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Resumen 

Este trabajo servirá para estudiar la influencia de algunos parámetros de una órtesis en un ciclo de marcha 

humana, realizado por una persona con un cierto grado de lesión que lleva una órtesis activa. Partiendo de una 

solución de referencia correspondiente a una persona sana, se estudiará cómo los cambios introducidos en el 

exoesqueleto afectan al ciclo de marcha humana en términos de energía, desviación de la referencia y otros 

parámetros definidos como variables de diseño. El problema consiste en un algoritmo de optimización en el 

que la función de coste tiene en cuenta el coste metabólico y la desviación con respecto al patrón, mientras que 

las variables de diseño deben cumplir una serie de restricciones en los puntos de control. Estas variables de 

diseño se evalúan en los nodos, para buscar la solución más óptima.  

La órtesis portada por la persona lesionada consiste en un exoesqueleto active SCKAFO, que contiene un 

actuador rotacional que aporta un par en cada una de las rodillas, así como un tobillo flexible Klenzak, que 

ayuda a flexionar el tobillo. Un encóder permite controlar el ángulo de flexión y corregir la posición si es 

necesario. Los resultados incluyen la evolución temporal a lo largo del ciclo de marcha de las coordenadas 

generalizadas, las fuerzas de reacción, los pares generados en las articulaciones y en los dispositivos de la 

órtesis (el motor y el tobillo Klenzak), la activación muscular y la excitación neuronal. Las conclusiones 

obtenidas servirán como guía para el diseño de futuras órtesis.  
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Abstract 

This work will serve to study the influence of some parameters from an orthosis in a human walking cycle, 

performed by an injured person while wearing an active orthosis. Parting from a reference solution 

corresponding to an injured individual, it will be studied how the changes introduced in the exoskeleton affect 

to the walking cycle in terms of energy, deviation from the reference and other parameters defined as design 

variables. The problem consists on an optimization problem where the cost function bears the metabolical cost 

and the deviation from reference, while the design variables must fulfill a set of constraints in control points. 

These design variables are evaluated in node points, so as to look for the more optimal solution. 

The orthosis worn by the injured individual consists on an SCKAFO active orthosis, which includes a 

rotational actuator in each knee that supplies a torque, and a flexible Klenzak ankle, that also helps to bend the 

ankle. An encoder serves to control the bending angle and correct the position if necessary. The results will 

include the temporary evolution through the walking cycle of generalized coordinates, reaction forces, torques 

generated both at the human body and the orthosis devices (motor and Klenzak ankle, muscle activation and 

neural excitation. The obtained conclusions will serve as a guide for future orthosis designing. 
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1 INTRODUCTION 
 

 

This research deals with the influence of certain parameters from an active orthosis, when the person wearing 

the exoskeleton performs a walking cycle. The main objective consists on, after implementing some changes 

into the exoskeleton, studying how these changes affect to some important features relating a walking cycle 

performed by an injured individual wearing the orthosis, such like the metabolical cost or the torques 

generated during the cycle. The results which may be obtained will serve to reach some conclusions about how 

future active orthosis can be designed and manufactured, focusing on those parameters which really could 

cause an impact in the cycle, and ignoring those which do not really affect the most important parameters in 

the walking cycle.  

In order to measure the influence of the orthosis parameters, a non-linear optimization problem, coded in a 

MATLAB algorithm by García Vallejo [23] is used, taking a linear combination of the metabolical cost and 

the deviation from the reference motion as the cost function. First of all, data corresponding to healthy 

individuals, appearing in Ackerman and Gross [9], may be used to build a reference solution parting from 

them. This reference solution does correspond to a person suffering a certain grade of injury, and it will serve 

as the basis for the rest of optimizations. All of them will be compared to this reference solution.  

In addition to the aim of this project, just explained in the previous paragraphs, this introduction contains a 

descriptive summarize about every contents appearing in this research, including the most important 

bibliographical sources, which were useful to obtain every needed information.  

In Section 2, an introduction to the spinal cord and its typical injuries, based in the information submitted by 

Mayo Clinic [4], Johns Hopkins [5] and The Shepherd Center [6]. Following with the theoretical presentation,  

the active orthosis subject to this study is presented in Section 3, describing its parts and mechanical devices, 

as well as its main functionalities, as appears in Font-Llagunes, García Vallejo and Schliehen [1]. The SCI 

classification according to the damage level is also presented, as it is necessary to understand the aim of the 

exoskeleton.  

Henceforth, every mathematical models used are described. Section 4 serves to present the musculoskeletal 

model, its generalized coordinates, the equations of motion and where do their terms come from. Every 

mathematical models appearing in this research, especially the musculoskeletal model and restrictions can be 

found and further explained in the works made by Font-Llagunes, García Vallejo and Schliehen [1-2-3]. On 

the other hand, the Section 5 contains a complete development of the mathematics describing the muscle 

modelling (especially Hill’s model) and the activation dynamics, essential to understand how the human being 

performs a movement using the limbs. Most of the information about muscle dynamics has been obtained 

from the works by García Vallejo [3], Martínez Reina [16] and Nagano and Gerritsen [20].  

The optimization problem is introduced and developed in Section 6. The vector of design variables is 

deconstructed so as to understand what each term means. The interpolation method, the cost function, the 

constraints and, by last, the options required by MATLAB to describe completely the problem. Also, some 

useful algorithms are detailed, explaining their sequential relations, their relation to the main algorithm and 

their role in the optimization problem. The description of the problem finishes at Section 7, where the six types 

of parameters subject to changes during the optimization are presented.  

After presenting the problem, it is the moment to introduce the results. The Section 8 contains a complete 

display of every results obtained during the optimization, described both quantitative and qualitatively. 
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Graphics and tables shows the evolution of generalized coordinates, ground forces, joint moments, artificial 

torques, muscle activation, neural excitation, metabolical expenditure and deviation from pattern, when an 

orthosis parameter is changed.  

By last, Section 9 contains a small summary of every results just described, including conclusions which may 

be obtained from them.  
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2 SPINAL CORD INJURIES. EXOSKELETONS 
 

 

In this section, the Spinal Cord and its injuries, denoted as Spinal Cord Injuries, will be presented, as they 

are one of the main causes of damage in the musculoskeletal human system. More detailed information 

can be found in the bibliography [4-5-6-15]. Then, a theoretical introduction about exoskeletons is made, 

focusing on their purpose on serving as a mechanical device to improve injured people’s quality of life.  

 

2.1 An introduction to the spinal cord 

The Shepherd Center defines the spinal cord as a on a major bundle of nerves, which serves as a road for nerve 

impulses from the brain to the muscles and vice versa [6]. Along with the brain they constitute the central 

nervous system, responsible for receiving and processing all information arriving to the body, and coordinating 

the movements the musculoskeletal system can carry out.   

The spinal cord extends from the base of the brain to the conus medullaris, located in the waist, along 44 cm, 

approximately. It is connected to the brain through the upper motor neurons (UMNs), which transport the 

information from and to the brain through the spinal tract. The spinal cord is connected to the rest of parts of 

the body through the lower motor neurons (LMNs). There are LMNs at each vertebral level, so as every 

members in the body to be communicated with the spinal cord. 

The LMNs are divided into two parts: the sensory part and the motor part. The first one is responsible for 

informing the brain about the sensations felt by the skin and body parts. The second one makes the inverse 

road: it broadcasts the movement orders from the brain to the body parts.  

 

 

Figure 2-1: Subdivisions in the spinal cord. The Hopkins Medicine University [5] 
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The Figure 4-1 shows the parts the spinal cord divides into, the nerves getting out from the spinal to the body 

parts, and how the spinal cord is protected by the vertebral column. As it is shown, the vertebral column 

comprises 8 cervical vertebrae (right below the neck), 12 thoracic vertebrae (in the upper back), five lumbar 

vertebrae (considered to be in the low back), five sacrum vertebrae (placed in the pelvis) and four coccygeal 

vertebrae (also located within the pelvis).  

 

 

2.2 Spinal Cord Injuries 

According to the Mayo Clinic [4], a Spinal Cord Injury (henceforth, SCI) can be defined as the damage 

produced in any part of the spinal cord, or the nerves at the end of the spinal canal, which affects severely 

some important body functions below the place of injury, as well as strength and sensory in some of these 

parts.  

A SCI implies an important loss of self-control to perform movements, in a total or a partial way. The 

importance of the injury depends on two factors: the place of the injury, and its severity. The highest site 

a SCI is placed in the spinal cord, the most serious the injury can result to be, as the damage produced in a 

determined location in the spinal cord normally affects to the rest of the cord, situated right below the 

injury. The first criterion used to classify the SCI is their completeness, according to Mayo Clinic [4]: 

a) Complete injury: when the sensory and self-control of the movements right below the affected 

zone in the spinal cord are completely lost. 

 

b) Incomplete injury: when some sensory and movement skills remain unaffected. As there are some 

grades of severity in uncomplete spinal cord injuries, complete injuries can be considered as a 

particular case of uncomplete injuries.  

 

Depending on the amount of affected members, SCI can also be referred as: 

a) Quadriplegia: when the SCI affects practically every members in the body, including upper and 

lower extremities, the trunk and the pelvis. 

 

b) Paraplegia: when upper extremities are not affected. 

 

Hopkins Medicine adds a third type of SCI [5]: 

c) Triplegia: when the loss of movement affects to both legs and only one arm. 
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Figure 2-2: Spinal Cord Injuries according to the affected movement area. The Hopkins University [5]. 

 

 

 

 

There is a huge set of causes which can be responsible for provoking SCIs. Most of them are classified as 

traumatic because they consist on sudden events which cause the injury, such like car accidents, gunshots 

or stabbings. Not even the professional sport is away from spinal injuries. Well known it is the case of 

Slobodan Janković [6]. This Yugoslavian basketball player ended prematurely his sports career at 29 

years old, in 1993, while playing for Panionios a Greek League playoff game in Athens, against 

Panathinaikos. The referee called Janković’s fifth foul, which meant his foul out. Janković angered and 

kicked his head against the basket supporting post, damaging severely his vertebral column and thus, his 

spinal cord. He could not walk again, and died due to a heart attack in 2006 at 42 years old. To 

summarize, an injury in the vertebral column can be decisive to suffer a SCI.  

Other causes for SCI’s are not considered as traumatic and they involve diseases like cancer, arthritis, 

inflammation or neurodegenerative diseases. These last ones can result in a progressive loss of motor 

skills, starting with fingers and hands, and following with extremities.  
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Figure 2-3: Slobodan Janković right after getting severely injured. Libertad Digital [8].   

 

 

Exoskeletons field has developed itself considerably for the last decades, to face several purposes they have 

been designed to. Undoubtedly, these devices have contributed to improve life quality in our society. But 

starting from the beginning, what is an exoskeleton like? 

 

2.3 Exoskeletons 

An exoskeleton is a wearable, mechanical device that provides an additional energy to the person wearing it, 

allowing him not to exert the whole required strength to perform a movement [12]. According to the energy 

source, exoskeletons can be divided into two types [13]:  

 

a) Passive exoskeletons: the additional energy is supplied by a set of mechanical elements such like 

springs, dampers or spring-like cilinders, which store energy during the beginning of the 

movement, and release it subsequently [10-11]. They do not have any electrical energy source, 

and their production is economically more affordable. Especially designed for manufacturing 

industry, they allow workers not to overload their muscles, and so on to reduce the risk to suffer 

musculoskeletal diseases like low-back pain. Passive exoskeletons can assist workers in tasks 

involving almost any type of limbs in thir body. Figure 1-1 shows an operator wearing the PLAD, 

a typical passive exoskeleton, while performing a typical task in automotive industry. These 

devices are not necessarily worn by injured people. 
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Figure 2-4: Industrial worker wearing PLAD exoskeleton. Graham et al. [10]. 

 

 

 

b) Active exoskeletons: powered by an electrical actuator, they usually generate more strength than 

their passive counterparts [12]. Usually more expensive than passive exoskeletons, they are 

focused on assist patients suffering spinal cord injuries (SCI), providing them the needed torque 

to manage basic and daily activities like walking. They usually incorporate sensors and encoders 

so as to measure the position of the body, and correct it if necessary. Also, a flexible Klenzak 

ankle, placed at the ankle joint, controls its bending, locking it during the swing phase in a gait, as 

García Vallejo, Font-Llagunes and Schliechen explain [1]. Figures 1-2 and 1-3 show a typical 

active exoskeleton and its actuator, placed in the knee.  

 

 

Figure 2-5: Active orthosis for lower limbs. Yale University [14]. 
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Figure 2-6: Example of an exoskeleton actuator placed in the knee. Yale University [14]. 
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3 DESCRIPTION OF THE ACTIVE ORTHOSIS 
 

In this section, the active orthosis used in every experiments appearing in this research will be presented. As 

explained in the previous section, the main object at designing active orthosis is to provide an additional power 

to people suffering a spinal cord injury (SCI), to ease them at walking. According to the University of 

Wisconsin [15], the American Spinal Injury Association (ASIA) classifies the SCI injuries according to the 

Table 2-1:  

 

Table 3–1. SCI classification according to ASIA 

Range Description 

A 

B 

C 

D 

E 

No motor skills or sensory function below the affected area 

Little sensitivity under the injured area 

Half of muscles under affected area can defy gravity 

Most of muscles (not all) can move against gravity 

Complete motor and sensory function returned 

 

 

The orthosis in question in this research is a SCKAFO orthosis (Stance Control Knee Ankle Foot Orthosis), 

which assists incomplete SCI subjects, around C-D range. The exoskeleton allows these people to perform 

low-speed gaits. The SCKAFO includes some important features [1]: 

 

a) A knee-locking system that forbids the knee movement so as to prevent an overload in the quadriceps, 

which can not support big loads. It is activated upon heel strike detection, using a set of sensors. 

b) An actuator providing force to help the walker to flex and extend the knee joint during the swing 

phase. 

c) A Klenzak passive ankle joint, including a spring which produces a torque, and an optical incremental 

encoder, responsible for controlling the ankle angle.  

 

During the gait cycle, the orthosis works the following way: when the heel strike makes its appearance, the 

knee-locking system goes into action, forbidding any torque produced by the actuator. The sensors and the 

encoder obtain information about the gait. When the walker lifts the foot from the ground, and so the contact 

has finished, the locking system stops working and the motor produces a torque to perform the swing phase. 

When the foot touches the ground again, a new cycle starts.  
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Figure 3-1: SCKAFO exoskeleton, used in this report. It contains an electrical actuator placed in the knee, 

a Klenzak flexible ankle and an encoder, these two sited in the ankle. Font-Llagunes, García Vallejo and 

Schliehen [1].   
 

 

 

 

The Figure 3-1 shows the devices just presented: the actuator, the knee-locking system and the Klenzak 

flexible ankle.  
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4 MODEL DESCRIPTION 
 

In this section, the human body model used in the research by Font-Llagunes. García Vallejo and 

Schliehen [1] will be presented, as well as the system of equations which describe the motion, the 

conditions of contact modelling the foot-ground contact, and the eight phases describing a walking cycle. 

This model parts of an original tridimensional model used in other researches (meter cita). Nonetheless, 

as this work deals completely with a bidimensional model, and so every results and graphics obtained, the 

bidimensional model of the human body will be the only one presented here. 

 

4.1 Bidimensional musculoskeletal model 

This bidimensional human body model can be found in Ackermann [9] and García Vallejo [2]. As it is 

shown in the Figure 3-1, it is fully contained in the sagital plane, and it will be very useful to work with 

this model due to its simplicity. In fact, it reduces significantly the number of parameters in the 

optimization and, therefore, the number of design variables. The effect of the orthosis and the Klenzak 

ankle on the generalized coordinates will also be included, as every experiments and results obtained will 

bear the presence of both mechanical elements. As it will be explained later, the symmetry of the model 

will also allow to obtain results quicker. 

7 bodies and 9 generalized coordinates are defined in this model. The seven bodies consist on two shanks, 

two thighs, two feet and a body named HAT, which includes the pelvis, the trunk, the arms and the head. 

It shall be noted that the motion of the lower part of the human body is given much more importance than 

the upper part, as this one is being comprised in a single body. The 9 generalized coordinates can be 

defined as: 

 

a) x11: longitudinal displacement of the HAT (measured in absolute coordinates) 

b) z11: vertical displacement of the HAT (measured in absolute coordinates) 

c) β11: pitch rotation of the pelvis 

d) β13: right hip flexion angle 

e) β34: right knee flexion angle 

f) β45: right ankle flexion angle 

g) β16: left hip flexion angle 

h) β67: left knee flexion angle 

i) β78: left ankle flexion angle 

 

If the walking cycle is divided into two equivalent halves, the symmetry of the model allows to make the 

next simplifications: 

 

 

 The motion of the pelvis is the same in the first and the second half of the cycle. 
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 In the second half, the left leg moves the same as the right leg in the first half of the motion cycle. 

 Equivalently, the left leg is submitted to the same muscle forces during the second half of the 

cycle, as the right leg in the first one. 

 

To sum up, only 6 generalized coordinates can be considered as design variables for the trajectory, in the 

optimization of parameters.  

 

 

Figure 4-1: Musculoskeletal system used in this report, representing generalized coordinates. Font-

Llagunes, García Vallejo and Schliehen [1]. 
 

 

 

4.2 Equations of motion 

Defining nc as the number of generalized coordinates, Nm as the number of actuating muscles, and nb the 

number of actuated joints, and considering in a first place the model as an open kinematic chain, built with a 

set of bodies connected by a set of holonomic joints, and described by nc generalized coordinates, the classical 

equations of Newton-Euler allow to express the system as a set of equations of motion where the unknowns 

parameters are the generalized coordinates (according to d’Alembert’s Principle) as follows [2]: 

 

𝑴(𝒒)𝒒̈ + 𝒌(𝒒, 𝒒̇) = 𝒒𝒓(𝒒, 𝒒̇) + 𝑩𝑨𝒇𝒎 + 𝒒𝒂𝒄𝒕 + 𝒒𝒂𝒏𝒌(𝒚) (4-1) 
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Where 𝑴(𝒒) is the (nc x nc) square mass matrix of the system, 𝒌(𝒒, 𝒒̇) is a (nc x1) vector containing the 

generalized Coriolis forces, 𝒒𝒓(𝒒, 𝒒̇) is a (nc x 1) vector including generalized gravitational forces, generalized 

moments in the joints due to the interaction between them and the tissues as it appears in Riener and Edrich 

[21], and generalized viscous damping torques in the knees according to the model presented in Stein [22], and 

𝑩𝑨𝒇𝒎, a (nc x1) vector, represents the effect in terms of generalized forces of the muscle actuating in the 

system. 

This term is formed by 𝑩, a (nc x nb) matrix which includes the generalized torques in the actuated joints;  𝑨, a 

(nb x Nm) matrix containing every moment arms needed to calculate the torques produced by muscles during 

their actuation; and 𝒇𝒎 is the (Nm x1) vector containing every muscle forces.  

The terms 𝒒𝒂𝒄𝒕 and 𝒒𝒂𝒏𝒌(𝒚) are (nc x 1) vectors that make reference to the actuation of the orthosis and the 

Klenzak ankle, respectively. Both of them expressed in function of the generalized coordinates, they can be 

written as follows: 

 

𝒒𝒂𝒄𝒕 = [0  0  0  0  𝑇𝑘𝑟 0  0  𝑇𝑘𝑙 0] 𝑇 

𝒒𝒂𝒏𝒌 = [0  0  0  0  0  𝑇𝑎𝑟(𝒒) 0  0  𝑇𝑎𝑙(𝒒)] 𝑇 

 

  Of course, 𝒒, 𝒒̇ and 𝒒̈ are the generalized coordinates, velocities and accelerations, respectively.  

 

4.2.1 Foot-Ground contact modelling 

What is concerning to the modelling of the contact between the feet and the ground, it can be expressed by a 

set of conditions of contact which vary according to the phase of the cycle. First of all, some variables must be 

defined, starting with the geometrical parameters of feet. Denoting H as the height of an individual, the next 

relations described by Ackermann and Gross [9], also collected by García Vallejo in [3], appearing in the 

Figure 3-2, can be used: 

 

 

Figure 4-2: Geometrical parameters needed to define feet. García Vallejo [3].  
 

