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Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968)] is an extension of the Lipkin-Meshkov-
Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965)] that incorporates the
pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations.
It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing
model.
Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12,
805 (1986)] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the
different regions with coexistence of several phases.
Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation,
introducing two variational parameters that play the role of order parameters. We also compare the HFB
calculations with the exact ones.
Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions
appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist.
Moreover, there is also a line and a point where four and five phases are degenerated, respectively.
Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence
is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel
many-body approximations.

DOI: 10.1103/PhysRevC.97.054303

I. INTRODUCTION

Algebraic bosonic and fermionic models with few degrees
of freedom, that arose in different areas of physics, served
for many years as excellent test beds for many-body approx-
imations appropriate for different areas of interest. They are
characterized by a simple Lie group structure [1] and can be
solved either analytically, if a dynamical symmetry is realized,
or numerically, for very large system sizes. Let us mention
as typical examples, the Jaynes-Cummings [2] and Dicke [3]
models in quantum optics, the Lipkin-Meshkov-Glick (LMG)
model [4], the two-level pairing model [5], and the Elliot
SU(3) model [6], together with the more recent interacting
boson model [7] in nuclear physics. The tremendous success
of these models let them to permeate other areas of physics like
quantum chemistry, condensed matter, and cold atom physics.

More recently, the study of quantum phase transitions
(QPTs) and critical points in algebraic models has been an
intensive field of research (see, e.g., Refs. [8] and [9]). Two
of the models that we mentioned above, the LMG model,
describing monopole-monopole interactions, and the two-level
pairing model were combined by Agassi [10] into a single
model with an SO(5) group algebra (see also Ref. [11]). The

Agassi model has been scarcely used in the literature in spite
of its great flexibility and its simplicity to be solved for large
systems. Although the random-phase approximation (RPA),
Hartre-Fock-Bogoliubov (HFB) [10–12], and perturbation
theory [13] were applied to this model, modern many-body
theories of intensive use in nuclear physics did not profit
of the model to assess their applicability and accuracy. As
an exception, a recent paper explored the merging of coupled
cluster theory and symmetry breaking and restoration [14] with
the aim posed in future applications to nuclear physics and
quantum chemistry.

The Agassi model has a very rich phase diagram explored
in Ref. [12] with a parity broken phase related to the monopole
interaction and a superconducting one associated to the pairing
interaction. We here extend the Agassi model adding a more
general monopole interaction that gives rise to a more complex
phase diagram and to several QPTs of different character. We
study the model within the mean-field HFB theory and compare
with exact diagonalizations in large systems. We also explore
the behavior of the appropriate order parameters and derive
several critical exponents.

The paper is organized as follows: In Sec. II we present
the algebraic structure of the Agassi model and introduce its
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extension with a new term in the Hamiltonian. In Sec. III,
the HFB approach is applied to obtain the mean-field energy
surfaces and to analyze the stability of the two families of
energy surfaces of the model. In Sec. IV, the structure of the
phase diagram and the nature of the QPTs are established, and,
finally, in Sec. V, the summary and conclusions of this work
are presented.

II. THE EXTENDED AGASSI MODEL

The model space of the Agassi model consists of two levels,
each of them with a degeneracy �, with � being an even
number. The single-particle states will be labeled accordingly
to the level, σ = 1 for the upper level and σ = −1 for the lower
one, and to a magnetic quantum number m = ±1, ± 2, . . . , ±
�/2, which labels the states within a given level. Therefore,
the model space can be physically interpreted as two subshells
that are part of a major shell. Hence, � = 2j , with j an integer
number. Moreover, σ can be considered as the parity of the
level, positive for σ = +1 and negative for σ = −1.

The Hamiltonian of the extended Agassi model can be
written as

H = εJ 0 − g
∑
σσ ′

A†
σAσ ′ − V

2
[(J+)2 + (J−)2] − 2hA

†
0A0.

(1)

Please note that the original Agassi model does not contain the
last term in (1), −2hA

†
0A0. As we will see, this term introduces

new physical effects with respect to the original formulation
of the model.

In this work we will redefine the Hamiltonian parameters
for convenience, introducing the new parameters χ , �, and �
(see Ref. [12]) which are rescaled accordingly to the size of
the shell

V = εχ

2j − 1
, g = ε�

2j − 1
, h = ε�

2j − 1
. (2)

We assume the above three parameters as positive because
otherwise this will lead to unphysical situations. Thus, our
extended Agassi Hamiltonian reads

H = ε

[
J 0 − �

2j−1

∑
σσ ′

A†
σAσ ′ − χ

2(2j−1)
[(J+)2 + (J−)2]

− 2
�

2j − 1
A

†
0A0

]
. (3)

The operators appearing in the Hamiltonian (3) are defined as

J+ =
j∑

m=−j

c
†
1,mc−1,m = (J−)†,

J 0 = 1

2

j∑
m=−j

(c†1,mc1,m − c
†
−1,mc−1,m), (4)

A
†
1 =

j∑
m=1

c
†
1,mc

†
1,−m,A

†
−1 =

j∑
m=1

c
†
−1,mc

†
−1,−m,

A
†
0 =

j∑
m=1

(c†−1,mc
†
1,−m − c

†
−1,−mc

†
1,m), (5)

A1 =
j∑

m=1

c1,−mc1,m, A−1 =
j∑

m=1

c−1,−mc−1,m,

A0 =
j∑

m=1

(c1,−mc−1,m − c1,mc−1,−m), (6)

Nσ =
j∑

m=−j

c†σ,mcσ,m, N = N1 + N−1, (7)

where c
†
σ,m, cσ,m are fermion operators that create and an-

nihilate a fermion, respectively, in the single-particle state
|σ,m〉. There are 10 independent generators, 3 J ’s, 6 A’s,
and the particle number, N . Note that N1 and N−1 are linear
combination of J 0 and N . These operators are the generators
of the O(5) algebra.

