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Abstract 

RNase P catalyzes 5′-maturation of tRNAs. While bacterial RNase P comprises an RNA catalyst and a protein 

cofactor, the eukaryotic (nuclear) variant contains an RNA and up to ten proteins, all unrelated to the 

bacterial protein. Unexpectedly, a nuclear-encoded bacterial RNase P protein (RPP) homolog is found in 

several prasinophyte algae including Ostreococcus tauri. We demonstrate that recombinant O. tauri RPP 

can functionally reconstitute with bacterial RNase P RNAs (RPRs) but not with O. tauri organellar RPRs, 

despite the latter’s presumed bacterial origins. We also show that O. tauri PRORP, a homolog of 

Arabidopsis PRORP-1, displays tRNA 5′-processing activity in vitro. We discuss the implications of the 

striking diversity of RNase P in O. tauri, the smallest known free-living eukaryote. 
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Introduction 

Despite a shared primary function in 5′-end tRNA maturation, the make-up of the RNase P 

ribonucleoprotein (RNP) complex is evolutionarily divergent (Evans et al. 2006; Walker and Engelke 2006; 

Esakova and Krasilnikov 2010; Jarrous and Gopalan 2010; Lai et al. 2010; Liu and Altman 2010). While there 

is a single catalytic RNase P RNA (RPR) subunit that shares a common ancestry in all three domains of life, 

the RNase P protein (RPP) component is variable in number and identity. In Bacteria, RNase P is associated 

with a single protein subunit (~14 kDa) while up to five RPPs have been reported in Archaea. Eukarya has 

up to ten RPPs; five of them are homologous to archaeal RPPs, but none have homology to the bacterial 

RPP. 

Organellar RNase P presents a more complicated scenario. Despite the presence of a bacterial RPR-like 

gene in some algal mitochondria and chloroplast genomes (Lai et al. 2010), no bacterial RPP homolog has 

been reported in eukaryotes. The organellar RPPs characterized in yeast and human mitochondria are 

distinct from any of the known RPPs (Morales et al. 1992; Holzmann et al. 2008). Although a pioneering 

study demonstrated that human mitochondrial (mt) RNase P is devoid of RNA and functions as a patchwork 

of three proteins (Holzmann et al. 2008), recent work suggests the co-existence of both a protein-only and 

an RNP-based RNase P (Wang et al. 2010). In another breakthrough, the organellar precursor tRNA (pre-

tRNA) 5′-processing activity in Arabidopsis was shown to be associated with a single nuclear-encoded 

polypeptide (PRORP-1), which is homologous to one of the three proteins in the protein-only form of 

human mt RNase P (Gobert et al. 2010). 
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Given this extraordinary diversity in the subunit make-up of RNase P, we inquired into the RNase P variants 

that might be present in Ostreococcus tauri, a unicellular green alga. Our focus on O. tauri was inspired by 

three reasons: it is the smallest known free-living eukaryote; it is a member of the Prasinophyceae, an 

ancient sister clade to land plants; and its nuclear and organellar genome sequences are available. 

Moreover, since its nuclear genome is one of the smallest (12.5 Mb) and most compact (1.5 kb/gene) 

among eukaryotes, O. tauri presents a unique opportunity to inquire if there is any correlation between the 

number of RNase P variants and genome size. The recently sequenced nuclear genomes of O. tauri and four 

other prasinophytes (Derelle et al. 2006; Palenik et al. 2007; Worden et al. 2009) unexpectedly reveal the 

presence of a hypothetical protein that is homologous to the bacterial RPP. We demonstrate here that a 

recombinant version of this bacterial-like RPP from O. tauri assembles with bacterial RPRs to generate 

holoenzymes capable of tRNA 5′-processing, a finding which represents the first discovery of an active 

bacterial-like RNase P protein subunit in eukaryotes. Although we document evidence for the expression of 

O. tauri RPP in its native context, the biological partners and function of O. tauri RPP (or its prasinophyte 

homologs) remain to be identified. We also found that a recombinant O. tauri PRORP, a homolog of 

Arabidopsis PRORP-1, displays pre-tRNA cleavage in vitro. We discuss the implications of the diversity of 

RNase P isoforms in O. tauri. 

Materials and methods 

Culturing of O. tauri 

O. tauri RCC745 cells were obtained from Roscoff Culture Collection and grown on K medium at 25°C (Keller 

et al. 1987). 

Cloning, expression and purification of O. tauri RPP 

The coding region of O. tauri RPP was amplified by PCR from genomic DNA using OtC5-2F (5′-

GATCCATGGCGTCGGGGGGGTGGG-3′) and OtC5-2R (5′-GTCACGTGTTGGTCGGCGTCGGTTCTGGC-3′). The 

NcoI and PmlI recognition sites (underlined) introduced by the primers facilitated cloning of the PCR 

product into pET-33b at the NcoI and filled-in EagI sites, respectively, to create a C-terminal His6-tag fusion. 

