
Generating Diophantine Sets by Virus Machines

Álvaro Romero-Jiménez, Luis Valencia-Cabrera,
and Mario J. Pérez-Jiménez

Research Group on Natural Computing Department of Computer Science
and Artificial Intelligence, University of Seville,
Avda. Reina Mercedes s/n, 41012 Seville, Spain
{romero.alvaro,lvalencia,marper}@us.es

Abstract. Virus Machines are a computational paradigm inspired by
the manner in which viruses replicate and transmit from one host cell to
another. This paradigm provides non-deterministic sequential devices.
Non-restricted virus machines are unbounded virus machines, in the
sense that no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any com-
putation is placed on them. The computational completeness of these
machines has been obtained by simulating register machines. In this
paper, virus machines as set generating devices are considered. Then,
the universality of non-restricted virus machines is proved by showing
that they can compute all diophantine sets, which the MRDP theorem
proves that coincide with the recursively enumerable sets.

Keywords: Virus machines · Computational completeness · Diophan-
tine sets · MRDP theorem

1 Introduction

A new computational paradigm inspired by the replications and transmissions
of viruses was introduced in [1]. The computational devices in this paradigm are
called Virus Machines and they consist of several processing units, called hosts,
connected to each other by transmission channels. A host can be viewed as a
group of cells (being part of a colony, organism, system, organ or tissue). Each
cell in the group will contain at most one virus, but we will not take into account
the number of cells in the group, we will only focus on the number of viruses
that are present in some of the cells of that group (not every cell in the group
does necessarily hold a virus). Only one type of viruses is considered. Channels
allow viruses to be transmitted from one host to another or to the environment
of the system. Each channel has a natural number (the weight of the channel)
associated with it, indicating the number of copies of the virus that will be
generated and transmitted from an original one (i.e., one virus may replicate,
generating a number of copies to be transmitted to the target host group of
cells). Each transmission channel is closed by default and it can be opened by

a control instruction unit. Specifically, there is an instruction-channel control
network that allows opening a channel by means of an activated instruction. In
that moment, the opened channel allows a virus (only one virus) to replicate
and transmit through it. Instructions are activated individually according to a
protocol given by an instruction transfer network, so that only one instruction
is enabled in each computation step. That is, an instruction activation signal is
transferred to the network to activate instructions in sequence.

In this work, new virus machines as set generating devices are introduced.
The universality of non-restricted virus machines working in this mode is proved
by showing that they can generate all diophantine sets. The celebrated MRDP
theorem assures that these sets are exactly the same as the recursively enumer-
able sets [4].

This paper is structured as follows. First, the computing model of virus
machines is formally defined. Then, in Sect. 3 the computational completeness of
non-restricted virus machines is stated. Finally, in Sect. 4 the main conclusions
of this work are summarized and some suggestions for possible lines of future
research are outlined.

2 Virus Machines

In what follows we formally define the syntax of the Virus Machines (see [1] for
more details).

An undirected graph G is a pair (V,E), where V is a finite set and E is a
subset of

{{x, y} | x ∈ V, y ∈ V, x �= y
}
. The set V is called the vertex set of

G, and its elements are called vertices. The set E is called the edge set of G,
and its elements are called edges. If e = {x, y} ∈ E is an edge of G, then we say
that edge e is incident on vertices x and y. In an undirected graph, the degree
of a vertex x is the number of edges incident on it. A bipartite graph G is an
undirected graph (V,E) in which V can be partitioned into two sets V1, V2 such
that {u, v} ∈ E implies either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1; that is,
all edges are arranged between the two sets V1 and V2 (see [2] for details).

A directed graph G is a pair (V,E), where V is a finite set and E is a subset
of V × V . The set V is called the vertex set of G, and its elements are called
vertices. The set E is called the arc set of G, and its elements are called arcs.
In a directed graph, the out-degree of a vertex is the number of arcs leaving it,
and the in-degree of a vertex is the number of arcs entering it.

Definition 1. A Virus Machine Π of degree (p, q), with p ≥ 1, q ≥ 1, is a tuple
(Γ,H, I,DH ,DI , GC , n1, . . . , np, i1, hout), where:

– Γ = {v} is the singleton alphabet;
– H = {h1, . . . , hp} and I = {i1, . . . , iq} are ordered sets such that v /∈ H ∪ I

and H ∩ I = ∅;
– DH = (H ∪{hout}, EH , wH) is a weighted directed graph, verifying that EH ⊆

H × (H ∪{hout}), (h, h) /∈ EH for each h ∈ H, out-degree(hout) = 0, and wH

is a mapping from EH to Z>0;

– DI = (I, EI , wI) is a weighted directed graph, where EI ⊆ I × I, wI is a
mapping from EI to Z>0 and, for each vertex ij ∈ I, the out-degree of ij is
less than or equal to 2;

– GC = (VC , EC) is an undirected bipartite graph, where VC = I ∪ EH , being
{I, EH} the partition associated with it (i.e., all edges go between the two sets
I and EH). In addition, for each vertex ij ∈ I, the degree of ij in GC is less
than or equal to 1;

– nj ∈ N (1 ≤ j ≤ p) and i1 ∈ I;
– hout /∈ I ∪ {v} and hout is denoted by h0 in the case that hout /∈ H.