Therefore, the Hamiltonian (3) can be diagonalized with a
O(5) basis [10,15]. On the other hand, since the Hamiltonian
(3) commutes with the parity operator e−ıπJ 0

, the eigenstates
of the system will have either positive or negative parity.

III. THE HARTREE-FOCK-BOGOLIUVOB APPROACH

In this section we perform the mean-field energy surface
study of the extended Agassi model. To this end, and closely
following Ref. [12], we will use a Hartree-Fock transformation
followed by a Bogoliubov one. This approach is well suited for
this model in which the Hamiltonian contains both pairing and
monopole interactions. As shown in Ref. [12], nontrivial BCS
and Hartree-Fock broken symmetry solutions are obtained. The
Hartree-Fock transformation can be written as

a†
η,m =

∑
σ

Dησ c†σ,m (8)

and the Bogoliubov one as

α†
η,m = uηa

†
η,m − sig(m)vηaη,−m,

(9)
α
†
η,−m = uηa

†
η,−m + sig(m)vηaη,m,

where sig(m) stands for the sign of m, sig(m) = +1 for m > 0
and sig(m) = −1 for m < 0.

Any calculation in the Agassi model requires us to fix the
system size, j , and the number of interacting fermions. For
simplicity we will fix the ratio between the number of fermions
and the system size. In the following, we will consider that the
number of fermions is 2j , i.e., the system is half filled and,
therefore, there is a number of j fermion pairs. Under this
assumption, the following conditions are fulfilled:

u2
−1 = v2

1 , u2
1 = v2

−1 , v2
η + u2

η = 1. (10)

Therefore, the normal density matrix [12] can be written as

ρσm,σ ′m′ = 〈c†σ,mcσ ′,m′ 〉
=

∑
ηη′

Dσ,ηDσ ′,η′ 〈a†
η,maη′,m′ 〉 = δm,m′ρσ,σ ′ , (11)
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where ρσ,σ ′ = ∑
η Dσ,ηDσ ′,ηv

2
η . On the other hand, the abnor-

mal density matrix [12] is

κσm,σ ′m′ = 〈c†σ,mc
†
σ ′m′ 〉 =

∑
ηη′

Dσ,ηDσ ′,η′ 〈a†
η,ma

†
η′,m′ 〉

= sig(m)δm,−m′κσ,σ ′ , (12)

where κσ,σ ′ = ∑
η Dσ,ηDσ ′,ηuηvη.

It is possible to write Hartree-Fock and Bogoliubov trans-
formations in terms of only two variational parameters, ϕ and
β, as written below:

D1,1 = D−1,−1 = cos
ϕ

2
, D−1,1 = −D1,−1 = sin

ϕ

2
(13)

and

v1 = sin
β

2
, v−1 = cos

β

2
. (14)

Therefore, the normal density matrix results,

ρ1,1 = cos2 ϕ

2
sin2 β

2
+ sin2 ϕ

2
cos2 β

2

= 1

2
(1 − cos ϕ cos β),

ρ−1,−1 = sin2 ϕ

2
sin2 β

2
+ cos2 ϕ

2
cos2 β

2

= 1

2
(1 + cos ϕ cos β),

ρ1,−1 = ρ−1,1 = cos
ϕ

2
sin

ϕ

2
sin2 β

2
− cos

ϕ

2
sin

ϕ

2
cos2 β

2

= −1

2
sin ϕ cos β. (15)

One should note that with the parametrization (13) and (14) and
conditions (10), two independent phase selections for u1 and
u−1 are possible: (i) u−1 = v1 = sin β

2 and u1 = v−1 = cos β
2

and (ii) u−1 = v1 = sin β
2 and u1 = −v−1 = − cos β

2 . While
the normal density (15) does not depend on the phase selection
because the coefficients appear squared, the abnormal density
matrix does depend on the phase selected. In particular, using
the positive sign for both parameters u1 and u−1, case (i), one
gets

κσ,σ ′ = δσσ ′ 1
2 sin β, (16)

while for the alternative phase selection, case (ii) above, the
abnormal density matrix is

κ1,1 = cos2 ϕ

2
sin

β

2
cos

β

2
− sin2 ϕ

2
sin

β

2
cos

β

2

= 1

2
cos ϕ cos β,

κ−1,−1 = sin2 ϕ

2
sin

β

2
cos

β

2
− cos2 ϕ

2
sin

β

2
cos

β

2

= −1

2
cos ϕ cos β,

κ1,−1 = κ−1,1 = cos
ϕ

2
sin

ϕ

2
sin

β

2
cos

β

2

+ cos
ϕ

2
sin

ϕ

2
sin

β

2
cos

β

2

= 1

2
sin ϕ sin β. (17)

TABLE I. Bogoliubov phase selection.