The resulting plasmid (pET-33b–OtRPP) was confirmed by sequencing before it was used to transform 

Escherichia coli BL21(DE3) Rosetta cells (Novagen). A single transformant was grown to Abs600 ~0.6 at 37°C 

in LB medium supplemented with 35 μg/mL chloramphenicol + 35 μg/mL kanamycin and induced with 0.5 

mM IPTG for 20 h at room temperature (~23°C). For purification, a 125 mL culture pellet was resuspended 

in 12.5 mL Buffer A [20 mM sodium phosphate (pH 7.2), 4 M urea, 0.2 mM PMSF], sonicated, and 

centrifuged at 30,000g for 20 min at 4°C. The crude extract was passed through a 0.45 μm syringe filter and 

loaded onto a 1 mL HiTrap CM-Sepharose column (GE Healthcare). All subsequent solutions for purification 

contained 20 mM sodium phosphate, pH 7.2. Using an FPLC (Pharmacia) apparatus, a linear reverse-urea 

gradient (4–0 M urea) was employed to renature the proteins before their elution with a linear 0–1.5 M 

NaCl gradient. The peak fractions (~0.75 to 1.1 M NaCl) were pooled, diluted to 0.5 M NaCl, and loaded 

onto a 1 mL HiTrap Chelating column (GE Healthcare) equilibrated with NiSO4. When a linear 0–0.5 M 

imidazole gradient was used, we observed co-elution of three proteins at ~0.35 M imidazole. To further 

purify the proteins individually, the peak imidazole fractions were pooled and subjected to a 12% (w/v) 

polyacrylamide-SDS gel electrophoresis. Each protein band was excised after identification by Zn2+-based 

reverse staining of the gel (Hardy and Castellanos-Serra 2004), and the protein extracted by soaking 

crushed gel fragments in assay buffer (see “RNase P assay”). The concentration of O. tauri RPP was 

calculated using its extinction coefficient and absorbance at 280 nm. 
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Computational searches 

The O. tauri chloroplast RPR gene was identified by BLAST (Altschul et al. 1990) in the chloroplast genome 

sequence (Palenik et al. 2007) querying with the sequence AGTCCG, which corresponds to the 5′ half of the 

universally conserved helix P4. The list of hits was then examined manually for the presence of the 3′ half 

(TCGGC) of the P4 helix within 200 nts downstream to AGTCCG, as has been observed with most bacterial 

RPRs. 

The presence of homologs to experimentally validated eukaryal RPPs in the five sequenced prasinophyte 

genomes was analyzed at the DOE Joint Genome Institute server (http://genome.jgi.doe.gov/) using BLAST 

searches and the known sequences of yeast/human (eukaryotic nuclear) RPPs as queries. 

Cloning of O. tauri organellar RPRs and pre-tRNALeu 

To clone the RPRs, the encoding sequences were amplified by PCR from genomic DNA using gene-specific 

primers; a restriction site was engineered into each reverse primer (underlined sequence). Each PCR 

fragment was then digested with the corresponding restriction enzyme before being inserted downstream 

of the T7 promoter in pBT7 (Tsai et al. 2002) at the StuI site and the restriction site introduced in the 

reverse primer. The primers for cloning O. tauri mitochondrial RPR were OtMtRPR-F (5′-

GATAAGATGCCGCATGTCCG-3′) and OtMtRPR-2R (5′-GACCCGGGATAAGATGCTTATAAGC-3′); and for O. tauri 

chloroplast RPR, OtCpRPR-F (5′-AAAAATAAAGAGTGGTTGCAG-3′) and OtCpRPR-R (5′-

GTGGATCCAAAAATAAAGTATAAGCCG-3′). Similarly, the gene encoding O. tauri mitochondrial pre-tRNALeu 

(GAG) was amplified with OtpLeu-F (5′-ATAATAATACATTACAGAATTTTTTTTGCAAAAG-3′) and OtpLeu-R (5′-

ATGCATCCTGGTGCAAAAGGTGGGACTTG-3′); the pre-tRNALeu PCR fragment was cloned into the StuI site of 

pBT7. The sequence depicted in bold font in OtpLeu-F was added to create an extended 5′-leader sequence 

(from 21 to 29 nts) that would permit easy separation of RNase P-mediated cleavage products by gel 

electrophoresis. The cloned plasmids were confirmed by sequencing before further use. 

In vitro transcription 

Plasmids were first linearized by digesting pBT7-OtMtRPR with SmaI, pBT7-OtCpRPR with BamHI, pBT7-

OtMtpLeu and pUC19-NtCppGly (Raj and Gopalan, unpublished) with BstNI, and pUC19-EcopTyr (Vioque et 

al. 1988) with FokI. These plasmids then served as templates for T7 RNA polymerase-mediated run-off 

transcription using established protocols (Vioque et al. 1988). Templates encoding for the RPRs from 

Synechocystis PCC6803 and Anabaena PCC7120 were prepared as described previously (Pascual and Vioque 

1999b). To obtain internally radiolabeled pre-tRNAs, these in vitro transcription reactions were 

supplemented with either 32P-ATP or -GTP. 

