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Abstract

This paper is concerned with long-time dynamics of weakly damped semilinear
wave equations defined on domains with moving boundary. Since the boundary is
a function of the time variable the problem is intrinsically non-autonomous. Under
the hypothesis that the lateral boundary is time-like, the solution operator of the
problem generates an evolution process U(t, τ) : Xτ → Xt, where Xt are time-
dependent Sobolev spaces. Then, by assuming the domains are expanding, we
establish the existence of minimal pullback attractors with respect to a universe
of tempered sets defined by the forcing terms. Our assumptions allow nonlinear
perturbations with critical growth and unbounded time-dependent external forces.
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1 Introduction

This paper is concerned with long-time dynamics of semilinear wave equations defined
on moving boundary domains. The problem involves a space-time domain

Qτ ⊂ R3 × (τ,∞), τ ∈ R,
∗Corresponding author. E-mail addresses: matofu@icmc.usp.br (T. F. Ma), pmr@us.es (P. Maŕın-

Rubio), christianchuno@utfpr.edu.br (C. M. Surco Chuño).
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such that its intersections with hyperplanes {(x, s) ∈ R4 | s = t} are bounded domains
Ωt ⊂ R3 with boundary Γt = ∂Ωt. Then Qτ and its lateral boundary Στ can be defined
as

Qτ =
⋃
t>τ

{
Ωt × {t}

}
and Στ =

⋃
t>τ

{
Γt × {t}

}
,

respectively. Since Ωt varies with respect to t we see that Qτ is, in general, non-cylindrical
along the t-axis. We consider the mixed problem

∂2
t u−∆u+ ∂tu+ f(u) = g in Qτ , (1.1)

u = 0 on Στ , (1.2)

u(x, τ) = u0
τ (x), ∂tu(x, t)|t=τ = u1

τ (x), x ∈ Ωτ , (1.3)

where f and g = g(x, t) are forcing terms and u0
τ and u1

τ are initial data. Sometimes we
write simply Q instead of Qτ .

This kind of wave equation was studied by several authors with τ = 0. Indeed, the
existence of a global solution was proved by Cooper and Bardos [10] under the assumption
that there exists a one-to-one mapping transforming Q onto an expanding or contracting
domain Q∗. One says that a domain Q is expanding if Ωs ⊂ Ωt whenever s ≤ t and
contracting in the reverse case. However, uniqueness of solutions is only known under the
assumption that the exterior normal to Σ does not belong to the corresponding light cone,
as proved in [10]. Writing the exterior normal as ν = (νx, νt) this implies that |νt| < |νx|
on Σ, which defines Σ as time-like. Roughly speaking, under suitable assumptions on
f and g, problem (1.1)-(1.3) has a unique global solution if Q is smooth and its lateral
boundary Σ is time-like.

On the other hand, the study of long-time dynamics is concerned with the behavior
of the solutions as t → ∞. In this direction, it was proved by Bardos and Chen [2] that
the linear energy of the system increases when the domain Q is contracting and decreases
when the domain is expanding. Therefore if we consider dissipative systems, it is natural
to assume that Q is non-contracting. It is not clear whether a damping term can overcome
the growth of energy produced by strictly contracting domains. The assumption that Q
is expanding is used in the proof of an energy inequality (see Lemma 2.3 below).

Now, since the boundary of Ωt is a function of time, it follows that evolution equations
on moving boundary domains are intrinsically non-autonomous, even if the external force
g(x, t) = g(x) does not depend on t. In addition, given initial data (u0

τ , u
1
τ ) in H1

0 (Ωτ )×
L2(Ωτ ), the (finite energy) solutions u of (1.1)-(1.3) satisfy

u(t) ∈ H1
0 (Ωt) and ∂tu(t) ∈ L2(Ωt), ∀ t ≥ τ,

where u(t) denotes u(·, t). Therefore, the solution operator of (1.1)-(1.3) generates an
evolution process

U(t, τ) : Xτ → Xt, t ≥ τ,

where
Xt = H1

0 (Ωt)× L2(Ωt).
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This contrasts with the standard theory for time-dependent attractors defined on a fixed
space X. Our purpose is to establish the existence of time-dependent attractors to the
problem (1.1)-(1.3).

Under this scenario, in order to study a class of parabolic problems on moving bound-
ary domains, Kloeden, Maŕın-Rubio and Real [17] established an abstract theory to prove
the existence of pullback attractors for processes defined on time-dependent spaces. With
a different approach, Conti, Pata and Temam [9] and Di Plinio, Duane and Temam [12]
also developed a theory of pullback attractors for processes defined on time-dependent
spaces. Their work was concerned with a class of wave equations with time-dependent
wave speed. The same approach was used in [8] to establish the existence of pullback
attractors for a class of wave equations with time-dependent memory kernels.

Motivated by the above studies, our objective is to establish the existence of a pullback
attractor to the problem (1.1)-(1.3) under the basic assumption that Q is time-like and
expanding and f grows up to the critical level.

The main features of the paper can be summarized as follows:

(i) To the best of our knowledge, this is the first study concerned with attractors of
wave equations on moving boundary domains. The problem is weakly damped and the
nonlinear forcing is allowed to have critical growth. Then, as in [1, 4, 24], we set our
analysis in a 3D framework and assume that |f(u)| ≤ C(1 + |u|3), u ∈ R.

(ii) We show sufficient conditions on the external force g(x, t), which may be un-
bounded, in order to obtain a minimal pullback D-attractor which is unique within a
universe of tempered sets defined by the growth of f(u). Our main result is Theorem 4.1.

(iii) Since the present problem is hyperbolic, the proof of required compactness is very
different from the ones in [17, 18], which enjoy higher regularity of parabolic systems.
It is also different from [8, 9, 12] since our time-dependent spaces are typically Xt =
H1

0 (Ωt) × L2(Ωt), which makes difficult the use of fractional powers of the Laplacian in
order to show asymptotic compactness of the processes. Therefore we present a slight
variation of a compactness criterion (Theorem 3.2) based on the concept of weak quasi-
stability [5, Section 2.2.3], which is appropriate for processes defined on time-dependent
spaces in a pullback D-attraction framework.

(iv) For the reader’s convenience, we have provided a section with some definitions
and abstract results for the existence of pullback D-attractors, in the context of evolution
processes defined on time-dependent spaces. This is presented in Section 3.1.

2 Preliminaries

In this section we present our assumptions on the parameters of the problem (1.1)-
(1.3) and prove its well-posedness. Some remarks about function spaces related to moving
boundary domains and a key energy estimate are also discussed.
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2.1 Assumptions

(H1) Assumptions on the domain: Let Ω be a bounded domain of R3 with smooth
boundary Γ and containing the origin. We define

Ωt = {x ∈ R3 |xi = hi(t)yi, 1 ≤ i ≤ 3, with y ∈ Ω, t ∈ R}, (2.1)

where hi ∈ C3(R) are such that, there exist constants hm, hM > 0 satisfying

hm ≤ hi(t) ≤ hM , ∀ t ∈ R, 1 ≤ i ≤ 3. (2.2)

Also, there exists γ ≥ 0 such that

0 ≤ h′i(t) ≤ γ < D−1, ∀ t ∈ R, 1 ≤ i ≤ 3, (2.3)

with D = max{|y| | y ∈ Ω}.

