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Abstract. Many variants of P systems have the ability to generate an
exponential number of membranes in linear time. This feature has been
exploited to elaborate (theoretical) efficient solutions to NP-complete, or
even harder, problems. A thorough review of the existent solutions shows
the utilization of common techniques and procedures. The abstraction
of the latter into design patterns can serve to ease and accelerate the
construction of efficient solutions to new hard problems.
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1 Introduction

All of us have seen ourselves, at one time or another of our lives, in the need to 
solve a “hard problem”, whatever this may mean. Computational complexity is a 
branch of the theory of computation that makes this concept precise by defining 
in mathematical terms the notions of (decision) problems and of the amount of 
resources required for any mechanical procedure (algorithm) to solve them. For 
example, NP-complete problems are most of the time regarded to be hard (at 
least, for those who believe that P �= NP). A historical review of many of the 
ideas from this theory can be found in [1].

Membrane computing is a branch of the natural computing field aiming to 
abstract computing models, called P systems, from the structure and the func-
tioning of the living cell. It was initiated by Gh. Păun in 1998 [2] and it has 
quickly become a vigorous scientific discipline, as [3,4] testify.

P systems provide highly parallel and distributed devices. As NP-complete 
problems are intuitively those problems for which checking, but not finding, a 
solution can be done in feasible time, it was soon realized that (theoretical) 
efficient solutions to them could be accomplished by several variants of P sys-
tems [5]. The main feature of these variants is their ability to construct an 
exponential space in linear time. This is usually exploited to implement a brute
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force search in which first all possible solutions to the problem are generated,
and then all of them are verified in parallel at the same time.

The flourish of efficient solutions to NP-complete, or even harder, problems
has led to the development of a rich computational complexity theory for mem-
brane computing [6,7]. The purpose of this theory is to rigorously define what
a solution to a decision problem is in the membrane computing domain, how to
measure the resources spent by those solutions and when they can be said to be
efficient.

In this theory the following key concepts are defined:

1. Solutions are families of recognizer P systems. These are systems verifying
the following properties: there are two special objects, yes and no, in the
working alphabet; all the computations must supply their result by sending
out to the output region only one of these two objects; at the precise moment
that this happens, the computation must stop.

2. The solutions can be uniform or semi-uniform. In the former case, the systems
of the family own an input membrane, and each of them is able to solve all the
instances of the problem of a specific “size” (as determined by a polynomial-
time computable function s) when an encoding of the instance (computed
by a polynomial-time computable function cod) is introduced in its input
membrane. In the latter case, each instance of the problem is associated with
a system of the family, that solves it without requiring additional information
because the instance is directly encoded within its objects and rules.

3. A decision problem is said to be solvable in polynomial time by a family of
recognizer P systems if the family: can be constructed in polynomial time
(by a Turing machine); is polynomially bounded, meaning that there exists
a polynomial on the size of the instances of the problem that bounds the
number of steps performed by any computation of any of the systems of the
family; is sound and complete with respect to the problem, meaning that for
each instance of the problem an object yes is provided as the result of a
computation if and only if the answer to the instance is positive.

The task of setting up an efficient solution to a hard problem is not an easy
one. A judicious way to tackle it is to base ourselves on what others have already
proved to work. In fact, in software engineering it is recommended practice to
make use of the so-called design patterns to improve and speed up software
development. Quoting Wikipedia:1

A software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a
finished design that can be transformed directly into source or machine
code. It is a description or template for how to solve a problem that can
be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when
designing an application or system.

1 Software design pattern, https://en.wikipedia.org/w/index.php?title=Software
design pattern\&oldid=834346932 (last visited May 10, 2018).
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A detailed analysis of many existent efficient solutions to hard problems
that can be found in the membrane computing literature shows indeed that
similar techniques and constructions have been utilized. This paper is devoted
to describe some of those common patterns, with the aim of serving as a starting
point for the non-experts to develope their own solutions.

The paper is organized as follows: in Sect. 2 some design patterns for mem-
brane computing are described, namely the exponential space (Subsect. 2.1), the
all present (Subsect. 2.2) and the no if not yes (Subsect. 2.3) patterns. It is
also demonstrated how to implement them with different ingredients. Section 3
exemplifies the use of these design patterns by constructing distinct solutions to
the SAT problem, namely one using polarizations and membrane division (Sub-
sect. 3.1), one using dissolution and membrane creation (Subsect. 3.2), one using
polarizations and membrane separation (Subsect. 3.3) and one using membrane
division and minimal cooperation (Subsect. 3.4). The paper ends with some con-
cluding remarks.

2 Design Patterns for Membrane Computing

One of the peculiarities of many of the variants of P systems considered so far
in the literature is their ability to trade time for space. By this we mean that
they are able to build an exponential space in polynomial, often linear, time.
Although for objects it is pretty obvious, since a simple rewriting rule of the
form a → a2 allows to double the number of objects a in one step, we are more
interested in obtaining an exponential number of membranes. Exploiting this
feature and the inherent parallelism of P systems, many NP-complete problems
have been solved in polynomial time following a brute force approach: first,
generate an exponential number of membranes each one containing a bunch of
objects representing a potential solution to the problem; next, check in a parallel
way if any of those is indeed a real solution; finally, provide an answer according
to the results obtained.