Phase selection Surface

u−1 = v1 = sin β

2 ; u1 = v−1 = cos β

2 A

u−1 = v1 = sin β

2 ; u1 = −v−1 = − cos β

2 B

Depending on the phase selection, different energy surfaces (A
and B) are obtained. This is summarized in Table I. Once the
HFB state is defined, with a given phase selection, as a function
of the variational parameters, ϕ and β, the energy surface is
obtained as the expectation value of the Hamiltonian (3),

E(ϕ,β) = 〈HFB(ϕ,β)|H |HFB(ϕ,β)〉
〈HFB(ϕ,β)|HFB(ϕ,β)〉 . (18)

The surface extrema are studied by minimizing E(ϕ,β) with
respect to the variational parameters and then analyzing their
stability through the eigenvalues of the Hessian matrix. This
is done in the following two subsections for the two possible
phase selections given in Table I.

A. Energy surface A

This energy surface is obtained with the selection of phases
as stated in the first row of Table I. It can be written as

EA = −εj cos ϕ cos β − gj 2 sin2 β − Vj 2 sin2 ϕ cos2 β.

(19)

In order to present the results, it is convenient to rescale
the energy functional with the size j of the system. Then the
energy functional reads

EA

jε
= − cos ϕ cos β − �

2
sin2 β − χ

2
sin2 ϕ cos2 β, (20)

with ε being an overall constant of energy [note that the
term −1 in the denominator of Eqs. (2) is not taken into
account because a large value of j is assumed]. Although
the order parameters are ϕ and β, it is convenient to define
combinations of them which are easier to be calculated with a
diagonalization. These effective order parameters are

〈J+〉A
j

= 〈J−〉A
j

= sin ϕ cos β, (21)

〈A+
1 〉A
j

= 〈A+
−1〉A
j

= 1√
2

sin β ,
〈A+

0 〉A
j

= 0, (22)

where the subindex A refers to the energy EA.
To study the extrema of (20), first we impose the derivatives

of the energy surface to be equal to zero,

∂EA

jε∂β
= sin β(cos ϕ − � cos β + χ sin2 ϕ cos β) = 0,

∂EA

jε∂ϕ
= sin ϕ cos β(1 − χ cos ϕ cos β) = 0. (23)
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Later, to determine the nature of the extrema, i.e., minima,
maxima, or saddle points, we calculate the Hessian matrix
(vertical and horizontal lines are included for clarity),( Hϕ,ϕ Hϕ,β

Hβ,ϕ Hβ,β

)

=

⎡
⎢⎢⎣

cos(β) cos(ϕ) − sin(β) sin(ϕ)
−χ cos2(β) cos(2ϕ) +χ

2 sin(2β) sin(2ϕ)
− sin(β) sin(ϕ) cos(β) cos(ϕ) − � cos(2β)

+χ
2 sin(2β) sin(2ϕ) +χ cos(2β) sin2(ϕ)

⎤
⎥⎥⎦.

(24)

The solution of equations (23), assuming that � �= χ , leads
to four cases plus a particular case in which � = χ . These
solutions are

(I-A) ϕ = β = 0 (EA/(jε) = −1). Regardless the values
of � and χ .
The Hessian matrix is(

1 − χ 0
0 1 − �

)
(25)

with eigenvalues 1 − χ and 1 − �. Therefore,
χ < 1 and � < 1: it generates a minimum.
χ > 1 and � > 1: it generates a maximum.
χ > 1 and � < 1 or χ < 1 and � > 1: it gen-

erates a saddle point.
Both order parameters are equal to 0. Consequently,
the surface EA has spherical minima EA/jε = −1
when χ < 1 and � < 1 (independently of the �
value).

(II-A) |ϕ| = |β| = π
2 (EA = −�

2 ). The extrema do not
depend on the values of � and χ . The Hessian
matrix is (

0 −1
−1 � − χ

)
(26)

with eigenvalues 1
2 (� − χ ±

√
(� − χ )2 + 4). It

turns out that both eigenvalues are always of differ-
ent sign. Therefore, this solution will correspond to
a saddle point.

(III-A) β = 0, cos ϕ = 1
χ

(EA/(jε) = −χ2+1
2χ

). Valid for
χ > 1. The Hessian matrix is in this case(

χ2−1
χ

0
0 χ − �

)
(27)

with obvious eigenvalues: χ2−1
χ

and χ − �. There-
fore, for

χ > �: it generates a minimum.
χ < �: it generates a saddle point.

The effective order parameters are

〈J+〉A
j

= 〈J−〉A
j

=
√

χ2 − 1

χ
,

(28)
〈A+

1 〉A
j

= 〈A+
−1〉A
j

= 〈A+
0 〉A
j

= 0.