Remark 2.1. (a) Since 0 ∈ Ω, condition (2.2) and (2.3) imply that there exist two
bounded domains Ω∗,Ω

∗ ⊂ R3 such that

Ω∗ ⊂ Ωτ ⊂ Ωt ⊂ Ω∗, ∀ τ < t. (2.4)

This means that Ωt are expanding with respect to t.

(b) The moving boundary domain is time-like. To see this, we note that the movement
of a point x ∈ Σ is c(t) = (h1(t)y1, h2(t)y2, h3(t)y3, t) where y ∈ Γ. Consequently c′(t) =
(h′1(t)y1, h

′
2(t)y2, h

′
3(t)y3, 1) is tangent to Σ and orthogonal to ν and therefore

νt = −(h′1(t)y1, h
′
2(t)y2, h

′
3(t)y3) · νx.

Using condition (2.3) we have |νt| ≤ γD|νx| < |νx|.
(c) Let λ1(Ω) denote the first eigenvalue of −∆ in H1

0 (Ω). Then, since λ1(Ω) ≤ λ1(Ω′)
whenever Ω′ ⊂ Ω, it follows from (2.4) that we have a uniform Poincaré inequality

‖u‖2
L2(Ωt)

≤ 1

λ∗1
‖∇u‖2

L2(Ωt)
, ∀ t ∈ R, (2.5)

where λ∗1 = λ1(Ω∗).

(d) There exists a mapping r : Ω× R→ R3 defined by

r(y, t) =
(
h1(t)y1, h2(t)y2, h3(t)y3

)
.

Its inverse φ(·, t) = r−1(·, t) is defined by

φ(x, t) = (y, t) where y =
( x1

h1(t)
,
x2

h2(t)
,
x3

h3(t)

)
. (2.6)

Then φ(·, t) is a C2-diffeomorphism with Jacobian

Jφ(x, t) =
3∏
i=1

1

hi(t)
6= 0, ∀ t ∈ R.

This shows that our moving boundary domain falls into the class considered in [19, 18].
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(H2) Assumptions on the nonlinear forcing. For the nonlinear term f(u), we
assume that f ∈ C1(Ω) and there exists C > 0 such that,

|f(u)− f(v)| ≤ C(1 + |u|2 + |v|2)|u− v|, ∀u, v ∈ R. (2.7)

We also assume that there exist β ∈ (0, λ∗1) and ρ > 0 such that

F (u) ≥ −β
2
u2 − ρ and f(u)u ≥ F (u)− β

2
u2 − ρ, ∀u ∈ R, (2.8)

where F (u) =
∫ u

0
f(s) ds.

Remark 2.2. The assumption (2.8) is often used in semilinear wave equations and it is
satisfied if lim|s|→∞ f

′(s) > −λ∗1.

(H3) Assumptions on the external force. We assume that

g ∈ L2
loc(Q) (2.9)

and there exists σ0 > 0 such that∫ 0

−∞
eσ0s‖g(s)‖2

L2(Ωs)
ds <∞, (2.10)

with σ0 ≤ σ1, where

σ1 :=
2

3
min

{
λ∗1 − β

2λ∗1
,

λ∗1 − β
2 + 3(λ∗1 − β)

}
. (2.11)

Remark 2.3. The assumption (2.11) is used to show certain dissipativeness of the system.
An simpler condition could be

σ0 ≤
2

3

(
λ∗1 − β
2 + 3λ∗1

)
.

This is justified in Lemma 4.2.

2.2 Function spaces with moving boundary

In the following we collect some definitions and properties of function spaces related
to non-cylindrical domains of the form

Qτ,T =
⋃

t∈(τ,T )

{
Ωt × {t}

}
and Στ,T =

⋃
t∈(τ,T )

{
Γt × {t}

}
,

with Ωt satisfying (2.1)-(2.2) and τ < T . If Bt is a Banach space contained in L1
loc(Ωt),

one defines, for q ≥ 1,

Lq(τ, T ;Bt) =

{
u ∈ L1

loc(Qτ,T ) | u(t) ∈ Bt for a.e. t ∈ (τ, T ) and

∫ T

τ

‖u(t)‖qBt dt <∞
}
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with

‖u‖Lq(τ,T ;Bt) =

(∫ T

τ

‖u(t)‖qBt dt
) 1

q

.

Many of properties of Lq(τ, T ;Lp(Ωt)), p, q ≥ 1, can be proved by extending the functions
(by zero) outside of Ωt. Indeed, as discussed in [18, Section 3], for u ∈ L1

loc(Qτ,T ), let û
be its null extension

û(x, t) =

{
u(x, t), x ∈ Ωt,
0, x ∈ R3\Ωt.

Clearly,
u ∈ Lq(τ, T, Lp(Ωt)) implies û ∈ Lq(τ, T, Lp(R3)),

and
u ∈ Lq(τ, T,H1

0 (Ωt)) implies û ∈ Lq(τ, T,H1(R3)).

Therefore with respect to the spatial-derivative one has

∂û

∂xi
=

∂̂u

∂xi
, i = 1, 2, 3.

The weak time-derivative u′ = ∂tu is defined as

〈u′, φ〉 = −
∫ T

τ

∫
Ωt

u(x, t)φ′(x, t) dxdt, φ ∈ C∞c (Qτ,T ),

and satisfies
û′ = û′.

Now, with respect to the continuity in t we have the definition

C([τ, T ];L2(Ωt)) =
{
u ∈ L1(Qτ,T ) | û ∈ C([τ, T ];L2(R3))

}
,

and

um → u in C([τ, T ];L2(Ωt)) if and only if ûm → û in C([τ, T ];L2(R3)).

Similar definition applies with L2 replaced by H1
0 .

If assumption (2.3) is also satisfied, then we have more specialized properties. Using
(2.6), given u ∈ L1

loc(R;Lq(Ωt)) there exists a unique v ∈ L1
loc(R;Lq(Ω)) such that

v(y, t) = u(r(y, t), t) = u(x, t), ∀ t ∈ R.

