
Accelerated Simulation of P Systems

on the GPU: A Survey

Miguel A. Mart́ınez-del-Amor, Luis F. Maćıas-Ramos, Luis Valencia-Cabrera,
Agust́ın Riscos-Núñez, and Mario J. Pérez-Jiménez

Research Group on Natural Computing, Dept. Computer Science and Artificial
Intelligence, University of Seville Avda. Reina Mercedes S/N, 41012, Sevilla, Spain

{mdelamor,lfmaciasr,lvalencia,ariscosn,marper}@us.es

Abstract. The acceleration of P system simulations is required increas-
ingly, since they are at the core of model verification and validation pro-
cesses. For this purpose, GPU computing is an alternative to more classic
approaches in Parallel Computing. It provides a manycore platform with
a level of high parallelism at a low cost. In this paper, we survey the
developments of P systems simulators using the GPU, and analyze some
performance considerations.

Keywords: Membrane Computing, Parallel Computing, GPGPU.

1 Introduction

Membrane Computing [13,14] defines a set of bio-inspired computing devices
called P systems. They have several syntactic ingredients: a membrane structure
which delimits regions where multisets of objects and sets of evolution rules are
placed. P systems have also two main semantic ingredients: their inherent paral-
lelism and non-determinism. The objects inside the membranes evolve according
to given rules in a synchronous (in the sense that a global clock is assumed),
parallel, and non-deterministic way.

In order to experimentally validate P systems based models [4], it is necessary
to develop simulators that can help researchers to compute, analyze and extract
results from them [14]. These simulators have to be as efficient as possible to
handle large-size instances, which is one of the major challenges facing today’s
P systems simulators. In this concern, this parallel computation model leads to
looking for a massively-parallel technology by which a parallel simulator can
run efficiently. For example, current Graphics Processor Units (GPUs) [6] are
massively parallel processors, featuring thousands of cores per chip [7].

In this paper, we survey the development of P systems simulators on the GPU,
specially those available at the PMCGPU project [16].

The paper is structured as follows: Section 2 introduces the parallel simula-
tion of P systems, and surveys GPU computing; Section 3 depicts the developed
simulators for P systems on the GPU; and finally, Section 4 provides some con-
clusions and future research lines.



2 Solutions in High Performance Computing

According to [5], a good computing platform for simulating P systems should
provide a balance between performance, flexibility, scalability, parallelism and
cost. However, it is difficult for a computing platform to conform with all of
them. A factor promoting one attribute might demote another. In fact, flexibility
usually comes at expenses of both performance and scalability [8].

Concerning the types of computing platforms for simulating P systems, there
are mainly three to mention [8]: Sequential (e.g. Java, C++, etc.), Software-based
parallel (e.g. OpenMP, MPI, etc.), Hardware-based parallel (e.g. FPGAs, etc.).
When designing parallel simulators for P systems, a developer has to deeply an-
alyze the platform, and adopt different approaches to implement real parallelism
of P systems. Today, a well-known parallel platform in HPC (High Performance
Computing) is the GPU (Graphics Processor Unit), that contains thousands
of computing processors. In this sense, NVIDIA GPUs can be programmed by
using CUDA (Compute Unified Device Architecture) [15,7], which offers a pro-
gramming model that abstracts the GPU architecture.

According to the CUDA programming model, the GPU (or device) run thou-
sands of threads executing the same code (called kernel) in parallel. The threads
are arranged within a grid in a two-level hierarchy: a grid contains a set of thread
blocks, and each block can contain hundreds of threads. All blocks in a grid have
the same number and organization of threads. The execution of threads inside a
block can be synchronized by barrier operations, and threads of different blocks
can be synchronized only by finishing the execution of the kernel.

The memory hierarchy in CUDA must be manually managed. There are
mainly two to mention: global and shared memories. Global memory is the largest
but the slowest memory in the system, whereas shared memory is the smallest
but fastest memory. The latter is key to speedup a code. Moreover, the memory
is static, so enough memory space has to be allocated before running a kernel.
This is often accomplished by considering the worst case (in space) of a problem.

