
A Kernel-Based Membrane Clustering
Algorithm

Jinyu Yang1, Ru Chen1, Guozhou Zhang1, Hong Peng1, Jun Wang2,
and Agust́ın Riscos-Núñez3

1 School of Computer and Software Engineering, Xihua University,
Chengdu 610039, Sichuan, China

ph.xhu@hotmail.com
2 School of Electrical and Information Engineering, Xihua University,

Chengdu 610039, Sichuan, China
3 Research Group of Natural Computing,

Department of Computer Science and Artificial Intelligence,
University of Seville, 41012 Sevilla, Spain

Abstract. The existing membrane clustering algorithms may fail to
handle the data sets with non-spherical cluster boundaries. To overcome
the shortcoming, this paper introduces kernel methods into membrane
clustering algorithms and proposes a kernel-based membrane cluster-
ing algorithm, KMCA. By using non-linear kernel function, samples in
original data space are mapped to data points in a high-dimension fea-
ture space, and the data points are clustered by membrane clustering
algorithms. Therefore, a data clustering problem is formalized as a ker-
nel clustering problem. In KMCA algorithm, a tissue-like P system is
designed to determine the optimal cluster centers for the kernel cluster-
ing problem. Due to the use of non-linear kernel function, the proposed
KMCA algorithm can well deal with the data sets with non-spherical
cluster boundaries. The proposed KMCA algorithm is evaluated on nine
benchmark data sets and is compared with four existing clustering algo-
rithms.

1 Introduction

Membrane computing, introduced by Pǎun [1], was inspired by the structure and
functioning of living cells and their cooperation in tissues, organs, and biological
neural networks [2]. Membrane computing is a class of distributed parallel com-
puting models, known as P systems or membrane systems. In the past, a variety
of variants of P systems have been proposed [3–11], and they have been applied to
real-world problems, for example, robots [12,13], image processing [14–17], signal
processing [18–20], fault diagnosis [21–25], ecology and system biology [26–28].

Clustering is a class of machine learning techniques, which is the task of find-
ing natural partitioning within a data set such that patterns within the same
cluster are more similar than those within different clusters. Membrane cluster-
ing algorithms (MCA) are a kind of partitioning clustering algorithms realized in

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00265-7_25&domain=pdf

the framework of membrane computing. In recent years, a number of membrane
clustering algorithms have been developed. Zhao et al. [29] discussed an improved
clustering algorithm that used a cell-like membrane system to realize classical k-
medoids algorithm. In Peng et al. [30], an evolution-communication membrane
system has been used to propose a fuzzy cluster approach, called Fuzzy-MC.
Two automatic membrane clustering algorithms were discussed [31,32], where
an object representation with control bits and a membrane system with active
membranes, respectively, were used to realize the corresponding automatic clus-
tering mechanisms. Peng et al. [33] presented a multiobjective fuzzy clustering
approach based on tissue-like membrane systems. The experimental results on a
lot of benchmark datasets have shown that compared to the existing clustering
algorithms, membrane clustering algorithms offer a more competitive approach
due to three advantages: good clustering performance, better convergence and
stronger robustness. However, the existing membrane clustering algorithms have
a shortcoming: their cluster boundaries are spherical. Therefore, these membrane
clustering algorithms may suffer a low clustering quality for the data sets with
non-spherical cluster boundaries.

To overcome the critical shortcoming, this paper introduces kernel methods
[34] into membrane clustering algorithms and proposes a kernel-based membrane
clustering algorithm, called KMCA. Based on the principle of kernel methods,
data samples are mapped to a high-dimensional feature space by a non-linear
kernel function, and then KMCA algorithm is realized in the high-dimensional
feature space. Due to the use of nonlinear kernel function, KMCA algorithms
have a non-spherical cluster boundary. Meanwhile, KMCA algorithms can hold
the advantages of membrane clustering algorithms, for example, good clustering
performance, better convergence and stronger robustness, even if for the data
sets with non-spherical cluster boundaries.

The remainder of this paper is organized as follows. Section 2 discusses in
detail the proposed kernel-based membrane clustering algorithm. Experimental
results are provided in Sect. 3. Conclusions are given in Sect. 4.