Assuming a small parameterx such thatχ = 1 + x,
the critical exponent can be shown to be ε = 1/2

〈J+〉A
j

= 〈J−〉A
j

∼
√

2x, (29)

this points towards the existence of a second-order
QPT.
This solution is linked to a nonzero value of the
variational parameter ϕ associated to the Hartree-
Fock transformation [Eq. (13)], and because of that
we will call this solution the Hartree-Fock (HF)
deformed solution. Consequently, the surface EA

has an HF deformed minimum EA/jε = −χ2+1
2χ

when χ > 1 and χ > � (independently of the �
value).

(IV-A) ϕ = 0, cos β = 1
�

(EA/(jε) = −�2+1
2�

) for � > 1.
The Hessian matrix is in this case( �−χ

�2 0
0 �2−1

�

)
(30)

with obvious eigenvalues: �−χ
�2 and �2−1

�
.

Therefore, for
χ < �: it generates a minimum.
χ > �: it generates a saddle point.

Assuming a small parameter x such that � = 1 +
x, the critical exponent can be shown to be ε = 1/2,

〈J+〉A
j

= 〈J−〉A
j

= 0,
〈A+

1 〉A
j

= 〈A+
−1〉A
j

=
√

�2 − 1√
2�

∼ √
x. (31)

Again, this points towards the existence of a
second-order QPT.
This solution corresponds to a nonzero value of the
variational parameter β linked to the Bogoliubov
transformation [Eq. (14)], and because of that we
will call this solution the BCS deformed solution.
Consequently, the surface EA has a BCS deformed
minimum EA/jε = −�2+1

2�
when � > 1 and χ <

� (independently of the � value).
(V-A) cos β cos ϕ = 1

χ
(EA/(jε) = −χ2+1

2χ
) for the par-

ticular case χ = �.
Solutions (III) and (IV) are particular cases of this
solution for χ = �. The solution corresponds to
a minimum, with one of the eigenvalues of the
Hessian matrix being positive, while the other zero,
and therefore this solution corresponds to a kind of
closed valley. The degeneracy of solutions (III-A),
(IV-A), and (V-A) is an indicator of the presence of
a first-order QPT.

B. Energy surface B

This energy surface is obtained with the selection of phases
as stated in the second row of Table I. It can be written as

EB = −εj cos ϕ cos β − 2hj 2 sin2 β sin2 ϕ

−Vj 2 sin2 ϕ cos2 β. (32)
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Again, in order to present the results, it is convenient to rescale
the energy functional with the size j of the system. Then, the
second energy functional reads

EB

jε
= − cos ϕ cos β − � sin2 β sin2 ϕ − χ

2
sin2 ϕ cos2 β. (33)

[Note that the factor −1 in the denominator of (2) is not taken
into account because a large value of j is assumed]. In this
case, the effective order parameters are

〈J+〉B
j

= 〈J−〉B
j

= sin ϕ cos β, (34)

〈A+
1 〉B
j

= 〈A+
−1〉B
j

= 0,
〈A+

0 〉B
j

= sin β sin ϕ. (35)

To study the extrema of (33), first we impose the derivatives
of the energy surface to be equal to zero,

∂EB

jε∂β
= sin β[cos ϕ − (2� − χ ) cos β sin2 ϕ] = 0,

∂EB

jε∂ϕ
= sin ϕ[cos β − cos ϕ − (2� − χ ) sin2 β cos ϕ] = 0.

(36)

Later, to determine the nature of the extrema, i.e., min-
ima, maxima, or saddle points, we calculate the Hes-
sian matrix (vertical and horizontal lines are included for
clarity),

( Hϕ,ϕ Hϕ,β

Hβ,ϕ Hβ,β

)
=

⎡
⎢⎢⎣

cos(β) cos(ϕ) − χ cos(2ϕ) − sin(β) sin(ϕ)
+(χ − 2�) sin2(β) cos(2ϕ) + 1

2 (χ − 2�) sin(2β) sin(2ϕ)
− sin(β) sin(ϕ) cos(β) cos(ϕ)

+ 1
2 (χ − 2�) sin(2β) sin(2ϕ) +(χ − 2�) cos(2β) sin2(ϕ)

⎤
⎥⎥⎦. (37)

The solution of the equations (36) leads to different scenarios.
These are as follows:

(I-B) β = 0, ϕ = 0 (EB/(jε) = −1), regardless the val-
ues of χ and �. In this case, the Hessian matrix is
diagonal, (

1 − χ 0
0 1

)
, (38)

with obvious eigenvalues 1 − χ and 1, therefore:
χ < 1: it generates a minimum.
χ > 1: it generates a saddle point.

Both order parameters are equal to 0. Consequently,
the surface EB has spherical minima EB/jε = −1
independently of the χ , �, and � values.

(II-B) β = 0, cos ϕ = 1
χ

(E2/(jε) = −χ2+1
2χ

) for χ > 1.
The Hessian matrix is⎡

⎣ χ2−1
χ

0

0 χ + 2�
(

1
χ2 − 1

)
⎤
⎦ (39)

with obvious eigenvalues χ2−1
χ

and χ +
2�( 1

χ2 − 1). The first eigenvalue is always positive
(remember that χ > 1), and, consequently,

� > 1
2

χ3

χ2−1 : generates a saddle point.

