) is supplied to the system (through the
corresponding input membrane), and will answer how many truth assignments
make true the input formula ϕ.

For each n, p ∈ N, we consider the recognizer counting P system

Π(〈n, p〉) = (Γ,Σ, Φ,H, µ,M1,M2,R, iin)

from DAM0(mcmp,+c,−d,−n), defined as follows:

(1) Working alphabet Γ = {β , \} ∪ {αi | 0 ≤ i ≤ 2n+ 2p+ 1}∪
{ai,j , | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ i} ∪ {ai , γi | 0 ≤ i ≤ n− 1}∪
{bi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ i} ∪ {cj | 1 ≤ j ≤ p}∪
{dj | 2 ≤ j ≤ p} ∪ {ti,k, fi,k | 1 ≤ i ≤ n, i ≤ k ≤ n+ p− 1}∪
{Ti,k, Fi,k | 1 ≤ i ≤ n, 0 ≤ k ≤ n− 1} ∪ {Ti, Fi | 1 ≤ i ≤ n}∪
{xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n+ p}.

– 366 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

(2) Input alphabet Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
(3) Final alphabet Φ = {ai | 0 ≤ i ≤ n− 1}.
(4) H = {1, 2}.
(5) Membrane structure: µ = [[]2]1, that is, µ = (V,E) where V = {1, 2}

and E = {(1, 2)}.
(6) Initial multisets: M1 = {αn

0}, M2 = {β, bi,1, T p
i,0, F

p
i,0 | 1 ≤ i ≤ n }.

(7) The set of rules R consists of the following rules:

7.1 Rules for a general counter.
[αk −→ αk+1]1 , for 0 ≤ k ≤ 2n+ 2p

7.2 Rules to generate all truth assignments.
[bi,i]2 −→ [ti,i]2 [fi,i]2 , for 1 ≤ i ≤ n
[bi,k −→ bi,k+1]2 , for 2 ≤ i ≤ n ∧ 1 ≤ k ≤ i− 1

7.3 Rules to generate suitable objects in order to start the next stage.
[ti,k −→ ti,k+1]2
[fi,k −→ fi,k+1]2

}
1 ≤ i ≤ n− 1 ∧ i ≤ k ≤ n− 1

[Ti,k −→ Ti,k+1]2
[Fi,k −→ Fi,k+1]2

}
1 ≤ i ≤ n, 0 ≤ k ≤ n− 2

[Ti,n−1 −→ Ti]2
[Fi,n−1 −→ Fi]2

}
1 ≤ i ≤ n

7.4 Rules to filter out either Ti or Fi, according to each truth assignment.
[ti,k Fi −→ ti,k+1]2
[fi,k Ti −→ fi,k+1]2

}
1 ≤ i ≤ n ∧ n ≤ k ≤ n+ p− 2

[ti,n+p−1 Fi −→ \]2
[fi,n+p−1 Ti −→ \]2

}
1 ≤ i ≤ n

7.5 Rules to prepare the input formula for check clauses.
[xi,j,k −→ xi,j,k+1]2
[xi,j,k −→ xi,j,k+1]2
[x∗i,j,k −→ x∗i,j,k+1]2

1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n+ p− 1

7.6 Rules for the first checking stage.
[Ti xi,j,n+p −→ cj]2
[Ti xi,j,n+p −→ \]2
[Ti x

∗
i,j,n+p −→ \]2

[Fi xi,j,n+p −→ \]2
[Fi xi,j,n+p −→ cj]2
[Fi x

∗
i,j,n+p −→ \]2

1 ≤ i ≤ n ∧ 1 ≤ j ≤ p

7.7 Rules for the second checking stage.
[c1 c2 −→ d2]2
[dj cj+1 −→ dj+1]2 , for 2 ≤ j ≤ p− 1

7.8 Rules to prepare objects in the skin membrane.
[β dp −→ γ0]2
[γ0]2 −→ γ0 []2 , for 0 ≤ i ≤ n− 1

7.9 Rules to prepare objects encoding the binary output.
[γ2i −→ γi+1]1 , for 0 ≤ i ≤ n− 2
[α2n+2p+1 γi −→ ai,0]1 , for 0 ≤ i ≤ n− 1
[ai,j −→ ai,j+1]1 , for 1 ≤ i ≤ n− 1, 0 ≤ j ≤ i− 1

– 367 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

7.10 Rules to produce the output.
[ai,i]1 −→ ai []1 , for 0 ≤ i ≤ n− 1

(8) The input membrane is the membrane labelled by 2 (iin = 2) and the output
region is the environment.

