
A New Strategy to Improve the Performance
of PDP-Systems Simulators

Carmen Graciani, Miguel A. Mart́ınez-del-Amor, and Agust́ın Riscos-Núñez

Department of Computer Science and Artificial Intelligence,

Research Group on Natural Computing, Universidad de Sevilla, Seville, Spain
{cgdiaz,mdelamor,ariscosn}@us.es

Abstract. One of the major challenges that current P systems simu-
lators have to deal with is to be as efficient as possible. A P system
is syntactically described as a membrane structure delimiting regions
where multisets of objects evolve by means of evolution rules. Accord-
ing to that, on each computation step, the applicability of the rules for
the current P system configuration must be calculated. In this paper we
extend previous works that use Rete-based simulation algorithm in order
to improve the time consumed during the checking phase in the selection
of rules. A new approach is presented, oriented to the acceleration of
Population Dynamics P Systems simulations.

Keywords: Rete algorithm · P systems · Membrane computing · Rule
applicability · Simulator performance

1 Introduction

In Membrane Computing it is relatively common to find in the literature designs 
of P systems where a collection of rules is described by means of a single tem-
plate (usually using indexed objects). P-Lingua standard allows the definition 
of rule patterns with parameters, thus getting closer to the usual syntax used 
in the papers. For example, the following rule pattern represents one thousand 
evolution rules acting over different objects:

[oi → xi], 1 ≤ i ≤ 1000.

Nevertheless, when designing simulator software, we commonly assume that the 
rules will be handled individually. For instance, all built-in simulators in the 
pLinguaCore library (even those from PMCGPU project [27]) always unwrap 
any rule pattern within the .pli file, and then they load in memory every 
single rule obtained. Therefore, in the previous example, our simulators would 
handle those 1000 rules separately. It seems clear that, if we were able to process 
rule patterns without unwrapping them, then the performance would improve 
dramatically.

This paper provides a step forward in this direction, proposing an improve-
ment of the first phase of the simulation loop based on a Rete network: checking 
which rules are applicable (an how many times).



The paper is structured as follows. First, some preliminary notions about
production systems and the classical Rete algorithm are recalled. Then, Sect. 3
discusses how to bring a Rete-like approach into the pseudocode of simulation
engines used in membrane computing software tools. Some further details are
given for the case of PDP systems in Sect. 4. Finally, the paper concludes with
some final remarks and future work.

2 Production Systems

A rule-based production system is a model of computation that has been widely
used in the field of Artificial Intelligence for a wide range of tasks in many
domains. It is classically defined by a set of rules (rulebase), a set of facts (work-
ing memory), and a rule engine that controls the execution.

Each rule consists of a conjunction of condition elements and a set of actions.
The general form is

if [condition]* then [action]*
Usually the condition part is known as the left-hand side (LHS) of the rule

and each condition is called a pattern. The action part is known as the right-hand
side (RHS) and describe the effects of applying the rule.

The rule engine repeatedly performs the operations described in Algorithm1
until no more rule is applicable (or an action element stops it).

applicable ← ∅;
foreach rule do

Test LHS of the rule against the working memory;
if it matches then

add rule to applicable
end

end
Choose one rule from applicable (if any);
Perform the actions of the RHS of the selected rule;

Algorithm 1. Match-act cycle

The actions produce, in most cases, the inclusion and/or deletion of facts
within the working memory. Because of those changes, some rules may become
applicable while, conversely, some other rules may stop being applicable.

It is well known that a large part of the time and memory consumed by a
ruled-based production system is due to the matching phase; that is, determining
which rules are applicable at any given instant, according to the current facts in
the working memory. Thus, the main challenge of match algorithms is to update
this information in an efficient way.



2.1 The Rete Algorithm

The Rete algorithm [8] is a classic and widely used algorithm for checking rule
satisfaction. It takes advantage of two empirical observations:

– Temporal redundancy: The application of the rules does not change all the
working memory. Only some facts are affected and the remaining ones (prob-
ably, most of them) stay unchanged. Rete maintains state information across
cycles and performs incremental matching.

– Structural similarity: Several rules can (partially) share the same (or similar)
conditions in the LHS. Rete recognises those identical features in order to
avoid making the same tests multiple times.