The analysis of this scheme for the solutions discovers the use of these three
patterns: the exponential space pattern, to generate an exponential number of
membranes; the all present pattern, to test if all of the objects from a specific set
are present in a membrane; and the no if not yes pattern, to be able to provide
a negative answer when only the positive one can be checked.

In the next subsections, we describe each of these design patterns and show
how to implement them with several features that can be found in P systems
with active membranes. We will make use of the following types of rules:

1. Evolution rules [a → u]cl , for changing the object a into the multiset u in a
membrane with label l and, optionally, a charge c.

2. Communication rules a1[ ]c1l → [a2]c2l and [a1]c1l → [ ]c2l a2, to send an object
a1 into or out from a membrane with label l. The object is rewritten to a2

and the possible charge c1 of the membrane changed to c2.



3. Dissolution rules [a1]cl → a2, to dissolve a membrane with label l that contains
an object a1 and, optionally, has a charge c. All the objects of the membrane
goes to its parent membrane, object a1 rewritten to a2.

4. Membrane division rules [a1]c1l → [a2]c2l [a3]c3l , to divide a membrane with
label l and that contains an object a1 and, optionally, has a charge c1. The
membrane divides in two new membranes each of them containing a copy of
all its objects, with a1 rewritten to a2 and a3, respectively, and the charge
changed to c2 and c3, respectively.

5. Membrane creation rules [a → [u]c2l2 ]c1l1 , to create a membrane with label l2,
contents u and possible charge c2 from an object a in a membrane with label
l1 and possible charge c1. The objects from the latter membrane are not
replicated into the membrane being created. To simplify the description of
the patterns, we will omit the surrounding brackets when the membrane they
are referring to is clear from the context.

6. Membrane separation rules [a]c1l → [Γ0]c2l [Γ1]c3l , to separate in two a mem-
brane with label l and possible charge c1. This separation is triggered by
object a and sends all the other objects to one of the new membranes if they
belong to Γ0 and to the other membrane if they belong to Γ1 (Γ0 and Γ1 must
be a partition of the working alphabet). The new membranes have, optionally,
charges c2 and c3, respectively.

2.1 The Exponential Space Pattern

The exponential space pattern allows to generate an exponential number of mem-
branes in a linear number of steps. If we focus specifically on P systems with
active membranes, the usual mechanism is to make use of a collection of objects,
each of them triggering a rule that duplicates a membrane. If we arrange those
objects in such a way that they appear sequentially in the membranes being cre-
ated, the number of those membranes is doubled in each step. The final result
is that after n steps we get 2n membranes.

The Exponential Space Pattern with Membrane Division. To implement
the exponential space pattern for P systems with active membranes we will make
use of a sequence of objects to repeatedly divide the membranes in two. Each
time that any of these objects has performed its task, it is changed into the next
object in the sequence and put within both new membranes.

In order to write the pattern rules in an homogeneous way, it is custom-
ary to identify with subscripts the objects in the sequence. Thus, using objects
a0, . . . , an, we can produce 2n membranes with label l in n steps as follows:

Initial setup: [a0]l
Rules: [ai]l → [ai+1]l[ai+1]l, 0 ≤ i < n

It is important to note that the semantics itself of the division rule imposes
that all the objects other than the one triggering the rule have to be replicated
into the new membranes. This eases the design of the subsequent operations,



which are usually required to be performed in parallel within each membrane.
Compare it with the pattern for membrane separation, where we do not have
this facility.

On the other hand, the fact that rules of the rewriting type are allowed to
be run alongside division rules enables us to intercalate other operations with
that of constructing the exponential space. This can even be boosted with the
use of polarizations for the membranes, since they provide a mechanism to hold
up the divisions of the membranes until the intercalated task has finished.

The Exponential Space Pattern with Membrane Creation. When deal-
ing with P systems with membrane creation, in order to obtain an exponential
space in linear time we face with the difficulty of being able to create only one
membrane from the object triggering the rule. To circumvent this obstacle an
exponential number of objects from which to create the membranes could be
generated (for example, by rewriting rules of the form a → a2). But this solu-
tion has the disadvantage of making harder to set up the scenarios for other
operations.

A better alternative is to exploit the semantics of membrane creation rules.
Since when creating a membrane any number of objects can be placed within it,
the number of objects can be doubled and distributed at the same time. Thus,
with the help of objects a0, a

′
0, . . . , an, a′

n, we can create 2n membranes with
label l in n steps as follows:

Initial setup: a0a
′
0

Rules: ai → [ai+1a
′
i+1]l, 0 ≤ i < n

a′
i → [ai+1a

′
i+1]l, 0 ≤ i < n

Note that the result of the previous pattern is the creation, inside of the wrap-
ping membrane that contains the initial setup, of a nested membrane structure
whose depth is increased and whose number of most inner membranes is doubled
with each application of the rules. If we are allowed to dissolve membranes, it is
possible to obtain a flat membrane structure in the following manner:

Initial setup: a0a
′
0

Rules: ai → [ai+1a
′
i+1d]l, 0 ≤ i < n − 1

a′
i → [ai+1a

′
i+1d]l, 0 ≤ i < n − 1

[d]l → λ

an−1 → [ana′
n]l

a′
n−1 → [ana′

n]l

Again, by means of rewriting rules other operations can be performed at the
same time as the exponential space is created. Also, the creation of the new
membranes can be delayed with the aid of different techniques, such as the use
of charges or the rotation of objects (for example, ai,0 → ai,1 → · · · → ai,m →
[ai+1,0a

′
i+1,0]l).