4.1 An overview of the computation

It is easy to check that each P system Π(〈n, p〉) previously defined is determin-
istic.

We consider the polynomial encoding (cod, s) from #SAT in Π defined as
follows: let ϕ be a Boolean formula in conjunctive normal form. Let V ar(ϕ) =
{x1, · · · , xn} be the set of propositional variables and {C1, · · · , Cp} the set of
clauses of ϕ. Let us assume that the number of variables and the number of
clauses of the input formula ϕ, are greater than or equal to 2. Then, we define
s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj} ∪ {x∗i,j,0 | xi /∈ Cj ,¬xi /∈ Cj}

Notice that we can represent this multiset as a matrix, in such a way that the j-
th row (1 ≤ j ≤ p) encodes the j-th clause Cj of ϕ, and the columns (1 ≤ i ≤ n)
are associated with variables. We denote by codk(ϕ) the multiset cod(ϕ) when
the third index of all objects is equal to k.

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) with input
multiset cod(ϕ). Next, we informally describe how that system works.

The solution proposed is inspired by the solution provided to the SAT problem
in [17], consisting of the following stages:

– Generation stage: by applying division rules from 7.2, all truth assignments
for the variables {x1, . . . , xn} associated with ϕ are produced. This stage
takes exactly n computation steps and at the i-th step, 1 ≤ i ≤ n, of this
stage, division rule is triggered by object bi,i, producing two new membranes
with all its remaining contents replicated in the new membranes labelled by
2. Simultaneously to these divisions, objects ti,k, fi,k, Ti,k, Fi,k (by applying
rules from 7.3) and objects xi,j,k, xi,j,k, x∗i,j,k (by applying rules from 7.5)
evolve during this stage in such manner that at configuration Cn:
(a) There is a membrane labelled by 1 which contains n copies of object αn.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, the set codn(ϕ), the multiset {T p
i , F

p
i | 1 ≤ i ≤ n};

and a different subset {r1,n, . . . , rn,n}, being r ∈ {t, f}.
– Preparation of enough copies for each truth assignment : in this stage p copies

(p is the number of clauses of ϕ) of each truth assignment are prepared, in
order to allow the checking of the literal associated with each variable in
each clause. This is done by means of a filtering process applied over the
objects Ti and Fi (remember that we have p copies of both of them available
on each of the membranes after having applied rules from 7.3 over the initial
multiset). By using minimal cooperation and minimal production (applying

– 368 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

rules from 7.4), objects ti,k (respectively, object fi,k) are used to remove
all copies of Fi (respectively, Ti). This stage takes exactly p steps, and at
configuration Cn+p:
(a) The root membrane (labelled by 1) contains n copies of object αn+p.
(b) There are 2n membranes labelled by 2 such that each of them contains: a

copy of object β, n copies of the garbage object \, the set codn+p(ϕ), and
a different multiset {Rp

1, . . . , R
p
n}, being R ∈ {T, F}, which corresponds

to the truth assignment associated to this membrane.
– First Checking stage: by applying rules from 7.6, we check whether or not

each clause of the input formula ϕ is satisfied by the truth assignments
prepared in the previous stage, encoded by each membrane labelled by 2.
This stage takes exactly one computation step and at configuration Cn+p+1:
(a) The root membrane (labelled by 1) contains n copies of object αn+p+1.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, many copies of the garbage object \ (which they will
not evolve in the rest of the computation), and copies of objects cj whose
presence means that clause Cj is true for the truth assignment encoded
by that membrane.

– Second Checking stage: by applying rules from 7.7, we check whether or not
all clauses of the input formula ϕ are satisfied by some truth assignment
encoded by a membrane labelled by 2. This stage takes exactly p − 1 steps
and at configuration Cn+2p:
(a) The root membrane (labelled by 1) contains n copies of object αn+2p.
(b) There are 2n membranes labelled by 2 such that each of them contains:

a copy of object β, many copies of the garbage object \ (which they will
not evolve in the rest of the computation), and copies of objects dj and
cj , in such manner that the truth assignment encoded by such membrane
makes true ϕ if and only if contains some object dp.