RNase P assays 

The pre-tRNA processing assays were performed largely as described elsewhere (Vioque et al. 1988). E. coli 

RPR was pre-folded by first incubating in water at 50°C for 50 min, 37°C for 10 min, then in 1× assay buffer 

[10 mM HEPES (pH 7.5), 400 mM NH4OAc, 10 mM Mg(OAc)2, 5% (v/v) glycerol, 0.01% (v/v) IGEPAL] at 37°C 

for 30 min. The RNase P holoenzyme was reconstituted by incubating 1 nM folded RPR with either 10 nM E. 

coli RPP or O. tauri RPP in 1× assay buffer for 10 min at 37°C. Assays were then initiated by adding 100 nM 

pre-tRNA (a trace amount of which was internally labeled) and the incubation continued at 37°C. Reactions 

were quenched with an equal volume of 2× urea dye [7 M urea, 1 mM EDTA, 0.05% (w/v) xylene cyanol, 

0.05% (w/v) bromophenol blue, and 10% (v/v) phenol] and separated on an 8% (w/v) polyacrylamide gel 
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containing 7 M urea. The extent of cleavage was visualized by phosphorimaging on the Typhoon (GE 

Healthcare) and quantitated by ImageQuant (GE Healthcare) to yield the initial velocity/turnover data. 

For the single-turnover assays involving cyanobacterial RPRs and O. tauri RPP (Fig. 3), the RNase P 

holoenzyme was reconstituted with 50 nM RPR and 500 nM RPP and incubated with trace amounts of 32P-

labeled E. coli pre-tRNATyr at 37°C for 45 min in 10 mM HEPES (pH 7.5), 50 mM MgCl2. Reactions were 

quenched and analyzed as described above. 

Single-turnover conditions were also employed for the assays with recombinant O. tauri PRORP (Fig. 7). 

Approximately 2 μM recombinant O. tauri PRORP was assayed for 30 min at 23°C as described elsewhere 

for Arabidopsis PRORP-1 (Gobert et al. 2010), with either internally labeled O. tauri pre-tRNALeu or tobacco 

chloroplast pre-tRNAGly (<1 nM) as the substrate. Reactions were quenched and analyzed as described 

above. 

Genetic complementation 

The function of O. tauri RPP was analyzed by genetic complementation of the E. coli thermosensitive 

rnpA49 mutation (Schedl and Primakoff 1973). E. coli BL21(DE3)A49 (Guerrier-Takada et al. 1995) was 

transformed with pET-33b–OtRPP, which expresses His6-tagged O. tauri RPP, and growth was assessed at 

30°C (permissive) and 43°C (non-permissive). Cells transformed with pET-33b served as the negative 

control, while those transformed with pARE7, which express the wild type E. coli RPP (Vioque et al. 1988), 

were employed as the positive control. After obtaining the transformants at 30°C, individual colonies were 

grown overnight at 30°C in LB media with the following supplements: BL21(DE3)A49/pET-33b and 

BL21(DE3)A49/pET-33b–OtRPP, 4 μg/mL tetracycline + 50 μg/mL kanamycin; BL21(DE3)A49/pARE7, 4 

μg/mL tetracycline + 100 μg/mL ampicillin. Tenfold serial dilutions of these cultures in fresh media were 

then plated on LB agar containing 4 μg/mL tetracycline, and growth was assessed after incubation at 30 or 

43°C for 16 h. 

Antibody generation and western blotting 

Approximately 3 mg of affinity-purified O. tauri RPP was loaded on a preparative polyacrylamide gel, and 

the three O. tauri RPP fragments were excised and eluted together. To raise polyclonal antisera, 1 mg of 

such purified protein was injected subcutaneously into a white New Zealand rabbit. Antibodies were 

generated using standard procedures at the Animal Experimentation Facility, University of Sevilla. The 

antibodies were affinity purified (Harlow and Lane 1988) before use in western analysis. After separating 30 

μg of total soluble O. tauri protein on a 12% (w/v) polyacrylamide-SDS gel, western blotting was performed 

using standard procedures. An anti-rabbit IgG-peroxidase (Sigma) was employed as the secondary antibody 

and the antigen detected using the SuperSignal West Femto Chemiluminescent substrate (Thermo 

Scientific). 

RT-PCR 

Total RNA was isolated from O. tauri RCC745 using either TriReagent LS (Sigma-Aldrich) or the RNeasy Plant 

Mini Kit (Qiagen) and treated with DNase I before proceeding. The O. tauri RPP transcript was reverse 

transcribed using OtC5rtpcr-R (5′-GTCACGGGTTGGTCGGC-3′; the sequence complementary to the 

termination codon is underlined) and BluePrint Reverse Transcriptase (Takara). Subsequently, with this RT 

reaction product as the template, PCR was performed with Ex Taq HS DNA Polymerase (Takara), and 

OtC5rtpcr-R + OtC5rtpct-F (5′-GATGGCGTCGGGGGG-3′; the start codon is underlined). The O. tauri 
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organellar RPRs were reverse transcribed using SuperScript™ II Reverse Transcriptase (Invitrogen) and OtR2 

(5′-ATAAGCCGAATTCTGTAACC-3′) for the mitochondrial RPR and OTCPR1 (5′-AGCCGAATTCTGTGCGTGTGG-

3′) for the chloroplast RPR. PCR was then carried out using the RT reactions as templates and Go Taq Flexi 

DNA Polymerase (Promega) with OtR2 + OtF3 (5′-AAGATGCCGCATGTCCGC-3′) and OTCPR1 + OTCPF1 (5′-

GAGTGGTTGCAGAAATATTTAAG-3′), respectively. 

