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Abstract. In this paper, the existence of regular pullback attractors as well as
their upper semicontinuous behaviour in H1-norm are analysed for a paramet-

erized family of non-autonomous nonlocal reaction-diffusion equations without
uniqueness, improving previous results [Nonlinear Dyn. 84 (2016), 35–50].

1. Introduction and existence results. Many nonlocal problems have been ana-
lysed in the last few decades due to their usefulness in real applications (e.g. cf.
[23, 4, 25, 40, 3]). Namely, many authors have been interested in studying the
nonlocal parabolic equation

∂u

∂t
− a(l(u))∆u = f,

where a is a continuous function and l ∈ (L2(Ω))′, i.e.

l(u) = lg(u) =

∫
Ω

g(x)u(x)dx.

From a biological point of view, the function u might represent the density of a
population. Additional assumptions could be imposed on the function a to better
reflect the behaviour of the community. For instance, to model species with a
tendency to leave crowded zones, a natural assumption would be to assume that a
is an increasing function of its argument. On the other hand, if we are dealing with
species attracted by growing population, one would assume a to decrease. This
equation has been used in epidemic theory and from a physical point of view, to
study the heat propagation (for more details cf. [13, 14]).

It is worth highlighting that the above equation is not a trivial perturbation of
the heat equation and serious difficulties arise in different contexts. For instance,
the existence of a Lyapunov function is not guaranteed in a general framework. Ad-
ditional requirements (see [14] for more details) or more specific nonlocal operators,
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which are strongly related to the diffusion terms (see [17, 15]), are needed to build
this structure.

Many authors have been interested in studying the asymptotic behaviour of the
solutions to problems of the same kind as the one presented above. For instance,
in [13] Chipot and Lovat establish a comparison result between two stationary
solutions and the solution of the evolution problem. Then, using this result, they
prove the convergence of the solution of the evolution problem towards a stationary
solution. Later, Chipot and Molinet [14] generalise the results obtained in [13]
dealing with a continuum of steady states, making use of dynamical systems. In
[16] Chipot and Siegwart consider a more general elliptic operator to study the
long-time behaviour of the solutions. Chang and Chipot [11] analyse the same
kind of results as in [13], however, in this case the authors deal with two nonlocal
operators. Another interesting study is the one by Chipot and Zheng in [18], where
the authors analyse the convergence of the solution of the evolution problem to
one of the equilibria without assuming uniqueness of stationary solutions. Among
several other results, Andami Ovono [1] analyses the existence of the compact global
attractor in L2(Ω).

If f also depends on the unknown u, the study of the stationary solutions is
not trivial at all, and the natural generalization for the analysis of the long-time
behaviour of the solutions is to consider the theory of attractors. Although an
autonomous approach is almost new in this setting, it might be meaningful (and
more general) to consider time-dependent terms in the model and then there are
several approaches from the point of view of non-autonomous dynamical systems,
like skew-product flows (see Sell [38]), uniform attractors and their kernel sections
(cf. Chepyzhov and Vishik [12]) and pullback attractors (see Kloeden and Schmalfuß
[30, 31] and Kloeden [28], also related to random dynamical systems [21]). This
last approach allows us to minimize the assumptions on the forcing terms and the
resultant objects are strictly invariant in a suitable non-autonomous-dynamical-
system sense, unlike what happens with uniform attractors. Furthermore, pullback
attractors let us study the behaviour of the current system considering initial times
that come from the past (e.g. cf. [29] for more details). Many new results have
appeared over the last years related to pullback attractors. Some authors have
been interested in studying the pullback attractor in the classical sense, i.e. the
pullback attractor of solutions starting in fixed bounded sets. Others, though, have
employed the concept of attraction related to a class of families, called universe
D, which is made up of sets which are allowed to move in time and are usually
defined in terms of a tempered condition (e.g. cf. [19, 9, 10]). This last approach
has been used recently to study nonlocal problems (cf. [5, 7]). For instance, in [5]
the existence of pullback attractors in L2(Ω) and H1

0 (Ω) is established for a non-
autonomous parabolic equation with nonlocal diffusion and sublinear terms. Later
in [7], continuing in a single-valued framework (the nonlocal viscosity is locally
Lipschitz), the existence of these families is analysed for a non-autonomous nonlocal
reaction-diffusion equation.

In addition, in [6] the existence of pullback attractors in L2(Ω) is analysed in a
multi-valued framework for the non-autonomous nonlocal reaction-diffusion prob-
lem 

∂u

∂t
− (1− ε)a(l(u))∆u = f(u) + εh(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω,
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where ε ∈ [0, 1] and no locally Lipschitz assumption on the function a or monoton-
icity on the nonlinearity f are imposed (so lack of uniqueness). Moreover, the upper
semicontinuous behaviour of attractors in L2-norm is studied. Namely, it is proved
that the family of pullback attractors converges to the compact global attractor as-
sociated to the autonomous problem when ε goes to 0. [Do not confuse this notion,
the upper-semicontinuous behaviour of attractors, with upper-semicontinuous pro-
cess (see Definition 4). While being an upper-semicontinuous multi-valued process is
a property only related with a two-parameter semigroup, the upper-semicontinuous
behaviour of attractors takes into account all the processes indexed by the para-
meter in which it is taken the limit and it analyses an asymptotic property of a
whole family of problems.]

In this paper we improve the results given in [6], analysing existence of pullback
attractors in H1

0 (Ω) as well as their upper semicontinuous behaviour in H1-norm.
According to [6, Section 6] we consider the parameterized family (ε ∈ [0, 1]) of
non-autonomous nonlocal reaction-diffusion problems

(Pε)


∂u

∂t
− g1(ε)a(l(u))∆u = g̃1(ε)f(u) + g0(ε)h(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω,

where Ω is a bounded open subset of RN of class C1,1, τ ∈ R, the nonlocal diffusion
term fulfils that there exists m > 0 such that

a ∈ C(R; [m,∞)), (1)

l ∈ (L2(Ω))′. (2)

Concerning the family of perturbed coefficients, varying with the parameter ε,
suppose that

g1 ∈ C([0, 1]; (0,∞)), g̃1 ∈ C([0, 1]; [0,∞)), g0 ∈ C([0, 1]). (3)

Actually, at some stages of the paper –not from the very beginning– it will be
imposed that g1(0) = g̃1(0) = 1 and g0(0) = 0 (the values of g1 and g̃1 at 0 are just
for the sake of simplicity when dealing with the limit problem –see Theorems 7 and
8–; indeed any other values can be, after rearrangement, easily translated to this
situation).

Regarding the nonlinearity, we assume that the function f ∈ C1(R) (cf. Remark
4 for a more general setting) and there exist positive constants α1, α2 and κ, η ≥ 0
and p ≥ 2 such that

− κ− α1|s|p ≤ f(s)s ≤ κ− α2|s|p ∀s ∈ R. (4)

f ′(s) ≤ η ∀s ∈ R, (5)

From (4) we deduce that there exists β > 0 such that

|f(s)| ≤ β(|s|p−1 + 1) ∀s ∈ R. (6)

The structure of this paper is as follows. In the rest of this Section 1, the setting
of the problem is established as well as the existence of strong solutions and the
regularising effect of the equation. Section 2 is devoted to providing abstract results
on multi-valued non-autonomous dynamical systems which are essential to prove
the existence of pullback attractors in L2(Ω) and H1

0 (Ω) in the last two sections.
Namely, in Section 3 we generalise some results of [6], which guarantee the existence
of pullback attractors in L2(Ω) and will be crucial in what follows. In Section 4,
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we show the existence of pullback attractors in H1-norm and analyse their upper
semicontinuity with respect to the parameter. Indeed, we prove that both families
of attractors, those given in L2(Ω) and H1

0 (Ω), converge to the compact global
attractor associated to the autonomous problem (P0) in H1-norm when ε goes to
0.

Regarding the notation, the inner product in L2(Ω) is represented by (·, ·) and
its associated norm by | · | (since no confusion arises, this also denotes the Lebesgue
measure of a subset of RN ). The inner product in H1

0 (Ω), given by the product
of the gradients in (L2(Ω))N , is represented by ((·, ·)), and by ‖ · ‖ the associated
norm. The duality product between H−1(Ω) and H1

0 (Ω) is denoted by 〈·, ·〉 and
by ‖ · ‖∗, the norm in H−1(Ω). Identifying L2(Ω) with its dual, the usual chain of
dense and compact embeddings H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) holds. Observe that,

by the Riesz theorem, we can obtain l̃ ∈ L2(Ω) with 〈l, u〉(L2(Ω))′,L2(Ω) = (l̃, u);

here on, thanks to the identification (L2(Ω))′ ≡ L2(Ω), we just use l instead of l̃,
but at the same time we keep the usual notation in the existing previous literature
l(u). The duality product between Lp(Ω) and Lq(Ω), where p and q are conjugate
exponents, is denoted by (·, ·) and the norm in Lp(Ω) is represented by | · |p. Finally,
‖ · ‖Ls(τ,T ;X) denotes the norm in Ls(τ, T ;X) where s ≥ 1 and X is a separable
Banach space.

To start with the weak-solution framework, we assume that uτ ∈ L2(Ω) and
h ∈ L2

loc(R;H−1(Ω)).

Definition 1. A weak solution to problem (Pε) is a function u that belongs to
L∞(τ, T ;L2(Ω)) ∩ L2(τ, T ;H1

0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)) for all T > τ , with u(τ) = uτ ,
and such that for all v ∈ H1

0 (Ω) ∩ Lp(Ω)

d

dt
(u(t), v) + g1(ε)a(l(u(t)))((u(t), v)) = g̃1(ε)(f(u(t)), v) + g0(ε)〈h(t), v〉, (7)

where the previous equation must be understood in the sense of D′(τ,∞).

