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Abstract   A study of the in vitro reconstitution of sugar beet cytochrome b559 of the photosystem 

II is described. Both α and β cytochrome subunits were first cloned and expressed in 

Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified 

recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) 

and (ββ) homodimers and (αβ) heterodimer was possible, the latter being more efficient. The 

absorption spectra of these reconstituted samples were similar to that of the native heterodimer 

cytochrome b559 form. As shown by electron paramagnetic resonance and potentiometry, most 

of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential 

+36 mV, similar to that from the native purified cytochrome b559. Furthermore, during the 

expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b559 subunits, part of 

the protein subunits were incorporated into the host bacterial inner membrane, but only in the 

case of the β subunit from the cyanobacterium the formation of a cytochrome b559-like structure 

with the bacterial endogenous heme was observed. The reason for that surprising result is 

unknown. This in vivo formed (ββ) homodimer cytochrome b559-like structure showed similar 

absorption and electron paramagnetic resonance spectral properties as the native purified 

cytochrome b559. A higher midpoint redox potential (+126 mV) was detected in the in vivo 

formed protein compared to the in vitro reconstituted form, most likely due to a more 

hydrophobic environment imposed by the lipid membrane surrounding the heme. 

 

Keywords: Cytochrome b559, electron paramagnetic resonance, reconstitution, redox titration. 

 

Abbreviations  

Abs  Absorbance  

BCA  bicinchroninic acid  

Cyt  cytochrome  
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β-DM  n-dodecyl-β-D-maltoside  

DEAE  diethyl aminoethyl cellulose  

Eh  ambient redox potencial   

Em  midpoint redox potential  

EPR  electron paramagnetic resonance  

ε  extinction coefficient 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HP  high potencial  

HS  high spin  

IP  intermediate potencial   

IPTG  isopropyl β-D-1-thiogalactopyranoside  

KDS  potassium dodecyl sulphate 

LHCP  light-harvesting chlorophyll-protein  

LP  low potential  

LS  low spin  

MBP  maltose-binding protein  

MES  2-(N-Morpholino)ethanesulfonic acid  

OD  optical density  

PAGE  polyacrylamide gel electrophoresis  

PMSF  phenylmethanesulfonylfluoride  

PS  photosystem  

SDS  sodium dodecyl sulphate  

TRIS  tris(hydroxymethyl)aminomethane 
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Introduction 

Cytochrome b559 (Cyt b559) is an integral component of the photosystem II (PSII) reaction center 

(Stewart and Brudvig 1998). It comprises two small polypeptides, α (9 kDa) and β (4.5 kDa) 

subunits, encoded by psbE and psbF genes, respectively. Each subunit contains one alpha-

helix that spans the thylakoid membrane, with the N-terminus in the stromal side (Guskov et al. 

2009). The b-type heme is coordinated to two histidines in a planar axial structure (Babcock et 

al. 1985; García-Rubio et al. 2003), one from each subunit, and it is located towards the 

stromal side (Picorel et al. 1994; Guskov et al. 2009). Despite many attempts, Cyt b559 function 

remains unclear. It has been demonstrated that Cyt b559 is essential for the correct assembly of 

the PSII (Pakrasi et al. 1989; Swiatek et al. 2003), although it is not involved in the primary 

electron transfer within PSII (Stewart and Brudvig 1998). One of the most accepted hypotheses 

put forward suggests its involvement in PSII protection against photoinhibition (Stewart and 

Brudvig 1998; Hung et al. 2010). 

 Cytochrome b559 has singular redox properties among b-type cytochromes. It exhibits 

several midpoint redox potential (Em) forms (Cramer and Whitmarsh 1977; Ortega et al. 1988; 

Thompson et al. 1989; Roncel et al. 2001): a high-potential form (HP, Em ≈ +400 mV), an 

intermediate-potential form (IP, Em ≈ +200-150 mV), and a low-potential form (LP, Em ≈ +100 

mV). The HP form is very labile as it has only been observed in intact chloroplasts and some 

isolated PSII preparations (Stewart and Brudvig 1998). Purified Cyt b559 displayed only the LP 

form (Metz et al. 1983). The molecular mechanisms responsible for these singular redox 

properties are mainly unknown, although several hypotheses have been proposed (Metz et al. 

1983; Babcock et al. 1985; Roncel et al. 2001; Kaminskaya et al. 2007; Shibamoto et al. 2008). 

The degree of the heme exposure to solvents and its environmental hydrophobicity seem to 

modulate the Cyt b559 redox properties (Ortega et al. 1988; Ahmad et al. 1993; Kaminskaya et 

al. 1999; Roncel et al. 2001). 
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 Cytochrome b559 is a paramagnetic species, thus electron paramagnetic resonance (EPR) 

spectroscopy is a suitable technique to characterize this metalloprotein. The principal values of 

the g-tensor are gZ ≈ 3.05-2.9, gY ≈2.26-2.15, and gX ≈ 1.5-1.4, which correspond to a low spin 

(LS) heme center (Babcock et al. 1985; Stewart and Brudvig 1998; Yruela et al. 2003). 

 Some in vitro and in vivo studies have been carried out with the β subunit alone. It was 

found that the β subunit was able to undergo (ββ) homodimerization and bound the heme 

group to make a Cyt b559-like structure. It showed spectral and redox properties similar to those 

of native Cyt b559. In vitro reconstitutions with commercial heme and the β subunit from the 

cyanobacterium Synechocystis sp. PCC 6803 were described, either from chemically 

synthesized peptide (Francke et al. 1999) or from the inclusion bodies of Escherichia (E.) coli 

expressing β subunit in (Prodohl et al. 2005). Furthermore, in vivo formation of the (ββ) 

homodimeric Cyt b559-like structure was reported when the β subunit from Synechocystis 

(Prodohl et al. 2005) or Synechococcus sp. PCC 7002 (Yu et al. 2003) was expressed in E. 

coli. The polypeptide was integrated into the host bacterial inner membrane as a (ββ) 

homodimer, and then it bound bacterial endogenous heme to make a Cyt b559-like structure. 