Cloning, overexpression and purification of O. tauri PRORP 

We first amplified by PCR the sequence that was initially annotated to encode OtPRORP (1.2 kb), using as 

template O. tauri genomic DNA and as primers OtPRORP-F (5′-CTAGCATATGGCGAGCGCG-3′) and OtPRORP-

R (5′-CTGGATCCTTATTGCTTGCACGCACA-3′). As multiple shorter fragments were also amplified, the 1.2 kb 

fragment was gel-purified and cloned into the StuI site of pBT7. This clone then served as the template for 

PCR amplification with OtPRORP-2F (5′-ATACCATGGCGAGCGCGGAGTGCGTTCGTGGTGATAAGGCTGTGG-3′) 

and OtPRORP-2R (5′-TCAGTGGTGGTGGTGGTGGTGTTGCTTGCACGCAC-3′). The forward primer introduced 

an NcoI recognition site (underlined) and two neutral changes (bold nucleotides) to enable optimal codon 

usage during overexpresson in E. coli; the reverse primer introduced a His6-tag coding sequence 

(underlined) at the 3′ end. After digestion with NcoI, this 1.2 kb PCR fragment was cloned into pET-33b that 

had been digested with EcoRI, filled in with Klenow, and then digested with NcoI. 

During the course of our investigation, we found a REFSEQ for O. tauri PRORP (XM_003074514; October 16, 

2010 NCBI release), which indicated that our initial clone was missing 321 bp at the 5′ end. This 321 bp 

fragment was then amplified by PCR using genomic DNA and OtNP-N321-F (5′-CCGCTGGACGAAGAAACC-3′) 

and OtNP-N321-R (5′-CCGCTCGTCCACGC-3′) and cloned into the previous pET-33b–OtPRORP that had been 

digested with NcoI and filled in with Klenow. Sequencing was used to verify the sequence and orientation 

of this final clone. 

For overexpression of O. tauri PRORP, E. coli SHuffle T7 cells (New England Biolabs) were used. In addition 

to facilitating robust expression of T7 promoter-regulated genes, this strain has been engineered to 

promote disulfide bond formation in the cytoplasm, an attribute favourable for expression and folding of O. 

tauri PRORP, which contains 15 Cys residues. A single freshly transformed colony was used to inoculate 5 

mL LB medium containing 35 μg/mL kanamycin and 1% (w/v) glucose, and grown overnight at 37°C with 

shaking. This saturated culture was then used to inoculate 500 mL of LB medium containing 35 μg/mL 

kanamycin. The cells were grown at 37°C with shaking to Abs600 ~0.7 and subsequently induced with 1 mM 

IPTG at 23°C for 16 h. The cells were harvested by centrifugation and stored at −80°C until further use. 

The above cell pellet was re-suspended in 40 ml of buffer A [20 mM sodium phosphate (pH 7.2), 0.2 mM 

PMSF] supplemented with 1 mM EDTA and four complete protease inhibitor cocktail tablets (Roche Applied 

Science). The cell suspension was sonicated and centrifuged (30,000g, 20 min, 4°C) to yield a clarified cell 

lysate. Five units of DNase I and 10 mM MgCl2 were added to this lysate and incubated on ice for 30 min. 

Subsequent to filtration through a 0.45 μm filter, this extract was loaded on a pre-equilibrated 1 mL Q-

Sepharose (GE Healthcare) column. An ÄKTA FPLC purifier (GE Healthcare) was used for all subsequent 

chromatographic procedures. The bound proteins were eluted with a 0.01–1 M NaCl gradient in buffer A. 

O. tauri PRORP-containing fractions (~425–600 mM NaCl) were identified using SDS-PAGE analysis, pooled 

and loaded on a pre-equilibrated 1 mL Chelating HP (GE Healthcare) column that had been charged with 

NiSO4. The bound proteins were eluted with a 10–150 mM imidazole gradient in buffer A containing 0.5 M 

NaCl, and highly pure O. tauri PRORP eluted between 100 and 150 mM imidazole. Purified O. tauri PRORP 
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was dialyzed into 30 mM HEPES (pH 7.6), 30 mM KCl, 6 mM MgCl2. The concentration of O. tauri PRORP 

was calculated using its extinction coefficient and absorbance at 280 nm. 

Results 

Bacterial-like RPP in prasinophyte nuclear genomes 

Since a bacterial RPP-like gene has not been reported in Eukarya, we inquired if it could be found in a basal, 

ancient clade such as Prasinophyceae. There is a hypothetical protein with significant homology to bacterial 

RPP in the nuclear genomes of O. tauri and four other prasinophyte algae: Ostreococcus lucimarinus, 

Ostreococcus sp. RCC809, Micromonas pusilla, and Micromonas sp. RCC299 (Fig. 1a). Although the bacterial 

RPP is typically <150 aa residues (e.g., E. coli RPP, 119 aa), the prasinophyte homologs are significantly 

larger (164–393 aa; Fig. 1a) and therefore have sequences/domains in addition to the bacterial RPP-like 

sequence. These additional domains show no significant similarity to other proteins or among themselves, 

except for a short homologous segment between M. pusilla and M. sp. RCC299 (Fig. 1a). Further 

examination of these prasinophyte genes highlights other interesting features. First, in the two 

Micromonas RPPs, which are encoded by intron-containing sequences, the bacterial RPP-like domain is 

encoded by a single exon, suggesting exon shuffling as a possible mechanism by which this sequence was 

acquired. Second, there is an N-terminal appendage of 85 and 77 aa, respectively, to the bacterial RPP-like 

sequence in O. tauri and Ostreococcus sp. RCC809. Although some algorithms predict these N-terminal 

extensions to encode an organellar transit peptide, we are hesitant to draw a firm inference in this regard 

due to the low confidence in accurately predicting algal transit peptides. 