– Output stage. Negative answer: if the input formula is not satisfiable, then
any rule from 7.8 is not applicable and from Cn+2p on, no rules are applied
in the system except those from 7.1 until reaching a halting configuration
at C2n+2p+1. Therefore, in this case, the system answers 0.

– Output stage. Affirmative answer: if the input formula is satisfiable, by ap-
plying rules from 7.8 some objects γ0 are produced at membrane labelled
by 1, Due to the semantics of these membrane systems, this stage takes
exactly two steps. Thus, at configuration Cn+2p+2 the multiplicity of γ0 in
the skin membrane equals to the number of truth assignment of variables
{x1, . . . , xn} that makes true ϕ. Next, by applying rules from 7.9, some ob-
jects γi, 0 ≤ i ≤ n− 1, with multiplicity 1 will be generated after, at most,
n− 1 computation steps. Then, at configuration C(n+2p+2)+n−1 = C2n+2p+1

at the skin membrane we have n copies of object α2n+2p+1 and some objects
γi, 0 ≤ i ≤ n− 1, with multiplicity 1. By applying the second rule from 7.9,
some objects ai,0 with multiplicity 1 are produced at that membrane. In
order to make deterministic the system, objects ai,0 evolves until ai,i by ap-
plying the third rules from 7.9. Finally, the system sends to the environment
the right answer according to the results of the previous stage, by applying

– 369 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

rules from 7.10, for instance, object ai,i is released to the environment as
object ai. This stage takes, at most, n computation steps. Specifically, if
object ai,0 appears in membrane 1 at configuration C2n+2p+2 then object ai
is sent out to the environment at i+ 1-th step of this stage.

5 Main results

Theorem 1. #SAT ∈ PCMSDAM0
c(mcmp,+c,−d,−n).

Proof. The family of P systems previously constructed verifies the following:

(a) Every system of the family Π belongs to DAM0
c(mcmp,+c,−d,−n).

(b) The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the amount of resources needed to build Π(〈n, p〉) is of a polynomial
order in n and p:
• Size of the alphabet: is of the order O(n2 · p2).
• Initial number of membranes: 2 ∈ Θ(1).
• Initial number of objects in membranes: 2np+ 2n+ 1 ∈ Θ(n · p).
• Number of rules: is of the order O(n2 · p2).
• Maximal number of objects involved in any rule: 3 ∈ Θ(1).

(c) The pair (cod, s) of polynomial-time computable functions defined fulfill the
following: for each input formula ϕ of the #SAT problem, s(ϕ) is a natural
number, cod(ϕ) is an input multiset of the system Π(s(ϕ)), and for each
n ∈ N, s−1(n) is a finite set.

(d) The family Π is polynomially bounded: indeed, for each input formula ϕ of
the #SAT problem, the P system Π(s(ϕ)) + cod(ϕ) takes at most n + 2p
computation steps in the case of the input formula is not satisfiable and, on
the contrary, takes at most 3n+2p+2 steps, n being the number of variables
of ϕ and p the number of clauses.

(e) The family Π is sound and complete with regard to (X, cod, s): indeed,
it is informally deduced from the overview of the computations previously
described.

Therefore, the family Π of P systems previously constructed solves the #SAT

problem in polynomial time in a uniform way.

Corollary 1. #P ⊆ PCMSDAM0
c(mcmp,+c,−d,−n).

Proof. It suffices to note that the #SAT problem is a #P-complete problem,
#SAT ∈ PCMSDAM0

c(mcmp,+c,−d,−n), and class PCMSDAM0
c(mcmp,+c,−d,−n) is

closed under polynomial-time reduction and under complement.

6 Conclusions

In order to provide a natural framework to solve counting problems in the context
of Membrane Computing, a new class of membrane systems, called counting

– 370 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

membrane systems, is presented in this paper. The new kind of models is inspired
from counting Turing machines [19] and from recognizer membrane systems [12].

The computational efficiency of the new variant has been explored. Specifi-
cally, a polynomial-time and uniform solution to the #SAT problem, a well-known
#P-complete problem, is provided by using a family of counting polarizationless
P systems with active membranes, without dissolution rules and division rules
for non-elementary membranes but where very restrictive cooperation (minimal
cooperation and minimal production) in object evolution rules is allowed.