Finally, the objects required by the succeeding operations to be within the
membranes with label l can be effortlessly put inside them by the last creation
rules applied (the pattern above puts the objects an and a′

n, but this is only for
simplicity of the description).

The Exponential Space Pattern with Membrane Separation. Separation
rules, like division rules, provide two membranes from an initial one. This is the
essential property allowing an efficient exponential space generation. However,
the key difference is that, unlike with division rules, with separation rules no new
objects are created, but the already existing ones are distributed into the new
membranes. This means that the number of membranes that could be obtained
is limited by the number of objects present in the P system at the beginning.

To overcome this restriction, membrane separation has to be combined with
another mechanism, such as evolution rules, providing a way to generate an
exponential number of objects in linear time. Also, to accommodate the separa-
tion, the pattern uses pairs of objects with identical role. Thus, we need objects
a0, a

′
0, ã0, ã

′
0, . . . , an, a′

n, ãn, ã′
n to create 2n membranes with label l in n steps:

Initial setup: [a0ã0]l
Rules: [ãi → ai+1a

′
i+1ãi+1ã

′
i+1]l, 0 ≤ i < n

[ã′
i → ai+1a

′
i+1ãi+1ã

′
i+1]l, 0 ≤ i < n

[ai]l → [Γ0]l[Γ1]l, 0 ≤ i < n

[a′
i]l → [Γ0]l[Γ1]l, 0 ≤ i < n

where ai, ãi ∈ Γ0 and a′
i, ã

′
i ∈ Γ1.

If we would like a specific object, say for example b, to remain within all the
created membranes, the same duplication technique as for objects ai could be
employed:

Initial setup: [a0ã0b]l
Rules: [ãi → ai+1a

′
i+1ãi+1ã

′
i+1]l, 0 ≤ i < n

[ã′
i → ai+1a

′
i+1ãi+1ã

′
i+1]l, 0 ≤ i < n

[b → bb′]l
[b′ → bb′]l
[ai]l → [Γ0]l[Γ1]l, 0 ≤ i < n

[a′
i]l → [Γ0]l[Γ1]l, 0 ≤ i < n

where ai, ãi, b ∈ Γ0 and a′
i, ã

′
i, b

′ ∈ Γ1.

2.2 The All Present Pattern

Almost all of the efficient solutions to hard problems found in the membrane
computing bibliography follow a brute force approach. They first generate all
the possible solutions to the problem and then check if any of them is indeed a
solution. For this it is usually demanded that certain requirements are met.



The all present pattern arises in this context to confirm the fulfillment of all
of these requirements. For that it assumes that the accomplishment of the i-th
requirement is signaled by the presence of an object ri in a certain membrane.
It then takes care of verifying that for all of the requirements there is at least
one associated object in that membrane.

The All Present Pattern with Polarizations. Let us suppose that we want
to confirm if in a certain membrane with label l there is at least one copy of all
the objects r1, . . . , rn. When membrane charges are available, the alternation of
two of them provides a control mechanism to iterate a two step process: when
the membrane is, for example, positively charged, the presence of the object r1
is checked; conversely, when the membrane is negatively charged, the subscripts
of the objects ri are decreased by one and a certain counter is increased by one.
The absence of the object r1 prevents the charge of the membrane to change to
negative and so the counter gets stalled.

By representing the counter by the objects c0, . . . , cn, the pattern takes the
following form:

Initial setup: [c0ri1 . . . rik ]+l
Rules: [r1]+l → [ ]−l r1

[ri → ri−1]−l , 1 ≤ i ≤ n

[ci → ci+1]−l , 0 ≤ i < n

r1[ ]−l → [r0]+l
[cn]+l → [ ]+l yes

Just as it is described above, the pattern sends out of the membrane an
object yes to acknowledge the presence of all the objects ri. This answer can be
obviously changed to another one more suitable for the purpose of the P system
being designed.

The All Present Pattern with Membrane Creation. When working with
polarizationless P systems it is necessary to look for another mechanisms allowing
the two step process of checking for the presence of the objects and increasing
the counter when they are detected. Membrane creation provides one of them,
given place to the following pattern:

Initial setup: [c0ri1 . . . rik ]l
Rules: ri → [ ]i, 1 ≤ i ≤ n

ci−1[ ]i → [ci]i, 1 ≤ i ≤ n

[ci]i → [ ]ici, 1 ≤ i ≤ n

[cn]l → [ ]lyes

This pattern acknowledges the presence of an object ri by creating a mem-
brane with label i. The counter traverses these membranes in order, simply by



entering and immediately exiting them. If any object ri is missing, no membrane
with label i is created and the counter gets stalled.

