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1. Introduction and statement of the problem

Over the last few decades the study of nonlocal problems has taken a keen interest
(e.g., cf. [25, 6, 27, 41, 5] among many others), especially those of diffusion type
(see e.g. [18, 32, 15, 13, 3]). In particular, several authors have been interested in
the problem 

du

dt
− a(l(u))∆u = f in Ω× (0, T ),

u(·, t) ∈ Ṽ on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ RN is a bounded open set with boundary ∂Ω. Here Ṽ denotes the set
{v ∈ H1(Ω) : v = 0 on Γ0}, where Γ0 ⊂ ∂Ω has positive superficial measure.

This problem is not a trivial variant of the heat equation, because due to the
presence of the nonlocal term, it is not possible to guarantee the existence of a
Lyapunov structure (cf. [21]). In [16], Chipot and Lovat establish the existence and
uniqueness of a weak solution to this problem using the Faedo-Galerkin approx-
imations and compactness arguments. To prove the existence, they assume that
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a ∈ C(R; (0,∞)) and there exist positive constants m, M such that

0 < m ≤ a(s) ≤M ∀s ∈ R. (1.2)

Furthermore, l is a continuous linear form from L2(Ω) into R. Namely,

l(u) = lg(u) =

∫
Ω

g(x)u(x)dx for some g ∈ L2(Ω).

The assumptions made on the function a are sufficient in order to avoid that the
solutions exist only in finite-time intervals (see [32] for more details). They do not
make any additional assumptions on the function a because it depends on the type of
problem intended to model. For example, in population dynamics, the monotonicity
of the function must be adapted to the behaviour of the species we want to model
(see [16]). To prove the uniqueness, they suppose that the function a is globally
Lipschitz due to the presence of the nonlocal term. They also study the asymptotic
behaviour of the solutions when f ∈ V ′ and under additional assumptions. Later,
in [17], Chipot and Molinet generalize the results obtained in [16], dealing with a
continuum of steady states using dynamical systems.

Many authors have been interested in analyzing some variants of problem (1.1).
In [1, 2], Andami Ovono and Rougirel study a problem in which the nonlocal oper-
ator does not act in the whole domain. In these two papers, the existence of radial
solutions, bifurcation analysis, and their stability are analyzed. In [19], Chipot and
Siegwart study the asymptotic behaviour of the solutions to problems with non-
local diffusion and mixed boundary conditions. In [11], Chipot and Chang are also
interested in the asymptotic behaviour of the solutions to nonlocal problems with
two nonlocal terms and mixed boundary conditions. In particular, they prove res-
ults which establish relationships between the solution of the evolution problem and
stationary solutions. These results are similar to those given in a simpler framework
(see [16, Theorem 4.1] for more details). In [20], Chipot et al. consider a problem
in which the nonlocal term depends on a Dirichlet integral. In this particular case,
they are able to find a Lyapunov structure, which is used to study the asymptotic
behaviour of the solutions.

Despite all the cited advances in the case of f independent of the solution, the
generalization to the case of nonlinearities f(u) involves many more difficulties.
Actually, only a few references deal with such situation, and the results are only
partial (e.g., cf. [36, 14]). Indeed, due to the extra troubles, it makes full sense to do
attempts of dynamical studies in more general frameworks. An appropriate one to
study the long-time behaviour of the solutions of different versions of problem (1.1)
is through the theory of attractors. However, the study will be different depending
on whether there are time-dependent terms or not. Whereas in the autonomous
case, the compact global attractor is the natural object to seek and study, when a
non-autonomous problem is dealt with, there exist several approaches, as uniform
attractors and their kernel sections (cf. [12]), skew-product flows (cf. [38]), and
pullback attractors, a very recent theory which has been vastly developed in the
last decade in a wide range of problems (cf. [10, 7, 29, 4]). This approach allows us
to establish not only the asymptotic behaviour of the dynamical system but also
what the current attractions sections are when the initial data come from long time
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ago in the past. Within this framework, some authors are interested in studying
the pullback attractor in the classical sense, i.e. the pullback attractor of solutions
starting in “fixed” bounded sets. Others, though, and particularly motivated by
random dynamics, employ the concept of attraction related to a class of families,
called universe D, made up by sets which are allowed to move in time and usually
defined in terms of a tempered condition (cf. [9, 10, 26]). Some relationships between
these two kind of attractors have also been established (cf. [34]).

Some first and partial results concerning existence of global attractors for autonom-
ous nonlocal problems with linear force (similar to (1.1)) were addressed by Lovat
[32] and Andami Ovono [1].

In this paper we will focus on proving the existence of solutions and pullback
D-attractors in the L2 and H1 norms for the dynamical system associated to the
non-autonomous nonlocal reaction-diffusion problem

du

dt
− a(l(u))∆u = f(u) + h(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x) in Ω,

(1.3)

where Ω is a bounded open subset of RN .
Observe that the assumptions on f have been weakened along several papers. In

[36], Menezes proves the existence and uniqueness of weak solution to (1.3) by fixed
point arguments, considering that the function f is globally Lipschitz. Later, the
analogous existence and uniqueness result is proved in [8] without any assumptions
of smoothness on the boundary of Ω and the nonlinearity f(u) is just continuous,
sublinear, and fulfills a monotonocity condition.

In this paper, we assume that f ∈ C1(R) and there exist positive constants α1,
α2, κ, η, and p > 2 such that

f ′(s) ≤η ∀s ∈ R, (1.4)

−κ− α1|s|p ≤ f(s)s ≤κ− α2|s|p ∀s ∈ R. (1.5)

Observe that the assumption (1.4) can be weakened (see remark 5.9 (ii) below).
From (1.5), we deduce that there exists β > 0 such that

|f(s)| ≤ β(|s|p−1 + 1) ∀s ∈ R. (1.6)

Under these assumptions, in addition to proving the existence of weak solutions,
we also show the existence of pullback attractors in the L2-norm for the dynamical
system associated to (1.3). While in the sublinear framework we also needed to
impose the usual assumption lim sup|s|→∞ f(s)/s < mλ1 (see (17) in [8]), here
condition (1.5) will be enough.

Finally, we also show the existence of pullback attractors in the H1-norm.
Note that the case p ∈ [1, 2] is not considered here, since both goals, existence

of solutions and pullback attractors follow by applying the results in [8]. As far as
we know, there are no references in the previous literature devoted to the existence
of neither global or pullback attractors in L2(Ω) nor in H1

0 (Ω) for the associated
dynamical systems. Our results are stated in a non-autonomous framework, but
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they can be immediately applied to the autonomous case (h independent of time)
in order to obtain global compact attractors, which is also new.

Regarding the assumptions made on the function a, it is locally Lipschitz and
fulfil (1.2) (see Remark 5.9 (ii) for a more general setting).

The structure of the paper is as follows. The existence and uniqueness of a weak
solution is analyzed in §2. There, we will also prove the existence and uniqueness of
a strong solution and the regularizing effect of the equation. To prove the existence
of a solution, we will use the Faedo-Galerkin approximations and compactness ar-
guments (cf. [31, 37]). The core of the paper concerning the asymptotic behaviour
of solutions is developed in the following paragraphs. Section 3 is devoted to briefly
recalling some abstract results on pullback attractors that we will use in the fol-
lowing sections. Under an extra suitable assumption for h (cf. (4.1)), the existence
of pullback attractors in the phase space L2(Ω) is proved in §4 by using an energy
method which relies on the continuity of the solutions (e.g. cf. [28, 33, 35, 26]).
In §5, we prove the existence of pullback attractors in H1

0 (Ω), again via an energy
method analogous to that of the previous section. Finally, we establish relation-
ships between these families of pullback attractors and those given in §4 using the
regularizing effect of the equation.

Before continuing, let us introduce some notation. We will denote by (·, ·) the
inner product in L2(Ω), and by | · | its associated norm (we also represent in this
way the Lebesgue measure of a subset of RN since no confusion arises). We will
denote by ((·, ·)) the inner product in H1

0 (Ω) given by the product in (L2(Ω))N

of the gradients and by ‖ · ‖ its associated norm. The duality product between
H−1(Ω) and H1

0 (Ω) will be represented by 〈·, ·〉, and by ‖ · ‖∗ the norm in H−1(Ω).
Identifying L2(Ω) with its dual, we have the chain of dense and compact embeddings
H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). As a consequence of the previous identification, the
operator l acting on u must be understood as (l, u), but we keep the notation l(u),
the usual one in the existing previous literature. We will also denote by (·, ·) the
duality product between Lp(Ω) and Lq(Ω) (where q is the conjugate exponent of p)
and by ‖·‖Lp(Ω) the norm in the space Lp(Ω). Analogously, the norm in Lr(τ, T ;X),
where r ≥ 1 and X is a separable Banach space, will be denoted by ‖ · ‖Lr(τ,T ;X).

