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Abstract. The connections between the E(5)—models (the original E(5) using an infinite square
well, E(5) — %, E(5) — B and E(5) — 8®), based on particular solutions of the geometrical Bohr
Hamiltonian with y-unstable potentials, and the interacting boson model (IBM) are explored. For
that purpose, the general IBM Hamiltonian for the U(5) — O(6) transition line is used and a
numerical fit to the different E(5)—models energies is performed. It is shown that within the IBM
one can reproduce very well all these E(5)—models. The agreement is the best for E(5) — g*
and reduces when passing through E(5) — 8%, E(5) — B® and E(5), where the worst agreement
is obtained (although still very good for a restricted set of lowest lying states). The fitted IBM
Hamiltonians correspond to energy surfaces close to those expected for the critical point.
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INTRODUCTION

Both, the Bohr-Mottelson (BM) collective model [1] and the interacting boson model
(IBM) [2] have thoroughly been used to study the same kind of nuclear structure
problems. Although very different in their formulation, the two models present clear
relationships. Both models have three particular cases that can be easily solved and for
which a clear correspondence can be done: 1) spherical nucleus, ii) y-unstable deformed
rotor and, 1i1) axial rotor. For transitional situations and, especially in the phase transition
areas, the correspondence between the two models is difficult [3]. This suggests, for the
case of transitional Hamiltonians, to look for the connection between BM and IBM
through numerical studies.

In this work and in Ref. [4], we concentrate on E(5) and related models: the original
E(5) (infinite square well potential) [5] and, E(5) with a potential 84,8 and, B3,
respectively [6]. All these models are produced in the BM scheme and a natural question
is to ask for the corresponding equivalence in the IBM. Is the IBM able to produce the
same spectra and transition rates? If yes, does the IBM Hamiltonian correspond to a
critical point? This work is intended to answer these questions for those models and
analyze the convergence as a function of the boson number. This procedure will allow
to establish the IBM Hamiltonian which best fits the different £(5)—models and their
relation with the critical points.
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THE IBM FIT TO E(5)—MODELS

The most general, including up to two-body terms, IBM Hamiltonian can be written in
multipolar form as,

H = Sdﬁd+KoﬁTﬁ+Kli~i+K2QA~Q+K3f3~f3+1€4f4~f4 )]

where the definition of the different operators can be found in Ref. [7].

The E(5)—models are intended to be of use for y-unstable nuclei having O(5) as
symmetry algebra. For the construction of an IBM y-unstable transitional Hamiltonian
it is sufficient to impose in Eq. (1) k&, = 0. If additionally, we want to construct an
IBM transitional Hamiltonian that preserves the O(5) symmetry we have to impose the
constraint kK — k3/10 — x4 /14 = 0 [4]. In practice, we do not impose the later restriction
but, as it will be shown, this condition will be fulfilled in every fit. It is worth noting that
in Ref. [4] we used the extra constraint x4y = 0 for simplicity and, the raised conclusions
are qualitatively identical to the ones obtained in the present contribution.
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FIGURE 1. x? for the IBM fit to the energy levels of the different E(5)-models, as a function of N.

In order to perform the fit, we minimize a standard x> function for the energies, using
&4, Ko, K1, K3, and Ky as free parameters and x» fixed to zero. We have done fits of
the IBM Hamiltonian (1) parameters, as a function of N, so as to reproduce as well as
possible the energies generated by the different £(5)—models (see Ref. [4] for more
details about the fitting procedure). The value of the 2 for a best fit to the different
E(5)—models as a function of N is shown in Fig. 1. It is clearly observed that for any
N the agreement between the fitted IBM and the E(5) — B* model is excellent and is
getting worse for E(5) — 8%, E(5) — B2, up to reach E(5) which is the worst case. In
particular x%(E(5) — B*) ~ x?(E(5))/50. It is worth noting that these results change
slowly with the boson number and in all cases the y? value is approximately constant,
except for E(5) — B* which is decreasing. If the calculations are extended to N = 1000

279



TABLE 1. Parameters of the IBM Hamiltonians used in table 2.
| [ & o] w | & | |
E(5) 251.84 | 0.16 | 23.5570 | -16.6450 | 352.83
— B3| 1499.20 | 27.11 | 12.8750 | 4.0282 | 174.52

5)
5)—B° | 2482.80 | 42.66 | 43049 | 10.1250 | 46.08
5)—B* | 2543.00 | 39.92 | 0.7143 6.2221 1.29

E(
E(
E(

bosons (see Ref. [4]) one observes how xz values will continue having finite values,
close to the ones given in figure 1, except for the case E(5) — B* which decreases and, it
is expected to vanish for N — oo, as it was shown in Ref. [8].

To have a clearer idea of the degree of agreement between the fitted IBM results with
the data from the E(5)—models we analyze the case of N = 60. In Table 1 we give the
parameters of the Hamiltonian. Note that the best fit parameters give rise approximately
to the cancellation of the quadratic Casimir operator for O(3), i.e. k) — k3/10—x4/14 =
0. This condition is approximately fulfilled for any number of bosons.

In Table 2 we present the value of the energies for N = 60. The agreement for
E(5)—B* E(5)— B, and E(5) — B® is really remarkable for all the states. Only in
the case of E(5), one can observe small discrepancies in the & = 2 and £ = 3 bands,
while for & = 1 the agreement is perfect. This impressive one-to-one correspondence
between the IBM and the E(5)— states, at least for some bands, suggests the existence
of an underlying phenomenon similar to the quasidynamical symmetry [3, 9] which is
called quasi-critical point symmetry [4].