 

Where Lr1, Lr2 and Lr3 are geometrical constants that define the feet, and are the same for both feet. The 

following constants may also be used during the parameterization: 
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1) LR: it is the length of the right step, considering it the distance between the left and the right toe 

(this one is in front of the left one). 

2) LL: it is the length of the left step, considering it the distance between the right and the left toe 

(now this one is in front of the right one). 

3) TR and TL: denote the right and left toe, respectively. 

4) HR and HL: denote the right and left heel respectively. 

 

Now the conditions of contact between the ground and the feet can be presented. As explained before, 

each walking cycle is divided into eight phases, and each phase has its own conditions of contact. They 

can be described as follows: 

1) Phase 1: the left toe and the right heel have their displacements constrained. 

2) Phase 2: the same as in phase 1, adding a vertical constraint in the right toe. 

3) Phase 3: the left foot is fully released, the right one remains the same way as in phase 3. 

4) Phase 4: the right heel is released, whereas the right toe has its displacements constrained. The 

left foot remains with no constraints. 

5) Phase 5: constraints are imposed on the left heel and the right toe. 

6) Phase 6: the same as right before, adding a vertical constraint in the left toe. 

7) Phase 7: the right foot is unconstrained, while the left one remains with no changes. 

8) Phase 8: the left heel is liberated, and displacements constraints are added in the left toe. The 

right foot remains released.  

 

It shall be noted that phases 5 to 8 are the same as 1 to 4, but with the right and the left foot interchanging 

their roles. The conditions of contact for each phase can be observed in the Figure 3-3: 

 

 

Figure 4-3: Eight phases of the walking cycle. García Vallejo [3]. 

 

Where LR and LL represent the respective lengths of a right and a left step. 

As the conditions of contact have been defined, the system is now a closed kinematic chain, and the effect 

of those conditions must be reflected in the equations of motion, in terms of contact forces expressed in 

function of the generalized coordinates. The new system of equations is defined: 
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𝑴(𝒒)𝒒̈ + 𝒌(𝒒, 𝒒̇) = 𝒒𝒓(𝒒, 𝒒̇) + 𝑩𝑨𝒇𝒎 + 𝒒𝒂𝒄𝒕 + 𝒒𝒂𝒏𝒌(𝒚) +  𝑪𝒑𝒉
𝑻 𝝀𝒑𝒉 (4-2) 

 

Where 𝑪𝒑𝒉
𝑻  denotes the jacobian matrix of the kinematic constraints at the phase ph of the motion, and 

𝝀𝒑𝒉 is the vector of Lagrange multipliers, also at the phase ph.  
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5 MUSCLE MODELLING 
 

In this section, muscles intervening in the walking cycle right described will be presented, as well as the 

biological model followed to describe the dynamics of muscles activation and contraction, better known as 

Hill model.  

5.1 Muscles intervening in the cycle. Hill’s model 

 

The muscles taking part in the walking cycle are the following [1-3]: 

a) Soleus (represented in this research as SOL) 

b) Tibialis anterior (TA) 

c) Gastrocnemius (GAS) 

d) Vastii (VAS) 

e) Rectus femoris (RF) 

f) Harmstrings (HAMS) 

g) Gluteus (GLU) 

h) Iliopsoas (ILPSO) 

 

 

 

 
 

Figure 5-1: Muscle model developed by Hill. Martínez Reina [16]. 

 

 

The Figure 5-1 shows the typical Hill muscle-tendon model. The SE is the elastic element, and it 

represents the tendon as a spring with a determined stiffness, joined to the muscle. This one is represented 

by the union of CE and PE. CE is the contractile element, which generates the force, while PE is the non-

linear elastic element, parallel to the contractile element. This one represents the stiffness of the structures 
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parallel to the muscle fibers. The angle αp is known as the pennation angle, and it represents the angle 

formed by the tendon and the muscle. The Figure 5-2 shows a more reliable representation of this angle: 

 

 

Figure 5-2: Representation of the pennation angle. Font-Llagunes, García Vallejo and Schliehen [1].   

 

Denoting fm as the muscle force, lm as its length, lSE as the length of the tendon, fPE as the force generated 

by PE, and lCE as the length of the contractile element, and projecting the length and the force actuated by 

CE and PE in an axis parallel to the tendon, the next relations can be stablished: 

 

𝑙𝑚 = 𝑙𝐶𝐸cos (𝛼𝑝) + 𝑙𝑆𝐸 (5-1) 

𝑓𝑚 = (𝑓𝐶𝐸 + 𝑓𝑃𝐸)𝑐𝑜𝑠(𝛼𝑝) (5-2) 

 

As the force powered by PE, 𝑓𝑃𝐸 ,  is considered to be negligible in this research, the relation between the 

muscle force and the contractile element force is now expressed as: 

 

𝑓𝐶𝐸 =
𝑓𝑚

cos (𝛼𝑝)
 

(5-3) 

 

 

Derivating respect to the time the equation…, the velocity of lengthening of the muscle can be obtained: 

 

𝑣𝑚 = 𝑣𝐶𝐸cos (𝛼𝑝) + 𝑣𝑆𝐸 (5-4) 

 

which can also be written this way: 

 

𝑣𝐶𝐸 = (𝑣𝑚 − 𝑣𝑆𝐸) cos (𝛼𝑝) 

 

(5-5) 
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A last parameter can also be defined. It is W, the muscle thickness, and it can be mathematically 

described as the projection of the aggregate CE-PE in an axis perpendicular to the tendon line of action. It 

is easier to understand its definition by looking the figure below: 

 

Figure 5-3: Muscle Hill’s model.   

 

 

This mathematical definition leads to an interesting trigonometrical relation between W, 𝛼𝑝 and 𝑙𝐶𝐸, 

which can be written as follows[16]: 

 

cos(𝛼𝑝) = √1 − (
𝑊

𝑙𝐶𝐸
)

2

 

 

(5-6) 

 

Another way to express this relation is the next one: 

 

𝑙𝐶𝐸 = √(𝑙𝑚 − 𝑙𝑆𝐸)2 + 𝑊2 (5-7) 

 

5.2 Muscle dynamics 

After determining all these geometrical relations, muscle dynamics can be faced. It is governed by two 

differential equations [1-2-3-21]: 

 

𝑓𝑚̇ = 𝑓(𝑎, 𝑓𝑚, 𝑙𝑚, 𝑣𝑚) 
(5-8) 

𝑎̇ = (𝑢 − 𝑎) ∗ (𝑡1 ∗ 𝑢 − 𝑡2) 
(5-9) 

 

 

 

The first equation represents the first derivative of the muscle force as a function of 𝑓𝑚, 𝑙𝑚, 𝑣𝑚 (already 
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described) and 𝑎. This last one is the muscle activation, and will be bounded in the interval [0, 1], with 𝑎 = 1 

being the full activation, and 𝑎 = 0 a total lack of activation.  

The second equation relates the muscle activation and its first derivative, with 𝑢, 𝑡1 and 𝑡2. The parameter 𝑢 is 

defined as the neural excitation, while the other two are two time constants, expressed the next way: 

 

𝑡2 =  
1

𝑡𝑑
 

 

(5-10) 

𝑡1 =
1

𝑡𝑎 − 𝑡2
 

 

(5-11) 

 

 

Where 𝑡𝑎  and 𝑡𝑑 are the activation and deactivation time constants, respectively. The significance of these 

constants can be better understood in the Figure 5-4: 

 

 

Figure 5-4: Activation and deactivation time. Martínez Reina [16].   

 

 

 

The activation time reflects the moment when the muscle starts to receive the influence of the neural 

excitation, while the deactivation time signs the time that influence ends.  

The objective now is to get the parameter 𝑎 and its first derivative. First, the muscle force and its first and 

second derivative (𝑓𝑚, 𝑓𝑚̇ and 𝑓𝑚̈) must be determined using a spline interpolation subroutine. Next, the 

length of the muscle and its first and second derivative (𝑙𝑚, 𝑣𝑚 and 𝑣𝑚̇) are obtained from the generalized 

coordinates, as they are a function of them: 

 

 

𝑙𝑚 = 𝑙𝑚(𝒚(𝑡)) (5-12) 

𝑣𝑚 = 𝑣𝑚(𝒚(𝑡), 𝒚̇(𝑡)) (5-13) 
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𝑣𝑚̇ = 𝑣𝑚̇(𝒚(𝑡), 𝒚̇(𝑡), 𝒚̈(𝑡)) (5-14) 

 

By last, the following muscle properties table (Figure 5-5) will be used to get some important values such 

like the pennation angle (𝛼𝑝), the optimus length of the contractile element (𝑙𝑜𝑝𝑡
𝑐𝑒 ), the muscle length in 

the slack state (𝑙𝑠𝑙𝑎𝑐𝑘) and the maximum force the contractile element can power (𝑓𝑚𝑎𝑥
𝑐𝑒 ). 

 

 

Figure 5-5: Muscle properties table used in this research. Font-Llagunes, García Vallejo and Schliehen 

[1]. 

 

Here on, the muscle thickness (W) and the stiffness of the contractile element (KT) are defined: 

 

𝑊 = 𝑙𝑜𝑝𝑡
𝑐𝑒 √1 − 𝑐𝑜𝑠2(𝛼𝑝) 

(5-15) 

𝐾𝑇 =
𝑓𝑚𝑎𝑥

𝑐𝑒

(0.04𝑙𝑠𝑙𝑎𝑐𝑘)2
 

(5-16) 

 

Now, the next magnitudes to determine will be the length of the tendon and its derivatives, first and 

second, using the next equations: 

 

𝑙𝑆𝐸 = 𝑙𝑠𝑙𝑎𝑐𝑘 + √
𝑓𝑚

𝐾𝑇
 

(5-17) 

𝑣𝑆𝐸 =
𝑓𝑚̇

2𝐾𝑇(𝑙𝑆𝐸 − 𝑙𝑠𝑙𝑎𝑐𝑘)
 

(5-18) 

𝑎𝑆𝐸 =
𝑓𝑚̈ − 2𝐾𝑇𝑣𝑆𝐸

2

2𝐾𝑇(𝑙𝑆𝐸 − 𝑙𝑠𝑙𝑎𝑐𝑘)
 

(5-19) 
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The next step consists on determine the second derivative of the contractile element length (𝑣𝐶𝐸̇ ) and the 

first derivative of its force (𝐹𝐶𝐸)̇ . Before, the next trigonometrical relation of the pennation angle may be 

defined: 

 

𝑡𝑎𝑛2(𝛼𝑝) =
1

𝑐𝑜𝑠2(𝛼𝑝)
− 1 

(5-20) 

 

Now, it is easier to write the derivatives right presented: 

 

 

𝑓𝐶𝐸
̇ =

𝑓𝑚̇

cos (𝛼𝑝)
−

𝑓𝐶𝐸𝑣𝐶𝐸𝑡𝑎𝑛2(𝛼𝑝)

𝑙𝐶𝐸
 

(5-21) 

𝑣𝐶𝐸̇ = (𝑎𝑆𝐸 − 𝑣𝑚̇) cos(𝛼𝑝) +
𝑣𝐶𝐸

2 𝑡𝑎𝑛2(𝛼𝑝)

𝑙𝐶𝐸
 

(5-22) 

 

The objective now is to get the muscle activation and its first derivative so as to solve the differential 

equation (5-9). The relations appearing in Nagano and Gerritsen [21] are used to obtain the next 

parameters: the contractile element force at the maximum activation (𝑓𝐶𝐸̂), and the partial derivatives of 

this parameter with respect to the contractile element length and its derivative 
𝜕𝑓𝐶𝐸̂

𝜕𝑙𝐶𝐸
 and  

𝜕𝑓𝐶𝐸̂

𝜕𝑣𝐶𝐸
. For further 

details read the reference. 

As it can be deducted from the definition of 𝑓𝐶𝐸̂, the muscle force given a determined value for activation 

is proportional to the activation so that: 

 

𝑓𝐶𝐸 = 𝑎𝑓𝐶𝐸̂ (5-23) 

 

Now there is nothing more but clear the muscle activation: 

𝑎 =
𝑓𝐶𝐸

𝑓𝐶𝐸̂

 
(5-24) 

 

To determinate the derivative of the activation, a relation present in Nagano and Gerritsen [21] is also 

used: 
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𝑎̇ =
1

𝑓𝐶𝐸̂

(𝑓𝐶𝐸
̇ − 𝑎

𝜕𝑓𝐶𝐸̂

𝜕𝑙𝐶𝐸
𝑙𝐶𝐸̇ − 𝑎

𝜕𝑓𝐶𝐸̂

𝜕𝑣𝐶𝐸
𝑣𝐶𝐸̇ ) 

(5-25) 

 

The neural excitation, 𝑢, can already be cleared, as every factors in the equation (5-25) are known. As it 

is now a second grade equation, and taking the solution which makes physical sense, the next expression 

for 𝑢 results: 

 

𝑢 =
1

2
(𝑎 −

𝑡2

𝑡1
) +

1

2
(𝑎 +

𝑡2

𝑡1
)√1 +

4𝑎𝑡1̇

(𝑎𝑡1 + 𝑡2)2
 

(5-26) 
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6 OPTIMIZATION PROBLEM 
 

In this section, the optimization problem is approached. Every elements required to understand the process will 

be presented, including design variables, the cost function, the constraint expressions and the initial estimation. 

The procediment to obtain the values at the control points will also be explained. Further explanations about 

the interpolation method based in splines can be found in Section 7.   

6.1 Design variables 

The aim of this research is to measure the influence of the orthosis parameters in a typical human walking 

cycle, taking into consideration the metabolical cost during the cycle. In other words, the human walking 

simulation is modeled as an optimization parameters problem [1], where the cost function includes the 

metabolical cost and the deviation from the regular walking pattern. A set of parameters, called design 

variables, are used to reconstruct the generalized coordinates histories and the muscle force histories of the 

walking cycle [1-2-3]. 

The generalized coordinates and the muscle forces must fulfill a set of constraints so as to ensure the 

fulfillment of the equations of motion of the multibody system, the kinematic constraints and other physical 

and physiological relations.  

The complete set of design variables form the vector X, whose length depends on the number of nodes used in 

the parameterization, NN.  Considering NC the number of generalized coordinates, and NM the number of 

muscles in the multibody system, the vector X can be deconstructed into four smaller groups of vectors as it 

appears in García Vallejo’s reports [1-2-3]: 

a) The first group consists on a set of NC vectors, each one including all nodal values for each 

generalized coordinate. As the trajectory of each coordinate in the walking cycle can be described 

with a vector of NN nodal values, the dimension of the vector corresponding to the trajectory of the 

multibody system is NN x NC. The vector used for a single coordinate can be denoted as 𝑦𝑖, i=1,2… 

NN.  

 

b) The second group consists on a set of NM vectors, that includes all nodal values of the muscle forces 

during the walking cycle. Each vector can be denoted as 𝑓𝑚𝑖, i=1,2… NM. As each muscle has NN 

nodal values for its force during a single cycle, the length of this whole second group of vectors is NN 

x NM. 

 

c) The third group refers to the parameterization of the motor torque, including all nodal values of the 

torque during the walking cycle. As the multibody system is considered to be symmetrical, there is 

only a vector of NN components representing the design variables for the parameterization of the 

motor torque. 

 

d) The fourth group deals with the parameterization of duration of each of the eight phases forming a 

walking cycle. Therefore, this vector, 𝑇𝑝ℎ,  has eight components. As it will be explained later, this 

vector can be split into two equal vectors, so as the first phase of the motion has the same duration as 

the fifth one, the second takes the same time as the sixth, and so on. 
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e) The fifth vector includes a set of geometrical parameters which describe the kinematical constraints in 

the ground, PG. These parameters can be listed as Lr (the length of a right step) and Ll (the length of a 

left step). 

 

f) The sixth and last group of vectors, PO, contains a set of design parameters of the orthosis. They are 

the torque and the stiffness. As the problem is symmetrical, this vector only includes these two 

components.  

 

6.2 Nodes and control points. Parameterization 

In order to ease the study and analysis of the movement during the walking cycle, it must be parameterized by 

using spline functions. This situation makes indispensable to know the value of design variables in determined 

points of the cycle, named as nodes [3]. The walking cycle will be divided into a determined number of nodes, 

NN. The most nodes are used in optimization, the most reliable and accurate results will be obtained, but at the 

same time the largest will be the vector containing design variables, something harmful in terms of 

computational time. Most of the optimizations performed in this research have been done using 25 nodes, a 

number found to be reliable to get accurate results in a reasonable time. Also, a 29-node optimization was 

performed so as to check and compare it with the 25-nodes solution. 

So, taking NN = 25 nodes, each walking cycle is composed of 25 nodes. The objective is to build time stories 

of parameterized variables from their values at nodes, by using fifth-order spline functions with periodical 

boundary conditions [3]. These periodical conditions are used to take into account the periodical nature of the 

walking cycle. However, the measured walking cycle is not perfectly periodical, due to small deviations from 

the reference pattern. Moreover, other imperfections appear as a consequence of numerical reasons in the 

procediment. What is more, a problem appears when imposing periodical boundaries to non-periodical points: 

a non-desirable swing-like trajectory that makes more difficult to find a convergent solution (see Figure 6-1). 

The way to solve this problem consists on imposing periodicity to the values in nodes. Concretely, two 

conditions are imposed in node values: 

 

a) The first node value must be the same as the last one in the cycle, to ensure the cycle fulfillment 

b) The two first and the two last node values are calculated from previous node values (for further 

information about the calculation method, consult García Vallejo’s report [3]). 

 

This last condition makes that only NN-4 node values are considered as design variables during optimization, 

so in the 25-nodes solution, only 21 correspond to the design variables vector.  
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Figure 6-1: Diverse examples of spline functions. García Vallejo [1]  

 

 

Node values are not enough to ensure a reliable and fully parameterization of the walking cycle. Also, a set of 

control points must be defined to ensure the fulfillment of constraints expressions at those points (see 

Ackerman and Gross [9]). These control points do not coincide necessarily with node points, in fact, there are 

much more control points than nodes, which allows a more accurate fulfillment of constraints. Each phase has 

a determined number of control points according to its duration, as it appears in the Table 6-1: 

 

Table 6-1. Control points in each phase 

Phase  Number of control points 

1 3 

2 4 

3 18 

4 15 

5 3 

6 4 

7 

8 

18 

15 

 

As it can be observed in the table, the cycle can be divided into two equal halves, so that the phase 1 has the 

same number of control points as the phase 5, the phase 2 has the same number as the same 6, and so on for 

the rest. This means that the last control point in a gait phase is the same as the first one in the next gait phase. 

The total number of control points comes from the next equation [3]: 
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𝑁𝑐𝑝 = 1 + ∑ (𝑁𝑐𝑝
𝑝ℎ

8

𝑝ℎ=1

− 1) 

 

(6-1) 

 

 

So, there is a total of 73 control points in the whole walking cycle. The Figure 6-2 shows the distribution of 

nodes and control points in a typical walking cycle.  

 

 

Figure 6-2: Distribution of nodes and control points in the walking cycle [3].   

 

 

 

6.2.1 Design variables vector breakdown 

The explanation of the distribution of node points in a walking cycle is necessary to understand the length of 

the components in the design variables vector. Looking the algorithm coded by García Vallejo [23], it is easy 

to understand the length of its part in the vector.  

 

X(3*(NNM-4)+(NCS-3)*(NN-4)+NMS*(NN-4)+(NAS)*(NN-4)+8+2+2) 

 

 

The first term refers to the three coordinates describing the pelvis movement. Each one of them describes 

a symmetrical movement, and following the interpolation rule right described, the length of each vector is 

(NNM-4), being NNM the number of the node placed in the middle. The second term makes reference to 
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the rest of the coordinates. As they do not describe a symmetrical motion, each one has a (NN-4)-

components length. The third and fourth parts of the X vector describe themselves analogously to the 

second one, but referring to the muscles and the actuators, respectively. This way, the third part has a 

(NMS*(NN-4))-components length, while the fourth one is (NAS*(NN-4)) components long.  

 

By last, the number 8 makes reference to the eight phases of the optimization, while the last two numbers 

indicate the two foot geometrical parameters and the two orthosis parameters.  