When u is a weak solution to (Pε), making use of the continuity of the function
a, (2), (6) and (7), it holds that u′ ∈ L2(τ, T ;H−1(Ω)) + Lq(τ, T ;Lq(Ω)) for any
T > τ . Therefore, u ∈ C([τ,∞);L2(Ω)) and the initial datum in (Pε) makes sense.
Furthermore, the following energy equality holds

|u(t)|2 + 2g1(ε)

∫ t

s

a(l(u(r)))‖u(r)‖2dr

= |u(s)|2 + 2g̃1(ε)

∫ t

s

(f(u(r)), u(r))dr + 2g0(ε)

∫ t

s

〈h(r), u(r)〉dr (8)

for all τ ≤ s ≤ t (cf. [22, Théorème 2, p. 575] or [41, Lemma 3.2, p. 71]).
The existence of weak solutions to (Pε) has been proved in [6, Theorem 1] (as

commented in the introduction, the lack of Lipschitz character on the function a
does not allow to ensure uniqueness).

Theorem 1. Assume that (1)–(4) hold and h ∈ L2
loc(R;H−1(Ω)). Then, for any

uτ ∈ L2(Ω), there exists at least one weak solution to (Pε).

Now, in a more regular framework, we will show the regularising effect of the
equation and the existence of strong solutions. In order to do that we assume that
the function f also fulfils (5) (anyway this assumption can be weakened, see Remark
4 for more details), and h ∈ L2

loc(R;L2(Ω)).
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Definition 2. A strong solution to (Pε) is a weak solution which also belongs to
L2(τ, T ;D(−∆)) ∩L∞(τ, T ;H1

0 (Ω)) for all T > τ .

Now we show the regularising effect of the equation for any ε and the existence
of strong solutions.

Theorem 2. Assume that (1)–(5) hold and h ∈ L2
loc(R;L2(Ω)). Then, for any uτ ∈

L2(Ω), each weak solution u belongs to L∞(τ + ε, T ;H1
0 (Ω))∩L2(τ + ε, T ;D(−∆))

for every ε > 0 and T > τ + ε. In addition, if the initial datum uτ ∈ H1
0 (Ω), then

the weak solutions to (Pε) are in fact strong solutions.

Proof. We split the proof into two steps.

Step 1. Regularising effect.
Fix a weak solution u(·; τ, uτ ) to (Pε), for short denoted by u(·). Then, we consider

the problem

(Pε,u)


dy

dt
− g1(ε)a(l(u))∆y = g̃1(ε)f(y) + g0(ε)h(t) in Ω× (τ,∞),

y = 0 on ∂Ω× (τ,∞),
y(x, τ) = uτ (x) in Ω.

Observe that there exists a unique solution to (Pε,u) thanks to the monotonicity
of the Laplacian and the assumption (5) made on f (cf. [33, Chapter II]). Thus,
more regular (a posteriori) estimates as well as using the Galerkin approximations
make complete sense. Moreover, it holds that y = u since u solves (Pε), and (Pε,u)
possesses a unique solution.

Now, making use of spectral theory and regularity results (cf. [39, 32]), consider
a sequence {wi}i≥1 of eigenfunctions of −∆ in H1

0 (Ω), which is a Hilbert basis of
L2(Ω). For each integer n ≥ 1, we define the function un(t; τ, uτ ) =

∑n
j=1 ϕnj(t)wj

(un(t) for short), which is the local solution to
d

dt
(un(t), wj)+ g1(ε)a(l(u(t)))((un(t), wj))=(g̃1(ε)f(un(t))+g0(ε)h(t), wj)

t ∈ (τ,∞),
(un(τ), wj) = (uτ , wj), j = 1, . . . , n.

(9)
Multiplying (9) by ϕnj(t) and summing from j = 1 until n, we deduce

1

2

d

dt
|un(t)|2 + g1(ε)a(l(u(t)))‖un(t)‖2 = g̃1(ε)(f(un(t)), un(t)) + g0(ε)(h(t), un(t))

a.e. t ∈ (τ, T ).
Integrating the previous expression between τ and T , and making use of (1) and

(4), we obtain

|un(T )|2+2g1(ε)m

∫ T

τ

‖un(t)‖2dt ≤ |uτ |2+2g̃1(ε)(T−τ)κ|Ω|+2g0(ε)

∫ T

τ

(h(t), un(t))dt.

Using the Cauchy inequality,∫ T

τ

‖un(t)‖2dt ≤ 1

g1(ε)m
|uτ |2 +

2g̃1(ε)(T − τ)κ|Ω|
g1(ε)m

+
(g0(ε))2

λ1(g1(ε))2m2

∫ T

τ

|h(t)|2dt.

(10)
On the other hand, multiplying (9) by λjϕnj(t), summing from j = 1 until n and

using (1), we have

1

2

d

dt
‖un(t)‖2+g1(ε)m|−∆un(t)|2 ≤ g̃1(ε)(f(un(t)),−∆un(t))+g0(ε)(h(t),−∆un(t))
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a.e. t ∈ (τ, T ).
Applying (5) and the Cauchy inequality, it holds

d

dt
‖un(t)‖2+g1(ε)m|−∆un(t)|2 ≤ 2g̃1(ε)η‖un(t)‖2+

|g̃1(ε)f(0) + g0(ε)h(t)|2

g1(ε)m
(11)

a.e. t ∈ (τ, T ).
Integrating between s and t, with τ < s ≤ t ≤ T, we obtain

‖un(t)‖2 + g1(ε)m

∫ t

s

| −∆un(r)|2dr

≤‖un(s)‖2 + 2g̃1(ε)η

∫ T

τ

‖un(r)‖2dr +
1

g1(ε)m

∫ T

τ

|g̃1(ε)f(0) + g0(ε)h(r)|2dr.

Now, integrating w.r.t. s between τ and t, we have in particular

(t− τ)‖un(t)‖2

≤(1 + 2g̃1(ε)(T − τ)η)

∫ T

τ

‖un(r)‖2dr +
T − τ
g1(ε)m

∫ T

τ

|g̃1(ε)f(0) + g0(ε)h(r)|2dr

for all t ∈ [τ + ε, T ] with ε ∈ (0, T − τ).
Then, from this and making use of (10), it holds that the sequence {un} is

bounded in L∞(τ + ε, T ;H1
0 (Ω)) ∩L2(τ + ε, T ;D(−∆)). Therefore, by the unique-

ness of weak solution to (Pε,u), it fulfils{
un

∗
⇀ u weakly-star in L∞(τ + ε, T ;H1

0 (Ω)),

un ⇀ u weakly in L2(τ + ε, T ;D(−∆)).

Step 2. Strong solution. Assume that uτ ∈ H1
0 (Ω). We will see that u ∈

L∞(τ, T ;H1
0 (Ω)) ∩ L2(τ, T ;D(−∆)) and actually also u′ ∈ Lq(τ, T ;Lq(Ω)) for all

T > τ.
Integrating (11) between τ and t ∈ [τ, T ], we obtain

‖un(t)‖2 + g1(ε)m

∫ t

τ

| −∆un(r)|2dr

≤‖uτ‖2 + 2g̃1(ε)η

∫ T

τ

‖un(r)‖2dr +
1

g1(ε)m

∫ T

τ

|g̃1(ε)f(0) + g0(ε)h(r)|2dr.

Then, taking into account that {un} is bounded in L2(τ, T ;H1
0 (Ω)), we deduce

that {un} is bounded in L∞(τ, T ;H1
0 (Ω))∩L2(τ, T ;D(−∆)). Thanks to the unique-

ness of weak solution to (Pε,u), we have{
un

∗
⇀ u weakly-star in L∞(τ, T ;H1

0 (Ω)),

un ⇀ u weakly in L2(τ, T ;D(−∆)).

On the other hand, since

∂u

∂t
− g1(ε)a(l(u))∆u = g̃1(ε)f(u) + g0(ε)h(t) in Lq(τ, T ;Lq(Ω)),

it holds that u′ ∈ Lq(τ, T ;Lq(Ω)).
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2. Set-valued non-autonomous dynamical systems and pullback attract-
ors. In this section, we provide abstract results on multi-valued non-autonomous
dynamical systems (cf. [37, 8, 36, 2]) which are crucial to prove the existence
of minimal pullback attractors. Furthermore, results which establish relationships
between the families of pullback attractors are also stated (cf. [36]).

To set our abstract framework, we consider a metric space (X, dX) and the set
R2
d = {(t, s) ∈ R2 : t ≥ s}. In addition, let us denote by P(X) the family of all

nonempty subsets of X and consider a universe D, which is a nonempty class of

families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X).

Definition 3. A multi-valued map U : R2
d ×X 7→ P(X) is a multi-valued process

on X (also called multi-valued non-autonomous dynamical system) if it fulfils

(i) U(τ, τ)x = {x} ∀τ ∈ R ∀x ∈ X,
(ii) U(t, τ)x ⊂ U(t, s)(U(s, τ)x) ∀τ ≤ s ≤ t ∀x ∈ X, where

U(t, τ)W :=
⋃
y∈W

U(t, τ)y ∀W ⊂ X.

When the relationship established in (ii) is an equality instead of an inclusion, the
multi-valued process U is called strict.

Definition 4. A multi-valued process U on X is upper-semicontinuous if for all
(t, τ) ∈ R2

d, the mapping U(t, τ) is upper-semicontinuous from X into P(X), that
is, for each x ∈ X and any neighbourhood N (U(t, τ)x) of U(t, τ)x, there exists a
neighbourhood M of x such that U(t, τ)y ⊂ N (U(t, τ)x) for any y ∈M.

Definition 5. A universe D is called inclusion-closed if given two families D̂ and

D̂′ such that D̂∈ D and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all

t ∈ R, it fulfils that D̂′ ∈ D.

Now, we consider a family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).
We do not require any additional condition on these sets such as compactness or
boundedness.

Definition 6. The family D̂0 = {D0(t) : t ∈ R} is pullback D-absorbing for a

multi-valued process U if for any t ∈ R and D̂ ∈ D, there exists τ(D̂, t) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀τ ≤ τ(D̂, t).