Then, there exist positive constants c1, . . . , c4, not dependent of t, but c1, c2 dependent of
q, such that

c1‖u(t)‖Lq(Ωt) ≤ ‖v(t)‖Lq(Ω) ≤ c2‖u(t)‖Lq(Ωt)
and

c3‖∇u(t)‖L2(Ωt) ≤ ‖∇v(t)‖L2(Ω) ≤ c4‖∇u(t)‖L2(Ωt).
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These estimates imply that there exists an embedding constant µq > 0, independent of t,
such that

µq‖u(t)‖qLq(Ωt) ≤ ‖∇u(t)‖qL2(Ωt)
, 1 ≤ q ≤ 6. (2.12)

In particular we get (2.5). Moreover, it is proved in [18, Lemma 3.5] that for 1 ≤ p, q ≤ ∞,
we have

u ∈ Lq(τ, T ;Lp(Ωt)) if and only if v ∈ Lq(τ, T ;Lp(Ω)),

and there exist ci = ci(p, q, τ, T ), i = 5, 6, such that

c5‖u‖Lq(τ,T ;Lp(Ωt)) ≤ ‖v‖Lq(τ,T ;Lp(Ω)) ≤ c6‖u‖Lq(τ,T ;Lp(Ωt)). (2.13)

Analogously (cf. [18, Lemma 3.6]),

u ∈ L2(τ, T ;H1
0 (Ωt)) if and only if v ∈ L2(τ, T ;H1

0 (Ω)),

and there exist ci = ci(τ, T ), i = 7, 8, such that

c7‖u‖L2(τ,T ;H1
0 (Ωt)) ≤ ‖v‖L2(τ,T ;H1

0 (Ω)) ≤ c8‖u‖L2(τ,T ;H1
0 (Ωt)). (2.14)

With (2.13) and (2.14) we can prove the following compactness lemma of Aubin-Lions
type for non-cylindrical domains.

Lemma 2.1. Suppose the assumption (H1) holds and let {un} be a bounded sequence of
L2(τ, T ;H1

0 (Ωt)) such that {∂tun} is bounded in L2(τ, T ;L2(Ωt)). Then for any p ∈ [2, 6)
there exists a subsequence {unk} that converges strongly in L2(τ, T ;Lp(Ωt)).

Proof. Let vn(·, t) = un(r(·), t). From (2.13) and (2.14) we know that

{vn} is bounded in L2(τ, T ;H1
0 (Ω)),

{∂tvn} is bounded in L2(τ, T ;L2(Ω)).

Then, from the classical Aubin-Lions Lemma [20, Theorem 1.5.1] there exists a subse-
quence {vnk} which converges strongly in L2(τ, T ;Lp(Ω)), say vnk → v, for p ∈ [2, 6).
Using (2.13) again, with u(·, t) = v(r−1(·), t), we see that

‖unk − u‖L2(τ,T ;Lp(Ωt)) ≤
1

c5

‖vnk − v‖L2(τ,T ;Lp(Ω)).

Then {unk} converges strongly in L2(τ, T ;Lp(Ωt)).

2.3 Energy estimates

Definition 2.1. A function u is a weak solution of the problem (1.1)-(1.3) if for any pair
τ ≤ T ,

u ∈ C([τ, T ];H1
0 (Ωt)) ∩ C1([τ, T ];L2(Ωt)),

u(τ) = u0
τ , ∂tu(τ) = u1

τ , and∫ T

τ

∫
Ωt

{
−∂u
∂t

∂φ

∂t
+∇u∇φ+

∂u

∂t
φ+ f(u)φ− gφ

}
dxdt = 0,
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for all φ ∈ L2(τ, T ;H1
0 (Ωt)) satisfying ∂tφ ∈ L2(τ, T ;L2(Ωt)) and φ(τ) = φ(T ) = 0. The

above solution is called strong if in addition,

u ∈ L∞(τ, T ;H2(Ωt) ∩H1
0 (Ωt)), ∂tu ∈ L∞(τ, T ;H1

0 (Ωt)), ∂2
t u ∈ L∞(τ, T ;L2(Ωt)).

Lemma 2.2. Suppose that Q has regular lateral boundary Σ and that w ∈ C1(R;L2(Ωt)).
Then

d

dt

∫
Ωt

w(x, t) dx =

∫
Ωt

∂tw dx−
∫

Γt

w(x, t) νt dσ. (2.15)

Proof. We know (e.g. [13]) that

d

dt

∫
Ωt

w(x, t) dx =

∫
Ωt

∂tw(x, t) dx+

∫
Γt

w(x, t) ẋ · νx dσ,

where ẋ is the velocity of a point x ∈ Γt. From assumption (H1), the velocity of the
movement of x along Σ is (ẋ, 1), which is tangent to Σ. It follows that

ẋ · νx = −νt,

and therefore (2.15) holds.

Now we prove an energy inequality that plays a key role in our study. The energy of
the problem (1.1)-(1.3) is defined by

E(t) =
1

2

∫
Ωt

(
|∂tu|2 + |∇u|2

)
dx+

∫
Ωt

F (u) dx. (2.16)

Lemma 2.3. Under assumptions (H1)-(H2), the energy along any strong solution u
satisfies

d

dt
E(t) ≤ −

∫
Ωt

|∂tu|2 dx+

∫
Ωt

g(x, t)∂tu dx. (2.17)

Proof. We multiply equation (1.1) by ∂tu. Then

1

2
∂t|∂tu|2 +

1

2
∂t|∇u|2 + ∂tF (u) = −|∂tu|2 + g(x, t)∂tu+ div

(
∇u ∂tu

)
.

Now integrating the identity over Ωt and taking into account (2.15) we obtain

1

2

d

dt

∫
Ωt

|∂tu|2 dx+
1

2

d

dt

∫
Ωt

|∇u|2 dx+
d

dt

∫
Ωt

F (u) dx

= −
∫

Ωt

|∂tu|2dx+

∫
Ωt

g(x, t)∂tu dx+R,

where

R = −
∫

Γt

F (u)νt dσ −
1

2

∫
Γt

(
|∂tu|2 + |∇u|2

)
νt dσ +

∫
Ωt

div
(
∇u ∂tu

)
dx.
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On the other hand, it was observed in Bardos and Chen [2] that for u ∈ H1(Qτ,T ) with
u = 0 on Στ,T , all tangential derivative of u also vanishes on Σ. Consequently the full
gradient of u satisfies ∇x,tu = (∂νu)ν which implies that

∂tu = (∂νu) νt and ∇u = (∂νu) νx. (2.18)

Using (2.18) we have

1

2

∫
Γt

(
|∂tu|2 + |∇u|2

)
νt dσ =

1

2

∫
Γt

|∂νu|2(|νx|2 + |νt|2)νt dσ,

and ∫
Ωt

div
(
∇u ∂tu

)
dx =

∫
Γt

|∂νu|2|νx|2νt dσ.

Then, since F (u) = 0 on Γt, we conclude that

R =
1

2

∫
Γt

|∂νu|2(|νx|2 − |νt|2)νt dσ.

Finally, from Remark 2.1 we know that νt ≤ 0 and |νt| ≤ |νx| (expanding and time-like).
Then, R ≤ 0 and therefore energy inequality (2.17) holds.

Lemma 2.4. Under assumptions (H1)-(H2), there exist positive constants β0, Cf , CF ,
independent of initial data and initial time, such that

β0‖(u(t), ∂tu(t))‖2
Xt − Cf ≤ E(t) ≤ CF

(
1 + ‖(u(t), ∂tu(t))‖4

Xt

)
, ∀ t ∈ R. (2.19)

Proof. From assumption (2.8) and Poincaré’s inequality (2.12) we have∫
Ωt

F (u) dx ≥ − β

2λ∗1

∫
Ωt

|∇u|2 dx− ρ|Ω∗|.