A Virus Machine Π = (Γ,H, I,DH ,DI , GC , n1, . . . , np, i1, hout) of degree
(p, q) can be viewed as an ordered set of p hosts labelled with h1, . . . , hp (where
each host hj , 1 ≤ j ≤ p, initially contains exactly nj viruses –copies of the sym-
bol v–), and an ordered set of q control instruction units labelled with i1, . . . , iq.
The symbol hout represents the output region of the system (we use the term
region to refer to host hout in the case that hout ∈ H and to refer to the environ-
ment in the case that hout = h0). Arcs (hs, hs′) from DH represent transmission
channels through which viruses can travel from host hs to hs′ .

Each channel is closed by default, and so it remains until it is opened by
a control instruction (which is attached to the channel by means of an edge in
graph GC) when that instruction is activated. Furthermore, each channel (hs, hs′)
is assigned with a positive integer weight, denoted by ws,s′ , which indicates the
number of viruses that will be transmitted/replicated to the receiving host of
the channel.

Arcs (ij , ij′) from DI represent instruction transfer paths, and they have
a weight, denoted by wj,j′ , associated with it. Finally, the undirected bipar-
tite graph GC represents the instruction-channel network by which an edge
{ij , (hs, hs′)} indicates a control relationship between instruction ij and channel
(hs, hs′): when instruction ij is activated, the channel (hs, hs′) is opened.

A configuration Ct of a virus machine at an instant t is described by a tuple
(a1,t, . . . , ap,t, ut, et), where a1,t, . . . , ap,t and et are non-negative integers and
ut ∈ I ∪ {#}, with # /∈ H ∪ {h0} ∪ I. The meaning is the following: at instant t
the host hs of the system contains exactly as,t viruses, the output region hout

contains exactly et viruses and, if ut ∈ I, then the control instruction unit ut will
be activated at step t + 1. Otherwise, if ut = #, then no further instruction will
be activated. The initial configuration of the system is C0 = (n1, . . . , np, i1, 0).

A configuration Ct = (a1,t, . . . , ap,t, ut, et) is a halting configuration if and
only if ut is the object #. A non-halting configuration Ct = (a1,t, . . . , ap,t, ut, et)
yields configuration Ct+1 = (a1,t+1, . . . , ap,t+1, ut+1, et+1) in one transition step,
denoted by Ct ⇒Π Ct+1, if we can pass from Ct to Ct+1 as follows:

1. First, given that Ct is a non-halting configuration, we have ut ∈ I. So the
control instruction unit ut is activated.

2. Let us assume that instruction ut is attached to channel (hs, hs′). Then this
channel will be opened and:

– If as,t ≥ 1, then a virus (only one virus) is consumed from host hs and ws,s′

copies of v are produced in host hs′ (if s′ �= out) or in the output region
hout.

– If as,t = 0, then there is no transmission of virus.
3. Let us assume that instruction ut is not attached to any channel (hs, hs′).

Then there is no transmission of virus.
4. Object ut+1 ∈ I ∪ {#} is obtained as follows:

– Let us suppose that out-degree(ut) = 2, that is, there are two different
instructions ut′ and ut′′ such that (ut, ut′) ∈ EI and (ut, ut′′) ∈ EI .
• If instruction ut is attached to a channel (hs, hs′) and as,t ≥ 1 then

ut+1 is the instruction corresponding to the highest weight path.
• If instruction ut is attached to a channel (hs, hs′) and as,t = 0 then

ut+1 is the instruction corresponding to the lowest weight path.
• If both weights are equal or if instruction ut is not attached to a channel,

then the next instruction ut+1 is either ut′ or ut′′ , selected in a non-
deterministic way.

– If out-degree(ut) = 1 then the system behaves deterministically and ut+1

is the instruction that verifies (ut, ut+1) ∈ EI .
– If out-degree(ut) = 0 then ut+1 is object # and configuration Ct+1 is a

halting configuration.