 In the present study, we first report the expression in E. coli of the two Cyt b559 subunits α 

and β from plant species, and the psbE gene from a cyanobacterium. With the recombinant 

subunits from sugar beet (MBP-Rsubα and MBP-Rsubβ), we studied the ability of in vitro 

reconstitution of αα, ββ and αβ forms, the heterodimer being more efficient. We also describe 

the insertion of α and β subunits from sugar beet and Synechocystis (MBP-Ssubα and MBP-

Ssubβ), and the β subunit from maize (MBP-Msubβ) in E. coli inner cytoplasmic membrane 

during their expression. Only the β subunit from the cyanobacterium was able to bind heme to 

form a Cyt b559-like structure in vivo. The spectroscopic and redox properties of the obtained 

forms are described. 
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Materials and methods 

Cloning and expression of the cytochrome b559 subunits. 

The psbE and psbF genes from sugar beet and Synechocystis and psbF gene from maize were 

cloned and expressed in E. coli as fusion proteins using standard procedures. Genes were 

obtained from genomic DNA by PCR with specific primers, containing a BamHI site forward 

oligonucleotides and a HindIII site reverse primers. Each gene was cloned into pMAL-c2X 

expression vector and the sequence of each final construct was confirmed by DNA sequencing. 

These constructions will give fusion proteins composed of MBP (maltose-binding protein), a 

protein carrier, and α or β Cyt b559 subunits. 

 Escherichia coli TB1 competent cells were transformed with the constructs for expression of 

each fusion protein. A pre-culture was grown overnight from a selected single colony at 37 ºC 

in LB broth (Miller) medium in the presence of 100 µg ml-1 ampicillin. A larger volume of LB 

broth with ampicillin was inoculated with the pre-culture on the next day and it was grown at 37 

ºC until the OD600nm reached 0.6 units. Then 0.5 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) was added to the culture to induce the expression of the fusion proteins for 3 h at 37 ºC, 

with the exception of the MBP-Ssubα that was expressed with 1 mM IPTG for 17 h at 18 ºC. 

After induction, cells were harvested by centrifugation at 10,000g for 5 min and frozen at -20 ºC 

until use. For protein purification, the bacterial pellet was resuspended in 50 mM HEPES, pH 

7.5, 10 mM EDTA, and broken by sonication (Ultrasonic Processor XL 2020 Misonix, 

Farmingale, NY USA) for 45 min (90 s pulses with 60 s intervals) with sample recipient on ice to 

avoid heating. Cell extracts were clarified by centrifugation at 15,000g for 10 min at 4 ºC, 

obtaining the insoluble material with the inclusion bodies as a pellet. This pellet was saved and 

the supernatant centrifuged again at 40,000g for 45 min at 4 ºC to sediment small cytoplasmic 

membrane fragments, which were resuspended in the same buffer and analyzed by UV-Vis 

absorption and EPR spectroscopies, and redox potentiometric titration. 



7 

 

 

 

 The saved pellet from the first centrifugation containing the inclusion bodies was washed 

once by centrifugation (10,000g for 5 min at 4 ºC) with 50 mM HEPES, pH 7.5, 10 mM EDTA, 

1% (w/v) Triton X-100, resuspended with 20 mM TRIS-HCl, pH 8.0, 50 mM sodium dodecyl 

sulphate (SDS) and saved to make subsequently in vitro reconstitutions. 

 Total protein concentration was determined using the BCA reagent (Pierce Thermo 

Scientific, Rockford, IL USA). Proteins were separated on SDS-PAGE [12% or 20% (w/v) 

acrylamide and 4 M urea] and revealed by Coomassie Brilliant Blue staining. 

In vitro reconstitution 

In vitro heterodimeric Cyt b559 reconstitution was done using equimolar amounts of MBP-Rsubα 

and MBP-Rsubβ fusion proteins obtained as explained above. The detergent SDS of the fusion 

protein mixture was exchanged with 0.15 mM n-dodecyl β-D-maltoside (β-DM) by precipitating 

with 50 mM KCl. After incubating for 10 min on ice, the precipitated potassium dodecyl sulphate 

(KDS) was removed by centrifugation at 6,000g for 15 min at 4 ºC. Finally, equimolar amounts 

of heme from chemical hemin chloride (Fluka, Buchs, Switzerland) dissolved as described by 

Kroliczewski and Szczepaniak (2002), were added to the fusion protein mixture. After in vitro 

reconstitution, protease cleavage was performed with Factor Xa to release the Cyt b559 subunits 

from the MBP. Cleavage was done in 20 mM TRIS-HCl, pH 8.0, 1 mM CaCl2, 0.15 mM β-DM 

with 10 units of Factor Xa per mg of fusion protein at 22 ºC for 4 h. The reaction was stopped 

by adding 1 mM PMSF protease inhibitor. The resultant cleavage mixture was purified by weak 

anionic-exchange chromatography with a TSK Toyopearl DEAE 650s (TOSOH Bioscience 

GmbH, Stuttgart, Germany) column pre-equilibrated with 20 mM TRIS-HCl, pH 8.0, and 0.15 

mM β-DM. After sample loading, the column was washed with five column volumes of the same 

buffer, and the material eluted with a 0-500 mM NaCl continuous gradient in the same buffer at 

a flow rate of 0.5 ml min-1 in 1-ml fractions. Fractions were analyzed by SDS-PAGE and 

Coomassie Brilliant Blue staining, and those containing Cyt b559 subunits were pooled and 
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concentrated using a Centriprep or Centricon 3000 NMWL filter (Millipore, Billerica, MA USA). 