Then, the first inequality of (2.19) holds with

β0 =
1

2

(
1− β

λ∗1

)
and Cf = ρ|Ω∗|. (2.20)

To prove the second inequality we first note that from the growth assumption (2.7) there
exists a constant C ′ > 0 such that

F (u) ≤ C ′(1 + |u|4), ∀u ∈ R.

Then we have ∫
Ωt

F (u) dx ≤ C ′
(
|Ω∗|+ ‖u‖4

L4(Ωt)

)
,

and using (2.12) we obtain the second part of (2.19) with CF = C ′max{|Ω∗|, µ−1
4 }.
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2.4 Well-posedness

The existence and uniqueness of solutions for semilinear wave equations with moving
boundary is, roughly speaking, a standard result. Some minor comments are done in the
following theorem, where we also prove the continuous dependence with respect to initial
data.

Theorem 2.5. Under assumptions (H1)-(H3), given an initial data (u0
τ , u

1
τ ) ∈ H1

0 (Ωτ )×
L2(Ωτ ), problem (1.1)-(1.3) has a unique weak solution. If (u0

τ , u
1
τ ) ∈ [H2(Ωτ )∩H1

0 (Ωτ )]×
H1

0 (Ωτ ) and g ∈ H1
loc(R, L2(Ωt)), then the above solution is strong. In addition, the weak

solutions depend continuously on initial data.

Proof. The existence of global solutions is essentially discussed in [10, 11, 15]. Accordingly,
for each pair τ < T , we must exhibit a “hyperbolic type” C2 mapping

Φ : R3 × (τ, T )→ R3 × (τ, T ),

such that Φ(Qτ,T ) = Ω× (τ, T ). Writing Φ(x, t) = (φ1(x, t), . . . , φ4(x, t)), this means that
the sub-matrix

aij = 〈∇φi,∇φj〉 −
∂φi
∂t

∂φj
∂t

, 1 ≤ i, j ≤ 3, (2.21)

must be positive definite at each point of Qτ,T , where ∇ = ∇x, and also(∂φ4

∂t

)2

− |∇φ4|2 > 0. (2.22)

In our case, taking into account (H1), we define

φi(x, t) =
xi
hi(t)

, 1 ≤ i ≤ 3 and φ4(x, t) = t.

Then, the condition (2.22) is clearly verified. To verify condition (2.21), we note that

∇φi(x, t) =
1

hi(t)
ei and

∂φi
∂t

(x, t) = −h
′
i(t)

hi(t)
yi, 1 ≤ i ≤ 3,

where {ei} is the standard basis of R3. Therefore,

aij =
δij − h′i(t)h′j(t)yiyj

hi(t)hj(t)
, 1 ≤ i, j ≤ 3.

Let us denote ŷi = h′iyi and for any ξ ∈ R3, let ξ̃i = ξi/hi. Then,

3∑
i,j=1

aijξiξj = |ξ̃|2 − 〈ŷ, ξ̃〉2

≥
(

1− γ2D2
)
|ξ̃|2

≥
(1− γ2D2

h2
m

)
|ξ|2,
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which, in view of (2.3), shows that (aij) is positive definite. Therefore the existence and
uniqueness of weak solutions of (1.1)-(1.3) follows from [10, Theorem 3.2]. Existence of
strong solutions is considered in [11, 15].

In order to prove the continuous dependence of weak solutions with respect to initial
data, we shall use the fact that Q is expanding. Let (u0

τ1, u
1
τ1) and (u0

τ2, u
1
τ2) be two pairs

of initial data. By density arguments we can assume that they are in [H2(Ωt)×H1
0 (Ωt)]×

H1
0 (Ωt) so that we can perform all the calculus below. Then w = u1 − u2, where u1, u2

are the corresponding solutions, satisfies

∂2
tw −∆w + ∂tw = f(u2)− f(u1), x ∈ Ωt, t ≥ τ, (2.23)

with initial condition

w(τ) = u0
τ1 − u0

τ2, ∂tw(τ) = u1
τ1 − u1

τ2,

and Dirichlet boundary condition. We multiply the equation (2.23) by ∂tw and arguing
as in the proof of energy inequality (2.17) we infer that

d

dt

∫
Ωt

(
|∂tw|2 + |∇w|2

)
dx+ 2

∫
Ωt

|∂tw|2 dx ≤ 2

∫
Ωt

(
f(u2)− f(u1)

)
∂tw dx.

On the other hand, from assumption (H2), and fixing a time interval [τ, T ], there exists
C0 > 0 such that

2

∫
Ωt

(
f(u2)− f(u1)

)
∂tw dx ≤ C

(
1 + ‖u1‖2

L6(Ωt)
+ ‖u2‖2

L6(Ωt)

)
‖w‖L6(Ωt)‖∂tw‖L2(Ωt)

≤ C0

(
‖∇w(t)‖2

L2(Ωt)
+ ‖∂tw(t)‖2

L2(Ωt)

)
, τ ≤ t ≤ T.

Then the Gronwall inequality implies that

‖∇u1(t)−∇u2(t)‖2
L2(Ωt)

+ ‖∂tu1(t)− ∂tu2(t)‖2
L2(Ωt)

≤ eC0(t−τ)
(
‖∇u0

1τ −∇u0
2τ‖2

L2(Ωt)
+ ‖u1

1τ − u1
2τ‖2

L2(Ωt)

)
, τ ≤ t ≤ T.

This completes the proof of the Theorem.

3 Pullback dynamics

In order to establish our main result (Theorem 4.1) we first give some definitions
and results about pullback dynamics. Our presentation is based on [17] that is concerned
with dynamics of evolution processes defined in time-dependent spaces Xt. An alternative
approach can be found in [9]. In the case of fixed metric space (Xt, dt) = (X, d) (for all
t ∈ R) a comprehensive theory of pullback attractors can be found in [3].
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3.1 Attractors on time-dependent spaces

Definition 3.1. Let {Xt}t∈R be a family of non-empty metric spaces. A two-parameter
operator U(t, τ) : Xτ → Xt, τ ≤ t, is called an evolution process if

(i) U(τ, τ) = Iτ , ∀ τ ∈ R (identity operator of Xτ),

(ii) U(t, τ) = U(t, s)U(s, τ), −∞ < τ ≤ s ≤ t <∞.

In addition, it is called closed if whenever a sequence xn → x in Xτ and U(t, τ)xn → y
in Xt, then U(t, τ)x = y.

Remark 3.1. (a) In general, if an evolution PDE is well-posed with respect to the phase
space, then it generates a continuous evolution process. Of course, continuous processes
are closed. Here, the notion of closed process is a natural extension of that for closed
semigroups, introduced in [23]. Other notions of continuity such as strong-weak (norm-
to-weak) can also be defined to the non-cylindrical framework.