� < 1
2

χ3

χ2−1 : generates a minimum.
The order parameters will be

〈J+〉B
j

= 〈J−〉B
j

=
√

χ2 − 1

χ
, (40)

〈A+
1 〉B
j

= 〈A+
−1〉B
j

= 0,
〈A+

0 〉B
j

= 0. (41)

Again, assuming a small parameter x such that χ =
1 + x, the critical exponent can be shown to be ε =

1/2. This points to the existence of a second-order
QPT.

〈J+〉B
j

= 〈J−〉B
j

∼
√

2x. (42)

This solution is linked to a nonzero value of the
variational parameter ϕ associated to the Hartree-
Fock transformation [Eq. (13)]. Consequently, the
surface EB has a HF deformed minimum EB/jε =
−χ2+1

2χ
whenχ > 1 and� < 1

2
χ3

χ2−1 (independently
of the � value).

(III-B) |ϕ| = |β| = π
2 (EB/(jε) = −�).

The Hessian matrix is(
2� −1
−1 2� − χ

)
(43)

with eigenvalues 1
2 (4� − χ ±

√
χ2 + 4). There-

fore,
� > 1

4 (χ +
√

4 + χ2): it generates a minimum.
1
4 (χ +

√
4 + χ2) > � > 1

4 (χ −
√

4 + χ2): it
generates a saddle point.

� < 1
4 (χ −

√
4 + χ2) < 0: it generates a maxi-

mum.
The order parameters will be

〈J+〉B
j

= 〈J−〉B
j

= 0, (44)

〈A+
1 〉B
j

= 〈A+
−1〉B
j

= 0,
〈A+

0 〉B
j

= 1. (45)

Solutions (III-B) and (II-B) become degenerated
for � = 1+χ2

2χ
.

Solutions (III-B) and (I-B) become degenerated
for � = 1.
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Solutions (III-B) and (IV-A) become degener-
ated for � = 1+�2

2�
.

Therefore, the existence of this solution points
towards the presence of a first-order QPT. This solu-
tion is linked to nonzero values of both variational
parameters (ϕ, β), one associated to the Hartree-
Fock transformation [Eq. (13)] and the other to
the Bogoliubov transformation [Eq. (14)], therefore
this is a combined HF-BCS deformed solution.
Consequently, the surface EB has a deformed HF-
BCS minimum EB/jε = −� when � > 1

4 (χ +√
4 + χ2) (independently of the � value).

(IV-B) The last solutions of Eqs. (36) imply

cos ϕ = cos β sin2 ϕ(2� − χ ), (46)

cos β = cos ϕ[1 + (2� − χ ) sin2 β], (47)

with an energy

EB/(jε) = 1 − 2
√

2�
√

2� − χ

2(2� − χ )
. (48)

It can be proved that the solutions always corre-
spond to a saddle point.

Once analyzed both surfaces, the phase diagram of the
model is obtained in the next section taking into account the
competition between both surfaces which give rise to diferent
regions, some of them including coexistence of the three
phases: spherical (S), HF deformed (HF), and BCS deformed
(BCS), besides the combined HF-BCS deformed solution.

IV. PHASE DIAGRAM

Based on the analysis of the previous section, we can derive
a phase diagram with five different phases:

(i) Symmetric or spherical solution, (ϕ = 0,β = 0). It
corresponds to solutions (I-A) and (I-B) (letters A or
B indicate the energy surface).

(ii) HF deformed solution, (cos ϕ = 1
χ

and β = 0). It
corresponds to solutions (III-A) or (II-B).

(iii) BCS deformed solutions, (ϕ = 0 and cos β = 1
�

). It
corresponds to solution (IV-A).

(iv) Combined HF-BCS deformed solution, (ϕ = π
2 ,β =

π
2 ). It corresponds to solution (III-B).

(v) Closed valley (cos ϕ cos β = 1/χ ). It corresponds to
solution (V-A).

In Fig. 1 we depict the phase diagram of the model. The
phase diagram is built considering that two energy surfaces (A
and B) coexist and compete but only one (except when they
are degenerate) gives the absolute minimum. Concerning EA,
one has to take into account that their minima only depend on
χ and � but they do not depend on �, and while regarding EB ,
their minima only depends on χ and � but they do not depend
on �. The region with χ < 1, � < 1, and � < 1 corresponds
to the symmetric phase and it is represented in the diagram
with a red sphere. The red vertical surface χ = 1 with � � 1
and � � 1 is a second-order QPT. This can be shown easily
looking at the energy values for χ < 1 which is E = −1 and

FIG. 1. Phase diagram of the extended Agassi Hamiltonian (3).
Red vertical planes correspond to second-order QPT surfaces. The
green surface (� = 1 for χ < 1 and � < 1, � = 1+χ2

2χ
for χ > �

and � = 1+�2

2�
for χ < �) and the blue vertical one (χ = � and

� < 1+�2

2�
) correspond to first-order critical surfaces. Red sphere,

blue oval, black oval, black thick oval, and crossed green ovals
stand for the symmetric solution, the HF deformed solution, the
BCS deformed solution, the (V-A) solution, and HF-BCS deformed
solution, respectively.