In what follows we assume that h ∈ L2
loc(R;H−1(Ω)) and uτ ∈ L2(Ω).

Definition 1.1. A weak solution to (1.3) is a function u ∈ L∞(τ, T ;L2(Ω)) ∩
L2(τ, T ;H1

0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)) for all T > τ , with u(τ) = uτ , and such that for
all v ∈ H1

0 (Ω) ∩ Lp(Ω)

d

dt
(u(t), v) + a(l(u(t)))((u(t), v)) = (f(u(t)), v) + 〈h(t), v〉, (1.7)

where the previous equation must be understood in the sense of D′(τ,∞).

Remark 1.2. If u is a weak solution to (1.3), then from (1.2), (1.6), and (1.7) it
fulfills for any T > τ that u′ ∈ L2(τ, T ;H−1(Ω)) + Lq(τ, T ;Lq(Ω)), and therefore
u ∈ C([τ,∞);L2(Ω)) (cf. [31, Théorème 2, p. 575]). Hence the initial datum in
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(1.3) makes sense. Moreover, the following energy equality holds

|u(t)|2+2

∫ t

s

a(l(u(r)))‖u(r)‖2dr = |u(s)|2+2

∫ t

s

(f(u(r)), u(r))dr+2

∫ t

s

〈h(r), u(r)〉dr

(1.8)
for all τ ≤ s ≤ t (cf. [23, Théorème 2, p. 575] or [42, Lemma 3.2, p. 71]).

A notion of more regular solution is also suitable for problem (1.3).

Definition 1.3. A strong solution to (1.3) is a weak solution u such that u ∈
L2(τ, T ;D(−∆)) ∩ L∞(τ, T ;H1

0 (Ω) ∩ Lp(Ω)) for all T > τ.

Remark 1.4. If h ∈ L2
loc(R;L2(Ω)) and u is a strong solution to (1.3), then

u′ ∈ L2(τ, T ;L2(Ω)) for all T > τ, and, consequently, u ∈ C([τ,+∞);H1
0 (Ω)). In

addition, the following energy equality holds:

‖u(t)‖2+2

∫ t

s

a(l(u(r)))| −∆u(r)|2dr = ‖u(s)‖2+2

∫ t

s

(f(u(r)) + h(r),−∆u(r))dr

(1.9)
for all τ ≤ s ≤ t.

2. Existence and uniqueness of solution

In this section the existence and uniqueness of weak and strong solutions to (1.3)
and the regularizing effect of the equation will be studied. To prove the existence
of solutions, we will use the Faedo-Galerkin approximations and pass to the limit
by using compactness arguments.

Theorem 2.1. Suppose that the function a is locally Lipschitz and satisfies (1.2),
f ∈ C1(R) fulfills (1.4) and (1.5), h ∈ L2

loc(R;H−1(Ω)), and l ∈ L2(Ω). Then,
given uτ ∈ L2(Ω), there exists a unique weak solution to the problem (1.3), which
will be denoted by u(·; τ, uτ ), and satisfies the energy equality (1.8).

Proof. We split the proof into two steps.

Step 1. Uniqueness of weak solution. Suppose that there exist two weak
solutions, u1(·; τ, uτ ) and u2(·; τ, uτ ), to (1.3). For short, we will denote ui(·) =
ui(·; τ, uτ ) for i = 1, 2. Once that a weak solution exists, the energy equality is an
immediate consequence (cf. remark 1.2). Then, we deduce

1

2

d

dt
|u1(t)− u2(t)|2 + a(l(u1(t)))‖u1(t)− u2(t)‖2

= [a(l(u2(t)))−a(l(u1(t)))]((u2(t), u1(t)−u2(t)))+(f(u1(t))−f(u2(t)), u1(t)−u2(t))

a.e. t ∈ [τ, T ].
Since u1, u2 ∈ C([τ, T ];L2(Ω)), we have that u1(t), u2(t) ∈ S for all t ∈ [τ, T ],

where S is a bounded subset of L2(Ω). Besides, as l ∈ L2(Ω), it holds {l(ui(t))}t∈[τ,T ]

⊂ [−R,R] for i = 1, 2, and for some R > 0. Hence, using (1.2), (1.4), the locally
Lipschitz continuity of the function a, and the Cauchy inequality (cf. [24, Appendix
B, p. 622]), we obtain

d

dt
|u1(t)− u2(t)|2 ≤ (La(R))2|l|2‖u2(t)‖2 + 4mη

2m
|u1(t)− u2(t)|2 a.e. t ∈ (τ, T ),
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where La(R) is the Lipschitz constant of the function a in [−R,R]. Then, unique-
ness follows.

Step 2. Existence of weak solution. Assume that uτ ∈ L2(Ω) and h ∈
L2
loc(R;H−1(Ω)). Using the spectral theory, we deduce that there exists a sequence
{wi}i≥1 of eigenfunctions of −∆ in H1

0 (Ω), which is a Hilbert basis of L2(Ω). Then,
for each integer n ≥ 1, the function un(t; τ, uτ ) =

∑n
j=1 ϕnj(t)wj (un(t) for short)

will denote the local solution of
d

dt
(un(t), wj) + a(l(un(t)))((un(t), wj)) = (f(un(t)), wj)+〈h(t), wj〉, t ∈ (τ,∞)

(un(τ), wj) = (uτ , wj), j = 1, . . . , n.
(2.1)

Now, multiplying by ϕnj in (2.1), summing from j = 1 to n, and using (1.2), (1.5),
and the Cauchy inequality, we obtain

d

dt
|un(t)|2 +m‖un(t)‖2 + 2α2‖un(t)‖pLp(Ω) ≤ 2κ|Ω|+ 1

m
‖h(t)‖2∗ a.e. t ∈ (τ, tn).

Integrating between τ and t with τ < t < tn, we obtain

|un(t)|2 +m

∫ t

τ

‖un(s)‖2ds+ 2α2

∫ t

τ

‖un(s)‖pLp(Ω)ds

≤ |uτ |2 + 2κ|Ω|(T − τ) +
1

m

∫ T

τ

‖h(s)‖2∗ds.

From this a priori estimate, we deduce that {un} is well defined and bounded
in L∞(τ, T ;L2(Ω)) ∩ L2(τ, T ;H1

0 (Ω)) ∩Lp(τ, T ;Lp(Ω)) for all T > τ . Taking into
account this estimate and (1.2), we deduce that the sequence {−a(l(un))∆un}
is bounded in L2(τ, T ;H−1(Ω)). In addition, using the boundedness of {un} in
Lp(τ, T ;Lp(Ω)) and (1.6), it yields that {f(un)} is bounded in Lq(τ, T ;Lq(Ω)).

Finally, to obtain the boundedness of {u′n}, we need first to define two additional
projection operators related to Pn : L2(Ω) → Vn := span{w1, . . . , wn} given by
Pnφ =

∑n
j=1(φ,wj)wj for all φ ∈ L2(Ω). In order to do this, denote by A = −∆

with homogeneous Dirichlet boundary condition, i.e. the isomorphism from H1
0 (Ω)

into H−1(Ω) (also seen as an unbounded operator in L2(Ω)). There, consider k ≥ 1
such that Hk

0 (Ω) ↪→ Lp(Ω) and the domain of fractional power of A, D(Ak/2) =
{u ∈ L2(Ω) :

∑
j≥1 λ

k
j (u,wj)

2 < +∞}. Then, the first operator is given by Lq(Ω) 3
v 7→ P̃n(v) ∈ D(A−k/2), where 〈P̃n(v), φ〉D(A−k/2),D(Ak/2) = (v, Pnφ). Analogously,

the second one is defined as H−1(Ω) 3 v 7→ P̂n(v) ∈ H−1(Ω), where 〈P̂n(v), φ〉 =

〈v, Pnφ〉. Observe that P̃n and P̂n are the continuous extensions in Lq(Ω) and
H−1(Ω) of Pn, respectively. Then, in what follows, we will make an abuse of notation
and denote both projections by Pn.