A computation of a virus machine Π is a (finite or infinite) sequence of
configurations such that: (a) the first element is the initial configuration C0 of
the system; (b) for each n ≥ 1, the n-th element of the sequence is obtained
from the previous element in one transition step; and (c) if the sequence is finite
(called halting computation) then the last element is a halting configuration.
All the computations start from the initial configuration and proceed as stated
above; only halting computations give a result, which is encoded in the contents
of the output region for the halting configuration.

In this paper we consider virus machines working in the generating mode.
That is, we think of the result of a computation of a virus machine Π as the
total number n of viruses sent to the output region during the computation. We
say that A ⊆ N is the set generated by Π if it is verified that n ∈ A if and only
if there exists a halting computation of Π that outputs n.

3 The Universality of Non-Restricted Virus Machines

A non-restricted Virus Machine is a virus machine for which there is no restric-
tion on the number of hosts, the number of instructions and the number of
viruses contained in any host along any computation.

For each p, q, n ≥ 1, we denote by NV M(p, q, n) the family of all subsets
of N generated by virus machines with at most p hosts, q instructions, and all
hosts having at most n viruses at any instant of each computation. If one of
the parameters p, q, n is not bounded, then it is replaced with ∗. In particular,
NV M(∗, ∗, ∗) denotes the family of all subsets of natural numbers generated by
non-restricted virus machines.

3.1 Generating Diophantine Sets by Virus Machines

In this section, the computational completeness of non-restricted virus machines
working in the generating mode is established. Specifically, we prove that they
can generate all diophantine sets of natural numbers. Indeed, we will design non-
restricted virus machines that, given a polynomial P (x, y1, . . . , yk) with integer
coefficients:

1. Generate, in a non-deterministic manner, any tuple (x, y1, . . . , yk) of natural
numbers.

2. Compute the value of P over the tuple (x, y1, . . . , yk).
3. If the computed value is zero, then halt and output x.
4. If the computed value is non-zero, then do not halt.

3.2 Modules

In order to ease the design of the virus machines generating any diophantine
set, the construction of such virus machines will be made in a modular manner.
A module can be seen as a virus machine without output host, with the initial
instruction marked as the in instruction and with at least one instruction marked
as an out instruction. The out instructions must have out-degree less than two,
so that they can still be connected to another instruction. In this way, a module
m1 can be plugged in before another module m2 or virus machine instruction i
by simply connecting the out instructions of m1 with the in instruction of m2

or with the instruction i.
The layout of a module must be carefully done to avoid conflicts with other

modules and to allow the module to be executed any number of times. To achieve
the first condition, we will consider that all the hosts (with the only exception of
the parameters of the module) and instructions of a module are individualized for
that module, being distinct from the ones of any other module or virus machine.
There are several ways to meet the second condition: for example, we can ensure
that, after the execution of the module, all its hosts except its parameters contain
the same number of viruses as before the execution.

In this paper we consider two types of modules: action modules and predicate
modules. For the action modules we require all of its out instructions to be
connected to the in instruction of the following module, or to the following
instruction of the virus machine. For the predicate modules we consider its out
instructions to be divided in two subsets: the out instructions representing a yes
answer and the out instructions representing a no answer of the predicate. For
each of these subsets, all of its instructions have to be connected to the same
module in instruction or virus machine instruction.

The library of modules used in this paper consists of the following modules
(we name the action modules as verbs and the predicate modules as questions):

– EMPTY(h): action module that sets to zero the number of viruses in host h.
To implement this module we only need to introduce an internal host h′,
initially with zero viruses, and associate with the channel from h to h′ an

action that transfers all the viruses from h. Note that host h′ may end with a
nonzero number of viruses, but this does not prevent the module to be reused,
because h′ plays a passive role.

– ADD(h1, h2): action module that adds to host h2 the number of viruses in host
h1, without modifying the number of viruses in h1.
This module is implemented as follows:

This way, the module starts by transferring one by one all the viruses from
h1 to h, duplicating them along the way. Then it sends, again and again, one
virus from h to h2 and another one from h to h1, until there are no more
viruses left. It is clear then that when the module ends, the host h1 retains
its initial number of viruses, the host h is empty (thus allowing the module to
be reused), and the host h2 has a number of viruses equal to the sum of the
initial number of viruses in h1 and h2.

– COPY(h1, h2): action module that sets the number of viruses in h2 the same
as in h1, without modifying the number of viruses in h1.
This module is implemented by the following concatenation of modules:

in → EMPTY(h2) → ADD(h1, h2) → out

That is, we first get rid of all the viruses from h2, and then add the viruses
from h1, so h2 ends with the same number of viruses as h1. Also observe that
the module ADD(h1, h2) does not modify the number of viruses in h1, what
will be important later.