Definition 7. Given a family D̂0 = {D0(t) : t ∈ R}, a multi-valued process U on

X is said to be pullback D̂0-asymptotically compact if for any t ∈ R, every sequence
{τn} ⊂ (−∞, t] such that τn → −∞ and any sequence {xn} ⊂ X with xn ∈ D0(τn)
for all n ∈ N, it fulfils that any sequence {yn}, with each yn ∈ U(t, τn)xn, is
relatively compact in X.

Given a universe D, a multi-valued process U on X is said to be pullback D-

asymptotically compact if it is pullback D̂-asymptotically compact for any D̂ ∈ D.
Definition 8. A family AD = {AD(t) : t ∈ R} ⊂ P(X) is called the minimal
pullback D-attractor for a multi-valued process U if the following properties are
fulfilled:

1. AD(t) is a nonempty compact subset of X for any t ∈ R,
2. AD is pullback D-attracting, i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for

all D̂ ∈ D and t ∈ R, where distX(·, ·) denotes the Hausdorff semi-distance in
X between two subsets of X,
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3. AD is negatively invariant, i.e. AD(t) ⊂ U(t, τ)AD(τ) for all (t, τ) ∈ R2
d,

4. For any family of closed sets Ĉ = {C(t) : t ∈ R} which is pullback D-
attracting, the relationship AD(t) ⊂ C(t) holds for all t ∈ R.

To continue our analysis, we define the omega limit of the family D̂ in time t by

Λ(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ)
X

∀t ∈ R,

where {. . . }
X

denotes the closure in X.
Now, we have the main result of this section, which ensures the existence of the

minimal pullback D-attractor for a multi-valued process U (cf. [6, Theorem 2]).

Theorem 3. Consider an upper-semicontinuous multi-valued process U which has

closed values, a pullback D-absorbing family called D̂0 = {D0(t) : t ∈ R} ⊂ P(X)

and also assume that U is pullback D̂0-asymptotically compact. Then, the family
AD = {AD(t) : t ∈ R} defined by

AD(t) =
⋃
D̂∈D

Λ(D̂, t)
X

∀t ∈ R

is the minimal pullback D-attractor and AD(t) ⊂ D0(t)
X

for all t ∈ R. In addition,

if D̂0 ∈ D, each D0(t) is closed and the universe D is inclusion-closed, then the
family AD ∈ D. Moreover, when U is strict, the family AD is invariant under the
multi-valued process U , i.e. AD(t) = U(t, τ)AD(τ) for all (t, τ) ∈ R2

d.

Now, we are going to establish relationships between pullback attractors (cf.
[36]), but first we need to introduce some notation. We denote by DXF the universe

of fixed nonempty bounded subsets of X, i.e. the class of all families D̂ of the form

D̂ = {D(t) = B : t ∈ R}, where B is a fixed nonempty bounded subset of X.

Corollary 1. Under the assumptions of Theorem 3, if DXF ⊂ D, then the following
relationship holds

ADXF (t) ⊂ AD(t) ∀t ∈ R,
where

ADXF (t) =
⋃

B bounded

Λ(B, t)
X

∀t ∈ R

is the minimal pullback DXF -attractor for the multi-valued process U .
In addition, if there exists T ∈ R such that the set

⋃
t≤T D0(t) is bounded in X,

then ADXF (t) = AD(t) for all t ≤ T .

Thanks to the following result, we can compare two attractors for a process (see
[24, Theorem 3.15] for a proof in the single-valued framework).

Theorem 4. Suppose that {(Xi, dXi)}i=1,2 are two metric spaces such that X1 ⊂
X2 with continuous injection, Di is a universe in P(Xi) for i = 1, 2, and D1 ⊂ D2.
Assume that U is a multi-valued map that acts as a multi-valued process in both
cases, i.e. U : R2

d × Xi → P(Xi) for i = 1, 2 is a multi-valued process. For each
t ∈ R,

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

i = 1, 2,
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where the subscript i in the symbol of the omega-limit set Λi is used to denote the
dependence on the respective topology. Then, A1(t) ⊂ A2(t) for all t ∈ R.

If moreover

(i) A1(t) is a compact subset of X1 for all t ∈ R,

(ii) for any D̂2 ∈ D2 and t ∈ R, there exist a family D̂1 ∈ D1 and a t∗
D̂1

such that

U is pullback D̂1-asymptotically compact, and for any s ≤ t∗
D̂1

there exists a

τs < s such that U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs,
then A1(t) = A2(t) for all t ∈ R.

3. Previous results on the asymptotic behaviour in L2-norm. In [6] the ex-
istence of pullback attractors to (Pε) in L2(Ω) is analysed. Namely, in what follows
we will recall the main results that guarantee the existence of these families. This is
the first step in order to state our regularity results in H1

0 (Ω) in Section 4. Observe
that the results are provided without proofs since (Pε) is a slight generalization of
the one analysed in [6]. However, we include the (adapted) statements here for the
sake of clarity when reading the next section.

Thanks to the existence of weak solutions to (Pε) (cf. [6, Theorem 1]), we can
define a multi-valued map Uε : R2

d × L2(Ω)→ P(L2(Ω)) as

Uε(t, τ)uτ = {u(t) : u ∈ Φε(τ, uτ )}, τ ≤ t, uτ ∈ L2(Ω),

where Φε(τ, uτ ) denotes the set of weak solutions to (Pε) in [τ,∞) with initial datum
uτ ∈ L2(Ω).

The following result is the natural generalization of [6, Lemma 1, Proposition 2]
to this setting.

Proposition 1. Assume that (1)–(4) hold and h ∈ L2
loc(R;H−1(Ω)). Then, Uε :

R2
d ×L2(Ω)→ P(L2(Ω)) is a strict upper-semicontinuous multi-valued process with

closed values for all ε ∈ [0, 1].

From now on, for any µ > 0, the class of all families of nonempty subsets D̂ =
{D(t) : t ∈ R} ⊂ P(L2(Ω)) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

|v|2
)

= 0

is denoted by DL2

µ . It is worth noting that DL2

F ⊂ DL
2

µ and DL2

µ is inclusion-closed.
From now on, we assume a condition to simplify the exposition and the form of

the limit problem (P0), namely
g1(0) = 1. (12)

To prove the existence of a pullback absorbing family, we assume that there exists
µ̄ ∈ (0, 2λ1m) such that ∫ 0

−∞
eµ̄s‖h(s)‖2∗ds <∞. (13)

Remark 1. From the continuity of g1 and (12) it is immediate to deduce that
there exists ε̄ ∈ (0, 1] such that µ̄ < 2g1(ε)λ1m for all ε ∈ [0, ε̄]. Indeed, this last
condition will be used in the sequel to construct the absorbing families in suitable

universes DL2

µε . Furthermore, it is consistent with the final goal of studying the
limit of problems (Pε) when ε goes to 0. In what follows the parameter µε is taken
in [µ̄, 2g1(ε)λ1m) since (13) also holds with the weight eµ̄s replaced by eµεs and

DL2

µ̄ ⊂ DL
2

µε , so a larger class of objects will be attracted.
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Then, it holds the following result (cf. [6, Proposition 4] for a similar proof).

Proposition 2. Assume that (1)–(4) and (12) hold, and h ∈ L2
loc(R;H−1(Ω))

fulfils (13) for some µ̄ ∈ (0, 2λ1m). Then, there exists ε̄ ∈ (0, 1] such that for

any ε ∈ [0, ε̄] and µε ∈ [µ̄, 2g1(ε)λ1m) the family D̂ε
0 = {Dε

0(t) : t ∈ R} defined
by Dε

0(t) = BL2(0, (RεL2(t))1/2), the closed ball in L2(Ω) of center zero and radius

(RεL2(t))1/2, where

RεL2(t) = 1 +
2g̃1(ε)κ|Ω|

µε
+

(g0(ε))2e−µεt

2g1(ε)m− λ−1
1 µε

∫ t

−∞
eµεs‖h(s)‖2∗ds, (14)

is pullback DL2

µε -absorbing for the multi-valued process Uε : R2
d×L2(Ω)→ P(L2(Ω)).

Besides, D̂ε
0 ∈ DL

2

µε .

Now to prove the pullback asymptotic compactness we first establish the following
estimates (cf. [6, Lemma 2] for an analogous proof).

Lemma 1. Under the assumptions of Proposition 2, there exists ε̄ ∈ (0, 1] such

that for any ε ∈ [0, ε̄], t ∈ R, µε ∈ [µ̄, 2g1(ε)λ1m) and D̂ ∈ DL2

µε , there exists

τ1(D̂, t) < t− 2, such that for any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ), the solutions to
(Pε) satisfy 

|u(r; τ, uτ )|2 ≤ ρε1(t) ∀r ∈ [t− 2, t],∫ r

r−1

‖u(s; τ, uτ )‖2ds ≤ ρε2(t) ∀r ∈ [t− 1, t],

∫ r

r−1

|u(s; τ, uτ )|ppds ≤
g1(ε)m

2α2g̃1(ε)
ρε2(t) ∀r ∈ [t− 1, t],

where

ρε1(t) = 1 +
2g̃1(ε)κ|Ω|

µε
+

(g0(ε))2e−µε(t−2)

2g1(ε)m− λ−1
1 µε

∫ t

−∞
eµεs‖h(s)‖2∗ds,

ρε2(t) =
1

g1(ε)m

(
ρε1(t) + 2g̃1(ε)κ|Ω|+ (g0(ε))2

g1(ε)m
max

r∈[t−1,t]

∫ r

r−1

‖h(s)‖2∗ds
)
.

The proof of the following result is very close to that of [6, Proposition 5] under
minor modifications.

Corollary 2. Under the assumptions and notation of Lemma 1, the multi-valued

process Uε is pullback DL2

µε -asymptotically compact for any ε ∈ [0, ε̄] and µε ∈
[µ̄, 2g1(ε)λ1m).

Now the existence of pullback attractors in L2(Ω) is guaranteed.