Using the boundedness of {f(un)} in Lq(τ, T ;Lq(Ω)), it holds that {Pnf(un)}
is bounded in Lq(τ, T ;H−k(Ω)). Since {Pnh} is bounded in L2(τ, T ;H−1(Ω)), we
have that the sequence {u′n} is bounded in Lq(τ, T ;H−k(Ω)).

Therefore, from compactness arguments and the Aubin-Lions Lemma, there exist
a subsequence of {un} (relabeled the same) and a function u ∈ L∞(τ, T ;L2(Ω)) ∩
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L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)) with u′ ∈ L2(τ, T ;H−1(Ω)) + Lq(τ, T ;Lq(Ω)),

such that 

un
∗
⇀ u weakly-star in L∞(τ, T ;L2(Ω)),

un ⇀ u weakly in L2(τ, T ;H1
0 (Ω)),

un ⇀ u weakly in Lp(τ, T ;Lp(Ω)),

f(un) ⇀ f(u) weakly in Lq(τ, T ;Lq(Ω)),

a(l(un))un ⇀ a(l(u))u weakly in L2(τ, T ;H1
0 (Ω)),

u′n ⇀ u′ weakly in Lq(τ, T ;H−k(Ω)),

un → u strongly in L2(τ, T ;L2(Ω)),

(2.2)

for all T > τ . Observe that the limits of the sequences {f(un)} and {−a(l(un))∆un}
have been obtained applying [31, Lemme 1.3, p. 12].

Then, taking into account (2.2), we can pass to the limit in (2.1) and using that
{wi} is dense in H1

0 (Ω)∩Lp(Ω), it holds (1.7) for all v ∈ H1
0 (Ω) ∩ Lp(Ω). Therefore,

to prove that u is a weak solution to (1.3), we only need to check that u(τ) = uτ ,
which makes sense since u ∈ C([τ, T ];L2(Ω)) (see remark 1.2). To that end, consider
fixed ϕ ∈ H1(τ, T ) with ϕ(T ) = 0 and ϕ(τ) 6= 0. Now, we multiply by ϕ in (2.1),
integrate between τ and T , and pass to the limit. Comparing this limiting equation
with the expression obtained multiplying (1.7) by ϕ and integrating between τ and
T , we conclude that u(τ) = uτ .

Remark 2.2. From the uniqueness of weak solutions to (1.3), it turns out that the
whole sequence {un} converges to u weakly in L2(τ, T ;H1

0 (Ω))∩Lp(τ, T ;Lp(Ω)) and
weakly-star in L∞(τ, T ;L2(Ω)). Analogously, it also fulfills that the whole sequence
{u′n} converges to u′ weakly in Lq(τ, T ;H−k(Ω)).

Now, the existence and uniqueness of a strong solution to (1.3) and the regular-
izing effect of the equation will be analyzed.

Theorem 2.3. Suppose that the function a is locally Lipschitz and satisfies (1.2),
f ∈ C1(R) fulfills (1.4) and (1.5), and h ∈ L2

loc(R;L2(Ω)) and l ∈ L2(Ω) are given.
Then, for each uτ ∈ H1

0 (Ω) ∩ Lp(Ω), there exists a unique strong solution u to
(1.3), with u′ ∈ L2(τ, T ;L2(Ω)).

Proof. By theorem 2.1, we know that there exists a unique weak solution u to
(1.3). Now, let us prove that u ∈ L2(τ, T ;D(−∆)) ∩ L∞(τ, T ;H1

0 (Ω) ∩ Lp(Ω)) for
all T > τ.

Multiplying by λjϕnj in (2.1), summing from j = 1 to n, adding ±f(0), and
using (1.2), we obtain

1

2

d

dt
‖un(t)‖2 +m|−∆un(t)|2 ≤ (f(un(t))−f(0),−∆un(t))+(f(0)+h(t),−∆un(t))

a.e. t ∈ (τ, T ).
Integrating by parts, and using (1.4) and the Cauchy inequality, we deduce

d

dt
‖un(t)‖2 +m| −∆un(t)|2 ≤ 2η‖un(t)‖2 +

1

m
|f(0) + h(t)|2 a.e. t ∈ (τ, T ).
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Integrating between τ and t ∈ [τ, T ], we obtain

‖un(t)‖2+m

∫ t

τ

| −∆un(s)|2ds≤‖uτ‖2+2η

∫ T

τ

‖un(s)‖2ds+
1

m

∫ T

τ

|f(0) + h(t)|2dt.

Taking into account that {un} is bounded in L2(τ, T ;H1
0 (Ω)) (cf. theorem 2.1), we

deduce that {un} is bounded in L∞(τ, T ;H1
0 (Ω))∩L2(τ, T ;D(−∆)). Then, thanks

to the uniqueness of weak solutions, it holds that un converge to u weakly-star in
L∞(τ, T ;H1

0 (Ω)) and weakly in L2(τ, T ;D(−∆)). Thus, u is a strong solution.
Now, to prove the regularity of u′, we consider the auxiliary problem

(Pδ)


du

dt
− aδ(l(u))∆u = f(u) + h(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x) in Ω.

where the function aδ ∈ C1(R) is a mollification of a, i.e. aδ = ρδ ∗ a, and so it
fulfils aδ → a uniformly on compact sets. It can be checked that uδ is the strong
solution to (Pδ) fulfilling

duδ

dt
− aδ(l(uδ))∆uδ = f(uδ) + h(t) ∈ L2(τ, T ;L2(Ω)). (2.3)

Multiplying (2.3) by uδ, we obtain that the sequence {uδ} converges to an ele-
ment u, which is the weak solution to (1.3). In fact, we can prove that u is the
strong solution to (1.3), multiplying (2.3) by −∆uδ. Now, we are ready to show
that u′ ∈ L2(τ, T ;L2(Ω)) making use of the sequence {uδ}. Observe that multiply-
ing (2.3) by (uδ)′ ∈ L2(τ, T ;L2(Ω)) (this can be done rigorously via the Galerkin
approximations), we deduce

|(uδ(t))′|2 + 〈−a(l(uδ(t)))∆uδ, (uδ(t))′〉 = (f(uδ(t)), (uδ(t))′) + (h(t), (uδ(t))′).
(2.4)

Observe that

(f(uδ(t)), (uδ(t))′) =
d

dt

∫
Ω

F(uδ(t))dt,

with

F(s) =

∫ s

0

f(r)dr,

fulfilling

−κ̃− α̃1|s|p ≤ F(s) ≤ κ̃− α̃2|s|p ∀s ∈ R, (2.5)

with κ̃, α̃1 and α̃2 positive constants.
Regarding the nonlocal term, note that

〈−a(l(uδ(t)))∆uδ(t), (uδ(t))′〉

≥1

2

d

dt
(a(l(uδ(t)))‖uδ(t)‖2)− ε|(uδ(t))′|2 − |l|

2L2
a

16ε
‖uδ(t)‖4
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a.e. t ∈ [τ, T ], where ε ∈ (0, 1) and La(|l|C∞) (La for short) denotes the uniform
bound of Lipschitz constants of aδ, i.e. supδ>0 maxs∈[−|l|C∞,|l|C∞] |(aδ)′(s)| being

|uδ(t)| ≤ C∞ for all t ∈ [τ, T ].

Then, taking this into account, from (2.4) we have

(1− ε)|(uδ(t))′|2 +
d

dt
(aδ(l(uδ(t)))‖uδ(t)‖2)

≤2
d

dt

∫
Ω

F(uδ(x, t))dx+
|l|2L2

a

8ε
‖uδ(t)‖4 +

1

1− ε
|h(t)|2,

a.e. t ∈ (τ, T ). Integrating the previous expression between τ and T , making use of
(1.2) and (2.5), we obtain

(1− ε)
∫ T

τ

|(uδ(t))′|2dt+m‖uδ(T )‖2 + 2α̃2‖uδ(T )‖pLp(Ω)

≤M‖uτ‖2 + 4κ̃|Ω|+ 2α̃1‖uτ‖pLp(Ω) +
|l|2L2

a

8ε

∫ T

τ

‖uδ(t)‖4dt+
1

1− ε

∫ T

τ

|h(t)|2dt.