(b) In particular, under the assumptions of Theorem 2.5, problem (1.1)-(1.3) generates
a continuous evolution process U(t, τ) : Xτ → Xt with Xt = H1

0 (Ωt) × L2(Ωt). Here, Xt

will be equipped with its natural inner-product,

((u1, v1), (u2, v2))Xt =

∫
Ωt

∇u1 · ∇u2 dx+

∫
Ωt

v1v2 dx. �

In the following we define the universe of the objects that are to be attracted by the
attractors.

Notation. By a capital letter with circumflex, say D̂, we mean a family

D̂ = {D(t)}t∈R with D(t) ⊂ Xt, t ∈ R.

This will be used several times.

Definition 3.2. A universe with respect to a family {Xt}t∈R of metric spaces is a class

D of elements D̂ = {D(t)}t∈R such that each section D(t) is a non-empty subset of Xt,

t ∈ R. We say that a universe D is inclusion closed if whenever D̂ ∈ D and Ĉ is such
that,

C(t) ⊂ Xt, C(t) ⊂ D(t), ∀ t ∈ R,

then Ĉ ∈ D.

Definition 3.3. A family Â is called a pullback D-attractor for a process U(t, τ) : Xτ →
Xt if,

(i) for any t ∈ R, A(t) is a non-empty compact subset of Xt,

(ii) the family Â is pullback D-attracting, that is, for any D̂ ∈ D,

lim
τ→−∞

distXt(U(t, τ)D(τ), A(t)) = 0, ∀ t ∈ R,
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(iii) the family Â is invariant, that is,

U(t, τ)A(τ) = A(t), −∞ < τ ≤ t <∞.

Moreover, a pullback attractor is said to be minimal if whenever Ĉ is a D-attracting family
of non-empty closed sets, then A(t) ⊂ C(t) for all t ∈ R.

Remark 3.2. (a) We observe that the definition of pullback D-attractors does not imply
uniqueness (see [21] or [17, Remark 22]). In order to ensure uniqueness one needs either
to include the minimality property or to impose additional conditions, as for instance,
that the attractor belongs to the same family D. As will be shown in Theorem 3.1, it is
possible under very general hypotheses to ensure the existence of a pullback D-attractor
which is minimal.

(b) If Xt = X is a fixed space for all t ∈ R and D is the class of all bounded subsets
of X, then pullback D-attraction becomes the usual pullback attraction, that is, A ⊂ X
is attracting at time t if,

lim
τ→−∞

distX(U(t, τ)D,A) = 0,

for any bounded set D ⊂ X.

The next two definitions are about dissipativeness and compactness in the D-pullback
sense.

Definition 3.4. A family B̂ of non-empty sets is called pullback D-absorbing for a process
U(t, τ) : Xτ → Xt if for any t ∈ R and D̂ ∈ D, there exists τ0(t, D̂) ≤ t such that

U(t, τ)D(τ) ⊂ B(t) if τ ≤ τ0(t, D̂).

Definition 3.5. Given a family D̂, a process U(t, τ) : Xτ → Xt is pullback D̂-asymp-
totically compact if, whenever t ∈ R, {τn} ⊂ (−∞, t] with τn → −∞ and yn ∈ D(τn),
the sequence {U(t, τn)yn} has a convergent subsequence in Xt. If a process is pullback

D̂-asymptotically compact for any D̂ ∈ D, then we say it is pullback D-asymptotically
compact.

The following existence theorem is based on a result for Xt = X presented in [14,
Theorem 3.11]. It is a slight generalization of the one proved in [17, Theorem 23].

Theorem 3.1. Let U(t, τ) : Xτ → Xt be a closed evolution process defined on a family
of metric spaces {Xt}t∈R. Consider a universe D with respect to the family {Xt}t∈R
and suppose that U admits a pullback D-absorbing family B̂0 and that U is pullback B̂0-
asymptotically compact. Then, the family AD = {A0(t)}t∈R defined by

A0(t) =
⋃
D̂∈D

Λ(D̂, t)
Xt

, (3.1)
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where Λ denotes the pullback omega-limit

Λ(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ)
Xt

,

is the minimal pullback D-attractor for U . If B̂0 ∈ D, then

A0(t) = Λ(B̂0, t) ⊂ B0(t)
Xt
. (3.2)

In addition, if B0(t) is closed for all t ∈ R and the universe D is inclusion closed, then
the pullback attractor AD ∈ D.

Proof. The proof of the existence of the minimal attractor follows from the same argu-
ments of [14, Theorem 3.11], making suitable changes as in [17, Theorem 23]. It is worth
mentioning that existence of a minimal pullback D-attracting family is proved without
assuming that the process is closed (continuous). The assumption that the process is
closed (continuous) is only required in order prove the invariance of the attractors. The
details are left to the reader. Here we present a self-contained proof of (3.2) and the final
claim of the fact that the attractor belongs to the universe.

Given D̂ ∈ D, let us take y ∈ Λ(D̂, t). Then there exist a sequence τn ≤ t, τn → −∞,
and a sequence xn ∈ D(τn), such that

y = lim
n→∞

U(t, τn)xn.

Now, for each integer k ≥ 1, because B̂0 is pullback D-absorbing, there exists nk > k such
that zk = U(τk, τnk)xnk ∈ B0(τk). Then

y = lim
k→∞

U(t, τnk)xnk = lim
k→∞

U(t, τk)zk ∈ Λ(B̂0, t), (3.3)

which shows that Λ(D̂, t) ⊂ Λ(B̂0, t) for all D̂ ∈ D. In particular, from (3.1) we see that

A0(t) ⊂ Λ(B̂0, t), since Λ(B̂0, t) is closed from its definition. If we assume that B̂0 ∈ D, it

follows from (3.1) that Λ(B̂0, t) ⊂ A0(t). Therefore we proved that A0(t) = Λ(B̂0, t). To

conclude, under assumption that B̂0 ∈ D, we have for k sufficiently large,

yk = U(t, τk)zk ∈ B0(t).

Then from second limit in (3.3) we have y ∈ B0(t)
Xt

, and therefore (3.2) holds. Moreover,
if each B0(t) is closed and D is inclusion closed, then this implies that AD ∈ D.

3.2 A criterion for pullback D-asymptotic compactness

In this section we recall a well-known compactness criterion established in Chueshov
and Lasiecka [6, Proposition 3.2] and [7, Proposition 2.10], for autonomous systems. Non-
autonomous versions of that result were presented in [24, 26], with Xt = X, and in [22]
with time-dependent spaces. To our purpose, we consider this compactness criterion in a
D-universe framework.
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Definition 3.6. Let X be a metric space. Then we say that a function Ψ : X ×X → R
is contractive on a bounded subset B of X if for any sequence {xn} of B there exists a
subsequence {xnk} such that

lim
k→∞

lim
l→∞

Ψ(xnk , xnl) = 0.