for χ > 1 which is E = − 1+χ2

2χ
. These expressions imply a

discontinuity in the second-order derivative of the energy at
χ = 1. The other red vertical surface � = 1 with � � 1 and
χ � 1, is also a second-order QPT as can be shown by an
equivalent argument. The area at the right bottom corresponds
to the HF deformed shape and it is depicted with a blue prolate
shape oriented in the direction of the χ axis. The area at the
left bottom corresponds to the BCS deformed shape and it is
represented with a black prolate shape oriented in the direction
of the � axis. The vertical blue plane with χ = � corresponds
to a first-order QPT since at this particular surface solutions
(III-A) and (IV-A) are degenerated. Besides, solution (V-A)
exists, it corresponds to a closed valley in the β-ϕ plane and it
is represented with a black thick oval in the figure. Finally, the
region above the green surface corresponds to the solution (ϕ =
π
2 ,β = π

2 ), i.e., to the combined HF-BCS deformed solution
and it is represented in the diagram with two crossed green
ovals. The green surface corresponds to a first-order QPT since
all the energies below the green surface are � independent
while above E = −�.

In Fig. 1 we represent the deepest minimum of the lowest
energy surface. However, because of the presence of two
competing energy surfaces, EA and EB , there are areas where
different phases coexist. These regions have not been depicted
in Fig. 1 because of the complexity that would generate in the
phase the diagram. For EA the spherical, the HF deformed, and
the BCS deformed solutions cannot coexist. However, for EB

different phases can coexist: (i) the spherical and the combined
HF-BCS deformed shape and (ii) the combined HF-BCS and
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the HF deformed. Moreover, the competition between EA and
EB produces the coexistence of up to five different minima:

(i) Spherical (ϕ = 0,β = 0), HF-BCS deformed mini-
mum (ϕ = π/2,β = π/2), and BCS deformed one
(ϕ = 0,β arccos(1/�)).

(ii) HF-BCS deformed minimum (ϕ = π/2,β = π/2),
HF deformed minimum in (ϕ = arccos(1/χ ),β = 0)
and BCS deformed one in (ϕ = 0,β = arccos(1/�)).

(iii) Closed valley minimum (for� = χ ) and the combined
HF-BCS deformed minimum (ϕ = π/2,β = π/2).

(iv) HF-BCS deformed minimum (ϕ = π/2,β = π/2),
HF deformed minimum in (ϕ = arccos(1/χ ),β = 0),
BCS deformed minimum and the closed valley min-
imum along the line � = 1+χ2

2χ
with χ = �. All the

minima are degenerated.
(v) Spherical (ϕ = 0,β = 0), HF-BCS deformed mini-

mum (ϕ = π/2,β = π/2), BCS deformed one (ϕ =
0,β arccos(1/�)), HF deformed minimum in (ϕ =
arccos(1/χ ),β = 0), and the closed valley minimum
at the point χ = � = � = 1. All the minima are
degenerated.

In order to have a more clear image of the phase diagram,
in Fig. 2 we present two-dimensional plots in which one of
the control parameters has been kept constant. In Fig. 2(a)
we depict the plane χ = 0.75. Since χ < 1 the spherical
(red S) minimum (I-B) always exists. For � > 1 the BCS
deformed minimum (black B) also exists (IV-A). For � >
1
4 (χ +

√
4 + χ2), which is the spinodal line (full magenta line)

of EB , the HF-BCS combined minimum (green π/2) appears
(III-B). This results in different areas of coexistence as shown
in the figure. The largest most left letter gives the deepest
minimum, the second most left letter indicates the second
deepest minimum, and so on. For instance, in the region � > 1
and � > 1+�2

2�
three phases coexist: The HF-BCS deformed

is the lowest and then the BCS deformed and the spherical
phase is higher in energy. In the region just below, the same
three phases coexist but now the lowest is the BCS deformed
and then the spherical and the combined HF-BCS deformed
solution is higher in energy.

In Fig. 2(b) we present the case � = 1.5. For χ < 1,
the spherical phase, (I-B), always is present. For χ < �,
the BCS deformed minimum, (IV-A), exists. For � > 1

4 (χ +√
4 + χ2), which is the spinodal line (lowest full magenta

line) of EB , the HF-BCS combined minimum (green π/2)
appears, (III-B). For χ > � the HF solution, (III-A), always
exists. In addition, in the region 1 < χ < � and � < 1

2
χ3

χ2−1 ,
which is the antispinodal line (upper full magenta line), the
HF deformed solution, (II-B), also exists. Again, different
coexistence regions appear as marked in the figure following
the same criteria as in Fig. 2(a).

In Fig. 2(c) we analyze the vertical plane � = 1.1. We
consider this particular case because it corresponds to a range
of parameters in which the most complex situation exists. For
χ < 1 the spherical minimum, (I-B), always exists. For χ < �
and � > 1 the BCS deformed solution, (IV-A), exists. For
χ < 4�2−1

2�
, rightmost magenta line [which is obtained from the

spinodal line � = 1
4 (χ +

√
4 + χ2)] the combined HF-BCS

deformed solution exists, (III-B). For χ > � and χ > 1 the
HF deformed solution exists, (III-A). In addition, there exists
the HF deformed solution, (II-B), for χ > 1 and � > χ and
fulfilling the condition related to the antispinodal line, � <
1
2

χ3

χ2−1 . Different coexistence regions appear as marked in the
figure following the same criteria as in Fig. 2(a).