2 KMCA Algorithms

2.1 Kernel Clustering Problems

Let X = {x1, x2, . . . , xn} be a data set of n data points in Rd, where xi =
(xi1, xi2, . . . , xid), i = 1, 2, . . . , n. The data set X is partitioned into k clusters,
C1, C2, . . . , Ck. Denote by z1, z2, . . . , zk the centers of the k clusters, respectively.
In classical k-means algorithm, the objective function to be optimized is as fol-
lows:

Jm(z1, z2, . . . , zk) =
k∑

i=1

∑

xj∈Ci

||xj − zi||2 (1)

Based on the principle of kernel methods, data set X is mapped
into a high-dimension feature space by a nonlinear function φ(x).

Let Y = {φ(x1), φ(x2), . . . , φ(xn)} be the mapped data set. In the feature space,
the distance between φ(xi) and φ(xj) can be computed as follows:

d(φ(xi), φ(xj)) = ||φ(xi) − φ(xj)|| =
√

K(xi, xi) − 2K(xi, xj) + K(xj , xj) (2)

where K(xi, xj) is called kernel function. The widely used kernel functions are:
linear kernel function, polynomial kernel function, Gaussian kernel function and
sigmoid kernel function. Gaussian kernel function is defined by

K(xi, xj) = exp
(

− ||xi − xj ||2
2σ2

)
(3)

where σ > 0 is the width of Gaussian kernel. Therefore, kernel clustering problem
can be viewed as the following optimization problem:

min
z1,z2,...,zk

J(z1, z2, . . . , zk) =
k∑

i=1

∑

xj∈Ci

(
K(xj , xj) − 2K(xj , zi) + K(zi, zi)

)
(4)

Fig. 1. (a) MCA algorithm; (b) Proposed KMCA algorithm

2.2 Basic Idea

Figure 1(a) shows the principle of the existing membrane clustering algorithms
(MCA), where an object in P systems is used to denote a set of candidate

cluster centers. Based on the objective function (1), a P system is considered
to determine the optimal cluster centers. However, a shortcoming that MCA
algorithm suffers from is that it may fail to deal with the data sets with non-
spherical cluster boundaries.

To overcome the shortcoming, this paper presents a kernel-based membrane
clustering algorithm, KMCA. In KMCA, data set X in original data space is
mapped to a high-dimension feature space by a non-linear map φ, shown in
Fig. 1(b). Assume that Y is the mapped data set in the feature space, i.e., Y =
{φ(x1), φ(x2), . . . , φ(xn)}. KMCA algorithm will design a tissue-like P system to
solve the kernel clustering problem (3), i.e., determining an optimal set of cluster
centers. Although cluster boundaries obtained by tissue-like P system are still
spherical in the feature space, KMCA algorithm can well handle the data sets
with non-spherical cluster boundaries due to using nonlinear mapping φ that is
expressed implicitly by kernel function.

2.3 Algorithm Implementation

The proposed KMCA algorithm is based on a tissue-like P system, which is
designed to solve the kernel clustering problem (3). The tissue-like P system
consists of q cells, and is defined as follows

Π = (O,w1, . . . , wq, R1, . . . , Rq, R
′, i0) (5)

where

(1) O is a finite non-empty alphabet (of objects);
(2) wi(1 ≤ i ≤ q) is finite set of objects initially present in cell i;
(3) Ri(1 ≤ i ≤ q) is finite set of evolution rules in cell i;
(4) R′ is finite set of communication rules of the form (i, u/v, 0), which denotes

communication rule between cell i and the environment, i = 1, 2, . . . , q;
(5) i0 indicates the output region of the system.

In what follows, we describe in detail several components of the tissue-like P
system.

(1) Object presentation

The role of the designed tissue-like P system is to search the optimal cluster
centers, so its each object is used to express a group of candidate cluster centers.
Let Z = {z1, z2, . . . , zk} is a set of candidate cluster centers, and each center zi
is a d-dimension vector, zi = (zi1, zi2, . . . , zid) ∈ Rd, i = 1, 2, . . . , k. Thus, each
object in cells can be formally expressed by

Z = (z11, z12, . . . , z1d, z21, z22, . . . , z2d, . . . , zk1, zk2, . . . , zkd) (6)

In the designed tissue-like P system, each cell has a best object, and denote
by Zi

best the best object in ith cell, i = 1, 2, . . . , k. There is an object in the
environment, Zbest, which is the best object in entire system.

(2) Evaluation mechanism

In the designed tissue-like P system, an improved velocity-position model is
used to evolve the objects in cells. The improved velocity-position model can be
described as follows.