Theorem 3.2. Let {Xt}t∈R be a family of Banach spaces and let U(t, τ) : Xτ → Xt

be an evolution process that possesses a pullback D-absorbing family B̂0 = {B0(τ)}τ∈R.
Suppose that for any t ∈ R and ε > 0 there exists a time τε ≤ t and a contractive function
Ψε : B0(τε)×B0(τε)→ R, such that

‖U(t, τε)x− U(t, τε)y‖Xt ≤ ε+ Ψε(x, y), ∀x, y ∈ B0(τε).

Then the process is pullback D-asymptotically compact.

Proof. Let t ∈ R and D̂ ∈ D be fixed, and consider {τn} with τn < t for all n, and with
τn → −∞ and xn ∈ D(τn). We are going to show that {U(t, τn)xn}n∈N has a convergent
subsequence in Xt.

Consider a sequence {εn} with εn ↓ 0.

(a) Given ε1, by hypothesis there exists a time τε1 ≤ t and a contractive function Ψε1 :
B0(τε1)×B0(τε1)→ R such that

‖U(t, τε1)x− U(t, τε1)y‖Xt ≤
ε1
2

+ Ψε1(x, y), ∀x, y ∈ B0(τε1).

(b) Because {B0(τ)}τ∈R is pullback D-absorbing, there exists n1 ∈ N such that τn1 ≤ τε1
and

U(τε1 , τn)D(τn) ⊂ B0(τε1), n ≥ n1,

and then
yn = U(τε1 , τn)xn ∈ B0(τε1), n ≥ n1.

Now, since Ψε1 is contractive, we can choose subsequences {x1
n} of {xn} and {τ 1

n} of {τn},
such that

y1
n = U(τε1 , τ

1
n)x1

n ∈ B0(τε1) and satisfies Ψε1(y
1
k, y

1
l ) ≤

ε1
2
, ∀ k, l ≥ 1.

(c) Therefore,

‖U(t, τ 1
k )x1

k − U(t, τ 1
l )x1

l ‖Xt = ‖U(t, τε1)U(τε1 , τ
1
k )x1

k − U(t, τε1)U(τε1 , τ
1
l )x1

l ‖Xt
= ‖U(t, τε1)y

1
k − U(t, τε1)y

1
l ‖Xt

≤ ε1
2

+ Ψε1(y
1
k, y

1
l ) ≤ ε1, ∀ k, l ≥ 1.

By induction, there exist subsequences {xmn } of {xm−1
n } and {τmn } of {τm−1

n } such that

‖U(t, τmk )xmk − U(t, τml )xml ‖Xt ≤ εm, ∀ k, l ≥ m.

As a consequence, since εm → 0, the diagonal subsequence

{U(t, τ kk )xkk}k∈N
is a Cauchy sequence in Xt. This concludes the proof.

15



Remark 3.3. The above theorem was presented, for simplicity, in a Banach space frame-
work because the definition of Xt in our moving boundary problem. However the result
is valid for a family of complete metric spaces.

4 Wave equation with moving boundary

4.1 Existence of pullback D-attractors

We begin with the description of our universe D. Given a function ρ : R → R+, we
can define a family of closed balls

BXt(0, ρ(t)) =
{
z ∈ Xt | ‖z‖Xt ≤ ρ(t)

}
, t ∈ R.

In particular we consider the class of such balls satisfying

lim
τ→−∞

|ρ(τ)|4eσ1τ = 0, (4.1)

where σ1 > 0 is a decay coefficient, depending only on β ans λ∗1, given in (2.11). Then we
define our universe as

D =
{
D̂ | D(t) 6= ∅ and D(t) ⊂ BXt(0, ρD̂(t)) with ρD̂ satisfying (4.1)

}
. (4.2)

Our main result is the following.

Theorem 4.1. Suppose that assumptions (H1)-(H3) hold. Then the process associated
to the problem (1.1)-(1.3) admits a minimal pullback D-attractor, where D is defined in
(4.2). If in addition, σ0 < σ1/2, then above pullback D-attractor belongs to D.

The proof of Theorem 4.1 relies on the existence of an absorbing family and asymptotic
compactness for the corresponding process.

4.2 Pullback D-absorbing

Lemma 4.2. There exist constants C1, C2, C3 > 0, not depending on τ ≤ t, z ∈ Xτ , such
that

‖U(t, τ)z‖2
Xt ≤ C1

(
1 + ‖z‖4

Xτ

)
e−σ1(t−τ) + C2

∫ t

τ

e−σ1(t−s)‖g(s)‖2
L2(Ωs)

ds+ C3Cf , (4.3)

where σ1 > 0 is defined in (2.11).

Proof. The proof is divided into several steps.

Step 1: Perturbed energy. Let us define

ψ(t) =

∫
Ωt

u ∂tu dx and Eε(t) = E(t) + εψ(t),
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where ε > 0 is a constant. Then there exists ε0 > 0 such that

1

2
E(t)− 1

2
Cf ≤ Eε(t) ≤

3

2
E(t) +

1

2
Cf , ε ≤ ε0, t ∈ R. (4.4)

To prove this we note that from (2.5) and (2.19)

|ψ(t)| ≤ 1

2
max

{
1,

1

λ∗1

}
‖(u, ∂tu)‖2

Xt

≤ 1

2β0

max
{

1,
1

λ∗1

}
(E(t) + Cf ).

Then, taking
ε0 = β0 min{1, λ∗1}, (4.5)

we see that (4.4) holds.

Step 2. The following inequality holds.

d

dt
ψ(t) ≤ −E(t) +

1

2

(
3 +

1

β0λ∗1

)∫
Ωt

|∂tu|2 dx+
1

2β0λ∗1
‖g(t)‖2

L2(Ωt)
+ Cf . (4.6)

Indeed, since u∂tu = 0 on Γt, from Lemma 2.2 we have

d

dt
ψ(t) =

∫
Ωt

|∂tu|2 dx+

∫
Ωt

∂2
t uu dx.

Then using equation (1.1) and the definition of E(t) in (2.16), we have

d

dt
ψ(t) =− E(t) +

3

2

∫
Ωt

|∂tu|2 dx−
1

2

∫
Ωt

|∇u|2 dx

−
∫

Ωt

∂tuu dx+

∫
Ωt

[F (u)− f(u)u]dx+

∫
Ωt

g u dx. (4.7)

From (2.8) and (2.20) we have∫
Ωt

[F (u)− f(u)u]dx ≤ β

2λ∗1

∫
Ωt

|∇u|2 dx+ Cf .

From (2.5), Hölder and Young inequalities,

−
∫

Ωt

∂tuu dx ≤
β0

2

∫
Ωt

|∇u|2 dx+
1

2β0λ∗1

∫
Ωt

|∂tu|2 dx,

and ∫
Ωt

g u dx ≤ β0

2

∫
Ωt

|∇u|2 dx+
1

2β0λ∗1
‖g(t)‖2

L2(Ωt)
.