 

6.3 Cost function 

The objective of the optimization problem consists on finding the best trajectories minimizing the 

metabolical expenditure. This is a logical criterion according to biological and physical reasons, as the 

human being tries to spend the less energy power possible when executing its movements. Therefore, the 

design variables presented right before will be obtained by minimizing the objective function which will 

be explained in the next paragraphs. 

In this report, the energy expenditure model developed by Umberger [19] will be used, as it represents in 

a reliable way the metabolical cost during the human act of walking. This model considers the thermal 

and mechanical energy liberation rates during simulated muscle contractions at normal body temperature. 

The energy rate for a single muscle can be described as: 

 

𝐸̇ = 𝐸̇(𝑙𝑐𝑒 , 𝑣𝑐𝑒 , 𝑓𝑐𝑒 , 𝑎, 𝑢, 𝑝𝑚) (6-2) 

 

Where 𝑙𝑐𝑒 is the CE length, 𝑣𝑐𝑒 is the CE velocity, 𝑓𝑐𝑒 is the CE force, 𝑎 refers to the muscle activation, 

𝑢 is the neural excitation, and 𝑝𝑚 is a vector that includes every muscle constants parameters needed to 

measure accurately the energy rate. This expression can be integrated in a determinate period of time, to 

represent the whole quantity of energy used in a walking cycle, as follows:  

𝐸 = ∫ 𝐸̇(𝑙𝑐𝑒 , 𝑣𝑐𝑒 , 𝑓𝑐𝑒 , 𝑎, 𝑢, 𝑝𝑚)𝑑𝑡
𝑡𝑓

𝑡0

 
(6-3) 

 

 

Where 𝑡0 and 𝑡𝑓 are the inicial and final times of the walking cycle, respectively.  

In this research, as long distances are considered to measure the energy gate during the walking cycle, it 

is more comfortable to use the average energy per distance walked. It is said, the total energy consumpted 

divided by the total length walked during the process. This quantity, defined as the metabolical cost of 

transportation, can be written as follows: 
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𝐸𝑡 =
𝐸

𝐿𝑟 + 𝐿𝑙
 

(6-4) 

 

 

In order to avoid non-logical solutions trying the find the most optimum trajectories and muscle forces, a 

regular motion pattern will be followed. This is important for aesthetical reasons, as one of the purposes 

in the designing of orthosis is to make the person wearing it to walk the most similar possible way to a 

regular person. Moreover, the resulting contact forces in the simulated model will be very similar to the 

ones in the non-damaging feet model. 

The deviation from the walking standard motion is expressed below: 

 

𝐽𝑑𝑒𝑣 = ∫ ∑
(𝑥𝑖(𝑡) − 𝑥𝑖

𝑚(𝑡))2 

𝜎𝑖
2

𝑛𝑥

𝑖=1

𝑡𝑓

𝑡0

𝑑𝑡 

(6-5) 

 

 

In that equation, 𝑥𝑖(𝑡) refers to the variable measured for the regular motion pattern, 𝑥𝑖
𝑚(𝑡) is the same 

variable, but experimentally obtained, and 𝜎𝑖
2 measures the variability of the variable 𝑥𝑖(𝑡). Each variable 

is represented with a vector containing as many variables as the number of nodes used in the 

interpolation.  The variability before presented can be defined as follows: 

 

𝜎𝑖
2 =

1

𝑇
∫ (𝑥𝑖(𝑡) − 𝑋𝑖)2

𝑡𝑓

𝑡0

 
(6-6) 

 

Where T makes reference to the duration of the period, and 𝑋𝑖 is the mean value of the considered 

variable, calculated in the following way: 

 

  

𝑋𝑖 =
1

𝑇
∫ 𝑥𝑖(𝑡)𝑑𝑡

𝑡𝑓

𝑡0

 

 

(6-7) 

 

 

Now, the first cost function used in this research, fA, can be defined as the next way: 
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𝑓𝐴 =  𝑤𝐸 ∗
𝐸𝑡

𝐸0
𝑡 + 𝑤𝐽 ∗ 𝐽𝑑𝑒𝑣 

(6-8) 

 

Where 𝐸0
𝑡 consists on a reference value to scale the energy rating, and make it to have the same 

magnitude order as the deviation from the motion pattern, 𝐽𝑑𝑒𝑣. It shall be noted that two weight 

coefficients were added. The first one, 𝑤𝐸, measures the influence of the metabolical cost of 

transportation, while the second one, 𝑤𝐽, makes the same with the deviation from the standard motion of 

walking. These two coefficients will be modificated during the experiments so as to examine their 

influence in the optimization parameters problem. 

The expression defined right before will be the cost function used in the optimization, although it is not 

the most accurate, as it ignores the efficiency of the orthosis. In order to bear it, two more objective 

functions can be described [1], although they will not be used finally.  

The first new parameter used will be the root mean square of the power consumption, PRMS. This one 

measures the efficiency of the actuator in terms of power, and can be calculated as follows: 

 

𝑃𝑅𝑀𝑆 = √
1

𝑇
∫ (𝑇𝑘 ∗ 𝛽34)2

𝑡𝑓

𝑡0

𝑑𝑡 

 

(6-9) 

 

Where T is the duration of the gait cycle, 𝑇𝑘 is the power of the actuator in the right leg (only this one was 

included due to the symmetry of the model) and 𝛽34 is the angle of the right knee. Now, this term can be 

added to the first cost function, resulting the following one: 

 

𝑓𝐵 =  𝑤𝐸 ∗ (
𝐸𝑡

𝐸0
𝑡 +

𝑃𝑅𝑀𝑆

𝑃𝑅𝑀𝑆0
) + 𝑤𝐽 ∗ 𝐽𝑑𝑒𝑣 

(6-10) 

 

 

Equivalently to the procediment followed before, the root mean square of the power consumption has 

been divided by a reference value, 𝑃𝑅𝑀𝑆0, so as to have the same magnitude order in the two terms of the 

equation (it shall be remembered that 𝐽𝑑𝑒𝑣, the deviation from the motion pattern, was obtained by 

dividing the difference between the standard and the experimental variable, by the variability, 𝜎𝑖
2 ).  

The third and last cost function which can be described bears the torque of the motor, represented by its 

root mean square, in an equivalent way as the power consumption: 
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𝑇𝑅𝑀𝑆 = √
1

𝑇
∫ (𝑇𝑘 )

2
𝑡𝑓

𝑡0

𝑑𝑡 

 

(6-11) 

 

Being T the duration of the gait cycle, and 𝑇𝑘 the torque of the actuator. Its influence in the cost function 

is beared the same way as the power consumption: 

 

𝑓𝐶 =  𝑤𝐸 ∗ (
𝐸𝑡

𝐸0
𝑡 +

𝑇𝑅𝑀𝑆

𝑇𝑅𝑀𝑆0
) + 𝑤𝐽 ∗ 𝐽𝑑𝑒𝑣 

(6-12) 

 

 

The coefficients 𝑤𝐸 and 𝑤𝐽 have the same function in the three cost functions.  

 

 

6.4 Constraint expressions 

 

The optimization algorithm must fulfill as much as possible a set of constraints that will be presented in 

the next paragraphs. Constraints can be either linear or non-linear, and can also be classified according to 

if they are equations or inequations. As explained before, the fmincon function of Matlab allows to 

introduce linear and non-linear, equalities and inequalities as constraints. 

 

6.4.1 Bounds  

Each design variable has associated an upper and a lower bound, according to biological and 

physiological reasons. Concerning to generalized coordinates bounding: 

6.4.1.1 Generalized coordinates  

 

a) The three first generalized coordinates, which express the HAT motion (x11, z11, and β11) are 

bounded by taking the mean of the reference motion (for x11, the deviation from the mean motion 

is also beared), and allowing a bit upper and lower tolerance, proportional to the amplitude of the 

reference motion. 

 

b) The rest of the generalized coordinates are the belonging to the joints in the hip, the knees and the 

ankles. Assuming the symmetry of the model, (β13= β16, β34= β67 and β45= β78), there are only three 

coordinates remaining to bound. Now, the procediment is the same as the described for the three 

first coordinates, with two exceptions: 
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b.1) The lower bound for the knees is imposed to be zero, so as to avoid an unnatural knee rotation. 

Therefore, 

 

𝛽34 > 0 (6-13) 

 

 

b.2) The Klenzak ankle imposes the rotation of the ankle. This mechanical device forbids a positive 

rotation of this joint, and as it has a limited maximum rotation, it imposes the following bounds: 

 

 

𝛽45 = 𝛽78 < 0 (6-14) 

𝛽45 = 𝛽78 > −
𝜋

9
𝑟𝑎𝑑 (6-15) 

 

 

 

6.4.1.2 Muscle forces 

The forces actuated by muscles are bounded by the following way: their lower bound is zero, as it does 

not make physical sense to consider a negative force, while their upper bound is calculated according to 

the next equation: 

 

 

𝑓𝑢𝑝𝑖
𝑚 = 𝑓𝑚𝑎𝑥𝑖

∗ cos (𝛼𝑝𝑖
) (6-16) 

 

 

Where 𝑓𝑚𝑎𝑥𝑖
and 𝛼𝑝𝑖

 are the maximum force and the pennation angle of the muscle i. The equation 

consists on nothing but the projection of the maximum muscle force in the direction of the tendon, 

according to Hill’s model, as it is shown in the Figure 6-3. 

 

 
 

Figure 6-3: Muscle model developed by Hill. Font-Llagunes, García Vallejo and Schliehen [1].    

 

 

 

 The information for the eight muscles can be found in the Table 6-2, where the first column represents 

𝑓𝑚𝑎𝑥𝑖
and the second one, 𝛼𝑝𝑖

.  
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Table 6-2: Maximum forcé and pennation angle for each muscle group taking part in the cycle. 

 

Muscle group Maximum force, 𝑓𝑚𝑎𝑥(N) Pennation angle, 𝛼𝑝 (°)  

ILPSO 821 7.5 

RF 663 5 

GLU  1705 3 

HAMS 1770 7.5 

VAS  7403 4.4 

GAS 1639 14.3 

TA 1528 6.0 

SOL 3883 23.6 

 

 

6.4.1.3 Motor torque 

The torque powered by the motor placed in the knee has a maximum value which will be modificated as 

part of the research, to examine its influence in the parameters optimization. Anyway, as the nodal values 

for the motor torque are normalized, the only bounds applied to them will consist on the following: 

 

𝑇𝑖 < 1 (6-17) 

𝑇𝑖 > −1 (6-18) 

 

Being 𝑇𝑖 a random nodal value for the motor torque. 

6.4.1.4 Phases duration 

The lower bounds imposed to these design variables make them to be at least 0.01, while the upper 

bounds force them not to occupy more than a half of the cycle. Therefore, 

 

𝑡𝑝ℎ𝑖
> 0.01 (6-19) 

𝑡𝑝ℎ𝑖
< 𝑇/2 (6-20) 

 

Being 𝑇 the whole duration of a cycle. Later, some linear equality constraints referring phases duration 

will be added. 

6.4.1.5 Step lengths 

Both step lengths, right and left, are forced to be in the interval [0.1, 1.5]. So, 

 

𝐿𝑅 < 0.1 (6-21) 

𝐿𝐿 < 0.1 (6-22) 
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𝐿𝑅 > 1.5 (6-23) 

𝐿𝐿 > 1.5 (6-24) 

 

Equivalently to before, linear equality constraints affecting the step lengths will be added.  

6.4.1.6 Klenzak ankle 

The last bounds are imposed in two parameters of the flexible Klenzak ankle: its torque and its stiffness. 

Their minimum value is zero, while their maximum values are 20 and 200, respectively. Expressing them 

in form of inequalities: 

  

𝑇𝑘 > 0 (6-25) 

𝑇𝑘 < 20  (6-26) 

𝐾𝑘 > 0 (6-27) 

𝐾𝑘 < 200  (6-28) 

 

 

6.4.2 Linear constraints 

In this optimization there are not linear inequation constraints. Instead, there is a set of linear equation 

constraints the algorithm must fulfill. These constraints can be divided into three groups: 

6.4.2.1 Velocity constraint 

 

 It is the only linear constraint referring to the motion itself. It can be written as follows: 

 

 

∑ 𝑡𝑝ℎ𝑖

8

𝑖=1

−
𝐿𝑅 + 𝐿𝐿

𝑣
= 0 

 

(6-29) 

 

 

Where 𝐿𝑅 and 𝐿𝐿 are the lengths of a right and a left step, respectively, and 𝑣 the velocity of those steps. 

This constraint expresses that the duration of both steps must be the same as the duration of the whole 

cycle. This velocity is always constant. 

 



37 

 

6.4.2.2 Phases duration 

 

In order to make more symmetrical the motion and to ease its analysis, the eight phases of a cycle can be 

divided into two equal halves, in a way that the first phase of the first half takes the same time as the first 

phase of the second half, and so on for the rest of phases. So, these constraints would be written as in the 

following way: 

 

𝑡𝑝ℎ1
− 𝑡𝑝ℎ5

= 0 (6-30) 

𝑡𝑝ℎ2
− 𝑡𝑝ℎ6

= 0 (6-31) 

𝑡𝑝ℎ3
− 𝑡𝑝ℎ7

= 0 (6-32) 

𝑡𝑝ℎ4
− 𝑡𝑝ℎ8

= 0 (6-33) 

 

 

6.4.2.3 Symmetrical steps 

 

Another way to simplify the problem will be to consider the same value the length of the right and the left 

step. This can be written as in the next way: 

 

 

𝐿𝑅 − 𝐿𝐿 = 0 (6-34) 

 

6.4.3 Non-linear constraints  

Now, non-linear constraints will be described. There are no inequality constraints in this optimization 

problem, so every non-linear constraints will be equations. These can be divided in several groups: 

 

6.4.3.1 Motion constraints  

As explained before, the walking gait cycle divides itself into eight phases. Generalized coordinates have 

different constraints according to the phase they are experimenting. The jacobian matrix of the constraints 

is also required to calculate other constraints. It is calculated by derivating each constraint by each 

generalized coordinate. 

Assuming the generalized coordinates as the ones described in 4.1., and the parameters presented in 4.2., 

these constraints can be written in terms of non-linear equations as follows: 
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1) Phase 1: 

 

 

 

𝑐11 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽16 + 𝛽11) − 𝑙7 sin(𝛽16 + 𝛽11 + 𝛽67)

+ 𝐿𝑙1 cos(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝐿𝑙3 sin(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝑥0 

 

 

(6-35) 

𝑐12 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽16 + 𝛽11) − 𝑙7 cos(𝛽16 + 𝛽11 + 𝛽67)

− 𝐿𝑙1 sin(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) 

 

(6-36) 

 

𝑐13 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽11 + 𝛽13) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟2 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 + 𝐿𝑟1 + 𝐿𝑟2 

 

 

(6-37) 

𝑐14 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟2 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-38) 

𝑐15 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-39) 

𝑐16 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-40) 

 

 

Being 𝛽34𝑏𝑙𝑜𝑐𝑘
 and 𝛽67𝑏𝑙𝑜𝑐𝑘

 the limit values for 𝛽34 and  𝛽67, respectively. 

 

  

 

 

 

 

2) Phase 2:  

 

𝑐21 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽16 + 𝛽11) − 𝑙7 sin(𝛽16 + 𝛽11 + 𝛽67)

+ 𝐿𝑙1 cos(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝐿𝑙3 sin(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝑥0 

 

 

(6-41) 

𝑐22 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽16 + 𝛽11) − 𝑙7 cos(𝛽16 + 𝛽11 + 𝛽67)

− 𝐿𝑙1 sin(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽16 + 𝛽11 + 𝛽67 + 𝛽78) 

 

(6-42) 

𝑐23 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽11 + 𝛽13) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟2 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 + 𝐿𝑟1 + 𝐿𝑟2 

(6-43) 
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𝑐24 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟2 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-44) 

𝑐25 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

 

(6-45) 

𝑐26 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-46) 

𝑐27 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-47) 

 

3) Phase 3: 

 

 

𝑐31 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽11 + 𝛽13) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟2 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 + 𝐿𝑟1 + 𝐿𝑟2 

 

(6-48) 

𝑐32 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟2 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-49) 

𝑐33 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-50) 

𝑐34 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-51) 

 

 

4) Phase 4: 

 

𝑐41 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽11 + 𝛽13) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟1 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 

 

(6-52) 

𝑐42 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽13 + 𝛽11) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-53) 

𝑐43 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-54) 
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5) Phase 5: 

 

 

𝑐51 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽13 + 𝛽11) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟1 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 

 

(6-55) 

𝑐52 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽11 + 𝛽13) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-56) 

𝑐53 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽11 + 𝛽16) − 𝑙7 sin(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙2 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78)

− 𝐿𝑙3 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝑥0 − 𝐿𝑅 − 𝐿𝐿 + 𝐿𝑙1 + 𝐿𝑙2 

 

(6-57) 

𝑐54 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

+ 𝐿𝑙2 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

 

(6-58) 

𝑐55 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-59) 

𝑐56 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-60) 

 

 

6) Phase 6: 

 

 

 

𝑐61 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙3 sin(𝛽13 + 𝛽11) − 𝑙4 sin(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟1 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45)

− 𝐿𝑟3 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝑥0 − 𝐿𝑅 

 

(6-61) 

𝑐62 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙3 cos(𝛽11 + 𝛽13) − 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) − 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-62) 

𝑐63 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽11 + 𝛽16) − 𝑙7 sin(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙2 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78)

− 𝐿𝑙3 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝑥0 − 𝐿𝑅 − 𝐿𝐿 + 𝐿𝑙1 + 𝐿𝑙2 

 

(6-63) 

𝑐64 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

+ 𝐿𝑙2 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

(6-64) 
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𝑐65 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙1 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

 

(6-65) 

𝑐66 = 𝛽34 − 𝛽34𝑏𝑙𝑜𝑐𝑘
 (6-66) 

𝑐67 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-67) 

 

 

 

7) Phase 7: 

 

 

                𝑐71 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽11 + 𝛽16) − 𝑙7 sin(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙2 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78)

− 𝐿𝑙3 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝑥0 − 𝐿𝑅 − 𝐿𝐿 + 𝐿𝑙1 + 𝐿𝑙2 

 

 

(6-68) 

𝑐72 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

+ 𝐿𝑙2 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

 

 

(6-69) 

𝑐73 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙1 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

 

(6-70) 

𝑐74 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-71) 

 

 

8) Phase 8: 

 

 

                𝑐81 = 𝑥11 − 𝑑2 sin(𝛽11) − 𝑙6 sin(𝛽11 + 𝛽16) − 𝑙7 sin(𝛽11 + 𝛽16 + 𝛽67)

+ 𝐿𝑙1 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78)

− 𝐿𝑙3 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝑥0 − 𝐿𝑅 − 𝐿𝐿 

 

(6-72) 

 

𝑐82 = 𝑧11 − 𝑑2 cos(𝛽11) − 𝑙6 cos(𝛽11 + 𝛽16) − 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙1 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) − 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

 

 

(6-73) 

𝑐83 = 𝛽67 − 𝛽67𝑏𝑙𝑜𝑐𝑘
 (6-74) 
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By computational reasons, it is impossible to fulfill with a 100% accuracy the constraints right presented, 

so a certain tolerance, 𝜀𝑘 = 0.005 𝑚, must be allowed. Denoting 𝒄𝒑𝒉,𝒋(𝑿), 𝑝ℎ = 1, 2, … , 8, 𝑗 =

1, 2, … , 𝑁𝑐𝑝 as the complete set of kinematics equations, the two following constraints are defined: 

 

𝒄𝒑𝒉,𝒋(𝑿) ≤ 𝜺𝒌 (6-75) 

−𝜺𝒌 ≤ 𝒄𝒑𝒉,𝒋(𝑿) (6-76) 

 

They can be better expressed as: 

 

−𝒄𝒑𝒉,𝒋(𝑿)

𝜺𝒌
− 1 ≤ 0 

(6-77) 

𝒄𝒑𝒉,𝒋(𝑿)

𝜺𝒌
− 1 ≤ 0 

(6-78) 

 

There by, kinematic constraints are imposed on the eight phases of the walking cycle, for every control 

points. 

 

 

6.4.3.2 Excitation constraints 

 

Neural excitations will be normalized, so as they have to be in the interval [0, 1]. However, this criterion 

will only be acceptable for healthy muscles. Damage in muscles will be beared by imposing a limit to the 

neural excitation they receive. Therefore, the parameter ulim can be defined, so as ulim<1. Right below the 

Table 6-3 shows the value of ulim for each muscle present in the walking cycle. 