Again the final answer yes when all the objects are present is arbitrary and
can be changed to another more suitable one.

The All Present Pattern with Cooperation. When objects can cooperate
in evolution rules, verifying that all objects ri are within the target membrane
is a triviality.

Initial setup: [c0ri1 . . . rik ]l
Rules: [c0 r1 . . . rn → cn]l

[cn]l → [ ]lyes

Since complete cooperation is so powerful, we often restrict to minimal coop-
eration, where the left-hand side of an evolution rule is restricted to length at
most two. In this case it is also easy to build an all present pattern:

Initial setup: [c0ri1 . . . rik ]l
Rules: [ciri+1 → ci+1]l, 0 ≤ i < n

[cn]l → [ ]lyes

2.3 The No If Not Yes Pattern

To solve a decision problem means to provide, for any of its instances, either the
answer yes or the answer no. When designing a solution to a hard problem by
means of a brute force search, it usually happens that the P system is able to
signal the true solutions from the candidate ones that have been produced. Thus,
since those signals can be effortlessly detected, it is easy to manage the positive
instances of the problem. The difficulty arises with the negative instances, for
which we have to guarantee that no signal will be generated, meaning that all
candidate solutions have been discarded.

The no if not yes pattern comes to the rescue. The idea is very simple: we
assume that the exact computation step when the signal would be detected can
be figured out, what is almost always true. The pattern handles a counter that is
increased at each step of the computation. If a signal is detected, the object yes
is sent out to the environment and the computation is halted, which includes,
of course, stopping the counter. Otherwise, the counter will go beyond the step
where the signals should have been detected, so we can safely send the object
no out to the environment and halt the computation.

The No If Not Yes Pattern with Polarizations. To provide a plain imple-
mentation of this pattern in P systems with polarizations, we will presuppose
that the signal objects are collected within the skin membrane and that the
charge of this membrane is initially neutral.

Initial setup: [c0]0skin
signal objects s appear in the skin at step n



Rules: [ci → ci+1]0skin, 0 ≤ i ≤ n

[s]0skin → [ ]+skinyes

[cn+1]0skin → [ ]0skinno

Therefore, the computation is supposed to stop after step n+2. Any solution
to the instance of the problem makes an object s to enter the skin membrane
at step n. This, in turn, makes the skin membrane to send an object yes out to
the environment and to become positively polarized, what blocks the counter.
In the case that the instance has no solution, the skin membrane remains neu-
trally polarized, and with the aid of the counter an object no is sent out to the
environment.

The No If Not Yes Pattern with Dissolution. When instead of polariza-
tions it is dissolution what is available, the impossibility of dissolving the skin
membrane compels us to work in an ancillary membrane within it. The pat-
tern is simply translated as follows: the appearance of a signal object s at step
n dissolves that membrane, preventing the counter to keep on advancing, and
releasing an object yes into the skin; if the above does not happen, the counter
dissolves the membrane at step n + 1, releasing an object no into the skin; the
latter just has to send out whichever of the answer objects is received, and the
computation then stops.

Initial setup: [[c0]l]skin
signal objects s appear in membrane l at step n

Rules: [ci → ci+1]l, 0 ≤ i ≤ n

[s]l → yes

[cn+1]l → no

[yes]skin → [ ]skinyes
[no]skin → [ ]skinno

The No If Not Yes Pattern with Cooperation. With (minimal) coopera-
tion as the control mechanism, the pattern can be implemented by combining an
auxiliary object able to react with the signal objects and a counter to account
for their absence. The appearance of any of the signal objects at step n removes
the auxiliary object, releasing an object yes into the skin. Otherwise it remains
in the system and cooperate with the counter to release an object no into the
skin. Whichever the answer object received is sent out to the environment by
the skin and the computation then stops.

Initial setup: [c0 c]skin
signal objects s appear in the skin at step n

Rules: [ci → ci+1]skin, 0 ≤ i < n + 1
[cs → yes]skin
[cn+1c → no]skin



[yes]skin → [ ]skinyes
[no]skin → [ ]skinno

3 Practical Examples

To illustrate the use of the design patterns previously described, in this section
we elaborate some solutions to a hard problem, namely the propositional satisfia-
bility problem. The SAT problem was the first one proved to be NP-complete [8],
and can be stated as follows: given a Boolean formula in conjunctive normal form
(CNF), determine whether or not it is satisfiable, that is, whether there exists
an assignment to its variables on which it evaluates to true.

There are already numerous efficient solutions to SAT in the membrane
computing literature, devised in different frameworks, for example, the ones in
[6,7,9–12] and many more. Taking inspiration from these solutions, in the sub-
sections coming next we exhibit three new solutions to SAT, with the focus on
making apparent how they integrate the design patterns.