Finally, as argued above, the sequence {uδ} is bounded in L∞(τ, T ;H1
0 (Ω)). So

we deduce that the sequence {(uδ)′} converges to u′ weakly in L2(τ, T ;L2(Ω)) and
{uδ} converges to u weakly-star in L∞(τ, T ;Lp(Ω)).

The following result shows the regularizing effect of the equation. We omit the
proof for the sake of brevity, since it is close to that in [8, Theorem 5] and theorem
2.3.

Theorem 2.4. Assume that the function a is locally Lipschitz and fulfills (1.2),
f ∈ C1(R) satisfies (1.4) and (1.5), h ∈ L2

loc(R;L2(Ω)), and l ∈ L2(Ω). Then,
for any initial datum uτ ∈ L2(Ω), the weak solution u ensured by theorem 2.1
belongs to L2(τ + ε, T ;D(−∆)) ∩ L∞(τ + ε, T ;H1

0 (Ω) ∩ Lp(Ω)) and u′ belongs to
L2(τ + ε, T ;L2(Ω)) for every ε > 0 and T > τ + ε.

3. Abstract results on the theory of Pullback Attractors

In this section, we will recall briefly some results from the theory of pullback at-
tractors that we will use to prove some of the main results of this paper (e.g. cf.
[9, 10, 34, 26]).

Consider given a metric space (X, dX) and denote R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

Definition 3.1. A process on X (also called a two-parameter semigroup) is a
mapping U such that R2

d ×X 3 (t, τ, x) 7→ U(t, τ)x ∈ X with U(τ, τ)x = x for any
(τ, x) ∈ R×X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

Let us denote by P(X) the family of all nonempty subsets of X and consider D
a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X). D
will be called a universe in P(X).
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Definition 3.2. A process U on X is said to be

(a) continuous if for any pair (t, τ) ∈ R2
d, the mapping U(t, τ) : X → X is

continuous.

(b) strong-weak (also known as norm-to-weak) continuous if for any pair (t, τ) ∈
R2
d, the map U(t, τ) is continuous from X with the strong topology into X

with the weak topology.

(c) closed if for any pair (t, τ) ∈ R2
d, and any sequence {xn} ⊂ X such that

xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

(d) pullback D-asymptotically compact if for any t ∈ R, any D̂ ∈ D, and any
sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D(τn)
for all n, the sequence {U(t, τn)xn} is relatively compact in X.

Observe that every continuous process is strong-weak continuous, and every
strong-weak continuous process is closed.

Now, we consider a family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X). We do
not require any additional condition on these sets as compactness nor boundedness.

Definition 3.3. The family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing

for the process U on X if for any t ∈ R and any D̂ ∈ D, there exists τ0(D̂, t) < t
such that

U(t, τ)D(τ) ⊂ D0(t) ∀τ ≤ τ0(D̂, t).

Observe that in the previous definition D̂0 does not necessarily belong to the
universe D.

Definition 3.4. A family AD = {AD(t) : t ∈ R} ⊂ P(X) is called the minimal
pullback D-attractor for the process U if the following properties are satisfied:

(a) the set AD(t) is a nonempty compact subset of X for any t ∈ R,

(b) AD is pullback D-attracting, i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for

all D̂ ∈ D, t ∈ R, where distX(·, ·) denotes the Hausdorff semi-distance in X
between two subsets of X,

(c) AD is invariant, i.e. U(t, τ)AD(τ) = AD(t) for all τ ≤ t,

(d) AD is minimal, i.e. if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of closed sets
which is pullback D-attracting, then AD(t) ⊂ C(t) for all t ∈ R.

The uniqueness of the minimal pullback D-attractor comes from its own definition
(cf. (d)). See also remark 3.6 (i).

Now, we establish the main result of this section. The following theorem guaran-
tees the existence of the minimal pullback attractor (see [26, Theorem 3.11]).

Theorem 3.5. Assume that U : R2
d ×X → X is a closed process, D is a universe

in P(X), and D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is a pullback D-absorbing family for
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U , and moreover suppose that U is pullback D̂0-asymptotically compact. Then, the
family AD = {AD(t) : t ∈ R} defined for t ∈ R by

AD(t) =
⋃
D̂∈D

Λ(D̂, t)
X

,

where Λ(D̂, t) =
⋂
s≤t
⋃
τ≤s U(t, τ)D(τ)

X
for all t ∈ R and {. . . }

X
denotes the

closure in X, is the minimal pullback D-attractor for the process U . In addition, if

D̂0 ∈ D, then it holds that AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

Remark 3.6. (i) If AD ∈ D, then it is the unique family of closed subsets in D
that satisfies (b) and (c). A sufficient condition for AD ∈ D is to have that D̂0 ∈ D,
the set D0(t) is closed for all t ∈ R, and the universe D is inclusion-closed, which

means that if D̂∈ D and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) satisfies that D′(t) ⊂ D(t)

for all t ∈ R, then D̂′ ∈ D.
(ii) The universe of fixed nonempty bounded subsets of X is denoted by DXF .

Then, the corresponding minimal pullback DXF -attractor for the process U is the
attractor defined by Crauel, Debussche and Flandoli (cf. [22, Theorem 1.1]).

The following two results allow us to establish relationships between pullback
attractors (see [34]).

Corollary 3.7. Under the assumptions of theorem 3.5, if DXF ⊂ D, then the min-
imal pullback attractors ADXF and AD exist and ADXF (t) ⊂ AD(t) for all t ∈ R.

Besides, if for some T ∈ R the set
⋃
t≤T D0(t) is a bounded subset of X, then

ADXF (t) = AD(t) for all t ≤ T .

Thanks to the following result, we can compare two attractors for a process (see
[26, Theorem 3.15]).

Theorem 3.8. Let {Xi, dXi}i=1,2 be two metric spaces such that X1 ⊂ X2 with
continuous injection, and Di is a universe in P(Xi) for i = 1, 2, with D1 ⊂ D2.
Assume that a map U acts as a process in both cases, i.e. U : R2

d × Xi → Xi for
i = 1, 2 is a process. For each t ∈ R, denote

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

, i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the
dependence on the respective topology. Then, A1(t) ⊂ A2(t) for all t ∈ R.

If moreover A1(t) is a compact subset of X1 for all t ∈ R, and for any D̂2 ∈ D2

and any t ∈ R, there exist a family D̂1 ∈ D1 and a t∗
D̂1

such that U is pullback

D̂1-asymptotically compact, and for any s ≤ t∗
D̂1

there exists a τs < s such that

U(s, τ)D2(τ) ⊂ D1(s) ∀τ ≤ τs,

then A1(t) = A2(t) for all t ∈ R.



12 T. Caraballo, M. Herrera-Cobos and P. Maŕın-Rubio

4. Pullback attractors in L2(Ω)

Now, we are ready to study the existence of pullback attractors in the phase space
L2(Ω) using the abstract results given in the previous section.

The first goal is straightforward defining U : R2
d × L2(Ω)→ L2(Ω) as

U(t, τ)uτ = u(t; τ, uτ ) ∀uτ ∈ L2(Ω) ∀τ ≤ t,

where u(·; τ, uτ ) denotes the weak solution to (1.3).
It is not difficult to check that U is a process on L2(Ω). Moreover, as a consequence

of theorem 2.1, we have the following result.

Proposition 4.1. Assume that the function a is locally Lipschitz and satisfies
(1.2), f ∈ C1(R) fulfills (1.4) and (1.5), h ∈ L2

loc(R;H−1(Ω)), and l ∈ L2(Ω).
Then, for any pair (t, τ) ∈ R2

d, the map U(t, τ) is continuous from L2(Ω) into
itself.

Lemma 4.2. Suppose that the assumptions in proposition 4.1 hold and consider
uτ ∈ L2(Ω). Then, for any µ ∈ (0, 2λ1m), the solution u to (1.3) satisfies

|u(t)|2 ≤ e−µ(t−τ)|uτ |2 +
2κ|Ω|
µ

+
e−µt

2m− µλ−1
1

∫ t

τ

eµs‖h(s)‖2∗ds ∀t ≥ τ.

Proof. Applying the Cauchy-Schwartz inequality, (1.2) and (1.5) to the energy
equality, and adding ±µ|u(t)|2, we obtain

d

dt
|u(t)|2 + µ|u(t)|2 + 2m‖u(t)‖2 ≤ 2κ|Ω|+ µ|u(t)|2 + 2‖h(t)‖∗‖u(t)‖.