Table 6-3: Limit neural excitation for each muscle group 
 

Muscle group ulim 

ILPSO 1 

RF 0.6 

GLU  1 

HAMS 0.6 

VAS  0.6 

GAS 0.4 

TA 0.4 

SOL 0.4 
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Now the muscle forces are ensured to be consistent with the activation and contraction dynamics 

presented in section 5.  

 

6.4.3.3 Clearance constraints 

These constraints are imposed so as to maintain the feet above the ground in every moment, and avoid it 

to penetrate it. Therefore, the vertical coordinate for the toe and the heel in both feet must be zero or 

positive. As it is very difficult to fulfill the constraint with a complete accuracy, a certain tolerance will be 

allowed, so as the coordinates right presented can penetrate the ground until a depth, which is the same as 

the defined tolerance. This tolerance will be: 

 

𝑇𝑜𝑙 = −2.5𝐸 − 5 (6-79) 

 

The only points in the musculoskeletal system where the contact with the ground is studied are the toe 

and the heel in both feet. Therefore, the clearance constraints will only affect them. Moreover, as the 

conditions of contact change for each phase, there will be different constraints for each phase. First of all, 

the vertical coordinate for the respective toes and heels, expressed in function of the generalized 

coordinates and the parameters before described, may be presented: 

 

 

a) Left heel 

 

𝑧11 = 𝑑2 cos(𝛽11) + 𝑙6 cos(𝛽11 + 𝛽16) + 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

− 𝐿𝑙2 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) + 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

(6-80) 

 

b) Left toe 

 

𝑧11 = 𝑑2 cos(𝛽11) + 𝑙6 cos(𝛽11 + 𝛽16) + 𝑙7 cos(𝛽11 + 𝛽16 + 𝛽67)

+ 𝐿𝑙1 sin(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) + 𝐿𝑙3 cos(𝛽11 + 𝛽16 + 𝛽67 + 𝛽78) 

(6-81) 

 

c) Right heel 

 

𝑧11 = 𝑑2 cos(𝛽11) + 𝑙3 cos(𝛽11 + 𝛽13) + 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

− 𝐿𝑟2 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) + 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

 

(6-82) 
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d) Right toe 

 

𝑧11 = 𝑑2 cos(𝛽11) + 𝑙3 cos(𝛽11 + 𝛽13) + 𝑙4 cos(𝛽11 + 𝛽13 + 𝛽34)

+ 𝐿𝑟1 sin(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) + 𝐿𝑟3 cos(𝛽11 + 𝛽13 + 𝛽34 + 𝛽45) 

(6-83) 

 

 

The clearance constraints required for each phase are the ones shown in the Table 6-4 (YES if constraint 

required): 

Table 6-4: Ground constraints activated in each phase 
 

Phase Left heel Left toe Right heel Right toe 

1 YES   YES 

2 YES    

3 YES YES   

4 YES YES YES  

5  YES YES  

6   YES  

7   YES YES 

8 YES  YES YES 

 

6.4.3.4 Equations of motion 

Analog to kinematic constraints, equations of motion cannot be fulfilled with 100% accuracy, so a small 

tolerance must be allowed. May the system defined in Section 2: 

 

𝑴(𝒒)𝒒̈ + 𝒌(𝒒, 𝒒̇) = 𝒒𝒓(𝒒, 𝒒̇) + 𝑩𝑨𝒇𝒎 + 𝒒𝒂𝒄𝒕 + 𝒒𝒂𝒏𝒌(𝒚) + 𝑪𝒑𝒉
𝑻 𝝀𝒑𝒉 (6-84) 

 

Lagrange multipliers, 𝝀𝒑𝒉, which represent the ground forces in the contact feet-ground, can be easily 

calculated the next way:  

 

𝝀𝒑𝒉 = (𝑪𝒑𝒉
𝑻 )+(𝑴(𝒒)𝒒̈ + 𝒌(𝒒, 𝒒̇) − 𝒒𝒓(𝒒, 𝒒̇) − 𝑩𝑨𝒇𝒎 − 𝒒𝒂𝒄𝒕 − 𝒒𝒂𝒏𝒌(𝒚) (6-85) 

 

Now, assuming the definition of torques at the joints as: 

 

𝝉𝒎 = 𝑨𝒇𝒎 
(6-86) 

 

 

And taking into account that a small error must be allowed, and so on small residual torques make their 
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appearance, these ones can be evaluated as follows: 

 

 

𝝉𝒓𝒆𝒔
𝒎 = (𝑩)−𝟏(𝑴(𝒒)𝒒̈ + 𝒌(𝒒, 𝒒̇) − 𝒒𝒓(𝒒, 𝒒̇) − 𝒒𝒂𝒄𝒕 − 𝒒𝒂𝒏𝒌(𝒚)) 

(6-87) 

 

 

The error at calculating torques at joints is calculated the next way: 

 

𝒆𝒎𝒋 = 𝝉𝒎 − 𝝉𝒓𝒆𝒔
𝒎  

(6-88) 

 

So, defining the allowed tolerance as 𝜺𝒎 = 𝟐 𝑵𝒎, the two following constraints are defined: 

 

 

𝒆𝒊,𝒋(𝑿) ≤ 𝜺𝒎 (6-89) 

−𝜺𝒎 ≤ 𝒆𝒊,𝒋(𝑿) (6-90) 

 

 

Analog to kinematic constraints, these ones can be easier to understand if they are written as follows: 

 

−𝒆𝒊,𝒋(𝑿)

𝜺𝒎
− 1 ≤ 0 

(6-91) 

𝒆𝒊,𝒋(𝑿)

𝜺𝒎
− 1 ≤ 0 

(6-92) 

 

 

6.4.3.5 Ground forces 

Foot sliding must be avoided as much as possible, so another set of constraints is introduced so as to 

make tangent forces consistent with Coulomb’s friction model. Moreover, to avoid two-sides constraints 

in the foot-ground contact, normal reaction forces are made to be positive. Thereby, denoting wgt as the 

total weight of the system, and ν as the friction coefficient, the next set of constraints is defined: 
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−𝑭𝒛

𝒘𝒈𝒕
≤ 0 

(6-93) 

𝑭𝒕𝒂𝒏

𝛎 ∗ 𝒘𝒈𝒕
≤ 0 

(6-94) 

 

 

6.4.3.6 Motor torque 

When the legs are fully extended (𝛽34 = 0,  𝛽67 = 0 ) the motor is not actuating. That circumstance can be 

written the next way: 

 

𝑇𝑘𝑟 = 0 if 𝛽34 = 0 
(6-95) 

𝑇𝑘𝑙 = 0 if 𝛽67 = 0 
(6-96) 

 

 

Being 𝑇𝑘𝑟 and 𝑇𝑘𝑙 the generated torques at the right and left legs, respectively. 

 

6.4.3.7 Physiological constraints 

By last, another set of constraints is included, to get a more optimal convergence in the optimization problem. 

These constraints include bounds to the maximum knee flexion measured during the oscillation phase, and the 

maximum hip extension during the stance phase [1]. Further information can be consulted in Ackerman and 

Gross [9]. 

 

6.5 MATLAB Script 

The MATLAB script used to perform optimizations includes several algorithms, variables and functions that 

will be furtherly explained in the next paragraphs. The whole main MATLAB algorithm, which serves as the 

basis for the optimization and is exceuted to perform them, was fully programmed by García Vallejo [23]. 

First of all, some global variables may be defined, so as they can be called for any function in the script. These 

global variables can be classified as García Vallejo explained in the MATLAB algorithm he coded [23]: 

 

a) Specific features describing the musculoskeletal model and the optimization algorithm: number of 

coordinates (both for the whole (NC) and the symmetrical model (NCS), number of muscles (both for 

the whole (NM) and the symmetrical model (NMS)), number of actuators (NAS), number of nodes (NN) 

and number of control points (NCP). All of them are scalars.  
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b) Variables describing the reference pattern: time instants vector (Tex) and its length (NTex), 

generalized coordinates (Qex2D) and ground reaction forces (GRFex2D), both of them being vectors. 

 

c) Variables defining useful statistic values, to compare the obtained results to the reference patterns: the 

mean longitudinal motion vector (xIlm), and the deviation appearing in the coordinates and the 

ground forces from the pattern, expressed as the variance vector (Sig_Q and Sig_GRF, 

respectively). 

 

d) Tolerances allowed for motion equations constraints (eps_m) and kinematic constraints (eps_k), 

both are scalars. 

 

e) Typical characteristics of the model, such like the Poisson friction coefficient (it is an scalar, nu), the 

matrix containing muscle properties (propM), and the vector including the musculoskeletal body and 

orthosis features (sys). Also, the maximum torque the motor can generate (KneeTorq) and the two 

mechanical devices describing the Klenzak ankle in the orthosis (the maximum moment, Tank0, and 

the stiffness, Kank) may be included here. 

 

f)  Variables needed for the interpolation, Aex and ANN. 

 

g) Upper bounds for knee rotation angles (bet34block and bet67block). 

 

Once every needed global variables are defined, they start to be filled out. The general procediment in this 

research consists on taking data from the experiments made by Ackermann and Gross [9], use them as the 

reference pattern, and build a reference solution parting from this pattern. Every optimizations are made from 

this reference solution, what makes way faster the optimization process. 

So, after choosing one of the multiple files containing information about subjects appearing in Ackermann [9], 

the selected file is loaded using the function extract_alldata, being the information reordered conveniently 

using start_at_HSr2. As the Ackermann experiments deals with 3D models, and the research consists on 

studying a bidimensional, only a few parameters from the system are needed. Further details about generalized 

bidimensional coordinates can be found in Section 2. Also, the velocities and accelerations are obtained, saved 

in the vectors QEx_2D_p and QEx_2D_pp, respectively. The deviation from pattern is calculated by calling 

the function deviation, which contains Tex, QEx2D and GRFex2D as arguments. 

The initial conditions of the contact points are defined by a set of functions (FOl_A_r and FOl_B_r for the 

left foot, FOr_A_r and FOr_B_r for the right one) and then, so on with the linear constraints (see more 

information in Section 6). Concerning bounds, defined as the upper and lower values design variables can 

reach, they are set into two vectors: ub for upper bounds, and lb for the lower ones, while the initial 

estimation for design variables are defined in the vector X0.  

It shall be noted this initial estimation will only be used once in this research: to build a reference solution 

which will serve as the starting point for the rest of the optimizations. This initial optimization takes 

considerably more time than the following, so parting from a reference solution will be useful to decrease the 

computing time.  
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Once every vectors needed for the optimization algorithm have been defined, they may be implemented in the 

function fmincon. This subroutine presents the following argument: 

 

X = fmincon(@costfunSC,X0,A,b,Aeq,beq,lb,ub,@nolinconSC_1xb,options); 

 

Where @costfunSC is the objective function, further described in Section 5, X0 is the initial estimation, 

A and b form the linear inequality constraints, Aeq and beq form the linear equality constraints, lb and 

ub refers to the lower and upper bounds, respectively, @nolinconSC_1xb is a subroutine which returns 

the non-linear constraints, and options is another subroutine calling a vector containing every 

additional information about the algorithm (more information in Section 6). The fmincon routine 

returns the design variables vector, X.  

After defining the cost function, the initial estimation and every needed constraints, the optimization problem 

is programmed in MATLAB using an Active Set method. The Active Set [17] distinguishes active from 

inactive constraints, considering active those constraints defined as 𝑓𝑖(𝑥) = 0 , and inactive the constraints 

written as 𝑓𝑖(𝑥) ≥ 0. It shall be noted that equality constraints are always active. This method calculates what 

constraints will influde in the final optimization.  

 

Algorithm argument in MATLAB includes the following options, collected in the Table 6-5: 

 

 

 

Table 6-5: Activated options during the optimization 
 

Options Description 

Diagnostics 

Algorithm 

Display 

TolCon 

TolFun 

TolX 

MaxFunEvals 

DiffMaxChange 

MaxIter 

It gives information about the cost function. It is active. 

It indicates the used algorithm, Active Set in this case. 

It displays each iteration found in the problem. 

The algorithm will stop when the constraints reach this value, 0.001. 

Analog to the function, 0.001. 

Analog to the design variables vector, 0.0001 

Maximum number of function evaluations during the optimization, 1e6 

Maximum change allowed for finite difference gradients, 1e-7 

Maximum number of iterations allowed, 800.  
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When the screen displays the solution, the next step consists on saving it in a file, so as it can be opened 

whatever the user wants to obtain the graphics representing design variables. To display these results, a 

MATLAB algorithm was coded, parting from the one made by García Vallejo. This file, named as 

analisis_4_variables, asks the user for the name of three files: 

 

a) The first file may be the reference solution, which will be used as a pattern. 

b) The second, third and fourth file are those which will be compared and evaluated. 

 

It shall be noted not every optimizations will require to compare four magnitudes; only those affecting the 

inertia. For example, when the changed parameters are the weight coefficients of the cost function, the 

function used to compare results is analisis_2_variables, which results to be analog to the first 

one, but it only ask for two files, instead of four.  

 

This file works the next way: it gets the design variable vector, saved in the selected file, X, and builds the 

graphics parting from it. It reconstructs the time histories referring the generalized coordinates by 

interpolating the respectives components from X which refer to these coordinates, using the functions 

spl5rv and spl5rv_eval. They consist on fifth-order-splines. Next, it makes the same with muscle 

forces and the actuator. In the muscle forces case, each muscle design variable is multiplied by its 

correspondent column from the muscle properties matrix propM, just before interpolation. Analogously, 

actuator variables are multiplied by the scalar KneeTorq, already defined before. On the other hand, feet 

geometrical parameters are not modified, while Klenzak parameters are multiplied by Tank0 and Kank, 

respectively. This code was also made by García Vallejo, and it was written as follows: 

 

% Trunk coordinates 
kk=1;   qn = spl5rV(tn(1:NNM),[0,0,X((kk-1)*(NNM-4)+1:kk*(NNM-4)),0,0],tn,5);     

YPV=[YPV,qn(3:NN-2)]; 
kk=2;   qn = spl5rV(tn(1:NNM),[0,0,X((kk-1)*(NNM-4)+1:kk*(NNM-4)),0,0],tn,5);     

YPV=[YPV,qn(3:NN-2)]; 
kk=3;   qn = spl5rV(tn(1:NNM),[0,0,X((kk-1)*(NNM-4)+1:kk*(NNM-4)),0,0],tn,5);     

YPV=[YPV,qn(3:NN-2)]; 

  
% Leg coordinates 
id = 3*(NNM-4); 
YS=[YPV,X(id + 1:id + (NCS-3)*(NN-4))]; 

  
% Muscle forces 
id = 3*(NNM-4)+(NCS-3)*(NN-4); 
F = X(id+1 : id+NMS*(NN-4)); 
for KMSC=1:NMS 
    kmsc=KMSC; 
    F((KMSC-1)*(NN-4)+1:KMSC*(NN-4))=F((KMSC-1)*(NN-4)+1:KMSC*(NN-

4))*propM(kmsc,1); 
    qn=spl5rV_eval(tn,[0,0,F((KMSC-1)*(NN-4)+1:KMSC*(NN-4)),0,0],tdf,5); 
    F=[F,qn(3:NN-2)]; 
end 

  
% Actuator 
id = 3*(NNM-4)+(NCS-3)*(NN-4) + NMS*(NN-4); 
Tmotr = X(id+1 : id+NAS*(NN-4))*KneeTorq; 
wa = spl5rV_eval(tn,[0,0,Tmotr,0,0],tdf,5); 
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Tmotl = wa(3:NN-2); 

  
% Step sizes 
id = 3*(NNM-4)+(NCS-3)*(NN-4) + NMS*(NN-4) + NAS*(NN-4) + 8; 
LR = X(id+1); 
LL = X(id+2); 

  
% Ankle parameters 
id = 3*(NNM-4)+(NCS-3)*(NN-4) + NMS*(NN-4) + NAS*(NN-4) + 8 + 2; 
TorqAnk0 = X(id+1)*Tank0 
RigiAnk0 = X(id+2)*Kank 

  
% Fix the value of the parameters from the optimization 
sys.userVar.data.LR = LR; 
sys.userVar.data.LL = LL; 

  
% Make symmetrical motion 
Y = YS; 
kk=4;   qn = spl5rV_eval(tn,[0,0,YS((kk-1)*(NN-4)+1:kk*(NN-4)),0,0],tdf,5);   

Y=[Y,qn(3:NN-2)]; 
kk=5;   qn = spl5rV_eval(tn,[0,0,YS((kk-1)*(NN-4)+1:kk*(NN-4)),0,0],tdf,5);   

Y=[Y,qn(3:NN-2)]; 
kk=6;   qn = spl5rV_eval(tn,[0,0,YS((kk-1)*(NN-4)+1:kk*(NN-4)),0,0],tdf,5);   

Y=[Y,qn(3:NN-2)]; 

 

Next, values of generalized coordinates are calculated at control points, so as to represent them on the 

plots. Newly, the spline function spl5rv_eval is used.  

  
% Values of the generalized coordinates (measured and simulated) at control 

points 
QGex = zeros(ncp,NC); 

  
QG = zeros(ncp,NC); 
QGp = zeros(ncp,NC); 
QGpp = zeros(ncp,NC); 

  
for KGC=1:NC 
    if KGC==1 
        qcp = spl5rV_eval(Tex,Qex2D(:,KGC)-xI1m(1)*Tex'-xI1m(2),tcp,6); 
        QGex(:,KGC) = qcp'+xI1m(1)*tcp'+xI1m(2); 
    else 
        qcp = spl5rV_eval(Tex,Qex2D(:,KGC),tcp,6); 
        QGex(:,KGC) = qcp'; 
    end 
    q = Y((KGC-1)*(NN-4)+1:KGC*(NN-4)); 
    q = [0,0,q,0,0]; 
    [qcp,qcp_p,qcp_pp] = spl5rV_eval(tn,q,tcp,5); 
    QG(:,KGC)=qcp'; 
    QGp(:,KGC)=qcp_p'; 
    QGpp(:,KGC)=qcp_pp'; 
end 

 

Next, the function Qankle obtains the torque generated in the ankles, evaluated at the control points. 

Otherwise, the generalized coordinates and their first derivative are corrected by adding the mean motion, 

so what to make the first generalized coordinate non-periodical.  

  
% Cálculo de los pares que hace la rodilla y los tobillos 
Tak = zeros(ncp,2); 
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for KCP = 1:ncp 
    Qank = Qankle(QG(KCP,:),TorqAnk0,RigiAnk0); 
    Tak(KCP,1) = Qank(6); 
    Tak(KCP,2) = Qank(9); 
end 

  

  
% Mean motion must be added 
QG(:,1) = QG(:,1)+(xI1m(1)*tcp+xI1m(2))'; 
QGp(:,1) = QGp(:,1)+xI1m(1); 

 

Then, García Vallejo calculates the metabolical expenditure based on the procediment described by 

Umberguer et al. [19]. This procedure is further detailed in Section 5, including their theoretical 

suppositions and equations. In this part of the algorithm, muscle forces are calculated at the control points 

using the same spline function as before, spl5rv_eval. The subroutine tau_m obtains the moment 

values at control points, while the function mkinen makes the same with muscle lengths, velocities and 

accelerations.  

 

 

 
% Calculation of the Energy expendidure according to Umberguer et al. [115] 

  
E = zeros(1,ncp); 
Em = zeros(1,ncp); 
TAU = zeros(ncp,NC); 
U = zeros(ncp*NM,1); 
A = zeros(ncp*NM,1); 
for KMSC=1:NM 

  
    mforce = F((KMSC-1)*(NN-4)+1:KMSC*(NN-4)); 
    mforce = [0,0,mforce,0,0];                      % Forces at time nodes 
    [fm,fmp,fmpp]=spl5rV_eval(tn,mforce,tcp,5);     % Now we have the muscle 

force at control points 

  
    TAU = TAU+tau_m(KMSC,ncp,fm); 

  
    [Lm,Vm,Vmp] = mkinen(QG,QGp,QGpp,KMSC);         % Calculates the lengths, 

velocities and accelerations of the muscle at control points 

 

Then, the energy rate is calculated with the function energy, while the subroutine neural2 is used to 

obtain the muscle activation and the neural excitation.  