{
Vi = w · Zi + c1r1(Pi − Zi) + c2r2(Zi

best − Zi) + c3r3(Zbest − Zi)
Zi = Zi + Vi

(7)

where Pi is the best position of object Zi found so far, w is inertia weight,
c1, c2, c3 are learning factors, and r1, r2, r3 are three random real numbers in
[0,1]. In the implementation, the following decreasing strategy of inertia weight
is used:

w = wmax − (wmax − wmin)t/tmax (8)

where wmax = 0.9, wmin = 0.4, and tmax is maximum computing step number
(or maximum iteration number).

(3) Communication mechanism

The tissue-like P system uses communication mechanism to achieve the exchange
and sharing of objects between each cell and the environment. The communica-
tion mechanism usually is provided by communication rules. In the tissue-like P
system, the used communication rule is described as follows:

< i, Zi
best/Zbest, 0 >, i = 1, 2, . . . , q (9)

The communication rule indicates that Zi
best in cell i is transported into the envi-

ronment to update its best object, and Zbest in the environment is transported
into cell i for object evolution at next step.

(4) Halting and output

The designed tissue-like P system adopts a simple halting condition, namely,
maximum computing step number. The tissue-like P system will continue to
execute until the halting condition is reached, thus, the system halts. When the
system halts, the best object stored in the environment (i0 = 0) is regarded as
final computing result, namely, the determined optimal cluster centers.

3 Experimental Results

3.1 Data Sets

In order to evaluate the proposed KMCA algorithm, nine widely used benchmark
data sets from UCI [35] machine learning repository were used in experiments,
shown in Table 1. Simulation experiment is implemented in python [36] on a
Microsoft Window computer.

Table 1. The data sets used in experiments

Data set Number of
data points (n)

Data
dimension (d)

Number of clusters (k)

Wine 178 13 3

Lung cancer 32 56 3

Seeds 210 7 3

Lenses 24 4 3

Hayes-roth 132 5 3

Dermatology 366 33 6

Iris 150 4 3

Leuk 72 40 3

Zoo 101 16 7

3.2 The Compared Methods

In experiments, the proposed KMCA algorithm was compared with four existing
clustering algorithms, which are illustrated as follows.

(1) K-means (KM): a classical k-means algorithm.
(2) K-means+PSO (KM+PSO) [37]: a k-means algorithm optimized by particle

swarm optimization (PSO).
(3) Kernel k-means (KKM) [38]: a kernel-based k-means algorithm.
(4) Kernel k-means+PSO (KKM+PSO) [39]: a kernel-based k-means algorithm

optimized by particle swarm optimization (PSO).

3.3 Parameter Setting

For the proposed KMCA algorithm, parameters of tissue P system are assigned:
the number of cells q = 3, the number of objects in each cell m = 100, and
maximum number of iterations is 100. In KM+PSO and KKM+PSO, population
size is m = 100, maximum number of iterations is 100, and c1 = c2 = 2.0, w = 1.
In KMCA, KKM and KKM+PSO, Gaussian function is used as kernel function,
and the same parameter δ is used for each data set, but the different parameters
δ are used in the different data sets: δ = 0.5 for Wine, δ = 2.5 for Lung cancer
and Leuk, δ = 0.07 for Iris, δ = 9 for Zoo, δ = 0.13 for Seeds, δ = 1 for Lenses
and Dermatology, and δ = 0.1 for Hayes-roth.

3.4 Performance Measures

To measure the clustering quality of these clustering algorithms, two internal
indexes and three external indexes were used in experiments. Internal index is
used to indicate the clustering effect of data, while external index illustrates the
accuracy of data clustering. In external index, nij denotes the number of samples
that are actually in jth class but are classified into i class. ni+ =

∑
j nij denotes

the number of samples that are classified into i class in experiment. n+j =
∑

i nij

denotes the number of samples that are classified into j class in the actual
situation. The five indexes are as follows.

(1) Silhouette index (SI) [40]
Suppose that a denotes the average kernelized distance between a point and
other points from the same cluster, and b is minimum average kernelized
distance between a point and the points from other clusters. SI ∈ [−1, 1]
is the average of Silhouette widths of all samples. Generally, the higher SI
means the better clustering quality. The Silhouette widths is defined by
SI = b−a

max{a,b} .
(2) CS measure [41]

CS measure can effectively measure the clusters with different densities and
sizes. Generally, the smaller CS has the better clustering partition, i.e.,
better clustering effect. using a Gaussian Kernelized distance measure and
transforming to the high dimensional feature space, CS measure is defined
as follows.