Functional validation of the bacterial-like RPP in prasinophytes 

The predicted coding sequence of O. tauri RPP was amplified by PCR and cloned into pET-33b, upstream of 

a sequence encoding the His6 tag to enable overexpression in E. coli BL21(DE3) cells and subsequent 

purification by immobilized metal (nickel)-affinity chromatography (IMAC). Three bands were detected in 

the affinity-purified fraction (Fig. 1b, left; ~34, 30 and 24 kDa). Although the expected size for O. tauri RPP-

His6 is 27.6 kDa, we postulated that it corresponds to the 34 kDa band (the aberrant migration in SDS-PAGE 

likely due to its high isoelectric point of 10.5). The two smaller proteins might be N-terminally proteolyzed 

products of O. tauri RPP based on their co-purification with the putative full-length protein on IMAC and 

the fact that the His6 tag is at the C-terminus. Since the three proteins were readily detectable even in 

crude extracts of overexpressing cultures (before the start of purification), O. tauri RPP is probably subject 

to processing in E. coli. When the final purified preparation containing all three proteins was subjected to 

MALDI–TOF mass spectrometry, we determined that the longest protein (top band, T) has a size expected 

for the full-length protein lacking the first methionine, and the shorter proteins correspond to N-terminal 

deletions of 14 aa (middle band, M) or 66 aa (bottom band, B). Although the preparation with all three 

polypeptides could reconstitute with bacterial RPRs (see below), we gel-purified the three proteins 

individually (Fig. 1b, right) to ascertain if all three were functional. 

We assayed each of these three recombinant O. tauri RPPs for their ability to reconstitute with the E. coli 

RPR to form a functional heterologous holoenzyme. Because O. tauri RPP appears to have an organellar 

transit peptide and might support a mitochondrial function, we cloned the mitochondrial pre-

tRNALeu(GAG) from O. tauri and employed it as a substrate. Indeed, all three proteins could enhance 

cleavage of pre-tRNALeu by E. coli RPR; a tobacco chloroplast pre-tRNAGly(GCC) was also efficiently cleaved 

(data not shown). Under conditions optimal for E. coli RNase P activity, the holoenzyme assembled from O. 
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tauri RPP-T and E. coli RPR displayed a turnover number one-fifth of that observed with E. coli RNase P 

using pre-tRNALeu as the substrate (~12 vs. 56 min−1; Fig. 2). Since the deletion derivatives of O. tauri RPP 

lacking the N-terminal 14 or 66 aa are ~70% as active as the full length (Fig. 2), the N-terminal 66 aa 

residues appear dispensable for pre-tRNA cleavage in vitro. These findings are not unexpected since a 

sequence alignment (Fig. 1a) reveals that the region of homology between O. tauri and E. coli RPP starts 

only at around residue 88 in the former. 

We also performed reconstitution assays with the mixture of the three affinity-purified O. tauri RPPs and 

RPRs from two cyanobacteria, Synechocystis sp. PCC6803 and Anabaena sp. PCC7120 (Vioque 1992; Pascual 

and Vioque 1996). These heterologous reconstitutions are as active as the corresponding homologous 

reconstitutions under single-turnover conditions with an E. coli pre-tRNATyr as substrate (Fig. 3). 

Finally, we assessed if O. tauri RPP is functional in E. coli. For this purpose, we employed E. coli 

BL21(DE3)A49, a strain in which the R46H mutation in the RPP confers thermosensitivity (ts). Since growth 

is abolished at 43°C due to the inability of the RPP R46H mutant to support RNase P holoenzyme assembly, 

a plasmid that overexpresses a functional RPP can rescue this strain’s ts phenotype (Jovanovic et al. 2002). 

We exploited this genetic complementation assay to investigate if the O. tauri RPP can functionally replace 

its E. coli counterpart. Indeed, this is the case as attested by the robust growth at 43°C of E. coli 

BL21(DE3)A49 transformed with pET-33b–OtRPP but not with the empty vector pET-33b (Fig. 4). 

O. tauri RPP is expressed in vivo 

While the heterologous reconstitution and in vivo complementation revealed the potential of O. tauri RPP 

to support bacterial RNase P catalysis, we sought to gain evidence for its expression in O. tauri. We isolated 

total RNA from O. tauri cells and amplified by RT-PCR the O. tauri RPP cDNA using gene-specific primers. An 

amplified product of the expected size was observed (Fig. 5a; 722 bp), whose identity was unambiguously 

established by DNA sequencing (data not shown). To confirm that O. tauri RPP is indeed synthesized in vivo, 

we first prepared antibodies against the purified O. tauri RPP (mixture of the three proteins; Fig. 1b) and 

performed western analysis of O. tauri cell extracts. We detected a protein of ~34 kDa (Fig. 5b), similar to 

the size expected for the full-length O. tauri RPP (compare Fig. 4b with 1b), an assertion further validated 

by western analysis of the recombinant versions (not shown). 

Which RNA catalyst is aided by O. tauri bacterial-like RPP? 