In summary, the phase diagram presents four regions where
the shapes are S, HF deformed, BCS deformed, and combined
HF-BCS deformed, respectively. However, in each region
several minima exist, coexisting up to three phases in certain
regions. In addition, there is a line, χ = � with � = 1+χ2

2χ
,

in which four phases, HF, BCS, HF-BCS, and the closed
valley solutions, are degenerated, plus a single point, χ = � =
� = 1, in which the five solutions (same as before plus the
spherical) are degenerated. Such a rich phase diagram does
not appear even in the case of more complex systems, such as
the proton-neutron interacting boson model [16], the two-fluid
Lipkin model [17], or for Hamiltonians with up two three-body
interactions [18].

V. COMPARISON BETWEEN EXACT AND
HARTREE-FOCK-BOGOLIUBOV RESULTS

In this section we present several cases where we calculate,
by an exact diagonalization of the Hamiltonian, the values
of the ground-state energy and of different effective order
parameters and compare them with the HFB results.

We define the effective order parameters in terms of the
expectation values of the following operators for the ground
state, although, in general, they can be used with excited states:

OPJ 2 = 〈(J+)2〉 + 〈(J−)2〉
2j 2

, (49)

OPA2
0
= 〈A+

0 A0〉
j 2

, (50)

OPA2
1
= 〈A+

1 A1〉 + 〈A+
−1A−1〉

2j 2
. (51)

Note that these quantities differ from Eqs. (21) and (22) or
Eqs. (34) and (35) since the expectation values of single
operators J+, J−, A0, A1, and A−1 vanish owing to parity
conservation in the exact solution. Therefore, Eqs. (49)–(51)
should be compared with the square of either Eqs. (21) and
(22) or Eqs. (34) and (35).

All the diagonalizations presented in this section are per-
formed for systems with j = 100 (100 pairs of fermions), ε =
1, and only positive-parity states are considered. This number
of fermion pairs is large enough to guarantee a good agreement
between the HFB mean-field values and the exact ones.

First, we consider a trajectory that goes through one of the
red vertical surfaces and, therefore, should correspond to cross
a second-order QPT. In particular, in Fig. 3 we depict such a
situation, for which we fix the parameters � = 0.5 and � = 0,
which allows us to vary the value of χ between 0 and 1.5 [see
Fig. 3(e) for the schematic trajectory]. All along this trajectory
β = 0, while ϕ = 0 for χ < 1 and ϕ = arccos 1

χ
for χ > 1.

This means that we explore the transition between spherical
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FIG. 2. Phase diagram for selected planes (a) χ = 0.75, (b) � = 1.5, and (c) � = 1.1. Background color represents the shape of the deepest
minimum, i.e., light red for the symmetric phase, olive green for combined HF-BCS deformed solution, brown for BCS deformed phase, and
light blue for the HF deformed phase. Letters correspond to the existing phases, i.e., red “S” for symmetric phase, green “π/2” for combined
HF-BCS deformed solution, black “B” for the BCS deformed phase, and blue “H” for the HF deformed phase. Larger and leftmost (or upper)
letters correspond to deepest minima. Black full lines stand for QPTs, magenta full ones for spinodal-antispinodal lines, and black dashed ones
for indicating the change in the ordering of high lying minima.

and HF deformed shapes. In Fig. 3(a), the ground-state energy
is shown as a function of χ , suggesting the presence of
a second-order QPT around χ = 1. The HFB ground-state
energy is −1 for χ < 1 (spherical phase) and E/(jε) = −χ2+1

2χ

for χ > 1 (HF deformed phase). As stated before, this involves
a discontinuity in the second derivative of the energy with
respect to χ . In Fig. 3(b), the effective order parameter OPJ 2

(49) is depicted, and a good agreement between HFB and exact
results is obtained. The HFB value is OPJ 2 = 0 for χ < 1,
while OPJ 2 = 1 − 1

χ2 for χ > 1. On the other hand, in spite of
the good agreement found with the exact calculations, we can
observe a small discrepancy around the critical point χ = 1.

This is due to the finite size of the system. In order to describe
properly that region, it is needed to take into account correc-
tions to the size of the system that would improve the results
obtained with the HFB approach. In Figs. 3(c) and 3(d) the HFB
value of OPA2

0
(50) and OPA2

1
(51) are depicted, respectively,

and their analytical values are zero all the way. Note that the
vertical scale of these two panels has been multiplied by a
factor 100, which can lead the reader to the impression that the
agreement is poor, which is not the case because the absolute
difference between the exact and analytical results is up to order
10−2. Finally, it is worth noting that this QPT only involves
minima of the first energy surface, EA.
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FIG. 3. Comparison of the ground-state energy per fermion pair and order parameter values for HFB and exact results for a system with
j = 100 and Hamiltonian parameters � = 0.5, � = 0 (ε = 1) as a function of χ . Black full lines correspond to exact results and red dashed
ones to HFB ones. Panel (a) corresponds to the ground-state energy, panel (b) to OPJ 2 , panel (c) to OPA2

0
, panel (d) to OPA2

1
order parameters,

and panel (e) to the schematic representation of the trajectory in the parameter space. Please note that the scale in panels (c) and (d) is multiplied
by 100.
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FIG. 4. Same as in Fig. 3 but for χ = 1.5, � = 0.5, as a function of �. Please note that the scale in panel (c) is multiplied by 100.