CS =

∑k
i=1[

1
ni

∑
xi∈Ci

maxxq∈Ci
{2(1 − K(xi − xq))}]

∑k
i=1 minj∈{1,...,k},j �=i {2(1 − K(mi − mj))}

(10)

where mi =
∑

xj∈Cj

xj

nj
.

(3) Accuracy [42]
The clustering accuracy is defined by p =

∑
i nii

n .
(4) Adjusted rand index (ARI) [43]

ARI ∈ [−1, 1]. Generally, larger ARI value means that the clustering result
is the more consistent with the actual situation. ARI index is defined by

ARI =

∑
i,j

(
nij

2

)
−

[∑
i

(
ni+

2

)
· ∑

j

(
n+j

2

)]
/

(
n
2

)

1
2

[∑
i

(
ni+

2

)
+

∑
j

(
n+j

2

)]
−

[∑
i

(
ni+

2

)
· ∑

j

(
n+j

2

)]
/

(
n
2

)

(11)
(5) Adjusted mutual index (AMI) [44]

Adjusted mutual index is defined by

AMI =
MI − E(MI)

max(H(U),H(V)) − E(MI)
(12)

where MI(U, V) =
∑|U |

i=1

∑|V |
j=1 p(i, j) log(p(i,j)

p(i)p′ (j)
), p(i, j) = |Ui∩Vj |

N ,

H(U) =
∑|U |

i=1 p(i) log p(i), p(i) = |Ui|
N and H(V) =

∑|V |
j=1 p

′
(j) log p

′
(j),

p
′
(j) = |Vj |

N .

3.5 Experimental Results

In the experiments, the proposed KMCA algorithm and four compared algo-
rithms were executed on nine data sets. Since these clustering algorithms con-
tain some stochastic/random factors, they have been independently executed 20

times on each data set. For each performance measure and each data set, aver-
ages and standard deviations of the results obtained by these algorithms were
computed, respectively. The average value indicates the average performance of
each algorithm, while standard deviation reflects the robustness of the algorithm.

Tables 2, 3, 4 and 5 give the averages and standard deviations of 20 times for
the five algorithms in terms of five performance measures, respectively.

Table 2. Comparison results of the proposed and compared algorithms in terms of SI
and CS indexes

Data sets Internal index KKM KKM+PSO KMCA

Wine SI 0.2808(0.0008) 0.2826(0.0005) 0.2827(0.0003)

CS 1.3376(0.0047) 1.288(0.0044) 1.2842(0.0018)

Lung cancer SI 0.0662(0.0478) 0.1059(0.0132) 0.1156(0.0005)

CS 3.0802(0.9787) 2.743(0.1793) 2.5796(0.0901)

Seeds SI 0.0685(0.0047) 0.069(0.0001) 0.06928(0.0001)

CS 0.9834(0.0726) 1.0(2.4e-05) 1.0(1.1e-05)

Lense SI 0.3536(0.0338) 0.3924(0.0) 0.3924(0.0)

CS 1.151(0.102) 1.1337(0.0) 1.1337(0.0)

Hayes-roth SI 0.0112(0.0009) 0.0103(0.002) 0.0107(0.0008)

CS 1.0(0.0) 0.9373(0.1364) 1.0(3e-06)

Dermatology SI 0.1927(0.031) 0.2233(0.0073) 0.2245(0.0087)

CS 1.5852(0.4746) 1.2882(0.0769) 1.3109(0.0942)

Iris SI 0.0610(0.0064) 0.0655(0.0016) 0.0656(0.0004)

CS 0.8833(0.1590) 1.0001(4e-05) 1.0(0.0)

Leuk SI 0.0715(0.0118) 0.0791(0.0002) 0.0792(0.0001)

CS 1.0286(0.1728) 1.0375(0.0026) 1.0373(0.0025)

Zoo SI 0.4498(0.0662) 0.4787(0.0277) 0.5029(0.0256)

CS 1.5972(0.3879) 1.4062(0.1259) 1.3673(0.1183)

Table 2 shows comparison results of the five clustering algorithms in terms
of SI and CS indexes on nine data sets. For SI index, apart from Hayes-roth,
KMCA can achieve the best performance on each of eight data sets. Meanwhile,
compared with KKM and KKM+PSO, KMCA has the smallest standard devia-
tions on eight data sets except Dermatology. For CS index, KMCA has the best
performance on Wine, Lung cancer, Lense and Zoo, and achieves the smallest
standard deviations on seven sets except Hayes-roth and Dermatology. The com-
parison results indicate that KMCA has the better performance compared with
KKM and KKM+PSO, however, the advantage is not obvious based on results
on CS index.