Our next objective was to investigate the possible RPRs whose function might either depend on or be aided 

by O. tauri RPP. Given the bacterial origins of organelles and the similarity of O. tauri RPP to bacterial RPP, 

we investigated whether O. tauri RPP could be a subunit of organellar RNase P. 

While an RPR gene has already been annotated in the sequenced O. tauri mitochondrial genome (Fig. 6), 

we successfully identified a bacterial RPR-like gene in the chloroplast genome (Fig. 6; accession number 

CR954199, complementary strand positions 4,980 to 5,307). These findings are not surprising since genes 

coding for bacterial-like RPRs have been previously identified in the organellar genomes of Nephroselmis 

olivacea, another prasinophyte alga (Turmel et al. 1999a, b). Moreover, the organellar genomes in O. tauri 

and N. olivacea encode a near-complete suite of tRNAs, thus accounting for the need for RNase P activity in 

these organelles. 

The O. tauri mitochondrial RPR is 269 nts long and has a 37% GC content, while the plastid RPR is 327 nts 

long with 29% GC content (Fig. 6a). The predicted secondary structures of these O. tauri RPRs (Fig. 6a) 
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agree with the bacterial consensus and contain all the universally conserved nucleotides (Chen and Pace 

1997; Brown 1999; Marquez et al. 2005; Gopalan 2007). However, the secondary structure of these AU-rich 

O. tauri organellar RPRs, when compared to bacterial prototypes, show notable differences that likely 

account for the absence of crucial tertiary interactions essential for realizing pre-tRNA cleavage activity in 

vitro (McClain et al. 2010; Reiter et al. 2010). 

The bacterial RPR, which is catalytically active in vitro, generates an active conformation through several 

GNRA tetraloop:helix docking tertiary contacts (L9:P1, L14:P8, L18:P8; L and P refer to loops and paired 

regions, respectively). In addition, pseudoknots (e.g., P6) aid the overall fold while other regions (e.g., L15) 

engage in sequence-specific substrate recognition (Reiter et al. 2010). Most of these attributes are absent 

in the O. tauri organellar RPRs. The O. tauri mitochondrial RPR is missing the P16/P17 helices and therefore 

also the pseudoknot generated by helix P6; it also lacks the P12 and P13 helices. Moreover, L9, typically a 

conserved, helix-stabilizing GNRA tetraloop in bacterial RPRs, is replaced with an AAGA tetraloop. The O. 

tauri plastid RPR lacks the P15 helix present in bacterial counterparts. In addition, L9 and L14 consist of 

UUG and ACCC in lieu of the typically conserved GNRA tetraloops at both locations that are involved in 

functionally important tertiary interactions (Pomeranz Krummel and Altman 1999). The GGU sequence in 

L15 of the bacterial RPR, which pairs with the 3′-terminal D73C74C75A76 motif in the pre-tRNA substrate 

(Kirsebom and Svard 1994; Kirsebom 2007), is also absent in both O. tauri organellar RPRs. Overall, while 

we appreciated that these structural differences in O. tauri organellar RPRs might undermine their ability to 

generate a native fold required for robust catalytic activity (in the absence of cognate protein factors), we 

did pursue pre-tRNA cleavage assays in vitro (see below). 

Prior to embarking on biochemical studies, we inquired if the putative O. tauri organellar RPRs are 

expressed in vivo. RT-PCR using gene-specific oligonucleotides and total RNA as the template revealed that 

these two non-coding RNAs are indeed expressed in O. tauri (Fig. 6b). DNA sequencing of these RT-PCR 

products, which encompass most of the predicted RPR sequences, confirmed their identity. We assayed 

these O. tauri organellar RPRs under a number of different conditions (including different pre-tRNA 

substrates, temperature, pH, and range of divalent/monovalent ion concentrations) but have been unable 

to detect any pre-tRNA cleavage activity (data not shown). These RPRs also failed to form any functional 

holoenzymes with either O. tauri or bacterial RPPs (Fig. 3; data not shown). These findings parallel previous 

futile attempts with several organellar RPRs (Pascual and Vioque 1999a; De la Cruz and Vioque 2003)—the 

sole exception has been the weak enzymatic activity detected in the case of the plastid RPR from 

Cyanophora paradoxa (Li et al. 2007). 

We can speculate on some reasons for the lack of activity of O. tauri organellar RPRs without and with O. 

tauri RPP. First, their low GC content (<37%) likely results in mis-folding/instability of in vitro transcribed 

preparations and therefore, a non-functional structure. Second, despite the resemblance of their secondary 

structure to other RPRs and the presence of universally conserved nucleotides believed to constitute the 

active site, these organellar RPRs lack some of the tertiary structure-stabilizing elements present in the 

bacterial RPR counterparts, which display robust activity. Third, the failure of O. tauri RPP to reconstitute 

with cognate organellar RPRs might reflect either the need for additional protein cofactors to realize RNase 

P activity or the possibility that it supports a function unrelated to tRNA maturation. These speculations can 

be verified only when the native organellar RNase P is purified and characterized. 