  
    Ep = energy(fm,fmp,fmpp,Lm,Vm,Vmp,KMSC);        % Energy rate can be 

calculated for each muscle from the muscle forces, lengths... there is no 

need for having visible am and um here 

     
        [U(ncp*(KMSC-1)+1:ncp*KMSC,1),A(ncp*(KMSC-

1)+1:ncp*KMSC,1)]=neural2(fm,fmp,fmpp,Lm,Vm,Vmp,KMSC); % Neural excitations 

are needed here to stablish bounds on them 

 

 

By last, as Ep makes reference to a rate, it must be multiplied by a time increment so as to obtain the real 

energetic value, following this equation: 
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    Em(1)=0; 
    for kk=2:ncp 
        Em(kk)=Em(kk-1)+(Ep(kk-1)+Ep(kk))*(tcp(kk)-tcp(kk-1))/2; 
    end 
    E=E+Em; 
end 

 

 

The motor torque and ground reaction forces are calculated at control points, using a specific subroutine, 

GRforces, in the second case: 

 

% Motor torque at control points 
Tmcpr = spl5rV_eval(tn,[0,0,Tmotr,0,0],tcp,5); 
Tmcpl = spl5rV_eval(tn,[0,0,Tmotr,0,0],tn(NNM)+tcp,5);  

  
% Calculating reaction forces 
GRF = GRforces(QG,QGp,QGpp,tcp,TAU,jPH,Tmcpr,Tmcpl,TorqAnk0,RigiAnk0); 

 

 

 

 

 

The deviation from pattern is calculated following the equations in Font-Llagunes, García Vallejo and 

Schliehen [1], further explained in Section 6. Finally, the cost function f is also obtained at its optimal 

value.  

 

Jp=zeros(1,ncp); 
for KGC=1:NC 
    Jp=Jp+((QG(:,KGC)'-QGex(:,KGC)')/Sig_Q(KGC)).^2;   % Ahora se estÃ¡ 

utilizando la desviaciÃ³n media con respecto a la media 
end 

  
Fex=zeros(ncp,1); 
for KL=1:2 
    for KGR=1:2 
        Fex=spl5rV_eval(Tex,GRFex2D(:,2*(KL-1)+KGR),tcp,5); 
        Jp=Jp+((GRF(:,2*(KL-1)+KGR)'-Fex)/Sig_GRF(2*(KL-1)+KGR)).^2;    % 

Ahora se usa la desviaciÃ³n media con respecto a la media 
    end 
end 

  

  
J=zeros(1,ncp); 
for kk=2:ncp 
    J(kk)=J(kk-1)+(Jp(kk-1)+Jp(kk))*(tcp(kk)-tcp(kk-1))/2; 
end 

  
% Total cost function using weights 

  
w1=1; 
w2=1; 

  
f=(w1/100)*(E(ncp)/(LR+LL))+w2*J(ncp); 
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The code explained above has been repeated three times, to represent the reference motion and the other two 

which must be compared to the reference. Now, it is the moment to represent them in graphics. For that, the 

reference motion is represented with blue lines, while the first increment above the reference appears 

represented with red lines, and the second one with green lines. The original code by García Vallejo only 

included two magnitudes to compare with the healthy individuals; this one has been modified to represent the 

variables right described.  

 

plot(tcpref/tcpref(ncpref),GRFref(:,1),'b',tcp/tcp(ncp),GRF(:,1),'r',tcpref1/

tcpref1(ncpref1),GRFref1(:,1),'g'); 
title('Right leg tangent reaction 

force','FontSize',fontsize,'FontName',fontname); 
xlabel('Normalized time','FontSize',fontsize,'FontName',fontname); 
ylabel('Force (N)','FontSize',fontsize,'FontName',fontname)  
grid on;hold on; 

 

 

This small example serves to illustrate the procediment to plot results.  

By last, after each optimization, a Table collects every numerical results so as to make a quantitative analysis 

of the studied parameter. For that, an algorithm named cuantitativo has been made. It must be called right after 

complete the optimization, and it calculates the maximum amplitude for every design variables, for the first 

and the last increment imposed in the optimization. Then, it calculates the relative variation of the amplitude 

between the two set of variables. It has been coded as follows: 

col_2=zeros(27,1); 
col_3=zeros(27,1); 
col_4=zeros(27,1); 

  
for i=1:9 
    col_2(i)=max(QG(:,i))-min(QG(:,i)); 
    col_3(i)=max(QGref1(:,i))-min(QGref1(:,i)); 
    col_4(i)=100*abs(col_3(i)-col_2(i))/col_2(i); 
end 

  
for i=1:4 
    col_2(i+9)=max(GRF(:,i))-min(GRF(:,i)); 
    col_3(i+9)=max(GRFref1(:,i))-min(GRFref1(:,i)); 
    col_4(i+9)=100*abs(col_3(i+9)-col_2(i+9))/col_2(i+9); 
end 

  
    col_2(14)=max(Tmcpr)-min(Tmcpr); 
    col_3(14)=max(Tmcprref1)-min(Tmcprref1); 
    col_4(14)=100*abs(col_3(14)-col_2(14))/col_2(14); 

  
    col_2(15)=max(Tmcpl)-min(Tmcpl); 
    col_3(15)=max(Tmcplref1)-min(Tmcplref1); 
    col_4(15)=100*abs(col_3(15)-col_2(15))/col_2(15); 

     
for i=1:2 
    col_2(i+15)=max(Tak(:,i))-min(Tak(:,i)); 
    col_3(i+15)=max(Takref1(:,i))-min(Takref1(:,i)); 
    col_4(i+15)=100*abs(col_3(i+15)-col_2(i+15))/col_2(i+15); 
end 

  
for i=1:6 
    col_2(i+17)=max(TAU(:,i+3))-min(TAU(:,i+3)); 
    col_3(i+17)=max(TAUref1(:,i+3))-min(TAUref1(:,i+3)); 
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    col_4(i+17)=100*abs(col_3(i+17)-col_2(i+17))/col_2(i+17); 
end 

  
    col_2(24)=max(TAU(:,5)+Tmcpr')-min(TAU(:,5)+Tmcpr'); 
    col_3(24)=max(TAUref1(:,5)+Tmcprref1')-min(TAUref1(:,5)+Tmcprref1'); 
    col_4(24)=100*abs(col_3(24)-col_2(24))/col_2(24); 

     
    col_2(25)=max(TAU(:,8)+Tmcpl')-min(TAU(:,8)+Tmcpl'); 
    col_3(25)=max(TAUref1(:,8)+Tmcplref1')-min(TAUref1(:,8)+Tmcplref1'); 
    col_4(25)=100*abs(col_3(25)-col_2(25))/col_2(25); 

     
    col_2(26)=max(TAU(:,6)+Tak(:,1))-min(TAU(:,6)+Tak(:,1)); 
    col_3(26)=max(TAUref1(:,6)+Tak(:,1))-min(TAUref1(:,6)+Tak(:,1)); 
    col_4(26)=100*abs(col_3(26)-col_2(26))/col_2(26); 

     
    col_2(27)=max(TAU(:,9)+Tak(:,2))-min(TAU(:,9)+Tak(:,2)); 
    col_3(27)=max(TAUref1(:,9)+Tak(:,2))-min(TAUref1(:,9)+Tak(:,2)); 
    col_4(27)=100*abs(col_3(27)-col_2(27))/col_2(27); 
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7 OPTIMIZATION PARAMETERS 
 

As explained before, multiple parameters have been modified so as to examine their influence in the cost 

function. These parameters include: 

a) Mass parameters of the orthesis (and their influence in the moments of inertia) 

b) Geometrical parameters (and its influence in the moments of inertia) 

c) Mass and geometrical parameters combined (and their influence in the moments of inertia) 

d) Weight coefficients of the cost function 

e) Maximum torque of the orthesis 

f) Ankle parameters: torque and stiffness 

 

Each of the points presented above correspond to a phase in the optimization. Modification of the 

parameters has been made by taking the reference values and increasing them progressively, in order to 

obtain reliable results which display the correct evolution of the cost function, the design variables and 

the rest of ítems studied in this research. 

 

7.1 Geometrical parameters of the orthesis 

In a first aproximation, some geometrical values were modified, including the lengths of the shank, the thigh 

and the feet, and the distance between the joints and the center of gravity of each element. The changes in 

values were imposed to be symetrical, so as the left parameters to be the same as the right ones. Given that the 

studied model is two-dimensional, no width parameters were altered.  

The alteration of pelvis-trunk parameters was not finally included in this research, due to the lack of 

convergence in the cost function when that modification was implemented.  

Small changes were firstly imposed to these parameters, starting with a variation of 1% in every values with 

respect to the reference ones. The same procediment was taken by increasing this change to 2, 5 and 10% 

finally, considering the last one an enough increasement to obtain a reliable result.  

As it is known, the inertia of an element with respect to an axis is proportional to the square of the length of 

that axis, so the inertia has been modified by multiplying the reference value by the square of the variation 

imposed to the length.  

 

7.2 Mass 

 

The second influencer factor modificated was the mass. The total mass includes the mass of the pelvis 

trunk, the thighs, the shanks and the feet. The procediment was equivalent to the one followed for the 

geometrical modifications, so that the mass might be the same one for the right and the left side of the 

model. Also, 1% variations were firstly imposed, following with 2, 5 and 10%, to obtain a notable result. 

 

Newly, the pelvis-trunk system was not affected by the changes, as a minimum variation in its parameters 

implies a lack of convergence in the cost function.  
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In order to consider the gravitatory effect of mass, and equivalently done before with lengths, the inertia 

values were also increased the same quantity as the mass values, as mass is proportional to the inertia.  

 

7.3 Mass and geometrical parameters combined 
 

After modifying the mass and the lengths, both types of parameters were considered in the third phase. 

Every changes introduced before were included together in this section.  

 

As the inertia is proportional to the mass and the square of the length, it was multiplied by the cube of the 

variation introduced (volver a explicar lo de la inercia). Increasements of 1, 2, 5 and 10% were imposed 

over the reference value. 

 

Evaluating the effect of the variation of the combined mass and geometrical parameters is more senseful 

and adjusted to reality, than measuring their effects separately, as it does not imply a change in the 

density of the material of the orthosis. Thereby, results obtained by this procediment will be considered 

very important for final conclusions. 

 

7.4 Weight coefficients of the cost function 
 

As described before, the cost function contains two coefficients, 𝑤𝐸 and 𝑤𝐽, which measure the influence 

of the metabolical expenditure and the deviation from normal walking patterns, respectively. These 

coefficients can be altered so as to give more importance to the expenditure or the deviation.  

 

To increase the first coefficient, 𝑤𝐸, means that the optimization algorithm will focus on reduce the 

energy expenditure while looking for the most optimal solution, rather than the aestethical appearance of 

the movement, while incrementing the second coefficient, 𝑤𝐽, will have the opposite effect. Later, when 

results are obtained, it will be analyzed if it is worth taking into account only one coefficient or both of 

them. 

 

The reference values to both coefficients are 𝑤𝐸 = 1 and 𝑤𝐽 = 1. Increasements will consists on impose 

values of 1.5 and 3 to the coefficients by separately, and see how they affect to the design parameters and, 

especially, the metabolical expenditure and the deviation from the pattern. 

 

7.5 Maximum orthosis torque 

 
The fifth phase in the optimization will consist on incrementing the maximum torque the motor sited in 

the orthosis can generate. Therefore, the torque range of the orthosis is extended to see if this change is 

costworthy in terms of efficiency. The change will consist on implementing 25 and 100% increments over 

the reference maximum torque, stipulated in 20 Nm.  

 

 

7.6 Ankle parameters: torque and stiffness 

 
By last, the sixth and last phase in the optimization will face the study of the Klenzak artificial ankle, by 

modifying its two main mechanical characteristics: the generated torque and the stiffness. The procedure 
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is similar as other used in previous phases in the optimization: the values are multiplied by 1.05 and 1.1, 

by separately. The respective reference values for the torque and stiffness are 17.156 Nm and 293.885 

N/m.  

 

 

The next page shows a framework (Figure 7-1) summarizing the optimizations performed in this research, 

ordered sequentially. There are 23 optimizations in total.  
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Figure 7-1: Flow diagram representing every phases in the optimization 
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8 RESULTS 
 

After having presented every theoretical fundamentals required for this research, the optimization 

problem including the cost function, the bounds and the constraints, and the parameters subject to 

changes so as to study their influence in the cost function, it is the moment to reveal the results obtained.  

As explained before, parameters were subject to small increasements from their reference values, so as to 

obtain reliable results showing the evolution of the metabolical cost and the design variables. For 

parameters affecting inertia, these increasements started with a 1% over the reference value, and followed 

with a 2, 5 and a 10%. In the results, the complete evolution, including these four increasements, will 

only be shown when the influence of the first parameter studied, the mass, is being analyzed. For the rest 

of parameters, the comparison will only include the reference and the 10% value. The parameters which 

do not affect inertia were changed the way explained in the previous Section. The initial reference values 

were taken from the experiments made in the laboratory with healthy individuals.  

On the other hand, the optimization problem has been performed adopting 25 nodes in the interpolation. 

This number has been selected so as to get reliable results in a reasonable computing time. A solution 

obtained with 29 nodes during the analysis of the influence of mass will be presented to, and compared 

with the one obtained with 25 nodes. The 29 nodes solution is more accurate, but increases too much the 

computing time. 

 

 

 

8.1 Reference values 
 

Before starting to study the influence of any parameter, it was useful to build a reference solution, so as 

not to need to use the initial estimation from the laboratory to perform the optimization algorithm. If the 

initial estimation is used, the algorithm converges to a feasible solution, but the computing time increases 

too much, slowing strongly the process down.  

 

Actuating this way, it was only necessary to use the initial estimation to obtain the reference solution; any 

variation of any parameter could be done from the reference, with the only condition to have the same 

number of nodes. If a variation of any parameter with a different number of nodes wanted to be studied, 

another reference solution might be used. 

 

Now, the reference properties of the orthesis are shown in the next table (Figure 8-1).  
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Figure 8-1: Mass, geometry and inertial orthosis characteristics. Font-Llagunes, García Vallejo and 

Schliehen [1].  

 

Next, the parameters to list are the characteristical of the human body wearing the orthesis (Table 8-1). 

These ones remain unchangeable during the whole research. 

Table 8-1: Mass, geometry and inertial human subject characteristics 
 

Parameter Value 

Mass of the HAT 44 kg 

Inertia of the HAT 1.9178 kgm
2 

Length of the hip 0.058 m 

Distance joint-Gt of the HAT 0.294 m 

Mass of the thigh 10.34 kg 

Inertia of the thigh 0.2678 kgm
2 

Length of the thigh 

Distance joint-Gt of the thigh 

0.475 m 

0.195 kg 

Mass of the shank 3.16 kg 

Inertia of the shank 0.0382 kgm
2 

Length of the shank 

Distance joint-Gt of the shank 

0.429 m 

0.188 kg 

Mass of the foot 1.319 kg 

Inertia of the foot 0.0064 kgm
2 

Length of the foot 

Distance joint-Gt of the foot 

0.117 m 

0.043 kg 

 

It shall be noted that the values for the thighs, the shanks and the feet are the same in both sides of the 

body, right and left, so they are listed only once in the table.  
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To denote the geometrical features of feet according to the model presented in 3.2.1, the height of the 

individual was needed. It was considered to be 1.792 m. Therefore, those parameters, which are the same 

for the right and the left foot, have the values appearing in the Table 8-2: 

Table 8-2: Feet parameters 
 

Parameter Value 

L1 0.1792 m 

L2 0.07168 m
 

L3 0.10752 m 

  

 

 

Figure 8-2: Feet parameters. García Vallejo [3].  

 

 

 

 

 

 

 

8.2 Influence of the number of nodes in the convergence of solutions 

 
As said at the beginning of this section, the number of nodes choosen to run the interpolation process will 

influence decisively in the speed and the accuracy of the obtained solutions. This way, a bigger number of 

nodes will lead to a more precise convergency. This could be interesting to design a concrete orthosis, but 

it will demand a high computational cost that surpasses the limits of available means, as the non-linear 

constraints already make the optimization problem very burdensome. By contrast, to choose a smaller 

number of nodes to perform the interpolation will speed the process up, although the found solution could 

not be as accurate as desired. It will be necessary to reach an agreement between those two factors. 

 

In this report, the results refer to interpolations made with 25 nodes. Firstly, 19 nodes were selected as a 

starting point, but solutions never converged to a feasible point. Adopting 25 as the number of nodes, the 

results were found in a reasonable time and always reached a feasible point, fulfilling every constraints. 

Nonetheless, to compare the speed and precision of using each number of nodes, reference solutions 

obtained by utilizing both 25 and 29 number of nodes will be compared, so that an analysis in terms of 

speed and exactitude can be done. Also, this subsection will be drawed to explain the differences in the 

design parameters among the healthy and the injured individual The green line correspond to the values 
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obtained in the laboratory [9], the blue refers to the 29-nodes-solution, while the red line references the 

25-nodes-solution. In first place, the generalized coordinates will be compared in the Figure 8-3: 

 

 
Figure 8-3: generalized coordinates for 25 and 29 nodes. 

 

 
The two first coordinates (longitudinal and vertical motion of the pelvis) shows the difference between 

the original motion reference, corresponding to a healthy individual, and the two reference solutions 

obtained by using MATLAB. The distance walked by the injured individual is a bit smaller than the one 

walked by the healthy one, and there are no appreciable differences between the two calculated solutions.  

Besides, the the oscilation experimented in the motion reference is way bigger than the other two, and 

that can be explained the next way: one of the objectives of the exoskeleton is to add more stability to the 

body during the act of walking. The 29-nodes solution, as it is more accurate than the 25-nodes one, 

presents even lower oscillations.  

There are no remarkable differences in the rest of generalized coordinates among the solutions, although 

two facts must be outlined: on the one hand, the knee-locking constraint gets activated, at the beginning 

of the cycle in the right knee, and at the end in the left one; on the other hand, the ankle angles are always 

negative zero, as the constraints have been defined to make them always below zero. It can also be 

remarked than the knee flexion occurs later in the exoskeletal model, although it reaches practically the 

same value in both cases. Moreover, the amplitude of the ankle flexion and extension is way bigger in the 

healthy individual.  

Concerning to the reaction forces derived from the ground-foot contact, both tangent and normall 

reactions are plotted as follows:  
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Figure 8-4: Reaction forces for 25 and 29 nodes. 

 

There are no great differences concerning the force exerted among the two different injury-body models, 

only remarking that the amplitude is a bit smaller using 29 nodes for the interpolation. The explanation 

for that could reside in the best optimality found in that model, as its solutions are more reliable than 

using only 25 nodes. However, there are slightly differences between the injuried and the healthy human 

body models. These differences can be detected in the graphics representing tangent forces, when the foot 

connected to the studied leg is in contact with the floor. When that happens, a negative tangent force is 

observed in the healthy walker, while it is positive in the injured individual. The reason for that is the 

positive sliding on the floor made by the non-skeleton-wearing walker, and the negative made by the 

injured one. García Vallejo and Schliechen [1] explain that difference with the constraint that makes zero 

the velocity of the contact point between the foot and the ground.  

Now, discordances referring the measured torques in the joints among two injured models will be studied. 

Firstly, the torques produced by the joints (hip, knees and ankles) by their own, and then, the torques 

generated by the motor and the flexible Klenzak ankle.  
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Figure 8-5: Joints torques for 25 and 29 nodes. 

 

As observed before, the absolute value in the model using more nodes uses to be smaller, as it is a more 

optimal solution. This difference is almost inappreciable in the torque produced by the hip, both for right 

and left sides, as there is no mechanical device there. More discrepancies appear in the other two joints, 

especially in the ankle, which containts the Klenzak flexible device. The motive is that the Klenzak 

produces a big torque when the foot is in contact with the floor, and so the human ankle does not need to 

exert too much force.  

 

Figure 8-6: Motor and Klenzak torques for 25 and 29 nodes. 
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Observing the torques yielded by the mechanical units, the phenomenon right explained is confirmed. The 

solution using 29 nodes finds more optimal to make the Klenzak ankle to generate a bigger torque, and 

therefore not to strain the ankles a big way when they are in contact with the ground. On the other hand, 

there are no wide discrepancies in the knee-placed motor torques. It shall be noted that the motor is only 

active (producing a non-zero torque) when the foot is in the air, performing a step.  