Theorem 5. Assume that (1)–(4) and (12) hold, and h ∈ L2
loc(R;H−1(Ω)) ful-

fils (13) for some µ̄ ∈ (0, 2λ1m). Then, there exists ε̄ ∈ (0, 1] such that for any
ε ∈ [0, ε̄] and µε ∈ [µ̄, 2g1(ε)λ1m), the process Uε possesses the minimal pullback

DL2

F -attractor Aε
DL2
F

= {Aε
DL2
F

(t) : t ∈ R} and the minimal pullback DL2

µε -attractor

AεDL2
µε

= {AεDL2
µε

(t) : t ∈ R}, which is strictly Uε-invariant.

In addition, the family AεDL2
µε

belongs to DL2

µε and the following relationships hold

AεDL2
F

(t) ⊂ AεDL2
µε

(t) ⊂ BL2(0, (RεL2(t))1/2) ∀t ∈ R ∀ε ∈ [0, ε̄].
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Moreover, if there exists some µ̃ ∈ (0, 2λ1m) such that h fulfils

sup
s≤0

(
e−µ̃s

∫ s

−∞
eµ̃θ‖h(θ)‖2∗dθ

)
<∞, (15)

then there exists ε̃ ∈ (0, 1] such that for any ε ∈ [0, ε̃], Aε
DL2
F

(t) = AεDL2
µε

(t) for all

t ∈ R.

4. Existence of pullback attractors and their upper semicontinuous be-
haviour in H1-norm. Now, we are ready to analyse the existence of pullback
attractors in H1

0 (Ω). Observe that D(−∆) = H2(Ω) ∩ H1
0 (Ω), thanks to the as-

sumptions made on the domain Ω (indeed C1,1 is a sufficient condition, and it can
be weaken, e.g. cf. [26, Theorem 9.15, p. 241]). Therefore, in what follows we
will use either the norm of D(−∆) or the norm of H2(Ω) ∩H1

0 (Ω) since both are
equivalent.

Under the assumptions imposed in Theorem 2, it does not seem possible to
guarantee that u ∈ C([τ, T ];H1

0 (Ω)) due to the fact that it is unknown whether or
not u′ belongs to L2(τ, T ;L2(Ω)). To ensure a positive answer to this question, we
will make the most of the known regularity for strong solutions, interpolation results
(cf. [42, Lemma II.4.1, p. 72]) and a certain growth condition on the nonlinearity
f . Namely, we assume that

|f(s)| ≤ C(1 + |s|γ+1) ∀s ∈ R, (16)

where γ = 4 when N = 3, γ = 2 when N = 4 and γ = 4/(N −2) when N ≥ 5. This
way, given u ∈ L∞(τ, T ;H1

0 (Ω))∩ L2(τ, T ;H2(Ω) ∩H1
0 (Ω)), we obtain∫ T

τ

∫
Ω

|f(u(x, t))|2dxdt (17)

≤2

∫ T

τ

∫
Ω

C2
(
1 + |u(x, t)|2γ+2

)
dxdt

≤2C2|Ω|(T − τ) + 2C2‖u‖2b̂
L∞(τ,T ;Lp(N,H

1
0))
‖u‖2b̃

L2(τ,T ;Lp(N,H2))

≤2C2
[
|Ω|(T − τ)+(CH1

0
(N))2b̂(CH2(N))2b̃‖u‖2b̂L∞(τ,T ;H1

0 (Ω))‖u‖
2b̃
L2(τ,T ;H2(Ω)∩H1

0 (Ω))

]
,

where b̂ = (1 − θ)(γ + 1), b̃ = θ(γ + 1), CH1
0
(N) and CH2(N) are the constants of

the continuous embeddings of H1
0 (Ω) and H2(Ω) into Lp-spaces respectively and

θ ∈ [0, 1].

Remark 2. Observe that condition (16) only concerns dimensions N ≥ 3. The
cases N = 1, 2 do not require any additional restriction since H1

0 (Ω) ⊂ Lp(Ω) for
all p <∞, and in view of (6) and the fact that u ∈ L∞(τ, T ;H1

0 (Ω)), it is immediate
that f(u) ∈ L2(τ, T ;L2(Ω)).

Then, under the previous assumptions it fulfils that u′ ∈ L2(τ, T ;L2(Ω)). There-
fore, it satisfies that u ∈ C([τ, T ];H1

0 (Ω)) and it holds

‖u(t)‖2 + 2g1(ε)

∫ t

s

a(l(u(r)))| −∆u(r)|2dr

=‖u(s)‖2 + 2g̃1(ε)

∫ t

s

(f(u(r)),−∆u(r))dr + 2g0(ε)

∫ t

s

(h(r),−∆u(r))dr. (18)



12 T. CARABALLO, M. HERRERA-COBOS AND P. MARÍN-RUBIO

Thanks to Theorem 2, the restriction of Uε to R2
d×H1

0 (Ω) defines a strict multi-
valued process intoH1

0 (Ω). Since no confusion arises, we will not modify the notation
and continue denoting this process by Uε.

Now to prove that the multi-valued process Uε is upper-semicontinuous with
closed values in H1

0 (Ω) for any ε fixed, we first provided the following auxiliary
result.

Proposition 3. Assume that (1)–(5) and (16) hold, and h ∈ L2
loc(R;L2(Ω)). Then,

if {unτ } ⊂ H1
0 (Ω) is such that unτ → uτ strongly in H1

0 (Ω), for any sequence {un}
with un ∈ Φε(τ, unτ ) for all n ≥ 1, there exist a subsequence of {un} (relabeled the
same) and u ∈ Φε(τ, uτ ) such that

un(t)→ u(t) strongly in H1
0 (Ω) ∀t ≥ τ . (19)

Proof. Consider fixed τ < T . In view of the energy equality (8) and (1), we deduce

1

2

d

dt
|un(t)|2 + g1(ε)m‖un(t)‖2 ≤ g̃1(ε)(f(un(t)), un(t)) + g0(ε)〈h(t), un(t)〉

a.e. t ∈ (τ, T ). Then, bearing in mind

(f(un(t)), un(t)) ≤ κ|Ω| − α2|un(t)|pp,

g0(ε)〈h(t), un(t)〉 ≤ (g0(ε))2‖h(t)‖2∗
2g1(ε)m

+
g1(ε)m

2
‖un(t)‖2,

we have

d

dt
|un(t)|2 + g1(ε)m‖un(t)‖2 + 2α2g̃1(ε)|un(t)|pp ≤ 2g̃1(ε)κ|Ω|+ (g0(ε))2

g1(ε)m
‖h(t)‖2∗

a.e. t ∈ (τ, T ). Integrating between τ and t ∈ (τ, T ],

|un(t)|2 + g1(ε)m

∫ t

τ

‖un(s)‖2ds+ 2α2g̃1(ε)

∫ t

τ

|un(s)|ppds

≤ |unτ |2 + 2g̃1(ε)κ|Ω|(T − τ) +
(g0(ε))2

g1(ε)m

∫ T

τ

‖h(s)‖2∗ds.

From the previous inequality, we obtain that the sequence {un} is bounded in
L∞(τ, T ;L2(Ω)) ∩ L2(τ, T ;H1

0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)). Taking this into account to-
gether with the fact that each un ∈ C([τ, T ];L2(Ω)), we deduce that there exists a
constant C∞ > 0 such that

|un(t)| ≤ C∞ ∀t ∈ [τ, T ] ∀n ≥ 1.

Now, since the function a ∈ C(R; [0,∞)) and l ∈ L2(Ω), there exists a constant
MC∞ > 0 such that

a(l(un(t))) ≤MC∞ ∀t ∈ [τ, T ] ∀n ≥ 1. (20)

Now, making use of (5) and the Cauchy inequality in the energy equality (18)
for the Galerkin approximations associated to the problems (Pε,un), integrating
between τ and t ∈ [τ, T ] and passing to the limit, we have

‖un(t)‖2 + g1(ε)m

∫ t

τ

| −∆un(s)|2ds

≤‖unτ ‖2 + 2g̃1(ε)η

∫ T

τ

‖un(s)‖2ds+

∫ T

τ

|g̃1(ε)f(0) + g0(ε)h(s)|2

g1(ε)m
ds. (21)
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Therefore, taking into account that {un} is bounded in L2(τ, T ;H1
0 (Ω)), it is

also bounded in L2(τ, T ;H2(Ω) ∩ H1
0 (Ω)). Bearing this in mind together with

(20), we deduce that {−a(l(un))∆un} is bounded in L2(τ, T ;L2(Ω)). In addition,
{f(un)} is bounded in L2(τ, T ;L2(Ω)), thanks to (16). As a consequence, {(un)′}
is bounded in L2(τ, T ;L2(Ω)). Then, applying the Aubin-Lions lemma, there exist
a subsequence of {un} (relabeled the same) and an element u ∈ L∞(τ, T ;H1

0 (Ω))∩
L2(τ, T ;H2(Ω) ∩H1

0 (Ω)) with u′ ∈ L2(τ, T ;L2(Ω)), such that

un
∗
⇀ u weakly-star in L∞(τ, T ;H1

0 (Ω)),

un ⇀ u weakly in L2(τ, T ;H2(Ω) ∩H1
0 (Ω)),

un → u strongly in L2(τ, T ;H1
0 (Ω)),

un(s)→ u(s) strongly in H1
0 (Ω) a.e. (τ, T ),

(un)′ ⇀ u′ weakly in L2(τ, T ;L2(Ω)),

f(un) ⇀ f(u) weakly in L2(τ, T ;L2(Ω)),

−a(l(un))∆un ⇀ −a(l(u))∆u weakly in L2(τ, T ;L2(Ω)),

(22)

where the limits of the last two convergences have been identified using [33, Lemma
1.3, p. 12].

Making use of the previous convergences, it holds that u fulfils (7) in the interval
(τ, T ) and u(τ) = uτ . Therefore, u ∈ Φε(τ, uτ ).