Once the parameters of the Hamiltonian have been fixed we check the wave functions
through the calculations of the relevant B{E2) values. For all the cases, the agreement
between the IBM calculations and the E(5)— counterpart is reasonable [4].

Another consequence of the excellent agreement between the £(5)—models and the
IBM is that it is impossible to discriminate, from a experimental point of view, between
a £(5)—model and its IBM counterpart.

THE CRITICAL HAMILTONIAN

One of the most attractive features of the E(5)—models is that they are supposed
to describe, at different approximation levels, the critical point in the transition from
spherical to deformed y-unstable shapes. Since they are connected to a given IBM
Hamiltonian, as shown in the preceding section, this should correspond to the critical
point in the transition from U(5) to O(6) IBM limits. Is this the case for the fitted IBM
Hamiltonians obtained in the preceding section?

To analyze critical points and phase transitions in the IBM, one of the options is to
use the intrinsic state formalism [10] which introduces the shape variables (8,7) in the
IBM. Due to the characteristics of the Hamiltonian we are working on, we can only
observe second order phase transitions. To know if we have a critical Hamiltonian, it
is convenient to use the concept of IBM “essential” parameters (ry,r2) [11], directly
related with the parameters of the Hamiltonian (1), that allows to quantify the closeness
to a critical point. In particular, in our case r, always vanishes (because x», = () while r;
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TABLE 2. Comparison of energy levels for fitted IBM Hamiltonians, with N = 60, com-
pared with those provided by the E(5)-models (see text).

| | &7 E® | IBM || EG)-B® | IBM || E(5-8 | IBM || E(5)-6*| IBM

07 | 1.0 || 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000
27| 11 1.000 | 1.000 1.000 | 1.000 1.000 | 1.000 1.000 | 1.000
47| 1,2 || 2199 | 2.196 2.157 | 2.156 2.135 | 2.137 2.093 | 2.092
27| 12 || 2199 | 2.195 2.157 | 2.156 2.135 | 2.137 2.093 | 2.092
0; | 2.0 || 3.031 | 3.035 2.756 | 2.757 2,619 | 2.622 2390 | 2.389
67|13 3.590 | 3.587 3.459 | 3.457 3.391 | 3.393 3.265 | 3.264
47113 3.590 | 3.586 3.459 | 3.457 3.391 | 3.393 3.265 | 3.264
37113 3.590 | 3.586 3.459 | 3.457 3.391 | 3.393 3.265 | 3.264
07 | 13 3.590 | 3.586 3.459 | 3.456 3.391 | 3.393 3.265 | 3.264
27| 21 4.800 | 4.761 4255 | 4.235 4.012 | 3.977 3.625 | 3.632
6, | 14 5.169 | 5.172 4.894 | 4.896 4.757 | 4.756 4.508 | 4.508
57| 14 5.169 | 5.172 4.894 | 4.895 4.757 | 4.756 4.508 | 4.508
47| 14 5.169 | 5.172 4.894 | 4.895 4.757 | 4.756 4.508 | 4.508
2, | 14 5.169 | 5.171 4.894 | 4.895 4.757 | 4.756 4.508 | 4.508
47 | 22 || 6780 [ 6.683 5.874 | 5.843 5.499 | 5.424 4918 | 4935
27| 22 || 6.780 | 6.683 5.874 | 5.843 5.499 | 5.424 4918 | 4935
0y | 3.0 || 7577 | 7.522 6.364 | 6.372 5.887 | 5.805 5.153 | 5.176
27 | 3.1 |[ 10.107 | 9.974 8.269 | 8.293 7.588 | 7.448 6.563 | 6.606

is defined as,

—Ko+ (€4 + 6K+ 2K+ 2Kka)/(N—1)

— . 2)
KO“"%7C4+(8d+6K1+%K3+%K3)/(N—1)

n

In this language, a critical Hamiltonian corresponds to r1 = 0. In figure 2 the values of
r1 as a function of N for the IBM Hamiltonians obtained from the fit are presented for
the different studied E(5)—models. In all the cases it is observed an approximation to
r1 = 0 as the number of bosons increase. For the E(5) — B* model it is known that r; = 0
is reached for very large number of bosons [§].

CONCLUSIONS

In this paper, we have studied the connection between the E(5)—models and the IBM
on the basis of a numerical mapping between both models. We have shown that it is
possible, in all cases, to establish a one-to-one mapping between the £(5)—models and
the IBM with a remarkable agreement for the energies and the B(E2) values. Globally,
the best agreement is obtained for the E(5) — 8* Hamiltonian and the worst for the E(5)
case. All this suggests the presence of an underlying quasi-critical point symmetry [4].

Another consequence of this excellent agreement is that it is impossible, from a
experimental point of view, to discriminate between a E(5)-model and its corresponding
IBM Hamiltonian when only few low-lying states are considered.

We have also proved that all the E(5)—models correspond to IBM Hamiltonians very
close to the critical area, |rq| < 0.05. Therefore, one can say that the E(5)—models are
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FIGURE 2. Values of r1 (see text for definition) as a function of N for the fitted IBM Hamiltonians.

appropriate to describe transitional y—unstable regions close to the critical point.
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