 

 

Figure 8-7 Activation and excitation for 25 and 29 nodes. 

 

By last, the activation displayed in the figure above shows that the 29-nodes model uses to present a 

bigger activation 

To summarize, every figures right presented show a more optimal evolution of the design parameters 

using 29 nodes, but the differences are not big enough to make up the wide bigger computing time. That 

is the reason for what every optimizations have been made using 25 nodes for the interpolation.  
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8.3 Influence of intrinsical parameters of the orthesis 

 
The first parameters to be studied their influence in the metabolical cost were those ones intrinsical to the 

orthosis: its mass and geometry, as well as the inertia, as it is proportional to the mass and the square of 

the length, as explained before.  

 

To begin with, every mass properties were changed, and so on the ones referred to the inertia. Secondly, 

geometrical features were affected, and by last, the mass and geometrical characteristics combined. As 

explained in section 8, the increasements introduced were always symmetrical, to be consistent with the 

symmetrical 2D musculoskeletal model. 

As the first increasements on parameters are very small, especially the 1 and 2%, they hardly introduce 

changes from the reference motion pattern. The mass will be the only parameter whose analysis includes 

the whole evolution (1, 2, 5 and 10%), so the graphics showing the evolution after imposing 1% changes 

will be exploited to explain the form of the curves.  

Firstly, graphics exhibiting the design parameters will be exhibited, and then, the evolution of the 

numerical values of interest will be displayed in a table so as to reach a better understanding of the 

influence of the introduced changes.   

 

 

 

8.3.1 Mass  

8.3.1.1 1% increasement 

 

The mass was the first parameter whose influence was analysed. First of all, the mass of every elements of the 

orthosis were increased a 1%, as well as their contribution to the inertia. Thereby, the new values were: 

 

Table 8-3: Mass and inertia values after 1% increasement 

Parameter Value 

Mass of the thigh bars 0.202 kg 

Inertia of the thigh bars about Gt 

Mass of the motor 

1.5453e-3 kgm
2 

1.1211 kg 

Mass of the shank bars 0.3232 kg 

Inertia of the shank bars about Gs 

Mass of the encoder 

0.0481 kgm
2
 

0.0606 kg 

Mass of the foot support 0.101 kg 

Inertia of the foot support about Gf 0.000113 kgm
2 

 

The evolution of the generalized coordinates during the walking cycle after these changes were as follows 

(the blue line refers to the reference value, the red line to the solutions obtained): 
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Figure 8-8: Generalized coordinates after 1% mass increment. 

 

 

As expected, the coordinate x11 follows a lineal evolution, as the body model walks at constant speed. The 

oscilations appearing in the coordinate z11 can be divided in two halves, each one with two peaks (one 

higher than the other one). Each half is related to each of the two steps the body model performs during 

the cycle, although the variation of the vertical coordinate during the cycle is very low (at around 1.5 cm 

at most). The variation of the pitch angle in the pelvis follows a very regular, sine wave pattern, and it is 

also extremely small, in the order of 0.03 rad. 

What concerns the leg coordinates, as the left hip angle was defined to the contrary sense than the right 

one, the angles obtained were very similar in both cases (a bit larger in the right hip case) with different 

signs. Thereby, the biggest right hip angle was around 0.4 rad, while the largest in the left hip case was 

close to -0.3 rad. 

It does not occur the same with the rest of the coordinates, the ones referred to the knees and the ankles. 

They were all defined clockwise, so the values obtained for these angles were the same in both cases. The 

only difference resided in the time instant those angles reached their respective peaks.  

Starting with the knees coordinates, as the walking cycle starts with a left step, the left knee angle reaches 

the first its peak (at about 1.1 rad). Meanwhile, the right knee is subject to the knee-locking constraint, 

with its angle forced to be 0.0873 rad. The inverse effect happens when the second step is performed: the 

left knee is locked and the right knee angle reaches its peak.  

Concerning the ankle coordinates, they act similarly to the knee ones, with the difference that the Klenzak 

ankle is flexible and does not have a locking constraint. Taking absolute values for the angles in ankles 

(as they are negative in the whole cycle due to kinematic constraints), each angle reaches its peak when 
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opposite leg is performing the step. In other words, if the walking cycle starts with a left step, the right 

ankle gets its cycle-high (at around 0.25 rad with negative sign) the first. This is because the walker needs 

to bend his ankle to gain momentum and stand it up easily. 

To sum up, the motion is really similar to the reference pattern, with no significant differences between 

them. Larger increasements were needed to note appreciable variations.  

 

Figure 8-9: Reaction forces after 1% mass increment. 

 

The figure above displays the forces appearing in the contact foot-ground. Not surprisingly, there is no 

contact force when the foot is in the air. As already known, the walking cycle starts with a left step, what 

means the left foot will be in the air the first half of the cycle, and therefore the forc. The small peak 

found right at the start of the cycle in the left tangent force figure can be explained as the momentum 

performed with the foot to the ground, required to take the foot off to the air. The negative slope in the 

small linear stretch found in the left normal reaction picture appears because the force exerted with the 

foot to the ground decreases in a constant way until reaching the zero value, as expected.  The same 

phenomena are observed in the right foot, when it starts its step. 

 

When the foot comes back to the floor, it starts to experiment the reaction forces. In the tangent forces, it 

shall be noted the change in the sign. It occurs because, during the contact ground-foot, the foot tends to 

slide with negative sign at the start of the step (what origins a tangent reaction with positive sign), and 

then slides again with positive sign (creating a negative tangent reaction). Newly, the solution obtained is 

very reliable to the reference motion. The maximum value for these forces rounds 1000 N (normal forces) 

and 100 N (tangent forces).  
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Figure 8-10: Motor and Klenzak torques after 1% mass increment. 

 

Referring to the respective torques exerted by the motor and the Klenzak ankle, they work as expected. 

The motor, placed in the knee, develops its power when its leg is performing a flexion and extension, and 

do not exert any torque during the rest of the cycle (only certain vibrations). The change in the sign is due 

to the change in the movement (from flexion to extension). The obtained values are about 20 Nm 

(referred in absolute value).  

Before it was explained the ankle flexion and extension were bigger when the foot was in the ground. 

Newly as waited, the torque performed by the Klenzak ankle is larger when the foot is in contact with the 

floor, to fulfill this requirement, changing the sign because of the same reason as the motor (the flexion-

extension movement). As seen in the figures, the obtained torques are between -50 Nm and 70 Nm, in 

both ankles.  



71 

 

 

Figure 8-11: Joint torques after 1% mass increment. 

 

Now, the torques appearing in the legs (excepting the ones produced by the motor and the ankle) will be 

commented. As being a symmetrical motion, the form of the torques charts are symmetrical in the left and 

right legs, but not so on with the values, as it is logical because the right and the left side of the body are 

not making the same movements during a step in the walking cycle. 

Starting with the ankles, the big torque (about 60 Nm) appearing at the start of the motion of the left ankle 

is explained due to the impulse on the floor required to lift the foot, while the torque is almost zero in the 

right ankle. When the foot is in the air, the ankle torque falls to zero, and increases a big way in the right 

side, reaching 80 almost Nm. The inverse situation occurs when the walker performs the second step in 

the cycle.  

The same is not observed while observing the knee charts, but it is the expected phenomena if common 

sense is used. Taking absolute values, and considering the sign criterion stablished, the torque 

experimented by the knee while performing a step changes from negative to positive, as it firstly bends 

clockwise, and then counterclockwise. During the contact foot-ground, the torque at knees decreases but 

does not falls to zero, as the knees also suffer part of the reaction forces coming from the ground. 

By last, analyzing the torques appearing in the joints leg-hip, the largest torques (about 80 Nm) occur 

mainly while the contact foot-ground is being produced. A sign change happens from positive to 

negative, and the opposite fact is appreciable when the foot is in the air.   
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Figure 8-12: Total torques after 1% mass increment. 

 

The figure above shows the total torque in ankles and knees, combining the torque developed by the 

walker, and the one powered by the motor and the flexible ankle. This one is very near to zero when the 

foot it is placed in it performing a step, as it was expected. 

 

Figure 8-13: Activation and excitation after 1% mass increment. 
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By last, the muscular activation and the neural excitations are analyzed. The black and the blue line 

correspond to the activation and excitation, respectively, obtained for the studied model, while the red and 

the green refer to the reference motion. As it is logical, the activation always appears with a little retard 

respect to the neural excitation. No slightly discordances are appreciated among the reference and the 

solution, remarking only that activation decreases a little bit in the second one. Causes will be analyzed 

later. 

8.3.1.2 2% increasement 

Secondly, a 2% increasement was imposed, which was equivalent to multiply reference values for 

orthosis mass by 1.02. These were the new values:  

Table 8-4: Mass and inertia values after 2% increment 

Parameter Value 

Mass of the thigh bars 0.204 kg 

Inertia of the thigh bars about Gt 

Mass of the motor 

1.5606e-3 kgm
2 

1.1322 kg 

Mass of the shank bars 0.3264 kg 

Inertia of the shank bars about Gs 

Mass of the encoder 

0.0486 kgm
2
 

0.0612 kg 

Mass of the foot support 0.102 kg 

Inertia of the foot support about Gf 0.000114 kgm
2 

 

The new generalized coordinates obtained were (as usual, blue lines refer to the reference motion pattern 

while red represents the obtained coordinates): 

 

Figure 8-14: Generalized coordinates after 2% mass increment. 
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Wider deviations start to be detected in the pelvis, specifically in its vertical coordinate. The oscillation in 

the obtained model is a little smaller than the reference, possibly because the mass increasements tend to 

stabilize the walker. The rest of coordinates hardly change during the cycle.  

 

Concerning the reaction forces originated in the contact foot-ground, their progress along the cycle 

follows the next evolution: 

 

Figure 8-15: Reaction forces after 2% mass increment. 

 

 

 

 

There are no great deviations from the reference pattern, only standing out that the forces oscillate more 

in the found solution, probably because of a little shaking in the feet while touching the floor after 

increasing the mass and inertia.  
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Figure 8-16: Motor and Klenzak torques after 2% mass increment. 

 

Speaking about the torque originated in the mechanical elements, the motor torque slightly experiments 

important deviations. Meanwhile, although Klenzak torque is almost very similar to the reference, it can 

be highlighted that the solution is a bit bigger than the torque pattern during the contact to the floor. That 

can be justified arguing that as the mass increasement makes the walker heavier, and so the contact to the 

ground is more marked, the torque needs to exert a bigger torque.  

 

Figure 8-17: Joint torques after 2% mass increment. 
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The same conclusion is reached when analyzing the natural torques in the joints. While there are 

variations neither the hip nor the knee, the ankle does present a heavy decreasement while the contact 

phases, rounding 20 Nm, so as to compensate the larger torque produced by the ankle in that moment. It 

can be noted that the total torque barely varies during the cycle after implementing a 2% increasement to 

mass.  

 

Figure 8-18: Total torques after 2% mass increment. 

 

Finally, the muscle activation and the neural excitation are studied: 

 

Figure 8-19: Activation and excitation after 2% mass increment. 
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The colour code is the same as the presented in 9.3.1.1. Significative variances are not discovered.  

8.3.1.3 5% increasement 

In third place, reference mass and inertia values were increased a 5%, obtaining the new following parameters: 

 

Table 8-5: Mass and inertia values after 5% increment 

Parameter Value 

Mass of the thigh bars 0.21 kg 

Inertia of the thigh bars about Gt 

Mass of the motor 

1.6065e-3 kgm
2 

1.1655 kg 

Mass of the shank bars 0.336 kg 

Inertia of the shank bars about Gs 

Mass of the encoder 

0.05 kgm
2
 

0.063 kg 

Mass of the foot support 0.105 kg 

Inertia of the foot support about Gf 0.000117 kgm
2 

 

The resultant generalized coordinates can be displayed as: 

 

Figure 8-20: Generalized coordinates after 5% mass increment. 

 

 

Conclusions drawed from the figure above are the same as in the previous case where a 2% increasement was 

ordered. Bigger deviations from the pattern are observed in the pelvis, especially in its vertical oscillations.  
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Figure 8-21a: Reaction forces after 5% mass increment. 

 

Regarding the reaction forces, no novelties appear, and the trend detected before gets confirmed: the 

oscillations grow in the obtained solution. 

 

 

 

Figure 8-21b: Motor and Klenzak torques after 5% mass increment. 
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The motor parameters evolution show that, in the solution using a 5% growth, the motor, placed in the knee, 

produces the torque with a small delay, possibly due to the mass increment in the motor. In the Klenzak 

orthosis, the torque is a bit larger in the solution, due to same reason explained in the previous subsection. 

 

Figure 8-22: Joint torques after 5% mass increment. 

 

 

Observing the torque generated by the human joints, newly the 20 Nm torque difference is observed in the 

ankle between the solution and the reference. On the other hand, the torque in the hip and the knee follows 

accurately the pattern, compensating the small differences appearing in the motor torque plots, as seen in the 

total torque figures below: 
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Figure 8-23: Total torques after 5% mass increment. 

 

 

With respect to the activation and neural excitation: 

 

Figure 8-24: Activation and excitation after 5% mass increment. 

 

No appreciable deviations from the results commented in the subsection before are appreciated. 
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8.3.1.4 10% increasement 

By last, the biggest implemented growth was a 10% over the reference, considered to be an important 

increment. The new values were: 

 

Table 8-6: Mass and inertia values after 10% mass increment. 

Parameter Value 

Mass of the thigh bars 0.22 kg 

Inertia of the thigh bars about Gt 

Mass of the motor 

1.683e-3 kgm
2 

1.221 kg 

Mass of the shank bars 0.352 kg 

Inertia of the shank bars about Gs 

Mass of the encoder 

0.0524 kgm
2
 

0.066 kg 

Mass of the foot support 0.11 kg 

Inertia of the foot support about Gf 0.000123 kgm
2 

 

Largest deviations are expected now therefore. Starting with the generalized coordinates: 

 

 

Figure 8-26: Generalized coordinates after 10% mass increment. 

 

The main new observed fact is the small discrepancy in the ankle angle evolution. Remembering that the 

constraint imposes this coordinate to be below zero, and taking absolute values, the angle obtained in the 

solution is slightly smaller than the reference one. The reason can be the major inertia of the model, and so on, 

the bigger opposition to be moved, what makes more difficult to rotate the ankle. 
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Figure 8-27: Reaction forces after 10% mass increment. 

 

 

The reaction forces figure confirms the tendency detected with the small increasements implemented in the 

previous subsections. 

 

 

 

 

 

 

 

 

Figures 8-28 and 8-29: Joint, motor and Klenzak torques after 10% mass increment. 
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Figure 8-30: Total torques after 10% mass increment. 

Now the three figures representing the motor, body and combined torques have been displayed together. 

The bigger deviation from the pattern is found in the ankle when the foot it is connected to is in contact 

with the floor. 

 

Figure 8-31: Activation and excitation after 10% mass increment. 

Differences in the activation and excitation plots are not detected.  
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Now, it is the moment to analyze the evolution of the metabolical cost and the deviation of the pattern, 

what will determine if the optimization is successful or not. 

Table 8-7: Evolution of expenditure and deviation when mass get increased 

Mass increasement 
Metabolical 

expenditure 

Deviation from 

pattern 

0 % (Reference) 

1 %  

2 % 

5 % 

10 % 

341.74 J 

339.33 J 

333.22 J 

333.70 J 

334.39 J 

15.198 

15.102 

14.783 

14.827 

14.901 

 

The metabolical cost decreases from the reference value until imposing a 10% increasement to the mass, 

when it grows again. This means that, increasing the mass will ease the exoskeleton wearer the act 

walking, provided that the mass rise do not be over 5%. If so, the walker will have to spend part of his 

forces to move the exoskeleton itself, and that is non sense, as the objective is to make easier the act of 

walking.  

The results just displayed can be summarized in the Table 8-8. The first column indicates the analyzed 

variable; the second column contains the maximum amplitude (difference between the maximum amd the 

minimum value for each variable) for the first increment over the reference, while the third column 

includes the same as the second, but referring to the last increment. The fourth column reflects the 

relative increasement between the two measured amplitudes. That will reflect the influence of the studied 

parameter. The Table 8-7 reflects the legend useful to know what the terms in the first column mean: 

 

Table 8-8. Variables legend. 

Variable Meaning Variable Meaning 

RT Force  Right tangent force RK Torque Right knee torque 

RN Force Right normal force RA Torque Right ankle torque 

LT Force Left  tangent force LH Torque Left hip torque 

LN Force Left normal force LK Torque Left normal torque 

RM Torque Right moment torque LA Torque Left ankle torque 

LM Torque 

RO Torque 

LO Torque 

RH Torque 

Left moment torque 

Right orthosis torque 

Left orthosis torque 

Right hip torque 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

Total right knee torque 

Total left knee torque 

Total right ankle torque 

Total left ankle torque 
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Table 8-9. Quantitative summary of mass influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, last 

increment 

Relative increasement (%) 

x11 1.061 m 1.058 m 0.27 

z11 0.016 m 0.012 m 21.73 

β11 0.030 rad 0.032 rad 6.27 

β13 0.726 rad 0.710 rad 2.16 

β34 1.025 rad 1.019 rad 0.58 

β45 0.253 rad 0.235 rad 7.14 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.726 rad 

1.025 rad 

0.253 rad 

 

181.228 N 

990.122 N 

181.196 N 

990.124 N 

 

45.256 Nm 

45.256 Nm 

117.125 Nm 

117.119 Nm 

 

124.908 Nm 

48.927 Nm 

94.509 Nm 

124.900 Nm 

48.926 Nm 

94.518 Nm 

 

50.200 Nm 

50.200 Nm 

201.918 Nm 

201.921 Nm 

0.710 rad 

1.019 rad 

0.234 rad 

 

180.211 N 

982.866 N 

180.088 N 

982.875 N 

 

44.793 Nm 

44.793 Nm 

125.184 Nm 

125.026 Nm 

 

126.370 Nm 

49.902 Nm 

81.034 Nm 

126.339 Nm 

49.902 Nm 

81.278 Nm 

 

51.196 Nm 

51.196 Nm 

183.364 Nm 

183.545 Nm 

2.16 

0.58 

7.25 

 

0.56 

0.73 

0.61 

0.73 

 

1.02 

1.02 

6.88 

6.75 

 

1.17 

1.99 

14.26 

1.15 

1.99 

14.00 

 

1.98 

1.98 

9.19 

9.10 

 

 

8.3.2 Geometrical parameters 

To analyze this second group of parameters, the geometrical characteristics of the orthosis were subjected to 

increments, as well as their moments of inertia according to the procediment explained in Section 8. The 

evolution of design parameters will only be displayed for 1 and 10% increasements in the orthosis parameters, 

as those two increments are enough to calculate the evolution of the studied parameters. The progression of the 

metabolical cost will be shown for every implemented growths (1, 2, 5 and 10%). 
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The reference values (appearing in Table…) of the parameters right commented were multiplied by 1.01, ans 

the referred to the inertia by the square of 1.01, obtaining the next values: 

 

Table 8-10: Geometry and inertia values after increasing geometry 1% 

Parameter Value 

Distance from K to Gt 0.1313 m 

Inertia of the thigh bars about Gt 

Distance from A to Gs 

1.56e-3 kgm
2 

0.1717 m 

Inertia of the shank bars about Gs 0.004858 kgm
2
 

Distance from A to Gf (vertical) 

Distance from A to Gf (horizontal) 

0.0707 m 

0.0404 m 

Inertia of the foot support about Gf 0.000113 kgm
2 

  

  

Then, a 10% increment was implemented, resulting the next values: 

 

Table 8-11: Geometry and inertia values after increasing geometry 10% 

Parameter Value 

Distance from K to Gt 0.143 m 

Inertia of the thigh bars about Gt 

Distance from A to Gs 

1.85e-3 kgm
2 

0.187 m 

Inertia of the shank bars about Gs 0.005762 kgm
2
 

Distance from A to Gf (vertical) 

Distance from A to Gf (horizontal) 

0.077 m 

0.044 m 

Inertia of the foot support about Gf 0.000134 kgm
2 

 

May the evolution of the generalized coordinates be displayed as follows (the reference motion 

corresponds to the blue line, the 1% increasement solution to the red line, and the 10% solution to the 

green line): 
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Figure 8-32: Generalized coordinates after increasing geometry 1 and 10% 

There are no large discrepancies between the motion pattern and the resulting solutions, even in the one 

obtained after implementing a 10% increment. The only issues to remark are the lower fluctuations in the 

vertical motion of the pelvis, due to the reached stability at increasing the moment of inertia. These 

fluctuations are slightly lower now than the ones appearing after only increasing the mass, as the inertia is 

proportional to the square of the length, and grows much more than increasing the mass. 