Tables 3, 4 and 5 provide the comparison results of five clustering algorithms
on nine data sets in terms of three external indexes, including clustering accuracy,
adjusted rand index and adjusted mutual index. It can be obviously observed
from Tables 3, 4 and 5 that compared with other four clustering algorithms,

Table 3. Comparison results of the proposed and compared algorithms in terms of
clustering accuracy

Data sets KM KM+PSO KKM KKM+PSO KMCA

Wine 0.8533(0.1706) 0.9648(0.0039) 0.9477(0.0073) 0.9654(0.0036) 0.9657(0.0016)

Lung cancer 0.4781(0.0648) 0.5625(0.0453) 0.4984(0.0659) 0.5641(0.0413) 0.5828(0.0247)

Seeds 0.8021(0.1461) 0.886(0.004) 0.8762(0.0503) 0.895(0.0046) 0.8967(0.0034)

Lense 0.5833(0.152) 0.5375(0.107) 0.5896(0.1105) 0.8063(0.0622) 0.8312(0.0596)

Hayes-roth 0.4492(0.0585) 0.4095(0.0692) 0.4564(0.0807) 0.4966(0.0618) 0.5087(0.0525)

Dermatology 0.6396(0.1521) 0.7963(0.071) 0.6334(0.1573) 0.8004(0.0748) 0.8344(0.082)

Iris 0.7977(0.1153) 0.88(0.0) 0.7993(0.1100) 0.8907(0.0129) 0.894(0.0029)

Leuk 0.9153(0.1094) 0.9583(0.0) 0.8708(0.1394) 0.9708(0.0041) 0.9715(0.0030)

Zoo 0.7475(0.076) 0.7401(0.0769) 0.7223(0.0988) 0.7554(0.0717) 0.7728(0.065)

Table 4. Comparison results of the proposed and compared algorithms in terms of
adjusted rand index (ARI)

Data sets KM KM+PSO KKM KKM+PSO KMCA

Wine 0.7102(0.2504) 0.8946(0.0122) 0.8462(0.0206) 0.8962(0.0112) 0.8972(0.0051)

Lungcancer 0.0682(0.0870) 0.1193(0.0458) 0.0822(0.0765) 0.1187(0.0454) 0.1282(0.0176)

Seeds 0.6092(0.1673) 0.694(0.0125) 0.6873(0.0478) 0.7142(0.0105) 0.7181(0.0079)

Lenses 0.1953(0.2004) 0.1059(0.15) 0.1513(0.13) 0.5415(0.0674) 0.5686(0.0646)

Hayes-roth 0.0539(0.0422) 0.0073(0.0642) 0.078(0.0803) 0.103(0.0711) 0.1258(0.056)

Dermatology 0.5742(0.2084) 0.7617(0.0713) 0.5759(0.1821) 0.7695(0.0737) 0.7975(0.0846)

Iris 0.6331(0.0968) 0.7021(0.0) 0.6302(0.0956) 0.7205(0.0279) 0.7291(0.0064)

Leuk 0.8232(0.1505) 0.8803(0.0) 0.7661(0.1823) 0.9148(0.0115) 0.9167(0.0083)

Zoo 0.7211(0.1017) 0.5864(0.1186) 0.6972(0.1284) 0.6994(0.0744) 0.73(0.0696)

Table 5. Comparison results of the proposed and compared algorithms in terms of
adjusted mutual index (AMI)

Data sets KM KM+PSO KKM KKM+PSO KMCA

Wine 0.6990(0.2361) 0.8696(0.0104) 0.8242(0.0205) 0.8709(0.0101) 0.8716(0.0050)

Lungcancer 0.1006(0.1141) 0.1814(0.0458) 0.0904(0.0917) 0.1752(0.054) 0.1907(0.017)