Since some hemes could have been detached during the chromatography, commercial heme 

was added again in excess to the concentrated sample to ensure maximum reconstitution, and, 

immediately after, the mixture was passed through three consecutive desalting PD-10 columns 

(GE Healthcare) to remove most of free heme (Kroliczewski and Szczepaniak 2002). The final 

sample was concentrated ten times using a Centricon 3000 NMWL filter tube, and the degree 

of Cyt b559 reconstitution was determined by UV-Vis spectroscopy. In vitro (αα) and (ββ) 

homodimeric Cyt b559 reconstitutions were obtained in the same way but using one type of 

fusion protein only. 

Absorption spectroscopy  

Visible absorption spectra in the 400-600 nm range were obtained with a Beckman DU 640 

spectrophotometer (Beckman Coulter, Brea, CA USA). Samples were measured either in air-

oxidized or reduced with 10 mM sodium dithionite. The spectra were compared at the α band at 

around 559 nm of the reduced minus oxidized differential absorption spectra. Two extinction 

coefficients (ε) were used to determine the extent of the cytochrome reconstitution using the 

difference absorption spectra, i.e., ε559.5nm - 577nm = 21.5 mM-1 cm-1 or ε559.5nm - isosbestic point = 17.5 

mM-1 cm-1 (Stewart and Brudvig 1998). 

Electron paramagnetic resonance  

EPR measurements were recorded with a Bruker ESP380E spectrometer (Bruker, Karlsruhe, 

Germany) working at the X-band. For low-temperature measurements, an Oxford CF935 liquid 

helium continuous-flow cryostat (Oxford Instruments, Eynsham, UK) was used. Typical 

conditions for continuous-wave EPR (CW-EPR) measurements were: temperature, 15K; 

microwave frequency, 9.70 GHz; microwave power, 3.2 x 10-2 mW; modulation amplitude, 3.0 

Gauss. Two-pulse echo induced EPR (2p ei-EPR) experiments were performed by using the 
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(п/2 - т - п - т) sequence, and detecting the echo intensity as a function of the applied magnetic 

field. The experimental conditions were 6K and 9.78 GHz. 

 Some ei-EPR spectra showed a spurious contribution most probably from a Cu(II) species 

(see Results). In order to make the contributions from heme centers easier to see, a numerical 

subtraction of this spurious signal was performed. From a sample where the relative intensity of 

the heme signals was low, the Cu(II) signal in the field interval (270-360 mT) was isolated. This 

signal was subtracted from the measured spectra for the Cyt b559 reconstituted samples. 

Additionally, a numerical “adjacent averaging” filter was used in order to improve the signal-to-

noise ratio without losing the signals resolution. 

Potentiometric redox titrations 

Potentiometric redox titrations were carried out basically as described by Guerrero et al. (2011). 

For titrations, samples were suspended in 2.5 ml buffer containing 40 mM MES-NaOH, pH 6.5, 

0.587 mM β-DM, and the following redox mediators: 10 µM 2,5-dimethyl-p-benzoquinone (E’m7 

= +180 mV), 20 µM o-naphtoquinone (E’m7 = +145 mV), 2.5 µM N-methyl-phenazonium 

methosulfate (E’m7 = +80 mV) and 20 µM duroquinone (E’m7 = +5 mV). Experiments were done 

at 20 ºC under argon atmosphere and continuous stirring. Reductive titrations were performed 

by first oxidizing with 25 µM potassium ferricyanide and then reducing it stepwise with small 

aliquots of 0.1 M sodium dithionite. After addition of sodium dithionite, the absorption spectrum 

between 500-600 nm range and the redox potential of the solution were simultaneously 

recorded by using, respectively, a SLM Aminco DW2000 UV-Vis spectrophotometer and a 

Metrohm potentiometer (Metrohm Ltd., Herisau, Switzerland) provided with a combined Pt-

Ag/AgCl microelectrode (Microelectrodes Inc, Bedford, NH USA) previously calibrated against a 

saturated solution of quinhydrone (E’m7 = +280 mV at 20 ºC). Differential spectra of Cyt b559 

were obtained by subtracting the absolute spectra recorded at each Eh during titrations from the 

spectra of the fully oxidized cytochrome. The absorbance difference at 559 nm minus 570 nm 
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obtained from these spectra was converted into percentages of reduced cytochrome and 

plotted versus Eh. The Em values were then determined by fitting the plots to the Nernst 

equation for one-electron carrier (n= 1) with 1 or 2 components as needed, and using a non-

linear curve-fitting program Origin 6.0 (Microcal Software, Piscataway, NJ USA). 

 

Results 

Expression of cytochrome b559 subunits in E. coli 

Both Cyt b599 subunits, α and β, of sugar beet were cloned and expressed separately in E. coli 

as fusion proteins with MBP. Due to the marked hydrophobicity of the Cyt b559 subunits, MBP 

was chosen as fusion protein carrier to increase the subunit solubility during expression 

(Kapust and Waugh 1999). The fusion proteins (MBP-Rsubα and MBP-Rsubβ) corresponded to 

about 30% of total protein content in cell extracts. Both proteins were expressed both in 

insoluble and soluble forms (Fig. 1), and a significant part was also incorporated spontaneously 

into the bacterial cytoplasmic membrane (Fig. 1, lanes 4). 