These new solutions will be provided within the framework of P systems
with active membranes, first introduced by Păun [5] as a type of P systems that,
abstracting the process of cell mitosis, provide rules for making the membranes
to divide. Along with this kind of operations, these systems can also: make an
object evolve within a membrane; send an object into or out of a membrane;
dissolve a membrane. Besides, each of the membranes has an associated charge
–positive, negative or neutral– subject to changes by the applications of the rules.
Finally, rules are triggered by a unique object, disallowing their cooperation.

Since the computational power of this model has been shown to be as high
as to be able to efficiently solve hard problems, several variants have been con-
sidered in an attempt to determine what borderlines in efficiency provides each
of its ingredients. Thus, with respect to the mechanism generating exponential
space, membrane creation (abstracting cell autopoiesis) and membrane separa-
tion (abstracting cell meiosis) have been studied. The role of polarization, disso-
lution and cooperation, and even of membrane labels, have also been analyzed.
A survey of diverse results that have been obtained can be found in [7]. Our
solutions will differ in the ingredients utilized, to show how the design patterns
are able to adapt to distinct conditions.

For a better understanding of the solutions, we refer to [7] for the seman-
tics of the variants with membrane division and creation and to [13] for the
semantics of the variant with membrane separation. Some details to take into
account: the working mode is maximal parallelism, meaning that the rules are
applied to all objects and all membranes at the same time in parallel; for active
membranes with division or separation rules, the semantics states that each
membrane can be affected by at most one rule of the send in, send out, dissolu-
tion and division/separation type (all types but evolution); when creation rules
are used, the standard semantics is polarizationless and, besides, it only restricts
the simultaneous application of dissolution rules; it is assumed that to perform



a computation step, the system applies first the evolution rules and then all the
others.

The solutions presented here are uniform: for every m ≥ 1 and every n ≥ 1
they construct a P system Π(m,n) for dealing with any Boolean formula in
CNF with m clauses and n variables. The input alphabet of this P system will
always be

Σ(m,n) = {xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
Given a Boolean formula ϕ = C1 ∧· · ·∧Cm, before starting a computation of

Π(m,n) an object xi,j (respectively, x̄i,j) has to be put inside its input membrane
for any clause Ci and any variable xj such that xj is in Ci (respectively, ¬xj is
in Ci). The computation will then carry out these operations:

– Generate all the possible assignments for ϕ: the exponential space pattern
will be useful here.

– Compute for each of the assignments which clauses take a true value: this can
be done after the previous operation ends, but usually also at the same time,
as we will see.

– Check for every assignment, in parallel, if all the clauses take a true value:
the all present pattern is clearly suitable for this task.

– Decide if the formula ϕ is satisfiable or not: the no if not yes pattern will be
needed for this.

3.1 Solution to SAT Using Polarizations and Membrane Division

Given ϕ a Boolean formula in CNF with m clauses and n variables, the recog-
nizer P system Π(m,n) of the solution that decides if ϕ is satisfiable or not is
constructed in polynomial time from:

– A working alphabet:

Σ(m,n) ∪ {di | 0 ≤ i ≤ 2n}
∪ {ri,j | 0 ≤ i ≤ m, 1 ≤ j ≤ n + 1}
∪ {ci | 0 ≤ i ≤ 3n + 2m + 3}
∪ {d, yes, no}

– A set {1, 2} of labels for the membranes.
– An initial membrane structure and contents of the membranes [c0[d d0]02]

0
1

(the input membrane is the one labelled 2).
– A set of rules GenerateCompute ∪ Sync ∪ Check ∪ Decide where:

• The rules in GenerateCompute are:

1. [di]02 → [di+1]+2 [di+1]−2 0 ≤ i < n

2. [xi,1 → ri,1]+2 , [x̄i,1 → λ]+2
[xi,1 → λ]−2 , [x̄i,1 → ri,1]−2

1 ≤ i ≤ m



3. [xi,j → xi,j−1]+2 , [x̄i,j → x̄i,j−1]+2
[xi,j → xi,j−1]−2 , [x̄i,j → x̄i,j−1]−2

1 ≤ i ≤ m, 2 ≤ j ≤ n

4. [d → d2]02
[d]+2 → [ ]02d, [d]−2 → [ ]02d

• The rules in Sync are:

5. [ri,j → ri,j+1]02 1 ≤ i ≤ m, 1 ≤ j < n + 1
6. [di → di+1]02 n ≤ i < 2n − 1
7. [d2n−1 → d2nc0]02
8. [d2n]02 → [ ]+2 d2n

• The rules in Check are:

9. [r1,n+1]+2 → [ ]−2 r1,n+1

10. [ri,n+1 → ri−1,n+1]−2 1 ≤ i ≤ m
11. [ci → ci+1]−2 0 ≤ i < m
12. r1,n+1[ ]−2 → [r0,n+1]+2
13. [cm]+2 → [ ]+2 yes

• The rules in Decide are:

14. [ci → ci+1]01 0 ≤ i < 3n + 2m + 3
15. [yes]01 → [ ]+1 yes
16. [c3n+2m+3]01 → [ ]01no

In this P system rules number 1 implement the exponential space pattern,
with the membranes dividing when neutrally charged. Charges + and − are
used to sequentially track the different values assigned to the variables. This
way, rules number 2–3 are able to determine, along the process of generating
the 2n membranes representing the different assignments, which clauses are tak-
ing the true value. Both membrane division and clause value determination are
intercalated by means of rules number 4.