The real GPU architecture consists of a processor array, organized in Stream-
ing Multiprocessors (SMs) of Streaming Processors (SPs, or cores). SMs execute
threads in groups of 32, called a warp. Threads of the same warp must start
together at the same program address. However, they are free to branch and
execute independently, but at cost of performance. If a warp is broken (because
of branching or memory stall), the real parallelism in CUDA is not achieved.

Although CUDA programming model is flexible enough, the achieved perfor-
mance depends on the design and implementation. There are several strategies
to help improving performance: emphasizing parallelism (warps must be max-
imized with active threads, but minimizing branch divergence), and exploiting
memory bandwidth (by coalesced access to contiguous memory positions).

Therefore, GPUs entail a software-based parallel computing platform, but
with hardware flavor: only by optimizing the code for the GPU architecture
can it achieve best performance. The GPU is considered as a relatively low cost
technology, leveraging: good performance, an efficiently synchronized platform
with a medium scalability degree, and low-medium flexibility.



3 Parallel Simulators on the GPU

Next, we briefly survey the parallel simulators available in the PMCGPU (Par-
allel simulators for Membrane Computing on the GPU) project [9,16].

PCUDA [1,9]: This simulator is designed for recognizer (confluent) P sys-
tems with active membranes. The parallel design takes advantage of the double-
parallelism in GPUs to speedup the simulation of the double-parallelism in P
systems: each thread block is assigned to each elementary membrane, and each
thread is assigned to a portion of the objects defined in the alphabet (rules in this
model does not have cooperation). The simulator allocates memory for all the
defined objects within each membrane. Although this is the worst case to deal
with, it does not take place in the most P systems. Thus, the achieved perfor-
mance depends on the simulated P system. Two case studies has been simulated
[9]: a simple test P system designed to stress the simulator (A), and a solution
to SAT problem with active membranes [2] (B). The experiments report up to
7x of speedup for case study A, and 1.67x for B. Therefore, PCUDA simulators
are highly flexible, but have low performance and low scalability.

PCUDASAT [2,3,9]: It is a set of simulators for a family of P systems with
active membranes solving SAT in linear time [2]. The simulation algorithm is
based on the stages identified in the solution, and so, in the computation of
any P system in the family. The code is tailored to this family, saving space in
the representation of objects, and avoiding storing the rules (they are implicit
in the code). In the design, each thread block is assigned to each elementary
membrane, and each thread to each object of the input multiset. The CUDA
simulator achieves up to 63x of speedup. Although PCUDASAT simulators are
less flexible, the performance and scalability have been increased, compared to
PCUDA, for this special case study.

TSPCUDASAT [11,9]: It simulates a family of tissue-like P systems with
cell division solving SAT in linear time. The simulation algorithm is based, as in
PCUDASAT, in the 5 stages of the computation of the P systems. In the design,
each thread block is assigned to each cell, but threads are used differently in
each stage. Experiments show that the CUDA simulator achieves up to 10x.
Therefore, simulating in CUDA two solutions to the same problem (SAT) under
different P system variants leads to different speedups. Indeed, the usage of
charges can help to save space devoted to objects.

ABCD-GPU [12,10,9]: These simulators are for Population Dynamics P sys-
tems, both on OpenMP and CUDA. They follow the DCBA algorithm [12], which
is based on four phases. The multicore version is parallelized in three ways [10]:
1) simulations, 2) environments and 3) hybrid approach. Runtime gains of up
to 2.5x, using 1), were achieved with a 4-core CPU. The design of the CUDA
simulator is as follows [12]: environments and simulations are distributed along
thread blocks, and rule blocks among threads. Phases 1, 3 and 4 of DCBA were
efficiently executed on the GPU, however Phase 2 was poorly accelerated (it is
inherently sequential), becoming the bottleneck. The GPU simulator were bench-
marked by a set of randomly generated PDP systems, achieving speedups of up
to 7x. Experiments indicate the simulations are memory-bandwidth bound.



4 Conclusions and Future Work

The idea of using the CUDA to develop P systems simulators is to take advantage
of the highly parallel architecture, the low cost and the easy synchronization of
a GPU.