In vitro reconstitution 

Inclusion bodies containing the fusion proteins were reconstituted by detergent exchange as 

explained in Materials and methods, followed by cleavage with Factor Xa to release the α and β 

subunits from their own fusion proteins. SDS-PAGE and Coomassie Brilliant Blue staining 

analysis showed that the cleavage of the fusion proteins was almost complete, as the main 

band at around 50 kDa almost disappeared (this band corresponds to the fusion protein made 

of MBP and the corresponding Cyt b559 subunit, Fig. 2a). After centrifugation, to eliminate 

potential aggregates, the resultant components from the proteolytic cleavage were separated 

by a weak anionic-exchange TSK Toyopearl DEAE 650s chromatography. The washing elution 

fractions did not show detectable protein content (data not shown), so most of the material 

remained bound to the column. The fractions eluted at around 140 mM salt contained highly 
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pure MPB, and the fractions eluted at around 250 mM salt contained the reconstituted Cyt b559 

(Fig. 2a). These latter fractions were contaminated with other proteins as revealed by SDS-

PAGE and Coomassie Brilliant Blue staining. However, the degree of contamination cannot 

strictly be assessed from the band staining since it is well noticed that the Cyt b559 subunits 

stain very poorly with Coomassie Brilliant Blue stain (Cramer et al. 1986). Thus the Cyt b559 

subunit concentration in these fractions was much higher than the staining may indicate. Note 

that the reason to reconstitute the Cyt b559 before its purification was to favour the elution of the 

two subunits coordinated to the heme group with no free heme in solution. 

 The redox difference absorption spectra of the fractions containing both subunits were very 

similar to that of native Cyt b559 (Fig. 2b), with maxima around 559 and 530 nm, proving the 

heme remained properly bound to the subunits during the purification process. Indeed, the 

elution chromatography fractions containing the subunits were actually reddish, indicating the 

presence of the cytochrome, while MBP fractions were colourless. Despite these interesting 

data, there was not a close correspondence between the concentration of reconstituted 

cytochrome, as assessed by the difference absorption spectra, and that of the protein subunits, 

as determined considering there were two MBP proteins per each α/β subunits in the original 

non-cleaved sample (pure MBP content eluted from the column was determined using an ε280nm 

= 68,750 mM-1cm-1, Bretton and Hofnung 1996). This may indicate that the reconstitution was 

not complete and/or some hemes were released during the chromatography. To improve the 

reconstitution, supplementary commercial heme was added to the eluted reconstituted sample, 

and the absorption spectra were taken again (Fig. 3). The new spectrum was similar to that of 

native Cyt b559, except the Soret band maximum of the oxidized state shifted from 413 nm 

(Babcock et al. 1985) to 407 nm. This fact may suggest the presence of some free heme, being 

more exposed to the environment (Francke et al. 1999). However, the spectral band amplitudes 



12 

 

 

 

(Fig. 3) were bigger than that from the original eluted reconstituted samples (Fig. 2b) as 

expected. 

 Since in vitro studies with Cyt b559 β subunit have shown that this polypeptide is prone to 

homodimerize in a (ββ) Cyt b559-like structure (Francke et al. 1999; Prodohl et al. 2005), we 

analyzed the behaviour of the two Cyt b559 subunits separately. In vitro reconstitution of each 

subunit alone and the corresponding difference absorption spectra were obtained as above. 

Comparing the difference spectra of all three types of reconstitutions (αβ, αα and ββ), it was 

observed that the heterodimer performed somewhat better than the homodimers in terms of 

spectral shape and band amplitude (Fig. 3). Indeed, α subunit clearly has less capacity for 

reconstitution than β subunit, and (αβ) seems to perform better than the others two (Fig. 3, 

inset). It is worth mentioning that the heterodimer is the form found in nature. 

 The in vitro reconstituted (αβ) heterodimer Cyt b559 was analyzed by continuous wave EPR 

(CW-EPR) and two pulses echo-induced EPR (2p ei-EPR) spectroscopies (Fig. 4). At magnetic 

field positions corresponding to gef = 6.0, gef = 4.3, and gef = 2.0 CW-EPR showed several 

features that are not related to the low spin (LS) heme centers  (Fig. 4a). The gef = 4.3 signal is 

indicative of a non-heme iron and the other two signals (gef = 6.0 and 2.0) may correspond to a 

high spin heme (HS) center (at gef= 2.0 there could also be additional contributions from free 

radicals). Although native Cyt b559 appears essentially as in LS form (Babcock et al. 1985; 

Stewart and Brudvig 1998; Yruela et al. 2003), some works have reported a low content of HS 

forms (Fiege et al. 1995; Shuvalov et al. 1995), which could be associated with heme center 

heterogeneity (Babcock et al. 1985) or heme coordination distortion (Kropacheva et al. 2003). 

 The CW-EPR spectrum additionally displayed characteristic features corresponding to LS 

heme (gef = 2.96, gef = 2.49, and gef = 2.28, Fig. 4a). The last signal showed a unique shape at 

the high field spectral region. Comparing it with the native Cyt b559 CW-EPR spectrum, we 

could suggest a less intense additional signal at gef = 2.26. These features should be 
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associated with others at higher magnetic fields, but the weak signals over 350 mT were 

masked by the baseline contributions of the EPR cavity in our CW-EPR spectrum. As in 

previous work (Garcia-Rubio et al. 2006), 2p ei-EPR was used to resolve the broad unresolved 

signals in the high field spectrum region. 

 The 2p ei-EPR spectrum showed an intense feature at gef ≈ 2.08 (not shown), which shape 

and position indicated that it was probably due to a Cu(II) center. Although it seemed relatively 

intense in the 2p ei-EPR spectrum, this signal was most probably minor as it is nearly isotropic 

in comparison with LS heme contributions. A numerical subtraction of this Cu(II) signal was 

performed in order to better display the heme features (see Materials and methods). After 

numerical subtraction of this Cu(II) signal the spectrum displayed the LS heme features already 

detected in CW-EPR, and two additional signals over 350 mT at gef = 1.91 and gef = 1.4 (Fig. 