– SET(h, n): action module that sets to n the number of viruses in host h.
This module is implemented simply by introducing an internal host h′ with
initial number of viruses n and using the module COPY(h′, h).

– AREEQUAL?(h1, h2): predicate module that checks if the number of viruses in
hosts h1 and h2 coincides.
This module is implemented as follows, where h′

1, h′
2 and h are new internal

hosts:

We first copy the contents of h1 and h2 into the internal hosts h′
1 and h′

2,
so that they do not get modified. Then, in turns, we send one virus from h′

1

to h and then another one from h′
2 to h. If the latter can not be done, this

is because the contents of h1 were greater than the contents of h2 and the
answer is no. If the former can not be done, we must try once more to send a
virus from h′

2 to h to determine if the contents were or not equal.
Notice that the contents of h′

1, h′
2 and h get modified, but this does not prevent

the module to be reused, because the first two get initialized by the first two
COPY modules and the latter plays a passive role.

– MULTIPLY(h1, h2): action module that multiplies the number of viruses in
host h2 by the number of viruses in host h1, without modifying the number
of viruses in h1.

This module is implemented in two stages:
1. An initialization stage, where the contents of an internal host h′

1, which
will be used as a counter, is set to zero. Also the number of viruses in h2 is
saved in an internal host h′

2. This is because host h2 needs to be emptied,
so that it can be used as the accumulator in a standard implementation
of the multiplication.

in → EMPTY(h′
1) → COPY(h2, h

′
2) → EMPTY(h2) →

2. The second stage iteratively adds the contents of h′
2 to h2, until the counter

h′
1 reaches the number of viruses in h1. The counter is incremented in each

step by adding to it the contents of an internal host hone that has only
one virus within.

→AREEQUAL?(h1, h
′
1)

no→ ADD(h′
2, h2) → ADD(hone, h

′
1) → back to stage 2

↓ yes
out

It is clear that when the module ends, the host h1 retains its initial number
of viruses and the host h2 has a number of viruses equal to the product of the
initial number of viruses in h1 and h2. The internal host hone is never modified
and both internal hosts h′

1 and h′
2 are initialized in stage 1, what allows the

module to be reused.
– RAISE(h1, h2): action module that raises the number of viruses in host h2 to

the power of the number of viruses in host h1, without modifying the number
of viruses in h1.
This module is implemented in two stages:
1. An initialization stage, where the contents of an internal host h′

1, which
will be used as a counter, is set to zero. Also the number of viruses in h2

is saved in an internal host h′
2. This is because the contents of host h2

needs to be set to one virus, so that it can be used as the accumulator in
a standard implementation of the exponentiation.

in → EMPTY(h′
1) → COPY(h2, h

′
2) → SET(h2, 1) →

2. The second stage iteratively multiplies the contents of h2 by the contents
of h′

2, until the counter h′
1 reaches the number of viruses in h1. The counter

is incremented in each step by adding to it the contents of an internal host
hone that has only one virus within.

→AREEQUAL?(h1, h
′
1)

no→ MULTIPLY(h′
2, h2) → ADD(hone, h

′
1) → back to

stage 2
↓ yes
out

It is clear that when the module ends, the host h1 retains its initial number
of viruses and the host h2 has a number of viruses equal to the initial number
of viruses in h2 raised to the initial number of viruses in h1. The internal host
hone is never modified and both internal hosts h′

1 and h′
2 are initialized in

stage 1, what allows the module to be reused.
– EXPT(h, n): action module that raises the number of viruses in h to the power

of n.
This module is implemented simply by introducing an internal host h′ with
initial number of viruses n and using the module RAISE(h′, h).

3.3 Generation of a Diophantine Set

In what follows we show how to design, given a polynomial P (x, y1, . . . yk) with
integer coefficients, a virus machine ΠP that generates the diophantine set char-
acterized by that polynomial.

– The hosts are

H = {hx, h′
x, hy1 , h

′
y1

, . . . , hyk
, h′

yk
, h+, h−, hone, hout}∪

{hc | c > 0 and there exists α, β1, . . . , βk ∈ N such that

c xαyβ1
1 · · · yβk

k or − c xαyβ1
1 · · · yβk

k is a monomial of P}

together with the internal hosts of the modules.
– The initial contents of hone is 1, and of hc is c. The initial contents of the rest

of hosts is 0, except for the internal hosts of the modules, which have their
specific initial contents.

– The output host is hout.
– The instructions are

I = {incrementx, increment y1, . . . , increment yk,

halt, infinite loop}
together with the individualized instructions of the modules.