Since only three charges are available and both the exponential space and
the all present pattern make use of them, we need a mechanism preventing the
patterns to interfere. A regular technique is to append subscripts to the common
objects, allowing them to differentiate. For Π(m,n), although all objects ri,j
represent that the i-th clause is true, the generation/computation stage works
with those with 0 ≤ j ≤ n, whereas the checking stage works with those with
j = n + 1. One caveat is that we have to assure that all the objects are the
correct ones before letting the checking stage start, and that is the duty of rules
number 5–8.

Next, rules number 9–13 carry out the all present pattern in each of the 2n

internal membranes, to verify if for their associated assignments all the clauses
take the true value and send out a yes object to the skin membrane if so. Finally,
rules number 14–16 provide the definitive answer by means of a no if not yes
pattern.



3.2 Solution to SAT Using Dissolution and Membrane Creation

Given ϕ a Boolean formula in CNF with m clauses and n variables, the recog-
nizer P system Π(m,n) of the solution that decides if ϕ is satisfiable or not is
constructed in polynomial time from:

– A working alphabet:

Σ(m,n) ∪ {xi,j,l, x̄i,j,l | 1 ≤ i ≤ m, 1 ≤ j ≤ n, l = t, f}
∪ {di,t, di,f | 0 ≤ i ≤ n}
∪ {ri, ri,l | 1 ≤ i ≤ m, l = t, f}
∪ {ci | 0 ≤ i ≤ 3n + 2m + 5}
∪ {yes, no}

– A set {a, b, c, t, f, 1, . . . ,m} of labels for the membranes.
– An initial membrane structure and contents of the membranes [[c0d0,td0,f ]b]a

(the input membrane is the one labelled b).
– A set of rules GenerateCompute ∪ Link ∪ Check ∪ Decide where:

• The rules in GenerateCompute are:

1. [d0,t → [d1,td1,f ]t]b
[d0,f → [d1,td1,f ]f ]b

2. [di,t → [di+1,tdi+1,f ]t]l
[di,f → [di+1,tdi+1,f ]f ]l

1 ≤ i < n, l = t, f

3. xi,1[ ]t → [ri]t, x̄i,1[ ]f → [ri]f 1 ≤ i ≤ m

4. [xi,j → xi,j,txi,j,f ]l
[x̄i,j → x̄i,j,tx̄i,j,f ]l
xi,j,l[ ]l → [xi,j−1]l
x̄i,j,l[ ]l → [x̄i,j−1]l

1 ≤ i ≤ m, 2 ≤ j ≤ n, l = t, f

5. [ri → ri,tri,f ]l
ri,l[ ]l → [ri]l

1 ≤ i ≤ m, l = t, f

• The rules in Link are:

6. [dn,t → [c0]c]l l = t, f
7. ri,t[ ]c → [ri]c 1 ≤ i < m

• The rules in Check are:

8. [ri → [ ]i]c 1 ≤ i ≤ m
9. ci−1[ ]i → [ci]i 1 ≤ i ≤ m

10. [ci]i → [ ]ici 1 ≤ i ≤ m
11. [cm]c → [ ]cyes
12. [yes]l → [ ]lyes l = t, f

• The rules in Decide are:

13. [ci → ci+1]b 0 ≤ i < 3n + 2m + 5



14. [yes]b → yes
15. [c3n+2m+5]b → no
16. [yes]a → [ ]ayes
17. [no]a → [ ]ano

In this P system rules number 1–2 implement the exponential space pattern
to create a nested membrane structure, each of whose inner membranes stands
for a different assignment to the variables of ϕ. As this membrane structure is
created, but at a slower pace, the objects xi,j that represent this formula traverse
it, computing at the same time which of the clauses makes true, which is signified
by the objects ri. Rules number 3–5 are in charge of this, including the use of
the object duplication technique to be able to transmit a copy of the objects
from each membrane to both of the membranes created inside it.

Rules number 6–7 link the generation/computation stage with the checking
one, preventing the latter to start until the whole nested membrane structure
has been constructed. They then create inside each of the internal membranes
a new membrane where the all present pattern, implemented by rules number
8–11, is used to verify if all the clauses are true. Note, however, that objects ri
arrive at different times, but this does not affect the pattern performance. Also,
the affirmative answers traverse, by means of rule number 12, the membrane
structure back until arriving to membrane b.

Finally, rules number 13–17 use the no if not yes pattern to provide the
definitive answer. Here, the time needed by the objects xi,j and ri to travel for-
ward and by the objects yes to travel backward through the membrane structure
has been taken into account before concluding that the formula is unsatisfiable.