4b). 

 These EPR results can be understood assuming that two distinct LS heme forms were 

present in the in vitro reconstituted heterodimeric Cyt b559 sample. The first LS form (LS1) was 

similar to the native Cyt b559 and corresponded to axial bis-histidine coordination to the heme 

with characteristic features at gz = 2.96, gy = 2.28, and gx = 1.4 (Babcock et al. 1985; Cramer et 

al. 1986; Stewart and Brudvig 1998; Yruela et al. 2003). The second form, LS2 with gz = 2.49, 

gy = 2.26, and gx = 1.91 had also been detected (Blumberg and Peisach 1971; Shuvalov et al. 

1995) and was assigned to heme centers with one histidine and one hydroxyl group (-OH) as 

axial ligands. It is not possible to quantify exactly the LS2 form content in the sample, but 

according to its lower intensity and smaller g-tensor anisotropy, the relative content of LS2 form 

would be less than 20%, compared to the LS1 form. 

 The Em of the in vitro reconstituted heterodimeric Cyt b559 was measured by potentiometric 

reductive titrations at pH 6.5 (Fig. 5). Differential absorption spectra in the spectral α-band 

region were obtained by subtracting the absolute spectrum recorded at +355 mV from those 
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recorded during the course of the redox titration (Fig. 5a). It was possible to determine the Em 

of Cyt b559 measuring the relative content of reduced Cyt b559 from the absorbance difference 

between 559 (main peak) and 570 (isosbestic point) nm (Fig. 5a). A plot of the percentages of 

reduced Cyt b559, obtained from these difference spectra, versus Eh could be fit to a Nernst 

equation for one n= 1 component (Fig. 5b). Only one redox species was found with an Em = 

+36 mV, which corresponds to the Cyt b559 LP form, the only one present in the purified native 

Cyt b559 from PSII (Matsuda and Butler 1983; Ortega and Hervás 1989). 

In vivo formation 

A good part of both sugar beet fusion proteins (MBP-Rsubα and MBP-Rsubβ) was 

spontaneously integrated into the bacterial cytoplasmic membrane, as assessed by SDS-PAGE 

and Coomassie Brilliant Blue staining analysis (Fig. 1). To test the ability for in vivo Cyt b559 

formation of each plant Cyt b559 subunit, redox differential absorption spectra of E. coli inner 

membrane fragments were carried out (Fig. 6). Membranes from non-transformant E. coli 

exhibited redox difference absorption spectra that resembled those of native Cyt b559, and were 

caused by endogenous b-type cytochromes present in the bacterial inner membrane (Gennis 

1987). Thus two controls were necessary - induced TB1 cells without transformation and 

induced TB1 cells bearing empty pMAL-c2X vector. Furthermore, bacterial membrane 

fragments that expressed Synechocystis MBP-Ssubβ were used as a positive control (Prodohl 

et al. 2005). As it can be observed, the spectral α-band of bacterial inner membrane fragments 

expressing MBP-Rsubβ (Fig. 6a) or MBP-Rsubα (Fig. 6b) was much smaller than that from 

membranes fragments with MBP-Ssubβ, and also somewhat smaller than that from 

membranes without transformation. This latter result was unexpected and it could be because 

the expression and/or insertion into the cytoplasmic membrane of the fusion proteins may 

interfere with the endogenous cytochromes. In any case, the data clearly indicated that the 

subunits from sugar beet were unable to form a Cyt b559-like structure in the bacterial inner 
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membrane, but the β subunit from Synechocystis showed a good formation of such Cyt b559-like 

structure. The amplitude of the spectral α-band observed in membrane fragments containing 

the MBP-Ssubβ (Fig. 6a) was around 3.4 times higher than that of MBP-Rsubβ (Fig. 6a) and 

4.7 times higher than that of the MBP-Rsubα (Fig. 6b). These differences were already noted 

when the bacterial cultures were harvested. Indeed, the culture pellets expressing the MBP-

Ssubβ were brownish, indicating a high concentration of cytochromes, but those expressing 

MBP-Rsubβ or MBP-Rsubα lacked that distinct colour. 

 The obtained positive results with the MBP-Ssubβ along with the fact that no studies on α 

subunit from Synechocystis has been reported, it prompted us to study the in vivo formation of 

the MBP-Ssubα. The redox differential absorption spectrum of membrane fragments containing 

MBP-Ssubα (Fig. 6b) was very similar to that containing the MBP-Rsubα, demonstrating that α 

subunit of Synechocystis was also unable to perform in vivo formation.  

     Note that the spectra of the in vivo formation samples were somewhat distorted in the Soret 

region causing variable spectral band ratios. This was most probably due to the high light 

scattering produced by these samples containing large particles of cytoplasmic membranes 

fragments of different sizes. The presence of the reductant sodium dithionite may also increase 

that scattering. However, this should not be a significant problem for the purpose of the present 

work since we always used the spectral α band at around 559 nm, where the scattering is much 

lower than in the Soret region, to compare samples and to calculate de degree of cytochrome 

formation.    

 As the protein sequence of the β subunit is highly conserved in all organisms analyzed, the 

negative result with the plant sugar beet was somewhat surprising considering the positive 

results obtained with β subunit from Synechocystis. The mRNA encoding β subunit from sugar 

beet and some other plants is modified by RNA-editing, changing a Phe for a Ser at position 26 

in the protein sequence (Ser26Phe) (Bock et al. 1993) (all other photosynthetic organisms 
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already have the Phe codon at that position). This change due to RNA-editing that occurs in 

certain higher plants is not possible in bacteria (Maier et al. 1996). Thus β subunit from sugar 

beet expressed in bacteria maintained a Ser at position 26 instead of a Phe. To determine if the 

presence of Ser26 in the recombinant β subunit sequence impaired its reconstitution, we 

expressed the β subunit from maize (MBP-Msubβ) in E. coli (note that psbF gene from maize 

already encodes Phe residue at position 26). When the redox differential absorption spectrum 

of membrane fragments containing the MBP-Msubβ from maize was compared with that of the 

β subunit from sugar beet, no differences were observed between both samples (data not 

shown). Thus the Phe26 residue was not essential for in vivo formation with the β subunit. 