So, plugging the above inequalities into (4.7) and in view of definition of β0 in (2.20), we
obtain (4.6).
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Step 3: Conclusion. Note that from (2.17) we have

d

dt
E(t) ≤ −1

2

∫
Ωt

|∂tu|2 dx+
1

2
‖g(t)‖2

L2(Ωt)
,

and we take

ε = min
{
ε0,
(

3 +
1

β0λ∗1

)−1}
. (4.8)

Then, from (4.6),
d

dt
Eε(t) ≤ −εE(t) + ‖g(t)‖2

L2(Ωt)
+ εCf .

Taking into account the second inequality in (4.4),

d

dt
Eε(t) ≤ −

2ε

3
Eε(t) + ‖g(t)‖2

L2(Ωt)
+

4ε

3
Cf .

Therefore, integrating over [τ, t] and since
∫ t
τ
e−k(t−s)ds ≤ 1/k, we get

Eε(t) ≤ Eε(τ)e−
2ε
3

(t−τ) +

∫ t

τ

e−
2ε
3

(t−s)‖g(s)‖2
L2(Ωs)

ds+ 2Cf .

Using again (4.4) we obtain

E(t) ≤ 3E(τ)e−
2ε
3

(t−τ) + 2

∫ t

τ

e−
2ε
3

(t−s)‖g(s)‖2
L2(Ωs)

ds+ 6Cf . (4.9)

Now, inspecting the definition of ε in (4.8) we infer that 2ε/3 = σ1. Then, estimate
(4.3) follows from (4.9) and both sides of (2.19) with C1 = 3CFβ

−1
0 , C2 = 2β−1

0 and
C3 = 7β−1

0 .

Lemma 4.3. Let us define ρ0(t) such that

|ρ0(t)|2 = C2

∫ t

−∞
e−σ0(t−s)‖g(s)‖2

L2(Ωs)
ds+ C3Cf + 1. (4.10)

Then the family B̂0 = {B0(t)}t∈R defined by the closed balls

B0(t) = BXt(0, ρ0(t))

is pullback D-absorbing.

Proof. Firstly we observe that assumptions (2.9)-(2.10) imply that∫ t

−∞
e−σ0(t−s)‖g(s)‖2

L2(Ωs)
ds <∞, ∀ t ∈ R,

and therefore (4.10) is well-defined. Now, let D̂ ∈ D and t ∈ R. Since σ0 ≤ σ1, we can
majorate e−σ1(t−s) by e−σ0(t−s) in the integral appearing in (4.3). Then we have,

‖U(t, τ)zτ )‖2
Xt ≤ C1

(
1 + |ρD̂(τ)|4

)
e−σ1(t−τ) + C2

∫ t

τ

e−σ0(t−s)‖g(s)‖2
L2(Ωs)

ds+ C3Cf

≤ C1e
−σ1t(1 + |ρD̂(τ)|4)eσ1τ + |ρ0(t)|2 − 1, (4.11)
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for all zτ ∈ D(τ). Then, because (1 + |ρD̂(τ)|4)eσ1τ → 0 as τ → −∞, there exists

τ0(t, D̂) < t such that

‖U(t, τ)zτ‖2
Xt ≤ |ρ0(t)|2, if τ < τ0(t, D̂), zτ ∈ D(τ),

that is,
U(t, τ)D(τ) ⊂ B0(t) if τ < τ0(t, D̂).

This shows that B̂0 is a pullback D-absorbing family.

4.3 Pullback D-asymptotic compactness

To simplify the presentation we first prove a stabilization inequality.

Lemma 4.4. Let B̂0 the pullback D-absorbing family given by Lemma 4.3. Then, there
exists a constant σ2 > σ1, and a constant Cτ,t > 0, depending on τ ≤ t, such that

‖U(t, τ)z1 − U(t, τ)z2‖2
Xt ≤ 3 |ρ0(τ)|2e−σ2(t−τ) + Cτ,t

∫ t

τ

‖u1(s)− u2(s)‖2
L4(Ωs)

ds

+ 4

∫ t

τ

∫
Ωs

(
f(u2)− f(u1)

)
∂tw dx ds, (4.12)

where zi ∈ B0(τ) and U(t, τ)zi = (ui(t), ∂tui(t)), i = 1, 2.

Proof. Part of the arguments of the proof are similar to the ones of Lemma 4.2. First we
observe that w = u1 − u2 is a weak solution of

∂2
tw −∆w + ∂tw = f(u2)− f(u1), x ∈ Ωt, t ≥ τ, (4.13)

with Dirichlet boundary condition and initial conditions

w(0) = u1(0)− u2(0) and ∂tw(0) = ∂tu1(0)− ∂tu2(0).

Next we define the energy

G(t) =
1

2
‖(w(t), ∂tw(t))‖2

Xt .

Then by multiplying equation (4.13) by ∂tw and integrating over Ωt, there exists C2 > 0
such that

d

dt
G(t) ≤ −

∫
Ωt

|∂tw|2 dx+

∫
Ωt

(
f(u2)− f(u1)

)
∂tw dx. (4.14)

Let us set

χ(t) =

∫
Ωt

∂tww dx and Gα(t) = G(t) + αχ(t), α > 0.

It is easy to see that

|χ(t)| ≤ max
{

1,
1

λ∗1

}
G(t).
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Then taking

α0 =
1

2
min{1, λ∗1}, (4.15)

we have
1

2
G(t) ≤ Gα(t) ≤ 3

2
G(t), α ≤ α0, t ∈ R. (4.16)

Arguing as in the proof of Lemma 4.2, we obtain

χ′(t) = −G(t) +
(3

2
+

1

λ∗1

)∫
Ωt

|∂tw|2 dx+

∫
Ωt

(
f(u2)− f(u1)

)
w dx.

Since∫
Ωt

(
f(u2)− f(u1)

)
w dx ≤ C

(
1 + ‖u1(t)‖2

L4(Ωt)
+ ‖u2(t)‖2

L4(Ωt)

)
‖w(t)‖2

L4(Ωt)

≤ C
(
1 + ‖U(t, τ)z1‖2

Xt + ‖U(t, τ)z2‖2
Xt

)
‖w(t)‖2

L4(Ωt)
,

and from (4.11),

‖U(t, τ)zi‖2
Xt ≤ C1(1 + |ρ0(τ)|4)e−σ1(t−τ) + |ρ0(t)|2 − 1,

then there exists a constant k(τ, t) > 0 such that

χ′(t) ≤ −G(t) +
(3

2
+

1

λ∗1

)∫
Ωt

|∂tw|2 dx+ k(τ, t)‖w(t)‖2
L4(Ωt)

.

In view of (4.14), taking

α = min
{
α0,
(3

2
+

1

λ∗1

)−1}
, (4.17)

we see that, since α ≤ 1,

d

dt
Gα(t) ≤ −αG(t) + k(τ, t)‖w(t)‖2

L4(Ωt)
+

∫
Ωt

(
f(u2)− f(u1)

)
∂tw dx.