Using the Poincaré and Cauchy inequalities, and multiplying by eµt in the above
expression, it holds

d

dt
(eµt|u(t)|2) ≤ 2κ|Ω|eµt +

1

2m− µλ−1
1

eµt‖h(t)‖2∗.

The result then follows integrating on [τ, t].

Thanks to the previous estimate, now we can define a suitable tempered universe
in P(L2(Ω)).

Definition 4.3. For each µ > 0, we denote by DL2

µ the class of all families of

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(L2(Ω)) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

|v|2
)

= 0.

Observe that DL2

F ⊂ DL
2

µ and DL2

µ is inclusion-closed.
Now, if we assume that h satisfies a suitable growth condition, using the above

estimates, we can prove the existence of a DL2

µ -absorbing family for the process U .
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Proposition 4.4. Under the assumptions of proposition 4.1, if h also satisfies that
there exists some µ ∈ (0, 2λ1m) such that∫ 0

−∞
eµs‖h(s)‖2∗ds <∞, (4.1)

the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) = BL2(0, R
1/2
L2 (t)), the closed ball

in L2(Ω) of center zero and radius R
1/2
L2 (t), where

RL2(t) = 1 +
2κ|Ω|
µ

+
e−µt

2m− µλ−1
1

∫ t

−∞
eµs‖h(s)‖2∗ds,

is pullback DL2

µ -absorbing for the process U : R2
d × L2(Ω)→ L2(Ω). Besides, D̂0 ∈

DL2

µ .

Finally, to prove the existence of the minimal pullback attractor for the process
U : R2

d ×L2(Ω)→ L2(Ω), we only need to check the pullback asymptotic compact-

ness in L2(Ω) for the universe DL2

µ . To that end, we firstly establish the following
result.

Lemma 4.5. Under the assumptions of proposition 4.4, for any t ∈ R and D̂ ∈
DL2

µ , there exists τ1(D̂, t) < t−2 such that, for any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ),

|u(r; τ, uτ )|2 ≤ ρ1(t) ∀r ∈ [t− 2, t],∫ r

r−1

‖u(s; τ, uτ )‖2ds ≤ ρ2(t) ∀r ∈ [t− 1, t],

∫ r

r−1

‖u(s; τ, uτ )‖pLp(Ω)ds ≤
m

2α2
ρ2(t) ∀r ∈ [t− 1, t],

(4.2)

where

ρ1(t) = 1 +
2κ|Ω|
µ

+
e−µ(t−2)

2m− µλ−1
1

∫ t

−∞
eµs‖h(s)‖2∗ds,

ρ2(t) =
1

m

(
ρ1(t) + 2κ|Ω|+ 1

m
max

r∈[t−1,t]

∫ r

r−1

‖h(s)‖2∗ds
)
.

Proof. The first inequality in (4.2) with the expression ρ1 in the right hand side

is similar to the proof of lemma 4.2, if τ ≤ τ1(D̂, t) < t − 2 (far enough pullback
in time) because of our choice of tempered universe and taking into account (4.1).
We therefore omit the details. Observe that in fact this estimate also holds for the
Galerkin approximations, which have already been used in §2.

To obtain the other two inequalities in (4.2), we will proceed with the Galerkin
approximations and then passing to the limit by compactness arguments. Mul-
tiplying by ϕnj in (2.1), summing from j = 1 to n, and using (1.2) and the Cauchy
inequality, we obtain

d

ds
|un(s)|2 +m‖un(s)‖2 + 2α2‖un(s)‖pLp(Ω) ≤ 2κ|Ω|+ 1

m
‖h(s)‖2∗ a.e. s > τ.
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Now, from the above inequality, it holds

|un(r)|2 +m

∫ r

r−1

‖un(s)‖2ds+ 2α2

∫ r

r−1

‖un(s)‖pLp(Ω)ds

≤ |un(r − 1)|2 + 2κ|Ω|+ 1

m

∫ r

r−1

‖h(s)‖2∗ds (4.3)

for all τ ≤ r − 1.
In particular, from (4.3) we obtain for any n ≥ 1

∫ r

r−1

‖un(s)‖2ds ≤ ρ2(t) ∀r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (4.4)

where ρ2(t) is given in the statement.
Also, from (4.3) we can deduce that for any n ≥ 1,

∫ r

r−1

‖un(s)‖pLp(Ω)ds ≤
m

2α2
ρ2(t) ∀r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ).

(4.5)
Taking now into account the fact (cf. theorem 2.1 and remark 2.2) that un

converge to u(·; τ, uτ ) weakly in L2(r − 1, r;H1
0 (Ω)) ∩ Lp(r − 1, r;Lp(Ω)) for all

r ∈ [t− 1, t], and the estimates (4.4) and (4.5), then (4.2) follows.

Now we will prove that the process U is pullback DL2

µ -asymptotically compact
using an energy method with continuous functions (e.g. cf. [28, 33, 35, 26]).

Proposition 4.6. Under the assumptions of proposition 4.4, the process U : R2
d ×

L2(Ω)→ L2(Ω) is pullback DL2

µ -asymptotically compact.

Proof. Let be given t ∈ R, a family D̂ ∈ DL2

µ , a sequence {τn} ⊂ (−∞, t− 2] with
τn → −∞, and uτn ∈ D(τn) for all n. Let us prove that the sequence {u(t; τn, uτn)}
is relatively compact in L2(Ω). For short, we denote un(·) = u(·; τn, uτn).

From lemma 4.5 we know that there exists τ1(D̂, t) < t − 2 satisfying that,

if n1 ≥ 1 is such that τn ≤ τ1(D̂, t) for all n ≥ n1, {un}n≥n1
is bounded in

L∞(t − 2, t;L2(Ω)) ∩ L2(t− 2, t;H1
0 (Ω)) ∩ Lp(t− 2, t;Lp(Ω)). Besides, taking into

account (1.2), it holds that {−a(l(un))∆un}n≥n1
is bounded in L2(t−2, t;H−1(Ω)).

From (1.6) we deduce that {f(un)}n≥n1 is bounded in Lq(t − 2, t;Lq(Ω)). As a
consequence of the above uniform estimates and the equality satisfied by un, it
yields that {(un)′}n≥n1

is bounded in L2(t − 2, t;H−1(Ω)) + Lq(t − 2, t;Lq(Ω)).
Then, using the Aubin-Lions compactness Lemma, analogously as in the proof of
theorem 2.1, it holds that there exists u ∈ L∞(t− 2, t;L2(Ω))∩L2(t− 2, t;H1

0 (Ω))∩
Lp(t− 2, t;Lp(Ω)), with u′ ∈ L2(t− 2, t;H−1(Ω)) + Lq(t − 2, t;Lq(Ω)), such that
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for a subsequence (relabeled the same) it satisfies

un
∗
⇀ u weakly-star in L∞(t− 2, t;L2(Ω)),

un ⇀ u weakly in L2(t− 2, t;H1
0 (Ω)),

un ⇀ u weakly in Lp(t− 2, t;Lp(Ω)),

(un)′ ⇀ u′ weakly in L2(t− 2, t;H−1(Ω)) + Lq(t− 2, t;Lq(Ω)),

un → u strongly in L2(t− 2, t;L2(Ω)),

un(s)→ u(s) strongly in L2(Ω) a.e. s ∈ (t− 2, t),

a(l(un))un ⇀ a(l(u))u weakly in L2(t− 2, t;H1
0 (Ω)),

f(un) ⇀ f(u) weakly in Lq(t− 2, t;Lq(Ω)).

(4.6)

Observe that u ∈ C([t− 2, t];L2(Ω)), and due to (4.6), u fulfills (1.7) in the interval
(t− 2, t).