Now, we are ready to prove the convergence (19).
On the one hand, observe that the sequence {un} is equicontinuous in L2(Ω) on

[τ, T ], thanks to the boundedness of {(un)′} in L2(τ, T ;L2(Ω)). In addition, since
the sequence {un} is bounded in C([τ, T ];H1

0 (Ω)) and the embedding H1
0 (Ω) ↪→

L2(Ω) is compact, making use of the Ascoli-Arzelà Theorem, it holds for another
subsequence (relabeled again the same) the following convergence

un → u strongly in C([τ, T ];L2(Ω)). (23)

Furthermore, using the boundedness of {un} in C([τ, T ];H1
0 (Ω)), we have

un(t) ⇀ u(t) weakly in H1
0 (Ω) ∀t ∈ [τ, T ], (24)

where (23) has been used to identify the weak limit.
Now, we define the following continuous functions on [τ, T ]

Jn(t) = ‖un(t)‖2 − 2g̃1(ε)η

∫ t

τ

‖un(r)‖2dr −
∫ t

τ

|g̃1(ε)f(0) + g0(ε)h(r)|2

2g1(ε)m
dr,

J(t) = ‖u(t)‖2 − 2g̃1(ε)η

∫ t

τ

‖u(r)‖2dr −
∫ t

τ

|g̃1(ε)f(0) + g0(ε)h(r)|2

2g1(ε)m
dr.

Observe that all the functions Jn are non-increasing on [τ, T ] thanks to the energy
equality (18) for un. In addition, from (22), we deduce

Jn(t)→ J(t) a.e. t ∈ (τ, T ).

In fact, taking this into account together the continuity of J on [τ, T ] and the
non-increasing character of all Jn, it holds

Jn(t)→ J(t) ∀t ∈ [τ, T ].

Then, bearing in mind the definitions of J and Jn, we deduce

lim sup
n→∞

|un(t)|2 ≤ |u(t)|2 ∀t ∈ [τ, T ].
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From this and (24), (19) holds in [τ, T ]. Successive iterations of this procedure in
[τ, T + 1], [τ, T + 2], and so on, and a diagonal argument, yield (19) for all t ≥ τ for
a suitable subsequence.

As a consequence of the previous result, we obtain the following result (cf. [6,
Proposition 2]).

Proposition 4. Under the assumptions of Proposition 3, the multi-valued process
Uε is upper-semicontinuous with closed values in H1

0 (Ω) for all ε ∈ [0, 1].

Now we introduce new universes that involve more regularity.

Definition 9. For each µ > 0, DL
2,H1

0
µ denotes the class of all families of nonempty

subsets D̂H1
0

= {D(t) ∩H1
0 (Ω) : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DL2

µ .

Observe that DH
1
0

F ⊂ DL
2,H1

0
µ and DL

2,H1
0

µ is inclusion-closed.
Thanks to the regularising effect of the equation (cf. Theorem 2) and the exist-

ence of a pullback DL2

µε -absorbing family (cf. Proposition 2), it holds the following
result.

Proposition 5. Assume that (1)–(5), (12) and (16) hold, and h ∈ L2
loc(R;L2(Ω))

satisfies (13) for some µ̄ ∈ (0, 2λ1m). Then, there exists ε̄ ∈ (0, 1] such that for any
ε ∈ [0, ε̄] and any µε ∈ [µ̄, 2g1(ε)λ1m), the family

D̂ε
0,H1

0
= {BL2(0, (RεL2(t))1/2) ∩H1

0 (Ω) : t ∈ R},

where RεL2 is given in (14), belongs to DL
2,H1

0
µε , and for any t ∈ R and any D̂ ∈ DL2

µε ,

there exists τ2(D̂, t) < t such that

Uε(t, τ)D(τ) ⊂ Dε
0,H1

0
(t) ∀τ ≤ τ2(D̂, t).

Proof. Take ε̄ ∈ (0, 1] as in Remark 1 and therefore µε ∈ [µ̄, 2g1(ε)λ1m). Let us fix

t ∈ R and D̂ ∈ DL2

µε . By Proposition 2, there exists τ2(D̂, t) < t such that

|u(t; τ, uτ )|2 ≤ RεL2(t) ∀u ∈ Φε(τ, uτ ) ∀uτ ∈ D(τ) ∀τ ≤ τ2(D̂, t).

Moreover, thanks to the regularising effect of the equation (cf. Theorem 2), when
uτ ∈ L2(Ω), it fulfils that u(·; τ, uτ ) ∈ C((τ,∞);H1

0 (Ω)). As a result, u(t; τ, uτ ) ∈
H1

0 (Ω) if t > τ . Therefore,

Uε(t, τ)D(τ) ⊂ H1
0 (Ω) ∩BL2(0, (RεL2(t))1/2) ∀τ ≤ τ2(D̂, t).

To prove that the process Uε : Rd2 ×H1
0 (Ω) → P(H1

0 (Ω)) is pullback asymptot-
ically compact, we previously establish some uniform estimates of the solutions in
a finite-time interval up to t when the initial datum is shifted pullback far enough.

To clarify the statement of the following result, we introduce the next two
amounts

[(ρε1)ext](t) = 1 +
2g̃1(ε)κ|Ω|

µε
+

(g0(ε))2e−µε(t−3)

2g1(ε)m− λ−1
1 µε

∫ t

−∞
eµεs‖h(s)‖2∗ds, (25)

[(ρε2)ext](t) =
1

g1(ε)m

(
[(ρε1)ext](t) + 2g̃1(ε)κ|Ω|+ (g0(ε))2

g1(ε)m
max

r∈[t−2,t]

∫ r

r−1

‖h(s)‖2∗ds
)
.
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Lemma 2. Under the assumptions of Proposition 5, there exists ε̄ ∈ (0, 1] such

that for any ε ∈ [0, ε̄], µε ∈ [µ̄, 2g1(ε)λ1m), t ∈ R and D̂ ∈ DL2

µε , there exists

τ3(D̂, t) < t − 3 such that for any τ ≤ τ3(D̂, t) and any uτ ∈ D(τ), the following
estimates hold 

‖u(r; τ, uτ )‖2 ≤ ρ̃ε1(t) ∀r ∈ [t− 2, t],∫ r

r−1

| −∆u(s; τ, uτ )|2ds ≤ ρ̃ε2(t) ∀r ∈ [t− 1, t],

∫ r

r−1

|u′(s; τ, uτ )|2ds ≤ ρ̃ε3(t) ∀r ∈ [t− 1, t],

(26)

with

ρ̃ε1(t) = (1 + 2g̃1(ε)η)[(ρε2)ext](t) +
1

g1(ε)m
max

r∈[t−2,t]

∫ r

r−1

|g̃1(ε)f(0) + g0(ε)h(s)|2ds,

ρ̃ε2(t) =
1

g1(ε)m

(
ρ̃ε1(t) + 2g̃1(ε)η[(ρε2)ext](t)

+
1

g1(ε)m
max

r∈[t−1,t]

∫ r

r−1

|g̃1(ε)f(0) + g0(ε)h(s)|2ds
)
,

ρ̃ε3(t) = 3(M[(ρε1)ext](t))
2(g1(ε))2ρ̃ε2(t) + 3(g0(ε))2 max

r∈[t−1,t]

∫ r

r−1

|h(s)|2ds

+ 6(g̃1(ε))2C2[|Ω|+ (CH1
0
(N))2b̂(CH2(N))2b̃(ρ̃ε1(t))b̂(ρ̃ε2(t))b̃],

where b̂, b̃, Cf and M[(ρε1)ext](t) are positive constants.

Proof. Take ε̄ ∈ (0, 1] as in Remark 1, and µε as given in the statement. Let us
firstly observe that we may obtain uniform estimates for solutions in a time-interval

longer than the one established in Lemma 1. Namely, there exists τ3(D̂, t) < t− 3,

such that for any τ ≤ τ3(D̂, t) and any uτ ∈ D(τ), we have that for any u solution
to (Pε) it holds

|u(r; τ, uτ )| ≤ [(ρε1)ext](t) ∀r ∈ [t− 3, t], (27)∫ r

r−1

‖u(ξ; τ, uτ )‖2dξ ≤ [(ρε2)ext](t) ∀r ∈ [t− 2, t],

where {[(ρεi )ext]}i=1,2 are given in (25). Observe that these estimates also hold for
the Galerkin approximations un(·; τ, uτ ).

In addition, from the continuity of the function a, the fact that l ∈ L2(Ω) and
the first inequality in (27), we deduce that there exits a constant M[(ρε1)ext](t) > 0
such that

a(l(un(r))) ≤M([(ρε1)ext](t),l) ∀r ∈ [t− 3, t]. (28)

Fix a solution u to (Pε) and consider the problem (Pε,u) stated in Theorem 2.
Multiplying by λjϕnj in (9), summing from j = 1 to n and making use of (1), (5)
and the Cauchy inequality, we deduce

d

dξ
‖un(ξ)‖2+g1(ε)m|−∆un(ξ)|2 ≤ 2g̃1(ε)η‖un(ξ)‖2+

1

g1(ε)m
|g̃1(ε)f(0)+g0(ε)h(ξ)|2

(29)
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a.e. ξ > τ. Integrating between r and s with τ ≤ r − 1 ≤ s ≤ r, we obtain in
particular

‖un(r)‖2 ≤‖un(s)‖2 + 2g̃1(ε)η

∫ r

r−1

‖un(ξ)‖2dξ

+
1

g1(ε)m

∫ r

r−1

|g̃1(ε)f(0) + g0(ε)h(ξ)|2dξ.