3.3 Solution to SAT Using Polarizations and Membrane Separation

Given ϕ a Boolean formula in CNF with m clauses and n variables, the recog-
nizer P system Π(m,n) of the solution that decides if ϕ is satisfiable or not is
constructed in polynomial time from:

– A working alphabet Γ1 ∪ Γ2 with:

Γ1 ={xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {di | 0 ≤ i ≤ 2n + 1}
∪ {d̃i | 0 ≤ i ≤ n}
∪ {ri,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1}
∪ {ci | 0 ≤ i ≤ 3n + 2m + 4}
∪ {d, yes, no}

and

Γ2 ={x′
i,j , x̄

′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {d′
i | 0 ≤ i ≤ 2n + 1}



∪ {d̃′
i | 0 ≤ i ≤ n}

∪ {r′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1}

∪ {d′}

– A set {1, 2} of labels for the membranes.
– An initial membrane structure and contents of the membranes [c0[d0d̃0d]02]

0
1

(the input membrane is the one labelled 2).
– A set of rules GenerateCompute ∪ Sync ∪ Check ∪ Decide where:

• The rules in GenerateCompute are:

1. [di]02 → [Γ0]+2 [Γ1]−2
[d′

i]
0
2 → [Γ0]+2 [Γ1]−2

0 ≤ i < n

2. [d̃i → di+1d
′
i+1d̃i+1d̃

′
i+1]

0
2

[d̃′
i → di+1d

′
i+1d̃i+1d̃

′
i+1]

0
2

0 ≤ i < n

3. [xi,j → xi,jx
′
i,j ]

0
2, [x′

i,j → xi,jx
′
i,j ]

0
2

[x̄i,j → x̄i,j x̄
′
i,j ]

0
2, [x̄′

i,j → x̄i,j x̄
′
i,j ]

0
2

[ri,j → ri,j+1r
′
i,j+1]

0
2, [r′

i,j → ri,j+1r
′
i,j+1]

0
2

1 ≤ i ≤ m, 1 ≤ j ≤ n

4. [d → d2d′2]02, [d′ → d2d′2]02

5. [xi,1 → ri,1]+2 , [x̄i,1 → λ]+2
[x′

i,1 → ri,1]+2 , [x̄′
i,1 → λ]+2

[xi,1 → λ]−2 , [x̄i,1 → ri,1]−2
[x′

i,1 → λ]−2 , [x̄′
i,1 → ri,1]−2

1 ≤ i ≤ m

6. [xi,j → xi,j−1]+2 , [x̄i,j → x̄i,j−1]+2
[x′

i,j → x′
i,j−1]

+
2 , [x̄′

i,j → x̄′
i,j−1]

+
2

[xi,j → xi,j−1]−2 , [x̄i,j → x̄i,j−1]−2
[x′

i,j → x′
i,j−1]

−
2 , [x̄′

i,j → x̄′
i,j−1]

−
2

1 ≤ i ≤ m, 2 ≤ j ≤ n

7. [d]+2 → [ ]02d, [d]−2 → [ ]02d

[d′]+2 → [ ]02d
′, [d′]−2 → [ ]02d

′

• The rules in Sync are:

8. [ri,j → ri,j+1]02, [r′
i,j → r′

i,j+1]
0
2 1 ≤ i ≤ m, 1 ≤ j < n + 1

9. [r′
i,n+1 → ri,n+1]02 1 ≤ i ≤ m

10. [di → di+1]02, [d′
i → d′

i+1]
0
2 n ≤ i < 2n

11. [d2n → d2n+1c0]02, [d′
2n → d′

2n+1c0]
0
2

12. [d2n+1]02 → [ ]+2 d2n+1, [d′
2n+1]

0
2 → [ ]+2 d′

2n+1

• The rules in Check are:

13. [r1,n+1]+2 → [ ]−2 r1,n+1

14. [ri,n+1 → ri−1,n+1]−2 1 ≤ i ≤ m
15. [ci → ci+1]−2 0 ≤ i < m



16. r1,n+1[ ]−2 → [r0,n+1]+2
17. [cm]+2 → [ ]+2 yes

• The rules in Decide are:

18. [ci → ci+1]01 0 ≤ i < 3n + 2m + 4
19. [yes]01 → [ ]+1 yes
20. [c3n+2m+4]01 → [ ]01no

In this P system rules number 1–2 implement the exponential space pattern
for membrane separation, whereas rules number 3–4 include the standard object
duplication technique to preserve the objects when separating the membranes.
For the rest, the behaviour of the system is analogous to the one from the solution
with polarizations and membrane division in Subsect. 3.1. Just only rule number
9 is added to get rid of the prime objects, so that we do not have to duplicate
the rules for the subsequent operations.