Seeds 0.5762(0.1628) 0.6619(0.009) 0.654(0.0493) 0.6777(0.0086) 0.6812(0.0066)

Lenses 0.2761(0.164) 0.2104(0.1661) 0.2291(0.1171) 0.4424(0.1246) 0.4925(0.1194)

Hayes-roth 0.0563(0.0496) 0.004(0.0638) 0.0945(0.088) 0.125(0.0816) 0.1494(0.0591)

Dermatology 0.6952(0.185) 0.8811(0.021) 0.7114(0.1363) 0.8835(0.0192) 0.8892(0.0224)

Iris 0.6395(0.0788) 0.7050(0.0) 0.6113(0.1214) 0.7137(0.0202) 0.7233(0.0044)

Leuk 0.7955(0.1502) 0.8542(0.0) 0.7450(0.1723) 0.8878(0.0112) 0.8896(0.0081)

Zoo 0.7409(0.0549) 0.7194(0.0667) 0.7426(0.0649) 0.7679(0.0417) 0.7939(0.0289)

KMCA achieves the best performances on nine data sets. Moreover, KMCA also
has the smallest standard deviations on seven data sets except Iris and Leuk.

In summary, KMCA can achieve a good clustering performance and also is
a robust clustering algorithm.

4 Conclusions

This paper discussed a kernel-based membrane clustering algorithm, KMCA,
based on the principle of kernel methods. The proposed KMCA algorithm is
suitable to handle a challenge of the existing membrane clustering algorithms:
it fails to deal with the clustering on the data sets with non-spherical cluster
boundaries. In principle, samples in original data space are mapped to a high-
dimension space via a non-linear kernel function, and then membrane clustering
algorithm is used to cluster the mapped data sets. As usual, a tissue-like P sys-
tem is designed to determine the optimal cluster centers in the high-dimension
space. Based on the principle of kernel methods, all computations are completed
in original data space according to the used kernel function. Therefore, although
membrane clustering algorithms have spherical cluster boundary, the proposed
KMCA can deal with the data sets with non-spherical cluster boundaries. Exper-
imental results on nine benchmark data sets demonstrate the advantage over
other clustering methods

Acknowledgment. This work was partially supported by the National Natural Sci-
ence Foundation of China (No. 61472328), Chunhui Project Foundation of the Edu-
cation Department of China (Nos. Z2016143 and Z2016148), the Innovation Fund of
Postgraduate, Xihua University (No. ycjj2018184), and Research Foundation of the
Education Department of Sichuan province (No. 17TD0034), China.

References

1. Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

2. Pǎun, Gh.: Membrane Computing: An Introduction. Springer, Berlin (2002).
https://doi.org/10.1007/978-3-642-56196-2

3. Cavaliere, M.: Evolution–communication P systems. In: Păun, Gh., Rozenberg,
G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36490-0 10

4. Freund, R., Pǎun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel-
states. Theor. Comput. Sci. 330(1), 101–116 (2005)

5. Bernardini, F., Gheorghe, M.: Population P systems. J. Univ. Comput. Sci. 10(5),
509–539 (2004)

6. Pǎun, Gh., Pǎun, R.: Membrane computing and economics: numerical P systems.
Fundam. Inform. 73(1–2), 213–227 (2006)

7. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, G.: Variants of P
colonies with very simple cell structure. Int. J. Comput. Commun. Control IV(3),
224–233 (2009)

8. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundam. Inform.
71, 279–308 (2006)

9. Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses.
Theor. Comput. Sci. 529, 82–95 (2014)

10. Peng, H., et al.: Competitive spiking neural P systems with rules on synapses.
IEEE Trans. NanoBiosci. 16(8), 888–895 (2018)

https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/3-540-36490-0_10

11. Peng, H., et al.: Spiking neural P systems with multiple channels. Neural Netw.
95, 66–71 (2017)

12. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile
robots. Inf. Sci. 187, 33–51 (2012)

13. Wang, X., et al.: Design and implementation of membrane controllers for trajec-
tory tracking of nonholonomic wheeled mobile robots. Integr. Comput.-Aided Eng.
23(1), 15–30 (2016)

14. Zhang, G., Gheorghe, M., Li, Y.: A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing. Natural Comput. 11(4),
701–717 (2012)

15. Dı́az-Pernil, D., Berciano, A., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Seg-
menting images with gradient-based edge detection using membrane computing.
Pattern Recogn. Lett. 34(8), 846–855 (2013)