Integrating the last inequality w.r.t. s between r − 1 and r,

‖un(r)‖2 ≤ (1 + 2g̃1(ε)η)

∫ r

r−1

‖un(s)‖2ds+
1

g1(ε)m

∫ r

r−1

|g̃1(ε)f(0) + g0(ε)h(ξ)|2dξ

for all τ ≤ r − 1.
Therefore, making use of the estimate on the solutions given by (ρε2)ext, it fulfils

for any n ≥ 1

‖un(r; τ, uτ )‖2 ≤ ρ̃ε1(t) ∀r ∈ [t− 2, t] ∀uτ ∈ D(τ) ∀τ ≤ τ3(D̂, t), (30)

where ρ̃ε1(t) is given in the statement. Now, taking limit inferior in (30) and using
the well-known fact that un converge to u(·; τ, uτ ) ∈ C([t− 2, t];H1

0 (Ω)) weakly-star
in L∞(t− 2, t;H1

0 (Ω)) (cf. Theorem 2), the first inequality in (26) holds.
Then integrating between r − 1 and r in (29), we obtain in particular for any

n ≥ 1∫ r

r−1

| −∆un(ξ)|2dξ ≤ 1

g1(ε)m

(
‖un(r − 1)‖2 + 2g̃1(ε)η

∫ r

r−1

‖un(ξ)‖2dξ

+
1

g1(ε)m

∫ r

r−1

|g̃1(ε)f(0) + g0(ε)h(ξ)|2dξ
)

for all τ ≤ r − 1. Then,∫ r

r−1

| −∆un(ξ)|2dξ ≤ ρ̃ε2(t) ∀r ∈ [t− 1, t] ∀uτ ∈ D(τ) ∀τ ≤ τ3(D̂, t), (31)

where ρ̃ε2(t) is given in the statement. Then, taking limit inferior in (31) and
bearing in mind that un converge to u weakly in L2(r− 1, r;H2(Ω)∩H1

0 (Ω)) for all
r ∈ [t− 1, t] (cf. Theorem 2), the second inequality in (26) holds.

Now, taking into account that f satisfies (16) (see also (17)) together with the
previous estimates, it holds∫ r

r−1

|f(un(ξ))|2dξ ≤ 2C2|Ω|+ 2C2(CH1
0
(N))2b̃(CH2(N))2b̂(ρ̃ε1(t))b̂(ρ̃ε2(t))b̃ (32)

for all r ∈ [t−1, t], uτ ∈ D(τ) and τ ≤ τ3(D̂, t), where b̂ = (1−θ)(γ+1), b̃ = θ(γ+1),
CH1

0
(N) and CH2(N) are the constants of the continuous embeddings of H1

0 (Ω) and

H2(Ω) into Lp-spaces respectively and θ ∈ [0, 1].
Finally, observe that for all τ ≤ r − 1∫ r

r−1

|u′n(ξ)|2dξ ≤3(g1(ε))2

∫ r

r−1

| − a(l(un(ξ)))∆un(ξ)|2dξ

+ 3(g̃1(ε))2

∫ r

r−1

|f(un(ξ))|2dξ + 3(g0(ε))2

∫ r

r−1

|h(ξ)|2dξ.

Then, using (28), (31) and (32), we obtain for any n ≥ 1∫ r

r−1

|u′n(ξ)|2dξ ≤ ρ̃ε3(t) ∀r ∈ [t− 1, t] ∀uτ ∈ D(τ) ∀τ ≤ τ3(D̂, t),
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where ρ̃ε3 is given in the statement. Finally, taking limit inferior in the above
expression and using that u′n converge to u′(·; τ, uτ ) weakly in L2(r − 1, r;L2(Ω))
for all r ∈ [t− 1, t], we deduce the last inequality in (26).

Now, to prove the pullback asymptotic compactness of Uε in H1
0 (Ω) for the

universe DL
2,H1

0
µε , we apply an energy method which relies on the continuity of

solutions (see [27, 35, 36, 24] for more details).

Proposition 6. Under the assumptions of Proposition 5, there exists ε̄ ∈ (0, 1]
such that for any ε ∈ [0, ε̄] and µε ∈ [µ̄, 2g1(ε)λ1m), the process Uε : R2

d×H1
0 (Ω)→

P(H1
0 (Ω)) is pullback DL

2,H1
0

µε -asymptotically compact.

Proof. According to Proposition 5 let us fix ε ∈ [0, ε̄], µε ∈ [µ̄, 2g1(ε)λ1m), t ∈ R,
a family D̂H1

0
∈ DL

2,H1
0

µε , sequences {τn} ⊂ (−∞, t− 3] with τn → −∞ and {unτ }
with unτ ∈ D(τn) for all n. We aim to prove that any sequence {yn}, where yn ∈
Uε(t, τn)unτ for all n, is relatively compact in H1

0 (Ω). In fact, since yn ∈ Uε(t, τn)unτ ,
there exists un ∈ Φε(τn, u

n
τ ) such that yn = un(t). Therefore, we will show that the

sequence {un(t)} is relatively compact in H1
0 (Ω).

As a consequence of Lemma 2, there exists τ3(D̂, t) < t − 3, such that τn ≤
τ3(D̂, t) for all n ≥ n1, the sequence {un}n≥n1

is bounded in L∞(t− 2, t;H1
0 (Ω)) ∩

L2(t− 2, t;H2(Ω)), and {−a(l(un))∆un}n≥n1
, {f(un)}n≥n1

and {(un)′}n≥n1
are

bounded in L2(t − 2, t;L2(Ω)). Then, using the Aubin-Lions lemma, there exists
u ∈ L∞(t− 2, t;H1

0 (Ω))∩L2(t− 2, t;H2(Ω) ∩H1
0 (Ω)) with u′ ∈ L2(t− 2, t;L2(Ω)),

such that for a subsequence (relabeled the same) it holds

un
∗
⇀ u weakly-star in L∞(t− 2, t;H1

0 (Ω)),

un ⇀ u weakly in L2(t− 2, t;H2(Ω) ∩H1
0 (Ω)),

(un)′ ⇀ u′ weakly in L2(t− 2, t;L2(Ω)),

un → u strongly in L2(t− 2, t;H1
0 (Ω)),

un(s)→ u(s) strongly in H1
0 (Ω) a.e. s ∈ (t− 2, t),

f(un) ⇀ f(u) weakly in L2(t− 2, t;L2(Ω)),

−a(l(un))∆un ⇀ −a(l(u))∆u weakly in L2(t− 2, t;L2(Ω)),

(33)

where the last two convergences have been identified using [33, Lemma 1.3, p. 12].
Then we deduce that u ∈ C([t− 2, t];H1

0 (Ω)) and fulfils (7) in the interval (t−2, t).
Moreover, since {(un)′}n≥n1

is bounded in L2(t − 2, t;L2(Ω)), it satisfies that
{un}n≥n1

is equicontinuous in L2(Ω) on [t − 2, t]. From this and taking into ac-
count that {un}n≥n1

is bounded in L∞(t− 2, t;H1
0 (Ω)) and the compactness of the

embedding H1
0 (Ω) ↪→ L2(Ω), applying the Ascoli-Arzelá Theorem we obtain

un → u strongly in C([t− 2, t];L2(Ω)). (34)

On the other hand, using that {un}n≥n2 is bounded in C([t − 2, t];H1
0 (Ω)), we

have that for any sequence {sn} ⊂ [t− 2, t] with sn → s∗,

un(sn) ⇀ u(s∗) weakly in H1
0 (Ω), (35)

where (34) has been used to identify the weak limit.
If we prove

un → u strongly in C([t− 1, t];H1
0 (Ω)), (36)
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in particular, we will deduce that the sequence {un(t)} is relatively compact in
H1

0 (Ω). To that end, we argue by contradiction. We suppose that there exist ε > 0,
a sequence {tn} ⊂ [t− 1, t], without loss of generality converging to some t∗, with

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (37)

From (35), it holds

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖.

It is not difficult to prove, making use of the Galerkin approximations, that

‖un(s)‖2 ≤‖un(r)‖2 − 2g̃1(ε)η

∫ s

r

‖un(ξ)‖2dξ

− 1

2g1(ε)m

∫ s

r

|g̃1(ε)f(0) + g0(ε)h(ξ)|2dξ (38)

for all t− 2 ≤ r ≤ s ≤ t.
Then, we define the following continuous functions on [t− 2, t]

Jn(s) = ‖un(s)‖2− 2g̃1(ε)η

∫ s

t−2

‖un(r)‖2dr− 1

2g1(ε)m

∫ s

t−2

|g̃1(ε)f(0) + g0(ε)h(r)|2dr,

J(s) = ‖u(s)‖2 − 2g̃1(ε)η

∫ s

t−2

‖u(r)‖2dr− 1

2g1(ε)m

∫ s

t−2

|g̃1(ε)f(0) + g0(ε)h(r)|2dr.

Observe that thanks to (38), all the functions Jn are non-increasing on the in-
terval [t − 2, t]. In addition, taking into account the definition of Jn and (33), it
holds

Jn(s)→ J(s) a.e. s ∈ (t− 2, t).

Hence, there exists a sequence {t̃k} ⊂ (t− 2, t∗) such that t̃k → t∗ when k → ∞
and

lim
n→∞

Jn(t̃k) = J(t̃k) ∀k ≥ 1.

Consider fixed ε > 0. Since the function J is continuous on [t− 2, t], there exists
k(ε) ≥ 1 such that

|J(t̃k)− J(t∗)| <
ε

2
∀k ≥ k(ε).

Now, we consider n(ε) ≥ 1 such that

tn ≥ t̃k(ε) and |Jn(t̃k(ε))− J(t̃k(ε))| <
ε

2
∀n ≥ n(ε).

Since all the functions Jn are non-increasing, for all n ≥ n(ε)

Jn(tn)− J(t∗) ≤ Jn(t̃k(ε))− J(t∗)

≤ |Jn(t̃k(ε))− J(t∗)|
≤ |Jn(t̃k(ε))− J(t̃k(ε))|+ |J(t̃k(ε))− J(t∗)|

<
ε

2
+
ε

2
= ε.

Then, lim supn→∞ Jn(tn) ≤ J(t∗). Thus, it satisfies that lim supn→∞ ‖un(tn)‖ ≤
‖u(t∗)‖ which, together with (35), allow us to prove that {un(tn)} converges to
u(t∗) strongly in H1

0 (Ω), in contradiction with (37). Therefore, (36) holds.