 

 

Figure 8-33: Reaction forces after increasing geometry 1 and 10% 
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The more remarkable fact concerning the reaction forces deals with bigger oscillations observed in the 

normal reactions. Newly, the larger moment of inertia serves as explanation to this phenomenon. This 

makes the feet to shake while supporting the feet on the ground, and this shake produces a more 

inconsistent reaction from the ground. Otherwise, no more important changes with respect to the 

reference are appreciated.  

Now it is the moment to analyze the evolution of the torque. As made before, first the torque generated by 

the mechanical devices is studied, then the one originated in the joints (hip, ankles and knees), and by 

last, the combined contribution of every torques (only in the knees and the ankles, as there are no devices 

in the hips). 

 

 

Figure 8-34: Joint, motor and Klenzak torques after increasing geometry 1 and 10% 
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Figure 8-35: Total torques after increasing geometry 1 and 10% 

 

As it happened when the mass was increased, increments in the geometrical characteristics only affect 

significantly to the torques produced in ankles. First of all, the hip and the knee torques stay with next to 

no change during the cycle. Secondly, the Klenzak ankle torque is little bigger in the optimization, 

allowing the human ankle not to make a big effort to move itself. This fact is confirmed in the plots 

representing the torque in the ankle, which is significantly smaller when the foot is in the air, after 

increasing a 10% the geometrical features.  

 

Figure 8-36: Activation and excitation after increasing geometry 1 and 10% 
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Concerning the activation and excitation graphics (shown in the figure above), the activation is 

represented with a black line (reference motion), red line (1% solution) and yellow line (10% solution), 

while the neural excitation is referred with blue, green and cyan lines, respectively. The more standing 

out fact is the delay in the activation observed in some muscles, like the soleus or the RF. This may well 

be the result of a more optimal found solution, where the muscle takes a longer time to get activated.  

With respect to the evolution of metabolical cost and deviation, the Table collects the following results: 

 

Table 8-12: Evolution of expenditure and deviation when increasing geometry 

Geometry increasement 
Metabolical 

expenditure 

Deviation from 

pattern 

0 % (Reference) 

1 %  

2 % 

5 % 

10 % 

341.74 J 

339.56 J 

333.75 J 

333.82 J 

334.26 J 

15.198 

15.096 

14.770 

14.795 

14.836 

 

This time, the lower metabolical cost is reached after implementing a 2% growth to the studied parameter, 

the geometry of the orthosis. This growth intervenes directly in the inertia, being the moment of inertia 

proportional to the square of the length. That makes the orthosis more sensitive to this changes than when 

increasing the mass (only proportional to the moment of inertia), and that provokes that an too large 

growth could make the walker to spend too much energy to move the orthosis.   

The results just displayed can be summarized in the Table 8-12.  
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Table 8-13. Quantitative summary of geometry influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.059 m 0.26 

z11 0.016 m 0.012 m 22.87 

β11 0.030 rad 0.032 rad 7.35 

β13 0.726 rad 0.709 rad 2.26 

β34 1.026 rad 1.018 rad 0.72 

β45 0.252 rad 0.234 rad 7.07 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.726 rad 

1.026 rad 

0.252 rad 

 

180.361 N 

989.352 N 

180.333 N 

989.354 N 

 

45.215 Nm 

45.215 Nm 

116.692 Nm 

116.685 Nm 

 

124.829 Nm 

48.999 Nm 

94.668 Nm 

124.820 Nm 

48.999 Nm 

94.679 Nm 

 

50.351 Nm 

50.351 Nm 

201.584 Nm 

201.587 Nm 

0.709 rad 

1.018 rad 

0.234 rad 

 

180.902 N 

979.053 N 

180.777 N 

979.062 N 

 

44.752 Nm 

44.752 Nm 

124.529 Nm 

124.369 Nm 

 

126.397 Nm 

49.898 Nm 

80.743 Nm 

126.362 Nm 

49.899 Nm 

80.990 Nm 

 

51.524 Nm 

51.525 Nm 

182.525 Nm 

182.706 Nm 

2.26 

0.72 

7.18 

 

0.56 

0.73 

0.61 

0.73 

 

1.02 

1.02 

6.88 

6.75 

 

1.17 

1.99 

14.26 

1.15 

1.99 

14.00 

 

1.98 

1.98 

9.19 

9.10 
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8.3.3 Mass and geometrical characteristics combined 

The third phase in the parameters analysis is indeed a combination of the two first phases right studied. Now, 

the effects on inertia will be especially important, as both the mass and the geometrical features intervene in 

the moments of inertia. Therefore, following the procediment explained in section 8, the increment imposed 

will be cubed.  

Moreover, these changes represent a more accurate global view of reality, in that when an orthesis is modified 

in the real life, mass and geometry should not be changed independently if the density, and so on, the material, 

must remain with no changes. So, the plots about to be shown reflect a more reliable result. 

Taking the same values for the mass and geometry as the shown when 1 and 10% increasements were 

imposed, the only new magnitudes are the moments of inertia, which gets multiplied by the cube of the 

growth. 

Tables 8-14 and 8-15: Inertial values after increasing mass and geometry 1 and 10% 

Parameter Value 

Inertia of the thigh bars about Gt 1.575e-3 kgm
2 

Inertia of the shank bars about Gs 0.00491 kgm
2
 

Inertia of the foot support about Gf 0.000114 kgm
2 

 

 

 

  

Parameter Value 

Inertia of the thigh bars about Gt 2.035e-3 kgm
2 

Inertia of the shank bars about Gs 0.006343 kgm
2
 

Inertia of the foot support about Gf 0.000147 kgm
2 

 

 

Figure 8-37: Generalized coordinates after increasing mass and geometry 1 and 10% 
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Similar results to both the first and second phases in parameterization are found for generalized coordinates, as 

expected. The 10% solution makes to get newly a major stability during the walking, decreasing the swings in 

the vertical coordinate of the pelvis (a 30% reduction is obtained). Moreover, following in the pelvis, the pitch 

angle is a little delayed, what means that the motion gets performed with a very little lag, but does not affect to 

the movement in a big way. The last noteworthy aspect is the smaller angle obtained in the ankles, possibly 

because it is more optimal in terms of metabolical cost.  

 

Figure 8-38: Reaction forces after increasing mass and geometry 1 and 10% 

 

The figure above shows the evolution of the reaction forces emerging from the floor. As waited and 

already observed when studying the mass and geometry influence separately, the biggest fluctuations 

appear in the normal reactions (around 30-40% over the reference value), due to the same reason as 

before: the little shake the foot experiments when it gets in contact with the floor. Otherwise there are no 

other important variations from the reference pattern, neither when implementing a 10% variation. 
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Figure 8-39 and 8-40: Joint, motor and Klenzak torques after increasing mass and geometry 1 and 10% 
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Figure 8-41: Total torques after increasing mass and geometry 1 and 10% 

 

Analyzing the produced torque following the same way as in the previous subsection, a larger torque 

generated by the flexible ankle is still observed when supporting the feet in the floor, and counterbalanced 

with a simultaneous smaller torque in the same zone generated by the human ankle. There is also a 

newness now: a tiny discrepance, around 10 Nm, in the left knee at the beginning of the cycle. The knee 

can perform the movement by producing less par, thanks to the power supplied by the motor. 
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Figure 8-42: Activation and excitation after increasing mass and geometry 1 and 10% 

 

The activation and excitation figure shows no important deviations from the pattern. The only outstanding 

fact is the absence of any excitation (and thus, activation) in the VAS, as it does not intervene in the 

walking cycle.  

Concerning the metabolical cost evolution during the cycle, the Table shows the following values: 

Table 8-16: Evolution of expenditure and deviation when increasing mass and geometry 1 and 10% 

Mass and geometry increasement 
Metabolical 

expenditure 

Deviation from 

pattern 

0 % (Reference) 

1 %  

2 % 

5 % 

10 % 

341.74 J 

335.74 J 

333.75 J 

334.99 J 

338.49 J 

15.198 

14.953 

14.770 

14.864 

14.964 

 

As expected, the smallest value for both the metabolical cost and the deviation from reference is reached 

after imposing the 2% increasement. It was expected because, as it was seen in the previous subsection, 
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only by increasing the geometry, a 5% growth made the metabolical cost higher. Now, the effect of the 

mass and the geometry gets combined, making the moment of inertia to be rising with the cube.  

The Table 8-17 summarizes in a quantitative way the results just seen.  

Table 8-17. Quantitative summary of combined mass and geometry influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.058 m 0.29 

z11 0.016 m 0.012 m 22.21 

β11 0.030 rad 0.032 rad 7.54 

β13 0.726 rad 0.710 rad 2.20 

β34 1.024 rad 1.041 rad 1.67 

β45 0.252 rad 0.235 rad 6.81 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.726 rad 

1.024 rad 

0.252 rad 

 

180.752 N 

989.339 N 

180.654 N 

989.335 N 

 

45.308 Nm  

45.308 Nm 

116.662 Nm 

116.660 Nm 

 

124.861 Nm 

48.950 Nm 

94.872 Nm 

124.806 Nm 

48.949 Nm 

94.881 Nm 

 

50.415 Nm 

50.415 Nm 

201.720 Nm 

201.726 Nm 

0.710 rad 

1.041 rad 

0.235 rad 

 

179.202 N 

982.934 N 

179.084 N 

982.950 N 

 

46.158 Nm 

46.158 Nm 

123.986 Nm 

123.828 Nm 

 

126.609 Nm 

49.100 Nm 

83.122 Nm 

126.270 Nm 

49.107 Nm 

83.354 Nm 

 

51.946 Nm 

51.948 Nm 

185.514 Nm 

185.694 Nm 

2.20 

1.67 

6.93 

 

0.86 

0.65 

0.87 

0.65 

 

1.87 

1.87 

6.28 

6.14 

 

1.40 

0.31 

12.39 

1.17 

0.32 

12.15 

 

3.04 

3.04 

8.04 

7.95 
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8.3.4 Weight coefficients of the cost function 

The fourth phase in the analysis of the responsiveness of the orthosis to changes in their parameters will not 

consist on manipulating a intrinsical parameter of the orthosis itself, but it will only deals with the optimization 

problem, concretely the cost function, defined in Section 6. The weight coefficients will be modified so as to 

give more importance to one of the following features: the metabolical expenditure (represented with the 

coefficient 𝑤𝐸) and the deviation from the reference pattern (weighted by the coefficient 𝑤𝐽), just as 

explained in Section 6.  

 

So far, these coefficients have always been 1, so the same importance has been given to both the 

metabolical cost and the discrepance with the reference motion. In this analysis, each coefficient will be 

given the values of 1.5 and 3, while remaining the other one with no change.  

 

8.3.4.1 Coefficient 𝒘𝑬 

In the next figures the result of give more emphasis to metabolical cost in the optimization problem will be 

displayed. As usual, the reference motion is represented by the blue line. The motion obtained after imposing 

𝑤𝐸=1.5 appears as a red line, while the green line refers to the motion after increasing 𝑤𝐸to 3. 

 

 

Figure 8-43: Generalized coordinates after imposing 𝑤𝐸=1.5 and 3 

 

The introduced changes are really important, especially the second one, as it gives three times more weight to 

the expenditure over the deviation. Watching the generalized coordinates evolution in the figure above, the 

resemblance between solutions is the prevailing trend, the biggest discrepancies appearing in the pelvis, as it 

happened before. The gain imposed to this weight factor makes more stable the walking cycle, as the 
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oscilations are smaller. Moreover, the vertical coordinate is somewhat higher, being this one a more interesting 

solution in energetical terms. The flexion and extension of the ankle experiments a vaguely smaller variation in 

this approximation.  

Now the reaction forces in the contact will be reviewed: 

 

 

 

Figure 8-44: Reaction forces after imposing 𝑤𝐸=1.5 and 3 

 

The most important detail to comment held in the largest fluctuation appearing in the normal reactions when 

holding the foot on the floor, the same way as in previous phases in the analysis. No more deviations are 

outstanding.  
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Figure 8-45: Joint, motor and Klenzak after imposing 𝑤𝐸=1.5 and 3 
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Figure 8-46: Total torques after imposing 𝑤𝐸=1.5 and 3 

 

Concerning the torque moments, biggest differences with respect to the reference appear in the ankle, as 

happened in other sections. Although it will be commented later, it seems the ankle is the most affected 

part of the musculoskeletal body during the walking cycle. Watching the graphics, the mechanical torque 

produced by the Klenzak ankle gets increased a 30% when the coefficient wE is imposed to be 3. 

Simultaneously, the moment originated in the human ankle is way smaller (a 25% between the reference 

and the solution), what is logical as the metabolical cost is getting much more importance now, and the 

optimization algorithm has found a very optimal solution which allows to reduce the torque in the joints, 

and so on the stress in that zone. Deviations are slightly larger than in previous cases because their 

reduction is being given less importance than the metabolical cost in the cost function. 

The total torque plots display that the resulting moment is slightly smaller in the solutions, although the 

reduction is difficult to appreciate. It can be considered that the Klenzak ankle compensates the little 

torque in the human ankle. 
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Figure 8-47: Activation and excitation after imposing 𝑤𝐸=1.5 and 3 

 

The figures above show the evolution of the activation and the neural excitation for each muscle. The 

table below indicates the meaning of each line: 

Table 8-18. Key table for activation-excitation plots 

Solution Activation 
Neural 

excitation 

Reference Blue Black 

When wE = 1.5 Green Red 

When wE = 3 Cyan Yellow 

 

Observing the plots right presented it is worth mentioning a fact already commentated when analyzing the 

torque generated. It was determined that the moment exerted by the muscles was smaller by making the 

first weight coefficient to be 3 (especially in the ankles, where the reduction reached a 25% from the 

reference). So it is logical to wait the activation and excitation to get reduced as well. And that is what is 

observed in the figure. The cyan and yellow lines displayed prove the activation and excitation are way 

smaller when amplifying wE.  

Now, the Table 8-18 displays the evolution of the energetic cost: 
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Table 8-19: Evolution of expenditure and deviation when imposing 𝑤𝐸=1.5 and 3 

𝑤𝐸 
Metabolical 

expenditure 

Deviation from 

pattern 

1 (Reference) 

1.5  

3 

 

341.74 J 

326.42 J 

297.88 J 

 

15.198 

14.866 

15.532 

 

The metabolical cost decreases considerably when increasing 𝑤𝐸, almost a 15% when trebling the 

coefficient 𝑤𝐸. This is not surprising, as the cost function is focused on reducing the energetical 

expenditure in the optimization problem. On the other hand, the deviation pattern increases for 𝑤𝐸 = 1.5 

and decreases for 𝑤𝐸 = 3, just like happened in the activation of the gluteus.  

The Table 8-19 includes the quantitative information appearing in the graphics just shown: 
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Table 8-20. Quantitative summary of coefficient 𝑤𝐸 influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.059 m 1.058 m 0.07 

z11 0.013 m 0.015 m 15.22 

β11 0.032 rad 0.035 rad 8.73 

β13 0.714 rad 0.732 rad 2.48 

β34 0.997 rad 0.981 rad 1.57 

β45 0.236 rad 0.238 rad 0.79 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.714 rad 

0.997 rad 

0.236 rad 

 

177.395 N 

977.307 N 

177.258 N 

977.321 N 

 

45.261 Nm 

45.261 Nm 

128.130 Nm 

127.993 Nm 

 

124.950 Nm 

49.405 Nm 

77.245 Nm 

124.914 Nm 

49.412 Nm 

77.457 Nm 

 

50.309 Nm 

50.310 Nm 

190.808 Nm 

190.843 Nm 

0.732 rad 

0.981 rad 

0.237 rad 

 

168.331 N 

999.653 N 

168.259 N 

999.678 N 

 

44.761 Nm 

44.761 Nm 

136.605 Nm 

135.999 Nm 

 

120.608 Nm 

47.803 Nm 

75.841 Nm 

120.301 Nm 

47.804 Nm 

76.127 Nm 

 

48.242 Nm 

48.241 Nm 

188.304 Nm 

188.782 Nm 

2.48 

1.58 

0.45 

 

5.11 

2.29 

5.08 

2.29 

 

1.10 

1.10 

6.61 

6.26 

 

3.48 

3.24 

1.82 

3.69 

3.25 

1.72 

 

4.11 

4.11 

1.31 

1.08 

 

 

8.3.4.2 Coefficient 𝒘𝑱 

After studying the influence of giving more emphasis to the metabolical cost by making the coefficient wE 

bigger, now it is the moment to study the effect provoked by increasing the other coefficient in the cost 

function, 𝑤𝐽. As already described, this coefficient measures the weight of the deviation from the reference 

motion pattern when performing the optimization problem. The procediment is analog to the one right 

followed: the coefficient is multiplied by 1.5 (red lined solutions) and 3 (green lined solutions), and they will 
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be compared to the reference (blue lined solutions).   

 

 

Figure 8-48: Generalized coordinates after imposing 𝑤𝐽=1.5 and 3 

 

 

 

The solutions follow the reference pattern and it can be said there are hardly variations in any coordinates. This 

can be considered as expected as the effect of giving more emphasis the deviation from the reference motion 

will make the optimization algorithm to find a solution minimizing the differences from the pattern. As it 

happened when changing other parameters, the pelvis is the zone where there are more discrepancies, but now 

they are almost unnoticeable.  

Similar conclusions can be reached after analyzing the reaction forces, the torque moments and the activation 

and excitation. 
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Figure 8-49: Reaction forces after imposing 𝑤𝐽=1.5 and 3 

 

 

 

Figure 8-50: Motor and Klenzak torques after imposing 𝑤𝐽=1.5 and 3 
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Figure 8-51: Joint torques after imposing 𝑤𝐽=1.5 and 3 

 

 

Figure 8-52: Total torques after imposing 𝑤𝐽=1.5 and 3 
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Small disagreements appear in the knee total torque, in particular when the coefficient wJ is 3. The 

oscillation of the torque is now slightly larger, although the discrepancy is not important enough to 

consider a change in the trend.  

 

 

Figure 8-53: Activation and excitation after imposing 𝑤𝐽=1.5 and 3 

 

Following the same colour code as described in the previous subsection, a curious fact can be observed in 

the gluteus. Taking 𝑤𝐽 = 1.5, the gluteus activation (red-lined) gets sooner than the reference does, but 

when increasing the coefficient to 3 (yellow-lined), the activation gets the same time, practically, as the 

reference (black-lined) does.  

This inconsistency apparently may occur because the algorithm has found a more optimal solution by 

finishing the gluteus activation before. It is worth mentioning this circumstance only appears in the 

gluteus; in the rest of the muscles intervening on the cycle, the activation gets sooner when 𝑤𝐽 gets the 

1.5 value rather than it is 3.  

Now, the Table 8-20 displays the evolution of the energetic cost: 

 

 

 



109 

 

 

Table 8-21: Evolution of expenditure and deviation when imposing 𝑤𝐽=1.5 and 3 

wJ 
Metabolical 

expenditure 

Deviation from 

pattern 

1 (Reference) 

1.5  

3 

341.74 J 

365.96 J 

382.22 J 

 

15.198 

14.906 

14.831 

 

Contrary to increasing the first weight coefficient, now the goal of the objective function is to reduce the 

deviation from the reference, as it was checked in the displays just finished. The metabolical expenditure 

gets increased while the deviation gets decreased, but in a small way. The decreasement calculated in the 

deviation from the pattern only gets a 7%, much smaller than the obtained when changing the wE 

coefficient, when the metabolical cost decreased a 15%.  