 Since β subunit from Synechocystis was the only polypeptide able to form spontaneously a 

Cyt b559-like structure in the host E. coli inner membrane, we further characterized such a 

protein structure by EPR spectroscopy and potentiometry. To distinguish between the 

properties of the formed (ββ) Cyt b559-like structure from other b-type endogenous cytochromes 

and other potential interferences induced by the expressed protein carrier, MBP, we also 

studied the bacterial membrane fragments expressing the empty pMAL-c2X vector (negative 

control). 

 CW-EPR spectra (Fig. 7a) showed features at gef = 6.0, gef = 4.3 and gef = 2.0 values that 

were present both in the negative control and in the membrane fragments containing (ββ) 

homodimer. They corresponded to HS heme, non-heminic iron or endogenous radicals located 

in the E. coli inner membrane. Besides, LS heme contributions were also detected both in the 

negative control and in the membrane fragments containing (ββ) homodiner. A part of these 

signal intensities come from endogenous heme centers located in the E. coli inner membrane 

but  the LS heme contribution in the CW-EPR spectrum of the negative control (not shown) was 

clearly much less intense than the one detected for membrane fragments containing (ββ) 

homodimers. When the CW-spectrum of the negative control was subtracted from that of the 
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(ββ) homodimer sample (Fig. 7a), the remaining features at gef = 2.96 and gef = 2.28 should 

correspond to the (ββ) homodimeric Cyt b559–like structure (Fig. 7a). 

 The ei-EPR spectrum showed again intense features at gef ≈ 2.08 (Cu(II) signal) and gef = 

2.0 (signal from endogenous free radicals). These features are truncated in Fig. 7b for a shake 

of clarity. Besides, the ei-EPR spectrum displayed characteristic features (gef = 2.96, gef = 2.28, 

and gef = 1.5), typical of a LS heme analogous to that previously reported for native Cyt b559 

(Babcock et al. 1985; Stewart and Brudvig 1998; Yruela et al. 2003). Thus this sample showed 

only a LS form due to (ββ) homodimeric Cyt b559-like structure within E. coli membrane that 

corresponds to a heme with a planar axial bis-histidine coordination as in the case of native Cyt 

b559 (Babcock et al. 1985; Stewart and Brudvig 1998; Yruela et al. 2003). 

 Potentiometric reductive titrations were carried out at pH 6.5 (Fig. 8) in the same redox 

conditions than those for in vitro reconstitution. E. coli inner membrane fragments containing β 

subunit exhibited two redox species with different Em (i.e., +58 mV and +126 mV) (Fig. 8). Note 

that the measurements were achieved in E. coli membrane fragments, where endogenous 

cytochromes were also present as mentioned above. As in the case of absorption and EPR 

measurements, these endogenous hemoproteins should also be detected in the potentiometric 

measurements. As a control, potentiometric reductive titrations of E. coli inner membrane 

fragments containing MBP only were carried out, and only one Em of +60 mV was calculated 

(Fig. 8). These results suggested that Em = +58 mV form, found in membrane fragments 

containing β subunit was due to bacterial endogenous cytochromes, and the Em = +126 mV 

form corresponded to the formation of (ββ) homodimeric Cyt b559-like structure. The higher Em 

(+126 mV) obtained in the bacterial membranes should not be due to the fact that the β 

polypeptide is forming a fusion protein with the MBP, a soluble moiety. Preliminary experiments 

indicated that the fusion proteins are anchored within the bacterial cytoplasmic membrane by 

the alpha-helix of the Cyt b559 subunits since protease treatment actually liberated the MBP 
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moiety, remaining the alpha-helix in the membrane pellet after centrifugation (data not shown). 

So the soluble moiety of the fusion proteins is very well separated from the cytochrome 

subunits making it difficult to have any significant influence on the redox properties of in vivo 

formed Cyt b559-like structure. 

 

Discussion 

In recent years, in vitro reconstitutions of various b-type cytochromes have been reported. For 

instance, recombinant membrane proteins as Cyt b5 (Mulrooney and Waskell 2000), Cyt b6 

(Kroliczewski and Szczepaniak 2002) and (ββ) homodimer Cyt b559–like structure (Prodohl et 

al. 2005), have been described. In the present study, we report for the first time in vitro 

reconstitution of the photosynthetic Cyt b559, a cytochrome comprised of two different protein 

subunits that coordinate a heme group. It has to be noted that the spectral α-band around 559 

nm of the heterodimer appeared somewhat less distorted and with higher amplitude than those 

from the homodimers, indicating thar (αβ) heterodimerization dominates over (αα) or (ββ) 

homodimerization. This may explain why nature has selected the heterodimer as the functional 

form in oxygenic photosynthesis. However, we still cannot discard the formation of some (αα) 

and (ββ) homodimers during the in vitro (αβ) heterodimer reconstitution. We have tried to 

separate the different potential dimeric forms (αβ, αα, ββ) of the reconstitution mixture by using 

native PAGE gel with mild conditions and probe with the corresponding antibodies, but all 

dimeric forms were destroyed during the electrophoresis, the subunits α and β appearing as 

separated bands. Such instability of the in vitro reconstituted Cyt b559 is not totally surprising, 

considering the 3-D structure of this cytochrome, where the three moieties (α, β, heme) are 

highly exposed to the electrophoresis reactants.   