Then, using (4.16) and integrating over [τ, t], we obtain as before,

Gα(t) ≤ Gα(τ)e−
2α
3

(t−τ) + sup
s∈[τ,t]

k(τ, s)

∫ t

τ

e−
2α
3

(t−τ)‖w(s)‖2
L4(Ωs)

ds

+

∫ t

τ

e−
2α
3

(t−τ)

∫
Ωs

(
f(u2)− f(u1)

)
∂tw dx ds.

Then, defining σ2 = 2α/3, and using (4.16) again, we obtain

G(t) ≤ 3G(τ)e−σ2(t−τ) + 2 sup
s∈[τ,t]

k(τ, s)

∫ t

τ

‖w(s)‖2
L4(Ωs)

ds

+ 2

∫ t

τ

∫
Ωs

(
f(u2)− f(u1)

)
∂tw dx ds.

In addition, from definition of G(t) we have G(τ) ≤ 1
2
|ρ0(τ)|2, and therefore (4.12) follows

with Cτ,t = 4 sups∈[τ,t] k(τ, s). To complete the proof of the Lemma, from (4.5) and (4.15)
we see that ε0 < α0, since β0 < 1/2. Then from (4.8) and (4.17) we conclude that ε < α.
This shows that σ2 > σ1.
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Lemma 4.5. Under the assumptions of Theorem 4.1 the corresponding process is pullback
D-asymptotically compact.

Proof. At the light of Lemma 4.4, we will construct a contractive function in order to
apply Theorem 3.2. Given t ∈ R and ε > 0, from (4.10) we can write

|ρ0(τ)|2 ≤
(
C2

∫ τ

−∞
eσ0s‖g(s)‖2

L2(Ωs)
ds
)
e−σ0τ + C3Cf + 1, τ ≤ t.

Since the integral in the above relation does not increase as τ decreases, and σ0 < σ2, we
have

lim
τ→−∞

|ρ0(τ)|2e−σ2(t−τ) = lim
τ→−∞

e(σ2−σ0)τ
(
C2

∫ τ

−∞
eσ0s‖g(s)‖2

L2(Ωs)
ds
)
e−σ2t = 0.

Therefore, there exists τε = τε(t, ε) ≤ t such that

3|ρ0(τ0)|2e−σ2(t−τε) < ε2.

Then, we define Ψε : B0(τε)×B0(τε)→ R by

Ψε(z1, z2)2 = Cτε,t

∫ t

τε

‖u1(s)− u2(s)‖2
L4(Ωs)

ds

+ 4

∣∣∣∣∫ t

τε

∫
Ωs

(
f(u2)− f(u1)

)(
∂tu1 − ∂tu2

)
dx ds

∣∣∣∣ ,
where Cτε,t > 0 is defined in (4.12). Then, from Lemma 4.4 we see that

‖U(t, τε)y − U(t, τε)z‖Xτ ≤ ε+ Ψε(y, z), ∀ y, z ∈ B0(τε).

It remains to show that Ψε is contractive on B0(τε). To this end, given any sequence {zn}
of B0(τε) we have, from (4.3) for instance, that

‖U(s, τε)zn‖Xs ≤Mτε,t, ∀ s ∈ [τε, t].

Using the notation (un(s), ∂tun(s)) = U(s, τε)zn, it follows that for some C5 > 0,

‖un‖L2(τε,t;H1
0 (Ωt)) ≤ C5 and ‖∂tun‖L2(τε,t;L2(Ωs)) ≤ C5.

Then, since H1
0 (Ωs) is compactly embedded in L4(Ωs), from Lemma 2.1 (Aubin-Lions) we

conclude that there is u and a subsequence {unk} such that

unk → u strongly in L2(τε, t;L
4(Ωs)). (4.18)

That is,

lim
k→∞

lim
l→∞

∫ t

τε

‖unk(s)− unl(s)‖2
L4(Ωs)

ds = 0. (4.19)
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Finally, we estimate the f term in Ψε. By integration,∫ t

τε

∫
Ωs

(
f(unk)− f(unl)

)
(∂tunk − ∂tunl) dx ds = A(k, l) +B(k, l),

where

A(k, l) =

∫
Ωt

[
F (unk(t)) + F (unl(t))

]
dx−

∫
Ωτε

[
F (unk(τε)) + F (unl(τε))

]
dx,

and

B(k, l) = −
∫ t

τε

∫
Ωs

[
f(unk)∂tunl + f(unl)∂tunk

]
dxds.

Since |F (u)| ≤ C ′(1 + |u|4), its Nemytskii map NF : L4(Ωs) → L1(Ωs) is continuous, for
any fixed s. Then, the convergence (4.18) implies that

lim
k→∞

lim
l→∞

A(k, l) = 2

∫
Ωt

F (u(t)) dx− 2

∫
Ωτε

F (u(τε)) dx.

Also, since the Nemytskii map Nf : H1
0 (Ωs) → L2(Ωs) maps bounded sets in bounded

sets, for any fixed s, we see that f(un) ⇀ f(u) weakly in L2(Ωs). Then, we infer that

lim
k→∞

(
lim
l→∞

B(k, l)
)

= −2

∫ t

τε

∫
Ωs

f(u(s))∂tu(s) dxds

= −2

∫
Ωt

F (u(t)) dx+ 2

∫
Ωτε

F (u(τε)) dx.

Therefore

lim
k→∞

lim
l→∞

∫ t

τε

∫
Ωs

(
f(unk)− f(unl)

)
(∂tunk − ∂tunl) dx ds = 0.

Combining this with (4.19) we see that {zn} has a subsequence that

lim
k→∞

lim
l→∞

Ψε(znk , znl) = 0.

Then, the result follows from Theorem 3.2.

4.4 Proof of main result

Proof of Theorem 4.1 From Lemmas 4.3 and 4.5, the evolution process generated
by the problem (1.1)-(1.3), with σ0 ≤ σ1 admits a pullback D-absorbing family and it is
pullback D-asymptotically compact. Then, Theorem 3.1 guarantees the existence of the
minimal pullback D-attractor.

It remains to prove that the pullback attractor belongs to D under further assumption
σ0 < σ1/2. Clearly D is inclusion closed. Then we must show that B̂0 ∈ D, that is

lim
τ→−∞

|ρ0(τ)|4eσ1τ = 0. (4.20)
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From (4.10),

|ρ0(τ)|2e
σ1
2
τ =

(
C2

∫ τ

−∞
eσ0s‖g(s)‖2

L2(Ωs)
ds
)
e(

σ1
2
−σ0)τ +

(
C3Cf + 1

)
e
σ1
2
τ .

Now, since the integral in the above relation is non-increasing as τ decreases, and σ1
2
−σ0 >

0, we see that
lim

τ→−∞
|ρ0(τ)|2e

σ1
2
τ = 0.

Therefore (4.20) holds and B̂0 ∈ D. Hence the second part of Theorem 3.1 guarantees
that the attractor belongs to D.
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