The following result shows the existence of pullback attractors in H1
0 (Ω) as well

as some relationships between them.
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Theorem 6. Assume that (1)–(5), (12) and (16) hold, and that h ∈ L2
loc(R;L2(Ω))

satisfies (13) for some µ̄ ∈ (0, 2λ1m). Then, there exists ε̄ ∈ (0, 1] such that for any

ε ∈ [0, ε̄] and µε ∈ [µ̄, 2g1(ε)λ1m), there exist the minimal pullback DH
1
0

F -attractor

Aε
D
H1

0
F

and the minimal pullback DL
2,H1

0
µε -attractor Aε

D
L2,H1

0
µε

for the multi-valued pro-

cess Uε : R2
d ×H1

0 (Ω)→ P(H1
0 (Ω)). Furthermore, it fulfils

Aε
D
H1

0
F

(t) ⊂ AεDL2
F

(t) ⊂ AεDL2
µε

(t) = Aε
D
L2,H1

0
µε

(t) ∀t ∈ R ∀ε ∈ [0, ε̄]. (39)

In particular, for any D̂ ∈ DL2

µε , the following pullback attraction in H1
0 (Ω) holds

lim
τ→−∞

distH1
0
(Uε(t, τ)D(τ),AεDL2

µε

(t)) = 0 ∀t ∈ R. (40)

Finally, if there exists some µ̃ ∈ (0, 2λ1m) such that

sup
s≤0

(
e−µ̃s

∫ s

−∞
eµ̃r|h(r)|2dr

)
<∞, (41)

then there exists ε̃ ∈ (0, 1] such that

Aε
D
H1

0
F

(t) = AεDL2
F

(t) = AεDL2
µ

(t) = Aε
D
L2,H1

0
µ

(t) ∀t ∈ R ∀ε ∈ [0, ε̃].

In addition,

lim
τ→−∞

distH1
0
(Uε(t, τ)B,AεDL2

F

(t)) = 0 ∀t ∈ R ∀B ∈ DL
2

F ∀ε ∈ [0, ε̃]. (42)

Proof. As in the previous results, for ε ∈ [0, ε̄] and µε ∈ [µ̄, 2g1(ε)λ1m), the existence
of Aε

D
H1

0
F

and Aε
D
L2,H1

0
µε

is a consequence of Corollary 1. Indeed, the process Uε is

upper-semicontinuous with closed values (cf. Proposition 4), the relation DH
1
0

F ⊂
DL

2,H1
0

µε is fulfilled, and the existence of an absorbing family (cf. Proposition 5) and
the asymptotic compactness (cf. Proposition 6) hold.

The chain of inclusions (39) follows from Corollary 1 and Theorem 4. In fact, the
equality for all t ∈ R between AεDL2

µε

(t) and Aε
D
L2,H1

0
µε

(t) is also due to Theorem 4,

using Proposition 5. Then, (40) obviously holds.
After (41), the equality Aε

D
H1

0
F

(t) = Aε
DL2
F

(t) is again due to Theorem 4, making

use of the first estimate appearing in Lemma 2. Therefore, (42) is straightforward.

Till now, in the previous results the problem (P0) could be non-autonomous.
However we aim to consider (as done in [6]) the case of (P0) being autonomous,
approached by perturbed problems coming from some noise that affects the coeffi-
cients and in particular it includes time-dependent forces (i.e. h). So in the sequel
we assume that

g0(0) = 0. (43)

Furthermore, for the sake of simplicity in the formulation of the limit problem, we
also assume that

g̃1(0) = 1. (44)

Remark 3. (i) Under the new assumption (43), problem (P0) becomes autonomous.
Since the above results also hold for (P0), its associated pullback attractors are in
fact the global compact attractor A0

DL2
F

in L2(Ω) for the multi-valued semiflow
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S, where S(t − τ) = U0(t, τ). Namely, it can be seen as a pullback attractor

for the universes DL2

F and DL2

µ0
with µ0 = 2λ1m (cf. Proposition 2). Indeed,

A0
DL2
µ0

(t) = A0
DL2
F

holds for all t ∈ R.

(ii) Analogously there exists the compact global attractor A0

D
H1

0
F

in H1
0 (Ω). This

set can be seen as pullback attractor for the universes DH
1
0

F and DL
2,H1

0
µ0 . Namely,

A0

D
L2,H1

0
µ0

(t) = A0

D
H1

0
F

for all t ∈ R.

Finally, the upper semicontinuous behaviour of the pullback attractorsAεDL2
µε

(t) =

Aε
D
L2,H1

0
µε

(t) in H1-norm as ε goes to 0 for all t ∈ R is analysed. As done in [6], to

prove these properties we first establish the following continuity (in ε) result of
solutions to (Pε) toward solutions of the limit problem

(P0)


∂u

∂t
− a(l(u))∆u = f(u) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω.

Theorem 7. Assume that (1)–(5), (12), (16), (43) and (44) hold, h ∈ L2
loc(R;L2(Ω))

and consider sequences {εn} with limn εn = 0 and {unτ } ⊂ L2(Ω) such that unτ ⇀ uτ
weakly in L2(Ω). Then, there exist a subsequence of {unτ } (relabeled the same), a
sequence {uεn}, with uεn ∈ Φεn(τ, unτ ), and u0 ∈ Φ0(τ, uτ ) such that

uεn(t)→ u0(t) strongly in H1
0 (Ω) for all t > τ. (45)

Proof. Let {unτ } ⊂ L2(Ω) be a sequence such that unτ ⇀ uτ weakly in L2(Ω).
Consider arbitrary values T > τ and δ ∈ (0, T − τ).

Consider uεn a weak solution to (Pεn) in [τ, T ]. Making use of the energy equality
and (1), we obtain

1

2

d

ds
|uεn(s)|2 +g1(εn)m‖uεn(s)‖2 ≤ g̃1(εn)(f(uεn(s)), uεn(s))+g0(εn)〈h(s), uεn(s)〉

a.e. s ∈ [τ, T ].
Now, define γ := minn{g1(εn)} ∈ (0, 1]. Then, taking this into account together

with (4) and the Cauchy inequality, we have

d

ds
|uεn(s)|2 + γm‖uεn(s)‖2 + 2α2g̃1(εn)|uεn(s)|pp ≤ 2g̃1(εn)κ|Ω|+ (g0(εn))2‖h(s)‖2∗

γm

a.e. s ∈ [τ, T ]. Then, integrating between τ and t with t ∈ [τ, T ], we deduce

|uεn(t)|2 + γm

∫ t

τ

‖uεn(s)‖2ds+ 2α2g̃1(εn)

∫ t

τ

|uεn(s)|ppds

≤|unτ |2 + 2g̃1(εn)κ|Ω|(T − τ) +
(g0(εn))2

γm

∫ T

τ

‖h(s)‖2∗ds.

Therefore, {uεn} is bounded in L∞(τ, T ;L2(Ω))∩L2(τ, T ;H1
0 (Ω)) ∩Lp(τ, T ;Lp(Ω)).

In addition, since each uεn ∈ C([τ, T ];L2(Ω)) for all n, it holds

|uεn(t)| ≤ C∞ ∀t ∈ [τ, T ] ∀n ≥ 1,

where C∞ is a positive constant independent of εn. Now, as l ∈ L2(Ω) and a ∈
C(R; [0,∞)), there exists MC∞ > 0 such that

a(l(uεn(t))) ≤MC∞ ∀t ∈ [τ, T ] ∀n ≥ 1.
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Then, it is standard to deduce that there exist a subsequence of {uεn} (relabeled
the same) and u0 ∈ C([τ, T ];L2(Ω)) ∩ L2(τ, T ;H1

0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)), solution
to (P0) with u0(τ) = uτ .

On the other hand, making use of the strong energy equality (18) for the Galerkin
approximations to problems (Pεn,uεn ), applying (1) and (5), and passing to the limit,
we obtain

‖uεn(t)‖2 + g1(εn)m

∫ t

τ+δ

| −∆uεn(r)|2dr ≤ ‖uεn(τ + δ)‖2

+ 2g̃1(εn)η

∫ t

τ+δ

‖uεn(r)‖2dr +
1

g1(εn)m

∫ t

τ+δ

|g̃1(εn)f(0) + g0(εn)h(r)|2dr

for all δ ∈ (0, t− τ).
Taking this into account together with Theorem 2, the sequence {uεn} is bounded

in L∞(τ+δ, T ;H1
0 (Ω))∩L2(τ + δ, T ;H2(Ω) ∩H1

0 (Ω)). Then from (20), the sequence
{−a(l(uεn))∆uεn} is bounded in L2(τ + δ, T ;L2(Ω)). From (16) and the previous
boundedness of {uεn}, we deduce that {f(uεn)} is bounded in L2(τ + δ, T ;L2(Ω)).
Finally, bearing in mind the above estimates and the problems (Pεn) we obtain that
{(uεn)′} is bounded in L2(τ + δ, T ;L2(Ω)).

Then, we gain that the limit u0 ∈ L∞(τ+δ, T ;H1
0 (Ω))∩L2(τ+δ, T ;H2(Ω)∩H1

0 (Ω))
with (u0)′ ∈ L2(τ + δ, T ;L2(Ω)). Now using the Aubin-Lions lemma, there exists a
subsequence of {uεn} (relabeled the same) such that

uεn
∗
⇀ u0 weakly-star in L∞(τ + δ, T ;H1

0 (Ω)),

uεn ⇀ u0 weakly in L2(τ + δ, T ;H2(Ω)),

uεn → u0 strongly in L2(τ + δ, T ;H1
0 (Ω)),

uεn(t)→ u0(t) strongly in H1
0 (Ω) a.e. t ∈ (τ + δ, T ),

(uεn)′ ⇀ (u0)′ weakly in L2(τ + δ, T ;L2(Ω)),

g̃1(εn)f(uεn) ⇀ f(u0) weakly in L2(τ + δ, T ;L2(Ω)),

−g1(εn)a(l(uεn))∆uεn ⇀ −a(l(u0))∆u0 weakly in L2(τ + δ, T ;L2(Ω)),

(46)

where the limits of the last two convergences have been identified using [33, Lemma
1.3, p. 12]. In fact, we may now repeat the arguments in the intervals (τ+δ/2, T+1),
(τ + δ/3, T + 2), etcetera, and making use of a diagonal argument, (46) holds in

(τ + δ̃, T̃ ) for all T̃ > τ and any δ̃ ∈ (0, T̃ − τ).