– The initial instruction is incrementx.
– The functioning of the virus machine is given by the following sequence of

concatenated instructions and modules, which determines the graphs DH ,DI

and GC :
1. First a value for x is generated, in a non-deterministic manner.

The instruction transfer paths labelled by yes and no are set to have the
same weight (for example, weight 1) so, according to the semantics of the
model, it is non-deterministically chosen to add or not the contents of hone,
one virus, to hx. In the former case, the machine comes back to instruction
increment x to make the choice again. In the latter case, it has finished
generating a value for x.

2. Analogously, a value for each of y1 to yk is generated in a non-deterministic
manner.

3. For each monomial c xαyβ1
1 · · · yβk

k of P , with c > 0, its value over the
arguments x, y1, . . . , yk previously generated is computed and accumulated
in h+.

→ COPY(hx, h′
x) → COPY(hy1 , h

′
y1

) → · · · → COPY(hyk
, h′

yk
) →

EXPT(h′
x, α) → EXPT(h′

y1
, β1) → · · · → EXPT(h′

yk
, βk) →

MULTIPLY(h′
y1

, h′
x) → · · · → MULTIPLY(h′

yk
, h′

x) → MULTIPLY(hc, h
′
x) →

ADD(h′
x, h+) →

4. For each monomial c xαyβ1
1 · · · yβk

k of P , with c < 0, its absolute value over
the arguments x, y1, . . . , yk previously generated is computed and accumu-
lated in h−.

→ COPY(hx, h′
x) → COPY(hy1 , h

′
y1

) → · · · → COPY(hyk
, h′

yk
) →

EXPT(h′
x, α) → EXPT(h′

y1
, β1) → · · · → EXPT(h′

yk
, βk) →

MULTIPLY(h′
y1

, h′
x) → · · · → MULTIPLY(h′

yk
, h′

x) → MULTIPLY(h|c|, h′
x) →

ADD(h′
x, h−) →

5. Finally, in order to check if the arguments x, y1, . . . , yk constitute a solution
of the polynomial P , the contents of h+ and h− are compared. If they
are equal, the value of the argument x is copied from hx to hout and
the computation halts. Otherwise, an infinite loop is started to make the
computation non-halting.

3.4 Main Result

Taking into account that, by virtue of the MRDP theorem every recursively
enumerable set is diophantine, it is guaranteed that it is possible to construct
virus machines that compute any such set. Then, we have the following result.

Theorem 1. NVM(*, *, *) = NRE.

4 Conclusions and Future Work

Virus machines are a bio-inspired computational paradigm based on the trans-
missions and replications of viruses [1]. The computational completeness of virus

machines having no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any computation
has been established by simulating register machines. However, when an upper
bound on the number of viruses present in any host during a computation is set,
the computational power of these systems decreases; in fact, a characterization
of semi-linear sets of numbers is obtained [1].

The semantics of the model makes it easy to construct specific virus machines
by assembling small components that carry out a part of the task to be solved.
It is then convenient to develop a library of modules solving common problems
such as comparisons or arithmetic operations between contents of hosts.

In this paper, a new variant of virus machines able to generate sets of natural
numbers is introduced. The universality of non-restricted virus machines is then
proved by showing that they can generate all diophantine sets.

Being shown the computational completeness of virus machines (in the unre-
stricted form) working in several modes, we can turn our attention to their
computational efficiency. A computational complexity theory for these devices
is therefore required, so that the resources needed to solve (hard) problems can
be rigorously measured.

To this respect, it is convenient to point out that, according to the formal-
ization given in this paper, virus machines are inherently sequential devices. To
increase their efficiency it could be interesting to consider variants of the model
where the instructions are activated in parallel.

Acknowledgments. This work was supported by Project TIN2012-37434 of the
Ministerio de Economı́a y Competitividad of Spain, cofinanced by FEDER funds.

References

1. Chen, X., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Wang, B., Zeng X.: Computing
with Viruses. International Journal of Bioinspired Computation, submitted, 7(3)
176-182 (Submitted 2015)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: An Introduction to Algorithms. MIT
Press, Cambridge (1994)

3. Dimmock, N.J., Easton, A.J., Leppard, K.: Introduction to Modern Virology, 6th
edn. Blackwell Publishing, Malden (2007)

4. Matijasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
5. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Computing. Springer,

Heidelberg (2012)

	Generating Diophantine Sets by Virus Machines
	1 Introduction
	2 Virus Machines
	3 The Universality of Non-Restricted Virus Machines
	3.1 Generating Diophantine Sets by Virus Machines
	3.2 Modules
	3.3 Generation of a Diophantine Set
	3.4 Main Result

	4 Conclusions and Future Work
	References