16. Peng, H., Wang, J., Pérez-Jiménez, M.J.: Optimal multi-level thresholding with
membrane computing. Digit. Sig. Process. 37, 53–64 (2015)

17. Alsalibi, B., Venkat, I., Al-Betar, M.A.: A membrane-inspired bat algorithm to
recognize faces in unconstrained scenarios. Eng. Appl. Artif. Intell. 64, 242–260
(2017)

18. Zhang, G., Liu, C., Rong, H.: Analyzing radar emitter signals with membrane
algorithms. Math. Comput. Model. 52(11–12), 1997–2010 (2010)

19. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: The framework of P
systems applied to solve optimal watermarking problem. Sig. Process. 101, 256–265
(2014)

20. Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf.
Sci. 329, 164–176 (2016)

21. Xiong, G., Shi, D., Zhu, L., Duan, X.: A new approach to fault diagnosis of power
systems using fuzzy reasoning spiking neural P systems. Math. Problems Eng.
2013(1), 211–244 (2013)

22. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking
neural P system. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)

23. Wang, T., et al.: Fault diagnosis of electric power systems based on fuzzy reasoning
spiking neural P systems. IEEE Trans. Power Syst. 30(3), 1182–1194 (2015)

24. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Fault diagnosis
of power systems using fuzzy tissue-like P systems. Integr. Comput.-Aided Eng.
24, 401–411 (2017)

25. Peng, H.: Fault diagnosis of power systems using intuitionistic fuzzy spiking neural
P systems. IEEE Trans. Smart Grid 9(5), 4777–4784 (2018)

26. Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P
systems for modelling cellular processes. Natural Comput. 9(2), 457–473 (2010)

27. Garćıa-Quismondo, M., Levin, M., Lobo-Fernández, D.: Modeling regenerative pro-
cesses with membrane computing. Inf. Sci. 381, 229–249 (2017)

28. Garćıa-Quismondo, M., Nisbet, I.C.T., Mostello, C.S., Reed, M.J.: Modeling popu-
lation dynamics of roseate terns (sterna dougallii) in the Northwest Atlantic Ocean.
Ecol. Model. 68, 298–311 (2018)

29. Zhao, Y., Liu, X., Qu, J.: The K-medoids clustering algorithm by a class of P
system. J. Inf. Comput. Sci. 9(18), 5777–5790 (2012)

30. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learn-
ing algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)

31. Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic
clustering algorithm inspired by membrane computing. Pattern Recogn. Lett. 68,
34–40 (2015)

32. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended
membrane system with active membrane to solve automatic fuzzy clustering prob-
lems. Int. J. Neural Syst. 26(2), 1–17 (2016)

33. Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Multiobjective
fuzzy clustering approach based on tissue-like membrane systems. Knowl.-Based
Syst. 125, 74–82 (2017)

34. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

35. UCI. http://archive.ics.uci.edu/ml/datasets.html
36. Python. https://www.python.org/
37. Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimiza-

tion. In: 2003 Congress on Evolutionary Computation (CEC 2003), pp. 215–220
(2003)

38. Zhang, R., Rudnicky, A.I.: A large scale clustering scheme for kernel k-means. In:
Proceedings of 16th International Conference on Pattern Recognition, vol. 4, pp.
289–292 (2002)

39. Wei, X.H., Zhang, K.: An improved PSO-means clustering algorithm based on
kernel methods. J. Henan Univ. Sci. Technol.: Nat. Sci. 32(2), 41–43 (2011)

40. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20(20), 53–65 (1987)

41. Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application
to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004)

42. Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices. CRC Press, Boca Raton (2009)

43. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
44. Zhang, J., Niu, Y., He, W.: Using genetic algorithm to improve fuzzy k-NN. In:

International Conference on Computational Intelligence and Security, pp. 475–479
(2008)

http://archive.ics.uci.edu/ml/datasets.html
https://www.python.org/

	A Kernel-Based Membrane Clustering Algorithm
	1 Introduction
	2 KMCA Algorithms
	2.1 Kernel Clustering Problems
	2.2 Basic Idea
	2.3 Algorithm Implementation

	3 Experimental Results
	3.1 Data Sets
	3.2 The Compared Methods
	3.3 Parameter Setting
	3.4 Performance Measures
	3.5 Experimental Results

	4 Conclusions
	References