 Besides the native EPR form LS1, two additional forms, HS and LS2 were found in the 

reconstituted heterodimeric sample from plants (Fig. 4). Both HS and LS2 forms have also 
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been found in native Cyt b559 (Loew 1983; Scheidt and Gouterman 1983; Shuvalov et al. 1995; 

Kropacheva et al. 2003) and, according to the features observed in other metalloproteins such 

as catalase, haemoglobin and myoglobin (Blumberg and Peisach 1971; Fiege et al. 1995), 

assigned to heme distorted environment (HS) and to heme centers with one of the coordinated 

histidines displaced by hydroxyl group (LS2). The intensity of the LS2 signal in the native Cyt 

b559 EPR spectra depended on sample integrity and treatments (Fiege et al. 1995; Bianchetti et 

al. 1998). A model has been suggested in which the two subunits remained linked, but one 

histidine ligand was replaced by an –OH group as second axial ligand (Shuvalov et al. 1994). It 

is well possible that some heterodimers are not perfectly assembled in vitro, because the 

protein subunits are free in solution, in contrast to more restricted conditions within the 

biological membrane. The detergent present in the solution could also add some structural 

distortion, although small amounts of SDS detergent was proved even to facilitate the in vitro 

reconstitution (Weber et al. 2011). 

 The Em (+36 mV) of our in vitro reconstituted samples was very similar to that found in 

isolated native Cyt b559 (Matsuda and Butler 1983; Ortega and Hervás 1989), though this redox 

potential is influenced by the pH and the hydrophobicity surrounding the Cyt b559 heme center 

(Ortega et al. 1988; Ahmad et al. 1993; Kaminskaya et al. 1999; Roncel et al. 2001; Weber et 

al. 2011). 

 Expressed foreign integral membrane proteins in E. coli have a natural tendency to 

aggregate into inclusion bodies or insert into the bacterial inner membrane (Drew et al. 2003). 

Examples of spontaneous insertion into the bacterial membrane are the recombinant LHCP 

(Kohorn and Auchincloss 1991), Cyt f (Rothstein et al. 1985), Cyt b5 (Smith et al. 1994) and Cyt 

b6   (Kroliczewski et al. 2005). But these three cytochromes were made of a single polypeptide, 

and were obtained as holoprotein using bacterial endogenous heme. Recent works have also 

described transformant bacterial membranes with the Cyt b559 β subunit from Synechocystis 
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(Prodohl et al. 2005) and Synechococcus (Yu et al. 2003), with spectral properties analogous to 

those of native Cyt b559. 

 According to our SDS-PAGE analysis, both Cyt b559 subunits from the different organisms 

used in the present study were inserted spontaneously into the bacterial inner membrane (Fig. 

1). However, among all Cyt b559 subunits analyzed in the present study, β subunit from 

Synechocystis was the only polypeptide able to form a Cyt b559-like structure spontaneously in 

E. coli inner membrane. The negative results obtained with α subunit from all organisms tested, 

suggest that there are some constrains for the correct heme assembly independently of protein 

insertion within the bacterial membrane. This negative result was not due to less stability of the 

recombinant α polypeptide within the bacterial membrane due to, for instance, specific 

membrane protease degradation since its size remained the same as the native one (Fig. 1). 

Note that we also detected a poorer in vitro reconstitution capacity for this subunit (see Fig. 3). 

 At present we do not have any clue to explain why overexpressed β subunit from plant 

sugar beet unlike Synechocystis was unable to form a Cyt b559-like structure in E. coli inner 

membrane, though its sequence is highly conserved and in both cases the subunits were 

integrated in the bacterial membrane as full polypeptides. The chloroplastic origin of our plant 

protein subunits does not seem to account for it since recombinant Cyt b6 from spinach was 

successfully reconstituted in bacteria (Kroliczewski et al. 2005). 

 EPR analysis of bacterial inner membrane fragments containing the β subunit from 

Synechocystis showed only a LS1 form, with similar spectroscopic features to those of native 

Cyt b559 (Babcock et al. 1985; Stewart and Brudvig 1998; Yruela et al. 2003). This proves the 

heme coordination to in vivo formed (ββ) homodimer. It is worth of noting that LS2 was not 

detected in these samples, indicating that the formation of a distorted Cyt b559 was restricted 

within the biological membrane most probably due to less hydroxylation activity within the 

hydrophobic membrane matrix. In addition, the EPR features of this LS1 form shows a small 
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shifting when compared to those of the LS1 form found in in vitro reconstituted Cyt b559. These 

discrepancies may be connected with some small differences in the environment surrounding 

the LS heme centers in both cases (Yruela et al. 2003). 

 Furthermore, previous Em measured for the (ββ) homodimer (+50 mV) were smaller than 

that obtained in the present work (+126 mV) (Francke et al. 1999; Yu et al. 2003). It has to be 

noted that these potentiometric measurements were carried out in samples where the (ββ) 

homodimer was outside of a biological membrane and, therefore, close to that of our in vitro 

reconstitution. The observed differences indicate the important role of the environment 

surrounding the heme on its Em value (Ortega et al. 1988; Ahmad et al. 1993; Kaminskaya et 

al. 1999; Roncel et al. 2001). In fact, the heme environment of the in vivo formation and the 

natural thylakoid membrane conditions is more hydrophobic than the aqueous buffer solutions 

used for in vitro reconstitution. Interestingly, the native Cyt b559 LP form in PSII membranes 

exhibits a redox potential value of +110 mV (Roncel et al. 2001), similar to that measured in 

this work in bacterial inner membrane fragments. 