PRORP in prasinophytes 
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O. tauri and other prasinophyte nuclear genomes encode a ~60 kDa protein homolog of Arabidopsis 

PRORP-1 (Gobert et al. 2010), which was shown to localize in mitochondria and chloroplasts and to catalyze 

pre-tRNA 5′-processing in vitro (under single-turnover conditions). The open reading frame (ORF) encoding 

O. tauri PRORP (~57 kDa) was amplified by PCR and cloned into pET-33b with a sequence encoding the His6 

tag to enable overexpression in E. coli SHuffle T7 cells and purification to near homogeneity using tandem 

anion exchange chromatography and IMAC (Fig. 7a). This recombinant O. tauri PRORP promotes accurate in 

vitro 5′-processing of pre-tRNALeu (data not shown) and pre-tRNAGly (Fig. 7b). Although the activity we 

observed were in assays performed under single-turnover conditions (akin to the previous study on 

Arabidopsis PRORP-1), our result corroborates the finding of a single polypeptide capable of tRNA 5′-

maturation and sets the stage for detailed kinetic studies to compare the catalytic efficiency of different 

PRORP- and RNP-based RNase P variants. 

Discussion 

An inventory of the RNase P variants in O. tauri (Fig. 8) highlights the striking diversity in this smallest free-

living eukaryote. First, a bacterial RPP-like protein is encoded by the O. tauri nuclear genome. Although this 

protein is synthesized inside the cell and a recombinant version is functional with bacterial RPRs as 

assessed by in vitro reconstitution assays (Figs. 2, 3), further studies are needed to investigate if this protein 

in O. tauri is imported into mitochondria/plastid for subsequent assembly with the organellar RPRs (either 

alone or with additional protein cofactors). However, the size of the protein expressed in vivo is that 

expected for the full-length protein (Fig. 5), arguing against the presence of a cleavable transit peptide for 

import into organelles. It is not possible, however, to rule out aberrant migration arising from post-

translational modifications of a shorter version. Second, the O. tauri mitochondrial and chloroplast 

genomes each encode a bacterial RPR-like RNA, which is expressed in vivo (Fig. 6). However, the exact 

functions of these RPRs remain to be determined. Third, we have now demonstrated that a recombinant 

version of O. tauri PRORP supports pre-tRNA 5′-processing in vitro (Fig. 7), although the subcellular locale of 

this protein in O. tauri has not been determined. Lastly, the full set of eukaryal (nuclear) RPPs was not 

found in any of the five prasinophyte algal genomes. Only POP5 and RPP30 could be identified with 

confidence in all five strains. In addition, there is no report of a putative O. tauri nuclear RPR (at least one 

resembling those found in eukaryotes ranging from yeast to human). In fact, the identity of plant/algal 

nuclear RPR remains unknown (Rosenblad et al. 2006). 

Several interesting attributes and questions emerge from this growing appreciation of the variability of 

RNase P in O. tauri and, more broadly, in all domains of life. First, the discovery of a bacterial-like RPP in 

prasinophyte algae was unanticipated; a comprehensive phylogenetic study with additional taxa is required 

to investigate if this represents an instance of horizontal gene transfer from bacteria that co-habitat with O. 

tauri. In these prasinophyte proteins, the bacterial RPP-like domain is more similar to each other than to 

any bacterial RPP, suggesting that the acquisition of this domain happened once in a common prasinophyte 

ancestor. Our findings echo the recurring theme in recent studies on the surprising mixed ancestry of genes 

in some eukaryotes, especially phytoplankton. For instance, nitrogen transporters and related assimilation 

genes in Micromonas unexpectedly revealed that these genes share plant, algal or bacterial cousins 

(McDonald et al. 2010). It was postulated that the wide-ranging origins of certain genes might contribute to 

the fitness landscape of phytoplankton such as Micromonas and Ostreococcus, especially their ability to 

utilize energy sources that show seasonal variations in the oceanic habitat (McDonald et al. 2010). In a 

related vein, it is possible that the presence of multiple forms of RNase P (either RNP- or protein-based) 
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with distinct RNA processing traits affords a selective advantage in the specific ecological niche of these 

organisms. 

Second, the diverse subunit make-up of RNase P in nature suggests multiple routes for generating its active 

site. What evolutionary forces and payoffs might underlie this pliability to employ a structurally diverse 

ensemble? For example, is it the high evolutionary rate of organelles, the plasticity of their genomes, 

and/or altered substrate specificity that has molded the extant organellar RNase P make-up? In this 

respect, it should be noted that several tRNA genes in Ostreococcus and Micromonas are permuted 

(Maruyama et al. 2010), and their processing by RNase P might require interactions of the enzyme with 

unusual structures in the permuted pre-tRNAs. The presence of diverse RNase P enzymes might afford a 

“divide and conquer” approach to deal with biogenesis/maturation of unusual pre-tRNA and non-coding 

RNA substrates. 