3.4 Solution to SAT Using Minimal Cooperation (with Minimal
Production) and Membrane Division

Given ϕ a Boolean formula in CNF with m clauses and n variables, the recog-
nizer P system Π(m,n) of the solution that decides if ϕ is satisfiable or not is
constructed in polynomial time from:

– A working alphabet:

Σ∗(m,n) ∪ {ai,k | 1 ≤ i ≤ n, 1 ≤ k ≤ i}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, i ≤ k ≤ n + p + 1}
∪ {βk | 0 ≤ k ≤ n + 2p + 2}
∪ {cj | 1 ≤ j ≤ m}
∪ {dj | 0 ≤ j ≤ m}
∪ {Ti, Fi | 1 ≤ i ≤ n}
∪ {xi,j,k, x̄i,j,k, x

∗
i,j,k | 0 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n + p}

∪ {α, no, yes}

– A set {1, 2} of labels for the membranes.
– An initial membrane structure and contents of the membranes [α β0[d0

ai,1 T p
i F p

i ]2]1 (the input membrane is the one labelled 2).
– A set of rules Generate ∪ Remove ∪ Compute ∪ Check ∪ Decide where:

• The rules in Generate are:

1. [ai,i]2 → [ti,i]2[fi,i]2 1 ≤ i ≤ n
2. [ai,k → ai,k+1]2 2 ≤ i ≤ n, 1 ≤ k ≤ i − 1
3. [ti,k → ti,k+1]2

[fi,k → fi,k+1]2
1 ≤ i ≤ n − 1, i ≤ k ≤ n − 1



• The rules in Remove are:

4. [ti,k Fi → ti,k+1]2
[fi,k Ti → fi,k+1]2

1 ≤ i ≤ n, n ≤ k ≤ n + p − 1

• The rules in Compute are:

5. [xi,j,k → xi,j,k+1]2
[x̄i,j,k → x̄i,j,k+1]2
[x∗

i,j,k → x∗
i,j,k+1]2

1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n + p − 1

6. [Ti xi,j,n+p → cj ]2
[Ti x̄i,j,n+p → #]2
[Ti x

∗
i,j,n+p → #]2

[Ti xi,j,n+p → #]2
[Ti x̄i,j,n+p → cj ]2
[Ti x

∗
i,j,n+p → #]2

1 ≤ i ≤ n, 1 ≤ j ≤ p

• The rules in Check are:
7. [di ci+1 → di+1]2 1 ≤ i ≤ m − 1

• The rules in Decide are:
8. [βi → βi+1]2 0 ≤ i ≤ n + 2p + 1
9. [dm]2 → [ ]2dm

10. [α dm → yes]2
11. [βn+2p+2 α → no]2
12. [yes]1 → [ ]1yes
13. [no]1 → [ ]1no

Note that for this solution a different input alphabet is needed:

Σ∗(m,n) = {xi,j,0, x̄i,j,0, x
∗
i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Then, given a Boolean formula ϕ = C1∧· · ·∧Cm, before starting a computation of
Π(m,n) an object xi,j (respectively, x̄i,j) has to be put inside its input membrane
for any clause Cj and any variable xi such that xi is in Cj (respectively, ¬xi is
in Cj). If neither xi nor ¬xi appear in Cj , then an object x∗

i,j,0 has to be put
inside its input membrane.

In this P system rules number 1–2 implement the exponential space pattern
with division rules. This way, rules number 3 are able to synchronize objects ti,k
and fi,k for the next stage. Rules number 4 remove the wrong “truth assignment
objects” to keep only the objects that represent the real truth assignment of
such a membrane. Rules number 5–6 synchronize cod(ϕ) with the rest of the
system and compute the clauses that are satisfied by the corresponding truth
assignment.

Rules number 7 implement the all present pattern with minimal cooperation,
and finally rules number 8–10 return the answer by means of the no if not yes
pattern.



4 Conclusions

Many variants of P systems are powerful enough as to permit the existence
of (theoretical) efficient solutions to hard problems. Indeed, a plethora of such
solutions to NP-complete, PP-complete, PSPACE-complete problems and the
like can be found in the membrane computing literature.

A careful analysis of those solutions reveals that a number of techniques and
constructions are repeatedly applied. Following what is recommended practice
in software engineering, it is advisable to devise abstractions of those techniques
and constructions. These design patterns may speed up the elaboration of solu-
tions to new problems and increase the confidence in their correct functioning.

This paper aims to promote the developing of design patterns for solutions to
hard problems within membrane computing. As a starting point, three of them
are introduced, namely: the exponential space pattern, to create an exponential
number of membranes in linear time; the all present pattern, to check if all of a
number of objects are present in a membrane; and the no if not yes pattern, to
supply the no object when the yes object has not appeared in a membrane at a
specific computation step.

To highlight the advantages attained from the utilization of design patterns,
several solutions to the SAT problem are given. Although the variants of P
systems considered work with different features, the proposed design patterns
can be implemented in all of them, what we exploit to use the same structure
for each of the solutions.

There are three clear lines for future work:

– Provide implementations of the design patterns in variants of P systems other
than P systems with active membranes, for example, P systems with sym-
port/antiport rules or tissue P systems.

– Abstract more design patterns from existent or new solutions. In particular, a
review of the solutions to PP-complete and PSPACE-complete problems that
can be found in the literature (for example [14–18]) shows that other types
of patterns are required. Namely, for the former, the ability to “count” is
needed, whereas for the latter a hierarchical separation of the space is usually
performed.

– Apply the design patterns to obtain efficient solutions to new hard problems.
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