Now, we complete the proof by showing (45). Given t > τ, consider T > t and
δ ∈ (0, T − τ).

On the one hand, taking into account that the sequences {uεn} and {(uεn)′}
are bounded in C([τ + δ, T ];H1

0 (Ω)) and L2(τ + δ, T ;L2(Ω)) respectively, and the
compactness of the embedding H1

0 (Ω) ↪→ L2(Ω), the Ascoli-Arzelà Theorem implies
that

uεn → u0 strongly in C([τ + δ, T ];L2(Ω)). (47)

In fact, since {uεn} is bounded in C([τ + δ, T ];H1
0 (Ω)), we obtain

uεn(s) ⇀ u0(s) weakly in H1
0 (Ω) ∀s ∈ [τ + δ, T ], (48)

where (47) has been used to identify the weak limit.
On the other hand, again from the energy equality (18) for the Galerkin approx-

imations for (Pεn,uεn ), applying (1) and (5) and passing to the limit, we have for
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all τ + δ ≤ r ≤ s ≤ T

‖uεn(s)‖2 ≤‖uεn(r)‖2 + 2g̃1(εn)η

∫ s

τ+δ

‖uεn(ξ)‖2dξ

+
1

2g1(εn)m

∫ s

τ+δ

|g̃1(εn)f(0) + g0(εn)h(ξ)|2dξ. (49)

Now, we define the following continuous functions on [τ + δ, T ]

Jεn(s) =‖uεn(s)‖2 − 2g̃1(εn)η

∫ s

τ+δ

‖uεn(ξ)‖2dξ

− 1

2g1(εn)m

∫ s

τ+δ

|g̃1(εn)f(0) + g0(εn)h(ξ)|2dξ,

J0(s) =‖u0(s)‖2 − 2η

∫ s

τ+δ

‖u0(ξ)‖2dξ − (f(0))2|Ω|[s− (τ + δ)]

2m
.

Observe that from (49) we deduce that all the functions Jn are non-increasing on
[τ + δ, T ]. Furthermore, since uεn(t)→ u0(t) strongly in H1

0 (Ω) a.e. t ∈ (τ + δ, T ),
J is continuous in [τ + δ, T ] and all Jn are non-increasing in [τ + δ, T ], it holds

Jεn(s)→ J0(s) ∀s ∈ [τ + δ, T ].

From this, we deduce

lim
n→∞

‖uεn(s)‖2 = ‖u0(s)‖2 ∀s ∈ [τ + δ, T ].

Taking this into account, together with (48), (45) holds.

In order to prove the upper semicontinuous behaviour of attractors in H1
0 (Ω) we

introduce a last condition relating some terms involved in the formula for RεL2 when
ε goes to 0, namely we assume that

lim sup
ε→0

(g0(ε))2

2g1(ε)m− λ−1
1 µε

<∞, (50)

where µε are chosen in [µ̄, 2g1(ε)λ1m).
Observe that in [6] we did not specify how to choose µε. Actually we just said

that they could be taken equal to µε0 . In this paper, condition (50) provides how
close to zero the amount 2g1(ε)m − λ−1

1 µε can be such that the whole fraction in
(50) is O(1). This fact will be essential in the proof of our main result.

Theorem 8. Assume that (1)–(5), (12), (16), (43), (44) and (50) hold, and h ∈
L2
loc(R;L2(Ω)) satisfies (13) for some µ̄ ∈ (0, 2λ1m). Then, there exists ε̄ ∈ (0, 1]

such that for any ε ∈ [0, ε̄] and any µε ∈ [µ̄, 2g1(ε)λ1m), the family {AεDL2
µε

(t)}ε∈(0,ε̄]

converges upper semicontinuously to A0
DL2
F

in H1
0 (Ω) as ε goes to 0, i.e.

lim
ε→0

distH1
0
(AεDL2

µε

(t),A0
DL2
F

) = 0 ∀t ∈ R. (51)

Proof. As in previous results, denote ε̄ ∈ (0, 1] such that µ̄ < 2g1(ε)λ1m for any
ε ∈ [0, ε̄] and take µε ∈ [µ̄, 2g1(ε)λ1m).Without loss of generality, from (50) consider
a constant C > 0 such that

(g0(ε))2

2g1(ε)m− λ−1
1 µε

< C ∀ε ∈ [0, ε̄].
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We prove (51) arguing by contradiction. Suppose that there exist ε > 0, t ∈ R
and a sequence {εn}n≥1 ⊂ (0, ε̄] with limn→∞ εn = 0 such that

distH1
0
(Aεn
DL2
µεn

(t),A0
DL2
F

) > ε ∀n ∈ N.

Since the pullback attractors are negatively invariant (cf. Definition 8), there exists
a sequence of solutions {uεn}n≥1 with uεn(t) ∈ Aεn

DL2
µεn

(t) such that

dH1
0
(uεn(t),A0

DL2
F

) > ε ∀n ∈ N, (52)

where the distance in H1
0 (Ω) makes complete sense thanks to the regularising effect

of the equation (cf. Theorem 2) and the fact that A0
DL2
F

= A0

D
H1

0
F

thanks to the

cited regularising effect.
Observe that Aεn

DL2
µεn

(t) ⊂ Dεn
0,H1

0
(t) (cf. Theorem 2 and Proposition 5) for all

n ∈ N and t ∈ R, and Dεn
0,H1

0
(t) = BL2(0, (RεnL2(t))1/2) ∩ H1

0 (Ω), where we remind

that

RεnL2(t) = 1 +
2g̃1(εn)κ|Ω|

µεn
+

(g0(εn))2e−µεn t

2g1(εn)− λ−1
1 µεn

∫ t

−∞
eµεns‖h(s)‖2∗ds.

Taking into account (50), µεn ∈ [µ̄, 2g1(εn)λ1m), and denoting M̃ := max[0,1] |g̃1(·)|,
we obtain that

RεL2(t) ≤ R0
L2(t) := 1+

2κM̃ |Ω|
µ̄

+CeC̃(−t)
∫ t

−∞
eC̃(s)‖h(s)‖2∗ds ∀t ∈ R ∀ε ∈ (0, ε̄],

where

C̃(s) =

{
µ̄s if s ≤ 0,
2λ1ms if s > 0.

In particular, observe that for t < 0 we have that

R0
L2(t) = 1 +

2κM̃ |Ω|
µ̄

+ Ce−2λ1mt

∫ t

−∞
eµ̄s‖h(s)‖2∗ds,

whence it is obvious that the family

D̃0
H1

0
= {D0

H1
0
(t) := BL2(0, (R0

L2(t))1/2) ∩H1
0 (Ω) : t ∈ R} ∈ DL

2,H1
0

2λ1m
.

From the above inclusions and definition we deduce that

Aεn
DL2
µεn

(t) ⊂ D0
H1

0
(t) ∀t ∈ R ∀n ≥ 1. (53)

On the other hand, since D̃0
H1

0
belongs to DL

2,H1
0

2λ1m
, there exists τ(t, D̃0

H1
0
, ε) < t

such that
distH1

0
(U0(t, τ)D0

H1
0
(τ),A0

DL2
F

) ≤ ε

2
∀τ ≤ τ(t, D̃0

H1
0
, ε). (54)

From (53), we deduce that the sequence {uεn(τ(t, D̃0
H1

0
, ε))}n≥1 is bounded and

possesses a subsequence (relabeled the same) such that uεn(τ(t, D̃0
H1

0
, ε)) ⇀ uτ

weakly in L2(Ω).
Now, applying Theorem 7, we deduce that there exists u0 ∈ Φ0(τ, uτ ) and a sub-

sequence of {εn}n≥1 (relabeled the same) such that (45) holds for all t > τ(t, D̃0
H1

0
, ε).

Thus, we deduce that there exists n0 ≥ 1 such that

‖uεn(t)− u0(t)‖ ≤ ε

2
∀n ≥ n0. (55)
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Now, using (54) and (55), we have

dH1
0
(uεn(t),A0

DL2
F

) ≤ dH1
0
(uεn(t), u0(t)) + dH1

0
(u0(t),A0

DL2
F

)

≤ ε

2
+
ε

2
= ε ∀n ≥ n0,

which is contradictory with (52).

Remark 4. (i) The results concerning weak solutions and L2-attractors only make
use of f continuous and fulfilling (4) (cf. [6]). However, in the strong framework,
assumption (5) is used. Therefore, to avoid confusion in the exposition this regu-
larity has been imposed from the beginning. Nevertheless, this last condition (5)
can be replaced by the weaker one

(f(s)− f(r))(s− r) ≤ η(s− r)2 ∀s, r ∈ R,

with f just continuous. To that end, just simply considering mollifiers ρδ, which
implies that fδ = ρδ ∗ f fulfils (5), and compactness arguments.

(ii) The values that γ takes in assumption (16) are larger if the interpolation
result is applied not only to L∞(τ, T ;H1

0 (Ω)) ∩ L2(τ, T ;H2(Ω) ∩H1
0 (Ω)), but also

to L∞(τ, T ;H1
0 (Ω))∩Lp(τ, T ;Lp(Ω)) and L2(τ, T ;H2(Ω)∩H1

0 (Ω))∩Lp(τ, T ;Lp(Ω)).
Then, the improved values of γ are

γ =



max

{
4,
p− 2

2

}
if N = 3,

max

{
2,
p− 2

2

}
if N = 4,

max

{
4

N − 2
,
p− 2

2

}
if N ≥ 5.

Bearing in mind that the proofs are completely analogous with these new values of
γ, we have decided to use just L∞(τ, T ;H1

0 (Ω)) ∩ L2(τ, T ;H2(Ω) ∩H1
0 (Ω)) along

the paper for the sake of clarity and simplicity.
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autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal.

121 (2015), 3–18.
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Dunod, Paris, 1969.
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