Flexible CUDA simulators for P systems (PCUDA and ABCD-GPU) stati-
cally allocate memory to represent objects using as worst case the whole alpha-
bet. Although it is a naive solution, the access to data is made very efficiently.
However, the performance of the simulator totally depends on the simulated P
system, since the representation of multisets can be very sparse. There are two
measures for P systems associated with performance [9]: density of objects per
membrane (the ratio of number of objects actually appearing in the regions to
the alphabet size), and rule intensity (the ratio of rules being applied to the
total amount of rules). They should be maximized for better speedups.

Moreover, it has been shown that P systems simulations are both memory and
memory-bandwidth bound: the performance of the simulation is relatively low
compared with the computing resources available in the GPU. The main reasons
are that simulating P systems requires a high synchronization degree (e.g. the
global clock of the models, handling rule cooperation and rules competition,
etc.), and the number of instructions to execute per memory portion is small.
They restrict the design of parallel simulators, since a bad step taken on GPU
programming can dramatically demote performance.

Therefore, further improvements of the designs have to be done, so that next
generation of simulators on the GPU can take advantage of the full hardware
and efficiently encode the representation of P systems.

Acknowledgements. The authors acknowledge the support of the Project
TIN2012-37434 of the “Ministerio de Economı́a y Competitividad” of Spain,
cofinanced by FEDER funds. M.A. Mart́ınez-del-Amor also acknowledges the
support of NVIDIA for the CUDA Research Center program at the University
of Seville, and of the 3rd postdoctoral phase of the “PIF” program associated
with the Project of Excellence under grant P08-TIC04200 of the “Junta de An-
dalućıa”.

References

1. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A.,
Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with Active Mem-
branes on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)

2. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A.,
Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient so-
lution to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6),
317–325 (2010)

3. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A.,
Pérez-Jiménez, M.J., Ujaldón, M.: The GPU on the simulation of cellular com-
puting models. Soft Computing 16(2), 231–246 (2012)



4. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J.: Applications of Membrane
Computing in Systems and Synthetic Biology. Series: Emergence, Complexity and
Computation, vol. 7. Springer (2014)

5. Gutiérrez, A., Alonso, S.: P systems: from theory to implementation, ch. 17,
pp. 205–226 (2010)

6. Harris, M.: Mapping computational concepts to GPUs. In: ACM SIGGRAPH 2005
Courses, NY, USA (2005)

7. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands on
Approach, MA, USA (2010)

8. Nguyen, V., Kearney, D.A., Gioiosa, G.: Balancing performance, flexibility, and
scalability in a parallel computing platform for membrane computing applications.
In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2007. LNCS, vol. 4860, pp. 385–413. Springer, Heidelberg (2007)

9. Mart́ınez-del-Amor, M.A.: Accelerating Membrane Systems Simulators using High
Performance Computing with GPU. Ph.D. thesis, University of Seville (2013)

10. Mart́ınez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J., Elster,
A.C.: Parallel simulation of probabilistic P systems on multicore platforms. In:
Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II,
pp. 17–26 (2012)

11. Mart́ınez-del-Amor, M.A., Pérez-Carrasco, J., Pérez-Jiménez, M.J.: Characteriz-
ing the parallel simulation of P systems on the GPU. International Journal of
Unconventional Computing 9(5-6), 405–424 (2013)

12. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population Dynamics P Systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg
(2012)

13. Păun, G.: Computing with Membranes. Journal of Computer and System
Sciences 61(1), 108–143 (2000) and Turku Center for CS-TUCS Report No. 208
(1998)

14. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, USA (2010)

15. NVIDIA CUDA website (2014), https://developer.nvidia.com/cuda-zone
16. The PMCGPU project (2013), http://sourceforge.net/p/pmcgpu

https://developer.nvidia.com/cuda-zone
http://sourceforge.net/p/pmcgpu

	Accelerated Simulation of P Systemson the GPU: A Survey
	1 Introduction
	2 Solutions in High Performance Computing
	3 Parallel Simulators on the GPU
	4 Conclusions and Future Work
	References