In Fig. 4 we move through the horizontal line χ = 1.5,
� = 0.5, as a function of �, crossing the χ = � vertical plane
[see Fig. 4(e)], going from the minimum (ϕ = arccos(1/χ ),
β = 0) (HF deformed) to (ϕ = 0, β = arccos(1/�)) (BCS
deformed). As we can see, this QPT transition is of first
order, because the HFB energy changes from a constant value
E/(jε) = − 1.52+1

2·1.52 for � < 1.5 to E/(jε) = −�2+1
2�2 for � >

1.5, with a sudden jump from one minimum to the other,
although there is no coexistence. In the case of the HFB value
of OPJ 2 (49) [Fig. 4(b)], the expectation value changes from
OPJ 2 = 1 − 1

1.52 for � < 1.5 to zero for � > 1.5, presenting
a discontinuity in the order parameter OPJ 2 at � = 1.5. On
the other hand, in Fig. 4(c) one can see how the HFB value
for OPA2

0
(50) is strictly zero for all � values, while very

small values are obtained in the exact calculation (note that the
vertical scale is multiplied by a factor 100). Finally, in Fig. 4(d)
the mean-field value for OPA2

1
(51) jumps from zero to OPA2

1
=

1 − 1
�2 at � = 1.5. The exact calculation follows, except

for finite number of particle corrections the same behavior.
Note that this QPT only involves minima of the first energy
surface, EA.

Finally, in Fig. 5 we move through a vertical line with
χ = 1.5, � = 2, as a function of �, crossing the surface
� = 1+�2

2�
[see Fig. 5(e)], and then passing from (ϕ = 0,β =

arccos(1/�)) (deformed BCS) to (ϕ = π/2,β = π/2) (com-
bined deformed HF-BCS). The QPT appears at � = 1+22

4 =
1.25. As can be seen in the energy per fermion pair shown
in Fig. 5(a), the QPT is, once more, of first order and the
HFB energy passes from E/(jε) = − 22+1

2·22 to E/(jε) = −�
in � = 1.5. In Fig. 5(b), the mean-field HFB value for OPJ 2

(49) is zero all along the path, while the exact calculation gives
a very small value (note that the vertical scale is multiplied by
a factor 100). In Fig. 5(c) the HBF mean-field value for OPA2

0

(50) jumps suddenly at � = 1.25 from zero to 1. The same
behavior is obtained in the exact calculation. In Fig. 5(d), the
HFB mean-field value for OPA2

1
(51) jumps suddenly from
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FIG. 5. Same caption as in Fig. 3 but for χ = 1.5, � = 2, as a function of �. Please note that the scale in panel (b) is multiplied by 100.
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OPA2
1
= 22−1

2·22 = 0.375 to zero at � = 1.25, and, once more,
the exact calculation gives a consistent result. Note that this
QPT involves the change from a minimum of the energy surface
EA to another one of the energy surface EB .

All the above results confirm the structure of the phase
diagram shown in Fig. 1 as well as the character, first or second
order, of the QPTs.

VI. SUMMARY AND CONCLUSIONS

We have presented an extended version of the Agassi model
which includes the extra A

†
0A0 contribution in the Hamiltonian

and, therefore, it has four free parameters, ε, g, V , and h,
although we have always considered a nonvanishing value for
ε, and hence the number of effective free parameters is 3:
V = εχ

2j−1 , g = ε�
2j−1 , and h = ε�

2j−1 . We have performed a HFB
mean-field approach and we have obtained the corresponding
energy surfaces. It must be noted that two different energy
surfaces appear, each one depending only on two of the control
parameters. The existence of two different energy surfaces
is due to the freedom in the election of the phase in the
Bogoliubov transformation.

We have analyzed the equilibrium value of the order param-
eters, ϕ and β, for minima, maxima, and saddle points, and
we have settled the phase diagram of the model. In the phase
diagram four regions can be distinguished: symmetric, HF
deformed, BCS deformed, and HF-BCS deformed. Moreover,
there is a special situation in which the HF- and the BCS
deformed minima are correlated, plane χ = �. We called

this a closed valley minimum. In the four regions different
phases can coexist; in fact, there are regions with up to
three coexisting phases. In addition, there is a line in which
four phases coexist and are degenerated plus a single point
χ = � = � = 1 in which the five phases are degenerated
(spherical, HF deformed, BCS deformed, combined HF-BCS
deformed, and close valley deformed minimum). The ground
state is completely determined by the lowest energy minimum
of the lower energy surface in each region. The existence of
other minima does not affect the ground-state properties, but
it is expected to have a strong influence in the presence of
excited-state quantum phase transitions [19].

Finally, we have compared the exact results with the HFB
mean-field values for different observables. In all the cases,
good agreement has been obtained validating the mean-field
results.

The phase diagram of the present extended Agassi model
shows a rich variety of phases. Phase coexistence is present
in extended areas of the parameter space. The model could
be an important tool for benchmarking novel many-body
approximations.
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