As future works we suggest to analyze the computational efficiency of count-
ing membrane systems from the previous class but where minimal cooperation
and minimal production only is considered for communication rules (maybe only
send-in rules or only send-out rules) instead of object evolution rules, following
the work initiated in [18]. Besides, it would be interesting, from a computational
complexity point of view, to explore the ability to use separation rules (distri-
bution of objects) instead of division rules (replication of objects) in counting
membrane systems, from a computational complexity point of view.

References

1. A. Alhazov, L. Pan. Polarizationless P systems with active membranes. Grammars,
7 (2004), 141-159.

2. A. Alhazov, L. Pan, Gh. Păun. Trading polarizations for labels in P systems with
active membranes. Acta Informatica, 41, 2-3 (2004), 111-144.

3. A. Alhazov, L. Burtseva, S. Cojocaru, Y. Rogozhin. Solving PP-Complete and
#P-Complete Problems by P Systems with Active Membranes. In D. Wolfe Corne,
P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa (eds.). Membrane Computing 9th
International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised
Selected and Invited Papers. Lecture Notes in Computer Science, 5391 (2009),
108-117.

4. M.R. Garey, D.S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

5. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In
R. Freund, Gh. Păun, Gr. Rozenberg, A. Salomaa (eds.). Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Re-
vised Selected and Invited Papers, Lecture Notes in Computer Science, 3850 (2006),
224-240.

6. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M.J. Pérez-Jiménez. Uniform solu-
tions to SAT and Subset Sum by spiking neural P systems. Natural Computing, 8,
4 (2009), 681-702.

7. Gh. Păun. Computing with membranes, Journal of Computer and Systems Science,
61, 1 (2000), 108-143.

8. Gh. Păun. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, 94-115.

9. Gh. Păun. P systems with active membranes: attacking NP-complete problems,
Journal of Automata, Languages and Combinatorics, 6 (2001), 75-90.

– 371 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

10. Gh. Păun, M.J. Pérez-Jiménez, Gr. Rozenberg. Spike trains in spiking neural P
systems. International Journal of Foundations of Computer Science, 17, 4 (2006),
975-1002.

11. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P systems with cell divi-
sion. International Journal of Computers, Communications & Control, Vol. III, 3
(2008), 295-303.

12. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265-285.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. A polynomial com-
plexity class in P systems using membrane division, Journal of Automata, Lan-
guages and Combinatorics, 11, 4 (2006) 423-434.

14. P. Sośık, A. Rodŕıguez-Patón. Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences, 73 (2007),
137–152.

15. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.A. Mart́ınez-del-Amor, A. Riscos-
Núñez, M.J. Pérez-Jiménez. Polarizationless P systems with active membranes:
Computational complexity aspects. Journal of Automata, Languages and Combi-
natorics, 21, 1-2 (2016), 107–123.

16. L. Valencia-Cabrera, D. Orellana-Mart́ın, A. Riscos-Núñez, M.J. Pérez-Jiménez.
Minimal cooperation in polarizationless P systems with active membranes. In C.
Graciani, Gh. Păun, D. Orellana-Mart́ın, A. Riscos-Núñez, L. Valencia-Cabrera
(eds.) Proceedings of the Fourteenth Brainstorming Week on Membrane Computing,
1-5 February, 2016, Sevilla, Spain, Fénix Editora, pp. 327-356.

17. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.A. Mart́ınez-del-Amor, A. Riscos-
Núñez, M.J. Pérez-Jiménez. Reaching efficiency through collaboration in mem-
brane systems: dissolution, polarization and cooperation. Theoretical Computer
Science, in press, 2017.

18. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.A. Mart́ınez-del-Amor, A. Riscos-
Núñez, M.J. Pérez-Jiménez. Cooperation in transport of chemical substances: A
complexity approach. Fundamenta Informaticae, in press, 2017.

19. L.G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8, 2 (1979), 189-201.

20. G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe. Real-Life Modelling with Membrane
Computing. Series: Emergence, Complexity and Computation, Volume 25. Springer
International Publishing, 2017, X + 367 pages.

– 372 –