Lastly, since the single plant organellar RNase P protein (PRORP, ~50 to 60 kDa) has homologs in 

evolutionarily distant eukaryotic lineages and can functionally substitute for the 135 kDa RNP complex in 

bacteria (Gobert et al. 2010), it is perplexing why cells, which now rely almost exclusively on proteins for 

catalytic and structural roles, have retained RNA-mediated catalysis at all in RNase P. Did retention of an 

RNA then confer advantages such as optimal recognition of RNA substrates through base pairing? Or is the 

RNP form better suited for enmeshing in a regulated network of macromolecular machineries mediating 

different aspects of gene expression (Reiner et al. 2006, 2008)? While the use of proteins and RNPs to 

perform the same biological task in different settings attests to nature’s versatility in designing catalysts, 

the daunting challenge is to understand the basis for these choices. 
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Figure captions 

 

Figure 1. Bacterial-like RPP in Prasinophyceae. a Alignment of the E. coli RPP sequence with homologs from 

several prasinophyte genomes. Homologous proteins were identified in the nuclear genome sequence of 

Micromonas pusilla CCMP1545 (M. pusilla, XM_003057480), Micromonas sp. RCC299 (M. RCC299, 

XM_002501961), Ostreococcus lucimarinus (O. lucimarinus, XM_001421023), Ostreococcus tauri (O. tauri, 

XM_003082501), and Ostreococcus sp. RCC809 (O. RCC809, the Joint Genome Institute Database, 

http://genome.jgi-psf.org/). The alignment was generated with Clustal W (Chenna et al. 2003) and 

manually refined. The regions that share high similarity with E. coli RPP are boxed. While positions identical 

in all five prasinophyte proteins are indicated with asterisks above the alignment, those shared with E. coli 

RPP are indicated with asterisks below the alignment. The black triangles show the position of predicted 

introns (according to the JGI annotation) in the two Micromonas strains. Underlined is a CCHC zinc-finger 

motif in M. pusilla RPP; the dotted-line box highlights a segment of similarity between M. pusilla and M. 

RCC299 RPPs outside the E. coli RPP-like region. b Purification of recombinant O. tauri RPP (OtRPP). 

Coomassie blue-stained polyacrylamide gels illustrate purity of the OtRPP-containing peak fraction from 

nickel affinity chromatography (left) and of the individual isolated polypeptides (right). The predicted N-

terminus of each polypeptide (T top, M middle, B bottom), as determined by MALDI–TOF mass 

spectrometry, is indicated in (a) 

Figure 2. Heterologous reconstitution of RNase P activity with O. tauri RPP and E. coli RPR. RNase P 

holoenzymes were assembled using E. coli RPR (EcRPR) and either purified E. coli RPP (EcRPP) or each gel-

purified polypeptide of O. tauri RPP (OtRPP-T, -M, or -B). The first lane is a negative control with EcRPR in 

the absence of any protein cofactor, and the “– EcRPR” lanes are controls performed with only the 

indicated proteins but no RPR. The multiple-turnover reaction rate for each of the four reconstituted 

holoenzymes is indicated at the bottom of the respective time courses 

Figure 3. Heterologous reconstitution of RNase P activity with O. tauri RPP and cyanobacterial RPR. 

Reconstitution of RNase P activity with purified recombinant RPP and in vitro transcribed RPR from 

Synechocystis PCC6803 (Sy), Anabaena PCC7120 (An), and O. tauri mitochondria (Ot). Assays were 

performed under single-turnover conditions (see “Materials and methods” for details). The first lane is a 

negative control without RPR or RPP, and the “– RPR” lanes are controls performed with only the indicated 

RPP but no RPR 

Figure 4. O. tauri RPP functionally substitutes for a bacterial RPP in vivo. Tenfold serial dilutions of the 

temperature-sensitive E. coli BL21(DE3)A49 strain harboring pARE7 (expressing E. coli RPP), the empty 

vector pET-33b, or pET-33b–OtRPP (expressing O. tauri RPP) were assessed for growth on LB agar plates at 

30°C (permissive) or 43°C (non-permissive) for 16 h 

Figure 5. Expression of the bacterial-like RPP in O. tauri. a Detection of the 722 bp cDNA encoding the O. 

tauri RPP by RT-PCR (+), but not by PCR alone (−), in total RNA isolated from O. tauri cells. b Western 

analysis of O. tauri (Ot) total protein extract with polyclonal antibodies raised against O. tauri RPP 

Figure 6. RPRs from O. tauri mitochondria and chloroplasts. a Secondary structure models of RPRs from O. 

tauri mitochondria (mt; left) and chloroplast (cp; right). Paired regions (helices) are labeled as P1, P2, etc., 

consecutively from 5′ to 3′ following the nomenclature used for bacterial RPRs. The prefix L refers to loops 
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capping paired regions. Universally conserved nucleotides (Chen and Pace 1997; Brown 1999; Marquez et 

al. 2005; Gopalan 2007) are highlighted with a black circle. Solid lines show long-distance interactions that 

generate pseudoknots P4 and P6, as well as other tertiary interactions. b Expression of organellar RPRs in 

O. tauri. Detection of the cDNAs corresponding to the RPR from O. tauri mitochondria (left; 255 bp) and 

chloroplast (right; 304 bp) by RT-PCR (+) but not by PCR alone (−) in total RNA isolated from O. tauri cells 

Figure 7. Purification and activity of recombinant O. tauri PRORP. a Coomassie blue-stained polyacrylamide 

gel illustrates purity of the PRORP-containing peak fraction from nickel-affinity chromatography. b Pre-

tRNA 5′-processing activity of recombinant O. tauri PRORP. The first lane (−) is a negative control without 

any enzyme, the second lane (+) is a positive control with E. coli RNase P, and the last lane (PRORP) is a 

reaction with O. tauri PRORP 

Figure 8. The potential complexity and diversity of RNase P in O. tauri. Schematic summarizing the RNase P 

components encoded by each of the three O. tauri genomes. They were identified based on sequence 

homology 
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