From (4.6) we can also deduce that {un} is equicontinuous in H−1(Ω) + Lq(Ω)
on [t − 2, t]. Moreover, it holds that {un}n≥n1 is bounded in C([t − 2, t];L2(Ω))
and the embedding L2(Ω) ↪→ H−1(Ω) +Lq(Ω) is compact. Therefore, applying the
Ascoli-Arzelà Theorem, we have (for another sequence, relabeled again the same)
that

un → u strongly in C([t− 2, t];H−1(Ω) + Lq(Ω)). (4.7)

Thanks to the boundedness of {un}n≥n1 in C([t − 2, t];L2(Ω)), for any sequence
{sn} ⊂ [t− 2, t] with sn → s∗ it holds

un(sn) ⇀ u(s∗) weakly in L2(Ω), (4.8)

where we have used (4.7) to identify the weak limit.
Now we will prove that

un → u strongly in C([t− 1, t];L2(Ω)), (4.9)

which implies that the process U is pullback DL2

µ -asymptotically compact.
We establish (4.9) by contradiction. Let us suppose that there exist ε > 0, a

sequence {tn} ⊂ [t− 1, t], without loss of generality converging to some t∗, with

|un(tn)− u(t∗)| ≥ ε ∀n ≥ 1. (4.10)

On the other hand, applying the Cauchy inequality, (1.2) and (1.5) to the energy
equality (1.8), we deduce

|z(s)|2 ≤ |z(r)|2 + 2κ|Ω|(s− r) +
1

2m

∫ s

r

‖h(ξ)‖2∗dξ ∀t− 2 ≤ r ≤ s ≤ t,

where z may be replaced by u or any un.
Now we define the following functions

Jn(s) = |un(s)|2 − 2κ|Ω|s− 1

2m

∫ s

t−2

‖h(r)‖2∗dr,

J(s) = |u(s)|2 − 2κ|Ω|s− 1

2m

∫ s

t−2

‖h(r)‖2∗dr.
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It is clear from the regularity of u and all un that these functions are continuous
on [t− 2, t]. In addition, using the above inequality, it is not difficult to check that
J and all Jn are non-increasing on [t− 2, t]. From this and (4.6), it turns out that

Jn(s)→ J(s) a.e. s ∈ (t− 2, t).

In particular, we can consider a sequence {t̃k} ⊂ (t− 2, t∗) such that t̃k → t∗ when
k →∞ and such that the above convergence holds for any t̃k. Now, fix an arbitrary
value ε > 0. Since the function J is continuous on [t − 2, t], there exists k(ε) ≥ 1
such that

|J(t̃k)− J(t∗)| <
ε

2
∀k ≥ k(ε).

Thereupon, we consider n(ε) ≥ 1 such that

tn ≥ t̃k(ε) and |Jn(t̃k(ε))− J(t̃k(ε))| <
ε

2
∀n ≥ n(ε).

Then, since the functions Jn are non-increasing, it holds for all n ≥ n(ε)

Jn(tn)− J(t∗) ≤ Jn(t̃k(ε))− J(t∗)

≤ |Jn(t̃k(ε))− J(t̃k(ε))|+ |J(t̃k(ε))− J(t∗)|

<
ε

2
+
ε

2
= ε.

As ε > 0 is arbitrary, it yields lim supn→∞ Jn(tn) ≤ J(t∗). Then we deduce that
lim supn→∞ |un(tn)| ≤ |u(t∗)|, which, together with (4.8), allows us to prove that
that un(tn) converge to u(t∗) strongly in L2(Ω), in contradiction with (4.10). There-
fore, (4.9) holds.

As a consequence, we have the following result.

Theorem 4.7. Assume that the function a is locally Lipschitz and (1.2) holds,
f ∈ C1(R) satisfies (1.4) and (1.5), h ∈ L2

loc(R;H−1(Ω)) fulfills condition (4.1)
for some µ ∈ (0, 2λ1m), and l ∈ L2(Ω). Then, there exist the minimal pullback

DL2

F -attractor ADL2
F

= {ADL2
F

(t) : t ∈ R}, and the minimal pullback DL2

µ -attractor

ADL2
µ

= {ADL2
µ

(t) : t ∈ R} for the process U : R2
d × L2(Ω) → L2(Ω) associated to

(1.3). In addition, the family ADL2
µ

belongs to DL2

µ and the following relationships

hold
ADL2

F
(t) ⊂ ADL2

µ
(t) ⊂ BL2(0, R

1/2
L2 (t)) ∀t ∈ R.

Moreover, if h fulfills

sup
s≤0

(
e−µs

∫ s

−∞
eµξ‖h(ξ)‖2∗dξ

)
<∞, (4.11)

then ADL2
F

(t) = ADL2
µ

(t) for all t ∈ R.

Proof. The existence of ADL2
µ
, ADL2

F
, and the relationship between both attractors

are due to corollary 3.7. Namely, the continuity of the process (cf. proposition 4.1),
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the relationship between the universes, the existence of an absorbing family in DL2

µ

(cf. proposition 4.4) and the asymptotic compactness of this universe in the L2-norm
(cf. proposition 4.6) hold.

From theorem 3.5, we also obtain that ADL2
µ

(t) ⊂ BL2(0, R
1/2
L2 (t)) for all t ∈ R.

Moreover, the family ADL2
µ

belongs to DL2

µ (cf. remark 3.6).

Finally, under assumption (4.11), we deduce that
⋃
t≤T RL2(t) is bounded for

each T ∈ R, where RL2 is given in proposition 4.4. Thus, corollary 3.7 implies that
both families of attractors coincide.

Analogously as in [8, Remark 23 (ii)], we can extend the above result to new
larger universes and obtaining new attractors.

Corollary 4.8. Under the assumptions of theorem 4.7, for any σ ∈ (µ, 2λ1m), there

exists the corresponding pullback DL2

σ -attractor ADL2
σ
, which satisfies ADL2

µ
(t) ⊂

ADL2
σ

(t) for all t ∈ R. In addition, if h fulfills (4.11), then ADL2
F

(t) = ADL2
µ

(t) =

ADL2
σ

(t) for all t ∈ R and any σ ∈ (µ, 2λ1m).

5. Pullback attractors in H1
0(Ω)

In this section, we will prove the existence of pullback attractors for the dynamical
systems associated to (1.3) in the phase space H1

0 (Ω).
Observe that when h ∈ L2

loc(R;L2(Ω)), thanks to theorem 2.3, the restriction of
the process U to R2

d ×H1
0 (Ω) is a process in H1

0 (Ω). Since no confusion arises, we
will not modify the notation and continue denoting this process by U .

Now, we will prove that this process defined on H1
0 (Ω) still fulfills properties to

apply the results given in §3. Firstly, we check that the process U is strong-weak
continuous in H1

0 (Ω).

Proposition 5.1. Suppose that the function a is locally Lipschitz and (1.2) holds,
f ∈ C1(R) satisfies (1.4) and (1.5), and h ∈ L2

loc(R;L2(Ω)) and l ∈ L2(Ω) are
given. Then, the process U is strong-weak continuous in H1

0 (Ω).

Proof. Consider fixed (t, τ) ∈ R2
d and let {uτk} be a sequence of initial data such

that uτk → uτ strongly in H1
0 (Ω). We will prove that U(t, τ)uτk ⇀ U(t, τ)uτ weakly

in H1
0 (Ω). To do this, we use the Galerkin approximations and pass to the limit

by compactness arguments. Multiplying (2.1) by λjϕnj , summing from j = 1 to n,
adding ±(f(0),−∆un(t)), and making use of (1.2), (1.4), and the Cauchy inequality,
we deduce

d

dt
‖un(t)‖2 ≤ 2η‖un(t)‖2 +

1

2m
|f(0) + h(t)|2 a.e. t ≥ τ .

Integrating between τ and t, and applying the Gronwall lemma, we have

‖un(t)‖2 ≤
(
‖uτk‖2 +

1

2m

∫ t

τ

|f(0) + h(s)|2ds
)
e2η(t−τ).

Now, since {un} is bounded in L∞(τ, t;H1
0 (Ω)), un(·; τ, uτk) ⇀ u(·; τ, uτk) weakly

in L2(τ, t;H1
0 (Ω)), and u(·; τ, uτk) ∈ C([τ, t];L2(Ω)) (cf. theorem 2.1), taking into
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account [37, Lemma 11.2, p. 288], we deduce

‖u(t; τ, uτk)‖2 ≤
(
‖uτk‖2 +

1

2m

∫ t

τ

|f(0) + h(s)|2ds
)
e2η(t−τ).

From this, taking into account that the map U(t, τ) is continuous from L2(Ω) into
itself (cf. proposition 4.1), it fulfills

U(t, τ)uτk ⇀ U(t, τ)uτ weakly in H1
0 (Ω).

In order to prove that the process U : Rd2×H1
0 (Ω)→ H1

0 (Ω) is pullback asymptot-
ically compact, we previously establish some uniform estimates of the solutions in
a finite-time interval up to t when the initial datum is shifted pullback far enough.