     Concluding, we have developed a methodology to reconstitute the αβ heterodimeric form of 

a plant Cyt b559. This can be useful tool to future studies to elucidate the mechanism by which 

Cyt b559 matures, and to explore the molecular mechanisms that regulate the intriguing redox 

potential variability of this elusive metalloprotein. This methodology can even be more powerful 

if used together with site-directed mutagenesis techniques, and the application of advanced 

spectroscopic techniques with no interferences from other tetrapyrrol molecules such as 

chlorophylls as normally occurred when using photosynthetic materials. Future work will also 

aim to determine the different behaviour of α subunit compared to β subunit for in vivo 

formation despite their structural similarity. 
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Figures Captions 

Fig.1 SDS-PAGE (12%, w/v) in 4 M urea of fractions obtained from the recombinant bacterium 

E. coli TB1 induced with IPTG. a TB1 cells expressing MBP-Rsubα; b TB1 cells expressing 

MBP-Rsubβ. MW, molecular weight markers; lane 1, total cellular extract; lane 2, pellet after 

the first centrifugation containing the inclusion bodies; lane 3, supernatant after the first 

centrifugation; lane 4, pellet after the ultracentrifugation (i.e., bacterial inner membrane 

fragments); lane 5, supernatant after the ultracentrifugation; lane 6, total cellular extract of TB1 

cells without plasmid (control). The arrows indicate the fusion proteins. 

Fig.2 In vitro Cyt b559 reconstitution with recombinant α and β subunits of plant sugar beet. a 

SDS-PAGE analysis of the reconstitution: MW, molecular weight markers; lane 1, reconstituted 

inclusion bodies before cleavage with Factor Xa; lane 2, after cleavage with Factor Xa; lane 3, 

sample loaded onto the TSK DEAE Toyopearl 650s column after cleavage and centrifugation to 

eliminate potential aggregates; lane 4, pooled fractions that contain the MBP protein carrier and 

eluted around 140 mM NaCl; lane 5, pooled fractions that contain reconstituted Cyt b559 and 

eluted around 250 mM NaCl. b Redox difference absorption spectrum of the pooled brownish 

fractions containing the Cyt b559 eluted from the DEAE column. The spectrum was obtained in 

the 500-600 nm spectral range between the reduced and the oxidized samples. 
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Fig.3 Redox differential absorption spectra of in vitro reconstitution of (αβ), black, (αα), red, and 

(ββ), blue. The inset shows an enlargement in the 500-600 nm range for a better comparison. 

All spectra were normalized to the total protein content of reconstituted samples.   

Fig.4 EPR measurements of in vitro reconstituted (αβ) heterodimeric Cyt b559. Panel a, CW-

EPR spectra. LS features are marked with asterisks, features not related to LS Cyt b559 centers 

are marked with arrows (see text). Panel b, 2p ei-EPR (т = 96 ns) spectra (the spurious Cu(II) 

signal subtracted). The line indicates the signal from non-heme iron at gef = 4.3, open arrows 

for LS1 form, solid arrows for LS2 form; gef values of these signals are indicated. 

Fig.5 Potentiometric reductive titration of in vitro reconstituted (αβ) heterodimeric Cyt b559. a 

Difference absorption spectra in the spectral α-band region of the Cyt b559. The spectra were 

obtained by subtracting absolute spectra recorded during the course of the redox titration minus 

the spectrum recorded at +355 mV. b Plot of the percentages of reduced Cyt b559 obtained from 

the absorbance differences at 559–570 nm versus ambient redox potentials. Solid curves 

represent the best fit of the experimental data to the Nernst equation in accordance with one-

electron processes (n= 1) for one component. 

Fig.6 Redox differential absorption spectra of bacterial TB1 inner cytoplasmic membrane 

fragments. a Induced bacteria without transformation (black); containing the empty pMal-c2X 

vector (red); expressing MBP-Ssubβ fusion protein (green); expressing MBP-Rsubβ fusion 

protein (blue); the inset shows an enlargement in the 500-600 nm spectral range for a better 

comparison. b Induced bacteria without transformation (black); containing the empty pMal-c2X 

vector (red); expressing MBP-Rsubα fusion protein (green); expressing MBP-Ssubα (blue); the 

inset shows an enlargement in the 500-600 nm spectral range for a better comparison. The 

spectra were normalized to the total protein content of the corresponding cytoplasmic 

membrane fragment used. 
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Fig.7 EPR measurements of (ββ) homodimers of E. coli cytoplasmic membrane. Panel a, CW-

EPR spectra. The spectrum was obtained by subtracting the CW-EPR spectrum of cytoplasmic 

membrane fragments without (ββ) homodimers (see text), in order to eliminate the LS 

contributions from endogenous membrane cytochromes. The signals that do not correspond to 

LS heme centers are marked with arrows; the LS features are marked with asterisks. Panel b, 

2p ei-EPR (т= 96 ns) spectrum of (ββ) homodimers of E. coli cytoplasmic membrane. The gef = 

2.1-2.0 magnetic field region was truncated in order to get more detail of the relevant LS heme 

features. The arrows mark the positions of the relevant detected signals; the gef values of the 

signals are indicated.  

Fig.8 Potentiometric reductive titrations of E. coli TB1 inner membrane fragments. Plots of the 

percentages of reduced Cyt b559 obtained from the absorbance differences at 559–570 nm 

versus ambient redox potentials. Solid curves represent the best fits of the experimental data to 

the Nernst equation in accordance with one-electron processes (n= 1) for one or two 

components. Cytoplasmic membrane fragments containing the β subunit from Synechocystis 

(black); cytoplasmic membrane fragments containing the MBP protein only (red). For other 

details see caption of Fig. 5 and Materials and methods section.  