 

A quantitative vision of the influence exerted by this second coefficient appear in the Table 8-21: 
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Table 8-22. Quantitative summary of coefficient 𝑤𝐽 influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.061 m 0.01 

z11 0.015 m 0.015 m 3.57 

β11 0.029 rad 0.030 rad 2.23 

β13 0.723 rad 0.723 rad 0.02 

β34 1.021 rad 1.045 rad 2.40 

β45 0.252 rad 0.252 rad 0.08 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.723 rad 

1.021 rad 

0.252 rad 

 

180.428 N 

981.786 N 

180.377 N 

981.786 N 

 

44.509 Nm 

44.509 Nm 

117.137 Nm 

117.133 Nm 

 

127.532 Nm 

49.220 Nm 

93.168 Nm 

127.481 Nm 

49.218 Nm  

93.175 Nm 

 

50.548 Nm 

50.549 Nm 

200.229 Nm 

200.231 Nm 

0.723 rad 

1.045 rad 

0.252 rad 

 

182.947 N 

981.654 N 

182.864 N 

981.652 N 

 

46.404 Nm 

46.404 Nm 

117.246 Nm 

117.243 Nm 

 

127.758 Nm 

48.571 Nm 

93.274 Nm 

127.730 Nm 

48.624 Nm 

93.282 Nm 

 

54.210 Nm 

54.188 Nm 

200.447 Nm 

200.450 Nm 

0.02 

2.40 

0.08 

 

1.40 

0.01 

1.38 

0.01 

 

4.26 

4.26 

0.09 

0.09 

 

0.18 

1.32 

0.11 

0.20 

1.21 

0.11 

 

7.24 

7.20 

0.11 

0.11 

 

 

8.3.5 Maximum orthosis torque 

This part of the analysis will consist on increasing the maximum value the orthosis motor can generate, and 

evaluate how it influences in the walking and energy expenditure. In order to see better the effect of changing 

the maximum torque, the increments implemented have been way bigger than usual, so that the first increment 

consisted on a 25% over the reference value (24 Nm, its paraemeters are represented with a red lined), and the 

second one a 100% over the same one (40 Nm, green lined parameters). The reference remains represented 
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with a blue line. Results are displayed as follows: 

 

 

Figure 8-54: Generalized coordinates after increasing maximum orthosis torque 

 

 

The Figure shows that increasing only a 25% the maximum possible torque, even being an important 

increment compared to other made in this research, hardly makes the coordinates to change from the reference. 

The red line even overlays the blue, due to their similarities between them. So, the most interesting to study is 

clearly the solution obtained after the 100% increasing imposed to the motor torque, placed in the knee.  

Given that the motor has a wider range of torque to exert, it makes also bigger the range of angles possible to 

be performed by the joints, especially in the knee (the place where the motor is located). The peak in the knee 

flexion/extension movement is a 25% bigger now.  

The other conclusion reached is not new: the pelvis motion is more stable, because the motor provides an 

additional moment with stabilizes the body, and so on, the walking. This effect can be observed in both the 

vertical motion and the pitch rotation.  
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Figure 8-55: Reaction forces after increasing maximum orthosis torque 

 

 

The only incidence observed in the evolution of reaction forces emerging from the ground is the little swing 

appearing in the normal reactions, already observed when increasing other parameters in previous phases in 

the optimization.  

 

 

Figure 8-56: Motor and Klenzak torques after increasing maximum orthosis torque 
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Figure 8-57: Joint torques after increasing maximum orthosis torque 

 

It is worth commenting the evolution of the torque, especially the generated by the motor in the knees. The 

torque range the orthosis can embrace now is way bigger (it has been doubled, after all). However, contrary to 

what is expected, the Figure shows how the torque triggered in the knee, where the motor is placed, not only is 

not bigger than the appeared in the reference, but its peak is smaller. It shall be remembered that the peak gets 

produced when the foot is not in contact with the ground. Possibly it may be because it is not optimal in terms 

of efficiency for the motor, to give the maximum level of power during a big amount of time in the cycle. 

To compensate this discrepancy, the registered torque produced by the knee is bigger (taking absolute values) 

with the torque increment. Curiously, the resultant combination of every torques gives a total moment, way 

bigger than the obtained with the reference, as it can be observed in the Figure below. It seems the walker must 

overcome the opposition created by the orthosis itself, what may result inconvenient in energetics term.  

Observing the ankle torque figure (Figure), there are phases in the cycle when the solution torque is bigger and 

other phases when it is smaller. On the one hand, analog to previous studied cases, it is smaller when the foot 

is in contact with the ground. On the other hand, the obtained torque is bigger with the foot in the air. At any 

rate, these differences are compensated with the Klenzak torque, as it can be observed in the figures below.  
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Figure 8-58: Total torques after increasing maximum orthosis torque 

 

 

Figure 8-59: Activation and excitation after increasing maximum orthosis torque 
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The activation and excitation plots (Figure above) show a curious circumstance already appeared and 

described in previous sections. The muscle activation for the doubled-motor-torque solution (cyan-lined) 

is lower than the reference and the obtained after the 25% increment. That can be observed in the ilpsoas, 

placed very near to the hip, where the muscle efforts were detected to be lower during the optimization 

(as it can be seen in the Figure…). In other muscles, especially those closer to the knee, this phenomenon 

does not occur.  

Table 8-23: Evolution of expenditure and deviation when increasing maximum orthosis torque 

Maximum orthosis torque increment 
Metabolical 

expenditure 

Deviation from 

pattern 

0 % (Reference) 

25 % 

100 % 

341.74 J 

338.91 J 

326.29 J 

 

15.198 

15.089 

14.870 

 

The Table above shows clearly how it seems optimal in energetical terms to double the maximum torque 

bound imposed to the orthosis, as the metabolical cost gets reduced a 5%. The deviation from the 

reference gets reduced as well, although to a lesser extent. Now, the Table 8-23 collects the quantitative 

summary of the results: 
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Table 8-24. Quantitative summary of maximum motor torque influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.060 m 0.11 

z11 0.016 m 0.013 m 17.02 

β11 0.030 rad 0.028 rad 5.60 

β13 0.726 rad 0.723 rad 0.33 

β34 1.023 rad 1.170 rad 14.34 

β45 0.252 rad 0.241 rad 4.71 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.726 rad 

1.023 rad 

0.252 rad 

 

181.370 N 

989.393 N 

181.331 N 

989.394 N 

 

45.172 Nm 

45.172 Nm 

116.656 Nm 

116.651 Nm 

 

124.819 Nm 

48.938 Nm 

94.668 Nm 

124.806 Nm 

48.938 Nm 

94.676 Nm 

 

49.931 Nm 

49.931 Nm 

201.581 Nm 

201.584 Nm 

0.723 rad 

1.170 rad 

0.240 rad 

 

186.400 N 

983.078 N 

186.337 N 

983.339 N 

 

39.399 Nm 

39.399 Nm 

128.389 Nm 

128.169 Nm 

 

126.733 Nm 

51.227 Nm 

80.853 Nm 

126.324 Nm 

51.227 Nm 

81.071 Nm 

 

54.832 Nm 

54.832 Nm 

186.847 Nm 

187.061 Nm 

0.33 

14.34 

4.87 

 

2.77 

0.64 

2.76 

0.61 

 

12.78 

12.78 

10.06 

9.87 

 

1.53 

4.68 

14.59 

1.22 

4.68 

14.37 

 

9.82 

9.82 

7.31 

7.20 
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8.3.6 Ankle parameters: torque and stiffness 

The sixth and last phase of this analysis will comprise the Klenzak ankle. Its two mechanical characteristics, 

the generated torque and the typical stiffness of the ankle, will be modified so as to see their influence in the 

optimization.  

 

8.3.6.1 Klenzak torque 

The colour code is the same as the followed in the previous phases of the optimization: the blue line 

correspond to the reference motion (the reference value for the Klenzak torque is 17.156 Nm), the red refers to 

a 5% increment in the torque, while the green line makes reference to the solution obtained after implementing 

a 10% growth.  

 

 

Figure 8-60: Generalized coordinates after increasing maximum Klenzak torque 

 

 

Discrepancies between the model and the solutions use to appear in the ankle and, especially, the pelvis. To 

increment the maximum possible torque allows the Klenzak ankle to carry out a bigger moment, and that 

makes the act of walking more stable, reducing the oscillations in the pelvis. That can explain why the 

amplitude of the vertical motion of the pelvis is slightly shorter when incrementing the maximum torque.  

In the ankle, the flexion movement is less ample in the solution, although it can not be considered as an 

important reduction. It can be explained with optimal reasons: the ankle does not need to bend itself such a big 

angle, thanks to the larger torque generated by the Klenzak ankle.  
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Figure 8-61: Reaction forces after increasing maximum Klenzak torque 

 

Regarding the reaction forces, the observed effect is similar to previous cases: the higher maximum torque 

generates oscillations in the normal reaction forces in the contact feet-ground. The bigger torque range the 

ankle disposes of makes larger reactions to appear in the ground, so it is logical to expect this result. 

Otherwise, the solutions follow almost truly the pattern.  

 

Figure 8-62: Motor and Klenzak torques after increasing maximum Klenzak torque 
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Figure 8-63: Joint torques after increasing maximum Klenzak torque 

 

 

 

Figure 8-64: Total torques after increasing maximum Klenzak torque 
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It is easy to understand now the evolution of the torque plotted in the figures above. The range amplitude of 

the torque produced by the mechanical ankle has been incremented, so the reached peak is way bigger. Newly, 

in order to optimize the energy, the human ankle must reduce its moment, and that is what is observed in the 

figures.  

 

Figure 8-65: Activation and excitation after increasing maximum Klenzak torque 

 

In concordance with the results right presented, where the moment exerted by the muscles was always 

smaller when increasing the maximum torque in the ankle, and so on the muscle force, the figure above, 

representing the muscle activation and excitation, shows how the activation has reduced as it is not 

necessary to force too much the muscle. This general rule serves for each muscle.  

Table 8-25: Evolution of expenditure and deviation when increasing maximum Klenzak torque 

Ankle torque increasing 
Metabolical 

expenditure 

Deviation from 

pattern 

0 (Reference) 

5 % 

10 % 

341.74 J 

336.80 J 

335.11 J 

 

15.198 

14.878 

14.688 
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Now studying the evolution of the energetical cost, it decreases from the reference value, although there 

is no a remarkable reduction (the order of 1%). More increasings would be needed to reach a notable 

depletion of the spent energy.  The Table 8-25 shows the quantitative analysis of the influence of the 

Klenzak torque: 

Table 8-26. Quantitative summary of Klenzak torque influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.058 m 0.25 

z11 0.014 m 0.012 m 15.05 

β11 0.031 rad 0.032 rad 1.54 

β13 0.719 rad 0.710 rad 1.27 

β34 0.992 rad 1.025 rad 3.36 

β45 0.243 rad 0.235 rad 3.27 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.719 rad 

0.992 rad 

0.243 rad 

 

176.764 N 

975.077 N 

176.684 N 

975.2578 N 

 

44.747 Nm 

44.747 Nm 

123.597 Nm 

123.420 Nm 

 

125.686 Nm 

48.2978 Nm 

86.473 Nm 

125.573 Nm 

48.297 Nm  

86.669 Nm 

 

47.452 Nm 

47.452 Nm 

198.063 Nm 

198.083 Nm 

0.710 rad 

1.026 rad 

0.235 rad 

 

180.508 Nm 

977.088 Nm 

180.362 Nm 

974.271 Nm 

 

45.454 Nm 

45.454 Nm 

125.293 Nm 

125.141 Nm 

 

125.801 Nm 

48.306 Nm 

80.152 Nm 

125.778 Nm 

48.305 Nm 

80.390 Nm 

 

50.378 Nm 

50.378 Nm 

189.103 Nm 

189.113 Nm 

1.27 

3.37 

3.25 

 

2.12 

0.21 

2.08 

0.10 

 

1.58 

1.58 

1.37 

1.39 

 

0.09 

0.02 

7.31 

0.16 

0.02 

7.24 

 

6.17 

6.17 

4.52 

4.53 
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8.3.6.2 Klenzak stiffness 

Analog to the torque, the sensivity of the orthosis subject to changes in the stiffness of the Klenzak device is 

analyzed. The reference value for the Klenzak stiffness is 293.886 N/m. The same colour code is used to 

represent the design parameters. As it will be seen in the following figures, the stiffness will hardly have an 

important weight in the optimization process.  

 

 

Figure 8-66: Generalized coordinates after increasing maximum Klenzak stiffness. 

 

 

This time there are no appreciable differences in any coordinate between the reference and the solutions, 

neither in the pelvis, where they had always appeared until now. The logical deduction would be to think that 

increasing the stiffness would make more difficult to the walker to bend the Klenzak ankle, as by the definition 

of stiffness, it consists on the opposition to be bent in a determined direction.  
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Figure 8-67: Reaction forces after increasing maximum Klenzak stiffness. 

 

No discrepancies were found between the model and the solution with respect to the reaction forces emerging 

from the ground, originated in its contact with the floor.   

 

Figure 8-68: Motor and Klenzak torques after increasing maximum Klenzak stiffness. 
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The Figure shows the first important deviation in this phase of the parameterization, concretely in the ankle. 

Contrary to the results studied before, when imposing the parameter to grow meant a larger moment produced 

by the ankle, now the Klenzak device originates a smaller torque (decreasing it at around a 20% from the 

reference). The reason is easy to explain: the ankle must overcome a bigger resistance as the stiffness is larger 

now, so if the angle bent is maintained almost the same (as seen in Figure), the registered torque will be 

smaller.  

 

Figure 8-69: Joint torques after increasing maximum Klenzak stiffness. 

 

Figure 8-70: Total torques after increasing maximum Klenzak stiffness. 
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The figures above, displaying the total combined torque, shows how the moments produced by both the 

human walker and the mechanical devices get compensated. The only discrepance observed between the 

model and the solutions, the smaller torque in the ankle, already commented, is easily seen in the plots.  

 

 

Figure 8-71: Activation and excitation after increasing maximum Klenzak stiffness. 

 

By last, the activation graphics does not present important deviations from the reference. It is easy to 

reach the conclusion that the stiffness is not an important parameter in this optimization. Anyway, the 

material of the orthosis will not be likely to change in other orthosis, so this part of the analysis is not as 

important as other studied in this research.  

Concerning the energy expenditure and deviation: 
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Table 8-27: Evolution of expenditure and deviation when increasing maximum Klenzak stiffness. 

Ankle stiffness increasing 
Metabolical 

expenditure 

Deviation from 

pattern 

0 (Reference) 

5 % 

10 % 

341.74 J 

340.55 J 

340.60 J 

 

15.198 

15.116 

15.131 

 

The energy hardly varies when increasing the stiffness, confirming the point right described: it is non 

influential in this research. By last, the correspondent Table 8-27, showing the quantitative analysis: 
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Table 8-28. Quantitative summary of Klenzak stiffness influence 

Variable 
Highest amplitude, 1st 

increment 

Highest amplitude, 2nd 

increment 

Relative increasement (%) 

x11 1.061 m 1.061 m 0.01 

z11 0.016 m 0.016 m 0.44 

β11 0.029 rad 0.029 rad 0.57 

β13 0.726 rad 0.726 rad 0.02 

β34 1.016 rad 1.014 rad 0.21 

β45 0.252 rad 0.252 rad 4.11e-05 

β16 

β67 

β78 

 

RT Force  

RN Force 

LT Force 

LN Force 

 

RM Torque 

LM Torque 

RO Torque 

LO Torque 

 

RH Torque 

RK Torque 

RA Torque 

LH Torque 

LK Torque 

LA Torque 

 

TRK Torque 

TLK Torque 

TRA Torque 

TLA Torque 

 

0.726 rad 

1.016 rad 

0.252 rad 

 

180.266 N 

986.148 N 

180.197 N 

986.147 N 

 

45.532 Nm 

45.532 Nm 

111.509 Nm 

111.505 Nm 

 

124.767 Nm 

48.228 Nm 

94.023 Nm 

124.742 Nm 

48.225 Nm 

94.034 Nm 

 

49.982 Nm 

49.980 Nm 

195.661 Nm 

195.667 Nm 

0.726 rad 

1.014 rad 

0.252 rad 

 

177.574 N 

984.544 N 

177.518 N 

984.544 N 

 

45.378 Nm 

45.378 Nm 

106.5373 Nm 

106.534 Nm 

 

124.720 Nm 

48.343 Nm 

93.698 Nm 

124.696 Nm 

48.342 Nm 

93.706 Nm 

 

49.495 Nm 

49.494 Nm 

195.314 Nm 

195.317 Nm 

0.02 

0.201 

8.98e-04 

 

1.49 

0.16 

1.49 

0.16 

 

0.34 

0.34 

4.46 

4.46 

 

0.04 

0.24 

0.35 

0.04 

0.24 

0.35 

 

0.98 

0.97 

0.18 

0.18 
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9 ANALYSIS OF RESULTS. FUTURE                                                   
 

 

After performing every optimizations in the orthosis by increasing the magnitudes described in Chapter 8, and 

obtaining the effects in terms of variation of the energetical cost, generalized coordinates, motor and joints 

torques, muscle forces, muscle activation and neural excitations, further conclusions about the influence of 

these changes in the human walking cycle can be obtained. This is what this chapter deals with. 

To start, the influence of mass and geometry in the orthosis was studied by separately in the two first phases of 

the optimization. Then, both effects were analyzed simultaneously in the third phase, what was considered a 

more reliable approximation to reality, as a change in mass must take account a change in the geometry if the 

density remains unchangeable. Therefore, it can be considered that the third phase includes the same 

conclusions as the first and second phases together. 

So, the most remarkable changes affects to the pelvis movement and the generated torque in the joints. On the 

one hand, the increasement of the moment of the inertia in the orthosis makes more stable the movement, as 

the fluctuation in the vertical coordinate are smaller. These can be explained the next way: the center of gravity 

has been displaced to a lower position, reducing the appearing of forces which could destabilize the 

movement.  

On the other hand, the inertial gain makes bigger the mechanical torque produced by the artificial devices, 

especially the one generated by the Klenzak ankle. This allows the walker not to make such an enormous 

effort to perform a movement, as it is reflected in the natural torque in the ankle joint, and so on, it eases him 

his walking. Not great changes were detected in the muscle activation or the neural excitation, so the impact 

provoked by increasing the moment of inertia in the orthosis can be considered as positive, and that makes a 

potential innovation facing the development of future orthosis.  

Regarding the influence of the weight coefficients in the cost function, the expected results were obtained. 

Giving more importance to the first coefficient, wE, concretely by trebling its value, the metabolical cost was 

reduced a 15%, with no great effects in the deviation from pattern. The work by García Vallejo [3] explains 

that aesthetics in the movement is a bit sacrificed in favor of reducing the expenditure cost. The observed fact 

is that, effectively, the metabolical cost gets smaller, but the deviation from pattern hardly grows. However, 

when making the coefficient wJ bigger, the decreasement detected in the deviation is not really important, 

around 7%. Moreover, the energy expenditure increases, what makes worthless to give more importance to 

reduce deviation from the pattern. The main conclusion obtained from there is that the fundamental task 

regarding the future of active orthosis will be to reduce the metabolical expenditure rather than focus on the 

difference from the reference motion.  

Concerning the maximum motor torque rising, it has both positive and negative impacts in the walking cycle. 

Firstly, it must be highlighted that the movement is way more stable because the motor can now generate more 

power to produce forces which stabilize the walking. However, what refers to the torque, the impact cannot be 

considered as fully positive. The major range of torque the motor can embrace does not imply a bigger torque 

during the cycle. In fact, it is observed that the maximum reached torque is smaller than the measured in the 

reference motion. This means that it is not costeffective in terms of efficiency to increase the maximum torque. 

At least, the metabolical cost gets a small reduction, rounding the 5%, smaller than other reductions obtained 

in other phases during the optimization.  

To end this summary, it may be commented that the increasements in the mechanical characteristics of the 

Klenzak ankle infludes positively in the walking cycle, although not in large-scale. Some variations already 

commented appear again, such like the lesser swings in the vertical motion of the pelvis, or the small 
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decreasement in the metabolical cost. Moreover, the generated torque in the motor is bigger during the cycle, 

especially when the maximum Klenzak torque is the increased magnitude. This can be considered as a positive 

effect which may be taken into account regarding future active orthosis designing. However, the increasement 

of the stiffness does not impact positively in the cycle.  
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