To clarify the statement of the following result, we introduce

ρext1 (t) = 1 +
2κ|Ω|
µ

+
e−µ(t−3)

2m− µλ−1
1

∫ t

−∞
eµξ‖h(ξ)‖2∗dξ,

ρext2 (t) =
1

m

(
ρext1 (t) + 2κ|Ω|+ 1

m
max

r∈[t−2,t]

∫ r

r−1

‖h(ξ)‖2∗dξ
)
.

(5.1)

Lemma 5.2. Under the assumptions of proposition 5.1, if h satisfies (4.1) for some

µ ∈ (0, 2λ1m), then, for any t ∈ R and D̂ ∈ DL2

µ , there exists τ2(D̂, t) < t− 3 such

that for any τ ≤ τ2(D̂, t) and any uτ ∈ D(τ), the following estimates hold

‖u(r; τ, uτ )‖2 ≤ ρ̃1(t) ∀r ∈ [t− 2, t],∫ r

r−1

| −∆u(ξ; τ, uτ )|2dξ ≤ ρ̃2(t) ∀r ∈ [t− 1, t],

∫ r

r−1

|u′(ξ; τ, uτ )|2dξ ≤ ρ̃3(t) ∀r ∈ [t− 1, t],

(5.2)

with

ρ̃1(t) =(1 + 2η)ρext2 (t) +
1

m
max

r∈[t−2,t]

∫ r

r−1

|f(0) + h(ξ)|2dξ,

ρ̃2(t) =
1

m

(
ρ̃1(t) + 2ηρext2 (t) +

1

m
max

r∈[t−1,t]

∫ r

r−1

|f(0) + h(ξ)|2dξ
)
,

ρ̃3(t) =
1

1− ε

[
4κ̃|Ω|+Mρ̃1(t) +

4α̃1κ̃|Ω|
α̃2

+

(
α̃2

1m

α̃2α2
+
Mα̃1

α̃2

)
ρext2 (t)

]
+

1

1− ε

(
α̃1|l|2L2

a

8α̃2ε
+
|l|2L2

a

8ε

)
(ρ̃1(t))2

+
α̃1

α̃2(1− ε)2
max

r∈[t−2,t]

∫ r

r−1

|h(ξ)|2dξ +
1

(1− ε)2
max

r∈[t−1,t]

∫ r

r−1

|h(ξ)|2dξ,
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where La (for short) is denoting La(|l|ρext1 (t)), the Lipschitz constant of a in the
interval [−|l|ρext1 (t)), |l|ρext1 (t))].

Proof. Analogously as in the proof of lemma 4.5, we can obtain uniform estimates
for the solutions in a longer time-interval. Actually, there exists τ2(D̂, t) < t − 3

such that for any τ ≤ τ2(D̂, t) and any uτ ∈ D(τ), it holds

|u(r; τ, uτ )| ≤ ρext1 (t) ∀r ∈ [t− 3, t],∫ r

r−1

‖u(ξ; τ, uτ )‖2dξ ≤ ρext2 (t) ∀r ∈ [t− 2, t],∫ r

r−1

‖u(ξ; τ, uτ )‖pLp(Ω)dξ ≤
m

2α2
ρext2 (t) ∀r ∈ [t− 2, t],

where {ρexti }i=1,2 are given in (5.1). Observe that these estimates also hold for the
Galerkin approximations un(·; τ, uτ ), which have already been used in §2 and §4.

Multiplying by λjϕnj in (2.1), summing from j = 1 to n and making use of (1.2),
(1.4), and the Cauchy inequality, we deduce

d

dξ
‖un(ξ)‖2 +m| −∆un(ξ)|2 ≤ 2η‖un(ξ)‖2 +

1

m
|f(0) + h(ξ)|2 a.e. ξ > τ. (5.3)

Integrating between r and s with τ ≤ r − 1 ≤ s ≤ r, it holds in particular

‖un(r)‖2 ≤ ‖un(s)‖2 + 2η

∫ r

r−1

‖un(ξ)‖2dξ +
1

m

∫ r

r−1

|f(0) + h(ξ)|2dξ.

Integrating the last inequality in s between r − 1 and r, we have

‖un(r)‖2 ≤ (1 + 2η)

∫ r

r−1

‖un(s)‖2ds+
1

m

∫ r

r−1

|f(0) + h(ξ)|2dξ,

for all τ ≤ r − 1. Thus, from the estimate on the solutions by ρext2 given above, we
deduce

‖un(r; τ, uτ )‖2 ≤ ρ̃1(t) ∀r ∈ [t− 2, t], τ ≤ τ2(D̂, t), uτ ∈ D(τ), (5.4)

where ρ̃1(t) is given in the statement.

Now, integrating between r − 1 and r in (5.3), we obtain in particular∫ r

r−1

| −∆un(ξ)|2dξ

≤ 1

m

(
‖un(r − 1)‖2 + 2η

∫ r

r−1

‖un(ξ)‖2dξ +
1

m

∫ r

r−1

|f(0) + h(ξ)|2dξ
)
,

for all τ ≤ r − 1. Then, for any n ≥ 1,∫ r

r−1

| −∆un(ξ)|2dξ ≤ ρ̃2(t) ∀r ∈ [t− 1, t], τ ≤ τ2(D̂, t), uτ ∈ D(τ), (5.5)
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where ρ̃2(t) is given in the statement. Now, observe that u ∈ C([t− 2, t];H1
0 (Ω)),

un converge to u(·; τ, uτ ) weakly-star in L∞(t− 2, t;H1
0 (Ω)) and weakly in L2(r −

1, r;D(−∆)) for all r ∈ [t−1, t] (cf. theorem 2.3). From all this, together with (5.4)
and (5.5), we obtain the first two inequalities of (5.2).

Finally, we show the last estimate of (5.2). Arguing as done at the end of the
proof of theorem 2.3, we have

(1− ε)|(uδ(ξ))′|2 +
d

dξ
(am(l(uδ(ξ)))‖uδ(ξ)‖2)

≤2
d

dξ

∫
Ω

F(uδ(x, ξ))dx+
|l|2L2

a

8ε
‖uδ(ξ)‖4 +

1

1− ε
|h(ξ)|2 a.e. ξ > t− 3,

where uδ is the solution to (Pδ) (see for more details the proof of theorem 2.3).
Integrating between s and r with t− 2 ≤ r − 1 ≤ s ≤ r, we obtain

(1− ε)
∫ r

s

|(uδ(ξ))′|2dξ +m‖uδ(r)‖2 + 2α̃2‖uδ(r)‖pLp(Ω)

≤4κ̃|Ω|+ 2α̃1‖uδ(s)‖pLp(Ω) +M‖uδ(s)‖2 +
|l|2L2

a

8ε

∫ r

r−1

‖uδ(ξ)‖4dξ

+
1

1− ε

∫ r

r−1

|h(ξ)|2dξ. (5.6)

Now, integrating the previous expression in s between r − 1 and r we deduce in
particular

‖uδ(r)‖pLp(Ω)

≤2κ̃|Ω|
α̃2

+
α̃1

α̃2

∫ r

r−1

‖uδ(s)‖pLp(Ω)ds+
M

2α̃2

∫ r

r−1

‖uδ(s)‖2ds+
|l|2L2

a

16α̃2ε

∫ r

r−1

‖uδ(ξ)‖4dξ

+
1

2α̃2(1− ε)

∫ r

r−1

|h(ξ)|2dξ.

Then, making use of the previous estimates,

‖uδ(r)‖pLp(Ω) ≤ ρ∞,p(t) ∀r ∈ [t− 2, t], (5.7)

with

ρ∞,p(t) :=
2κ̃|Ω|
α̃2

+

[
α̃1m

2α̃2α2
+

M

2α̃2

]
ρext2 (t) +

|l|2L2
a

16α̃2ε
(ρ̃1(t))2

+
1

2α̃2(1− ε)
max

r∈[t−2,t]

∫ r

r−1

|h(ξ)|2dξ,

where ρext2 and ρ̃1 are independent of δ.

Now, taking s = r− 1 in (5.6) and making use of the first inequality of (5.2) and
(5.7), passing to the limit in δ, we obtain in particular∫ r

r−1

|u′(s)|2ds ≤ ρ̃3(t) ∀r ∈ [t− 1, t], ∀τ ≤ τ2(D̂, t), ∀uτ ∈ D(τ),

where ρ̃3 is given in the statement.
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Now, we introduce the following universe in P(H1
0 (Ω)).

Definition 5.3. For each µ > 0, we denote by DL
2,H1

0
µ the class of all families of

nonempty subsets D̂H1
0

= {D(t)∩H1
0 (Ω) : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DL2

µ .

Again, according to the notation in §3, we denote by DH
1
0

F the universe of families
(parameterized in time but constant for all t ∈ R) of nonempty fixed bounded

subsets of H1
0 (Ω). Observe that DH

1
0

F ⊂ DL
2,H1

0
µ and DL

2,H1
0

µ is inclusion-closed.

Now, from the existence of a pullback DL2

µ -absorbing family (cf. proposition 4.4)
and the regularizing effect of the equation (cf. theorem 2.4), the following result is
straightforward.

Corollary 5.4. Under the assumptions of lemma 5.2, the family

D̂0,H1
0

= {BL2(0, R
1/2
L2 (t)) ∩H1

0 (Ω) : t ∈ R}

belongs to DL
2,H1

0
µ and satisfies that, for any t ∈ R and any D̂ ∈ DL2

µ , there exists

τ3(D̂, t) < t such that

U(t, τ)D(τ) ⊂ D0,H1
0
(t) ∀τ ≤ τ3(D̂, t).

In particular, the family D̂0,H1
0

is pullback DL
2,H1

0
µ -absorbing for the process U :

R2
d ×H1

0 (Ω)→ H1
0 (Ω).

The following result establishes that the process U defined on H1
0 (Ω) as phase-

space is pullback DL
2,H1

0
µ -asymptotically compact. To that end, we apply again an

energy method with continuous functions (cf. proposition 4.6).

Proposition 5.5. Under the assumptions of lemma 5.2, the process U : R2
d ×

H1
0 (Ω)→ H1

0 (Ω) is pullback DL
2,H1

0
µ -asymptotically compact.

Proof. We only point out the main ideas because of its similarity to the proof
of proposition 4.6. In this more regular setting, we take into account the energy
equality (1.9) and these continuous functions

Jn(s) = ‖un(s)‖2 − 2η

∫ s

t−2

‖un(r)‖2dr − 1

2m

∫ s

t−2

|f(0) + h(r)|2dr,

J(s) = ‖u(s)‖2 − 2η

∫ s

t−2

‖u(r)‖2dr − 1

2m

∫ s

t−2

|f(0) + h(r)|2dr.

Now, thanks to above results, we establish attraction in H1
0 (Ω) and some rela-

tionships among the new pullback attractors and those given in theorem 4.7.

Theorem 5.6. Assume that the function a is locally Lipschitz and satisfies (1.2),
the function f ∈ C1(R) fulfils (1.4) and (1.5), h ∈ L2

loc(R;L2(Ω)) satisfies condition
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(4.1) for some µ ∈ (0, 2λ1m), and l ∈ L2(Ω). Then, there exist the minimal pull-

back DH
1
0

F -attractor A
D
H1

0
F

= {A
D
H1

0
F

(t) : t ∈ R} and the minimal pullback DL
2,H1

0
µ -

attractor A
D
L2,H1

0
µ

= {A
D
L2,H1

0
µ

(t) : t ∈ R} for the process U : R2
d×H1

0 (Ω)→ H1
0 (Ω),

and the following relationship holds

A
D
H1

0
F

(t) ⊂ ADL2
F

(t) ⊂ ADL2
µ

(t) = A
D
L2,H1

0
µ

(t) ∀t ∈ R, (5.8)

where ADL2
F

and ADL2
µ

are respectively the minimal pullback DL2

F -attractor and the

minimal pullback DL2

µ -attractor for the process U : R2
d×L2(Ω)→ L2(Ω), whose ex-

istences are guaranteed by theorem 4.7. In particular, we have the following pullback
attraction result in H1

0 (Ω),

lim
τ→−∞

distH1
0
(U(t, τ)D(τ),ADL2

µ
(t)) = 0 ∀t ∈ R ∀D̂ ∈ DL

2

µ . (5.9)

Finally, if moreover h satisfies

sup
s≤0

(
e−µs

∫ s

−∞
eµr|h(r)|2dr

)
<∞, (5.10)

then the following chain of equalities holds

A
D
H1

0
F

(t) = ADL2
F

(t) = ADL2
µ

(t) = A
D
L2,H1

0
µ

(t) ∀t ∈ R,

and for any bounded subset B of L2(Ω),

lim
τ→−∞

distH1
0
(U(t, τ)B,ADL2

F
(t)) = 0 ∀t ∈ R. (5.11)

Proof. The existence of A
D
H1

0
F

and A
D
L2,H1

0
µ

is a consequence of corollary 3.7. In-

deed, the process U is strong-weak continuous (cf. proposition 5.1), the relationship
between the universes, the existence of an absorbing family (cf. corollary 5.4) and
the asymptotic compactness (cf. proposition 5.5) hold.

The chain of inclusions (5.8) follows from corollary 3.7 and theorem 3.8. In fact,
the equality for all t ∈ R between ADL2

µ
(t) and A

D
L2,H1

0
µ

(t) is also due to theorem

3.8, using corollary 5.4. Then, (5.9) obviously holds.
When h satisfies (4.11), it holds equality ADL2

F
(t) = ADL2

µ
(t) for all t ∈ R (cf.

theorem 4.7). The equality A
D
H1

0
F

(t) = ADL2
F

(t) is again due to theorem 3.8. To that

end we assume (5.10), which is stronger than (4.11). Therefore, (5.11) is straight-
forward.

Analogously to corollary 4.8, we have the following result.

Corollary 5.7. Under the assumptions of theorem 5.6, for any σ ∈ (µ, 2λ1m)

there exists the corresponding DL
2,H1

0
σ -pullback attractors A

D
L2,H1

0
σ

and the equality

ADL2
σ

(t) = A
D
L2,H1

0
σ

(t) holds for all t ∈ R. Moreover, if h fulfills (5.10), then the

families A
D
L2,H1

0
σ

and A
D
H1

0
F

coincide.
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Another immediate consequence of theorem 5.6 is an improvement in the regu-
larity of the attractor in an autonomous framework. Namely, we have the following

Corollary 5.8. Suppose that h ≡ 0 in (1.3). Under the assumptions of theorem
5.6, there exist the global attractors AL2 and AH1

0
for the associated autonomous

dynamical system in L2(Ω) and H1
0 (Ω) respectively, and they coincide. Furthermore,

‖u‖L∞(Ω) ≤
(
κ

α2

)1/p

∀u ∈ AL2 . (5.12)

Proof. The existence of global attractors is guaranteed by theorem 5.6. In addition,
thanks to the regularizing effect of the equation (cf. theorem 2.4), we deduce that
AL2 = AH1

0
. Finally, the estimate (5.12) follows arguing as in [37, Theorem 11.6,

p. 292].

Remark 5.9. (i) In the context of [8], for f sublinear, the global attractor also
satisfies the estimate (5.12) in L∞(Ω), provided that f(s)s ≤ κ− α2|s|p for all
s ∈ R for some p ≥ 1.
(ii) Observe that the assumptions (1.2) and (1.4) can be weakened along this paper.
Concerning (1.2), it is not difficult to deduce that the upper bound M can be removed
thanks to the uniform bound of the solutions in L∞(τ, T ;L2(Ω)). Regarding the
assumption (1.4), it can be replaced by the monotonicity condition

(f(s)− f(r))(s− r) ≤ η(s− r)2 ∀s, r ∈ R,

where f is just simply a continuous function. To that end, using mollifiers, we
construct {fε} which does fulfil (1.4), and by compactness arguments we recover the
desired results for f.

Despite the cited improvements on the assumptions made on f and a, the results
are proved in the less general setting for the sake of clarity and simplicity.
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35 P. Maŕın-Rubio and J. Real. Pullback attractors for 2D-Navier-Stokes equations with delays
in continuous and sub-linear operators. Discrete Contin. Dyn. Syst. 26 (2010), 989–1006.

36 S. B. de Menezes. Remarks on weak solutions for a nonlocal parabolic problem. Int. J.
Math. Math. Sci. 2006 (2006), 01–10.

37 J. C. Robinson. Infinite-Dimensional Dynamical Systems (Cambrige: Cambridge University
Press, 2001).

38 G. Sell and Y. You. Dynamics of evolutionary equations (New York: Springer-Verlag, 2002).

39 G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à
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