Before the match-act cycles take place, the set of rules is preprocessed yielding
a network (a directed acyclic graph). During the match-act cycles, tokens associ-
ated with facts flow through this network each time that they are added/deleted
to the working memory. At any given point, the contents of the network cor-
respond to the conditions that have already been checked against the current
facts.

We will use the set of rules in Fig. 1(a), and the network associated to it
(displayed below the set of rules) in order to illustrate the description of the
different components of such a network and the process followed to construct
it. Figure 1(b) shows how tokens, corresponding to different facts added to the
working memory, pass through the network during a match-act cycle.

The network constructed for a given set of rules has two roots and three
kinds of nodes:

– Root α is the entry to the α-nodes subnetwork. During the match-act cycles
this root receives the changes in the working memory (added or removed facts)
and pass those tokens to its successors (α-nodes).

In the figure, root α is represented as a squared node with a symbol α
inside.

– α-nodes, children of the root α. They are included in the network for each
different pattern appearing in any of the LHS of the rules. α-nodes perform
the checking for the associated condition to all the tokens they receive. Only
when the test is successful, the token passes to the successors (β-nodes).

In the figure, α-nodes are represented as rectangles, showing their associated
condition inside them. For example, in order to match the first condition of
rule R1, an object must verify p1 relation, and its first argument must be equal
to number 3, as described in the corresponding α-node. Since in this small
example there are only three different patterns in the LHS of R1 and R2, the
network contains only three different α-nodes.

– Root β is the entry to the β-nodes subnetwork.
In the figure, root β is the double squared node with a symbol β inside.

– β -nodes perform inter–patterns conditions. β-nodes receive tokens from two
nodes (an α-node and a β-node) and have two different memories to store
the tokens that arrive from each parent. Every time a new token arrives,
the condition will be checked for all possible combinations of this token with



Fig. 1. Two different Rete networks for R1 and R2. The one on the right also illustrates
the flow of tokens for a given working memory f1, . . . , f6.

tokens from the local memory of the other parent. Successful combinations (if
any) are passed on to successor nodes (either terminal or β-nodes).

β-nodes directly connected to the root β are a particular case; they do not
use any local memory, they just let tokens pass trough them.

In the figure, β-nodes are the double squared ones where the associated
inter–pattern condition is displayed inside them. Below the condition there
are two cells, where the tokens stored in each local memory are shown.

For the given example, the first non-elementary β-node is associated to
the following condition: the second argument of the token verifying the p1
relation must be the same as the first argument of the token that verifies the
p2 relation (we denote this as y(p1) = y(p2)).

– Terminal-nodes receive tokens which match all the conditions of the LHS
of a rule (including inter–patterns conditions), and produce the output of the
network. The set of applicable rules is composed by the rules whose terminal-
node are not empty.

In the figure, terminal-nodes are the grey ones.

The path from the root β, through different β-nodes, down to a terminal-node
defines the complete LHS of a rule. Unless otherwise indicated, inter–pattern
conditions are checked in the same order as they occur in the rule.



Note that a very simple change in the order of R1 conditions yields a very
different network, as shown in Fig. 1(b). Now, the set of rules not only share
conditions p2(y, z, z) and p1(3,y), but also that they occur at the beginning
of the LHS, and moreover in the same order. Therefore, they continue sharing
the α-nodes for those conditions (like in Fig. 1(a)), but now they also share the
first β-nodes.

Algorithm 2 describes the general process that constructs the network for a
given set of rules.

NET ← graph ({α, β}, ∅);
foreach rule, R do

C ← first condition of R;
A ← α-node in NET associated to C;
// if it does not exist, then add it to NET as an α child

B ← β-node in NET child of A and β;
// if it does not exist, then add it to NET

foreach condition D in R (in order of occurrence after C) do
A ← α-node in NET associated to D;
// if it does not exist, then add it to NET as an α child

B ← β-node in NET, child of A and B, associated to inter-pattern
condition between D and previous conditions in R;
// if it does not exist, then add it to NET

end
T ← terminal-node in NET, child of B;
// if it does not exist, then add it to NET as child of B
Add R to T memory;

end
Algorithm 2. Network construction

The most important issue regarding performance is the order of the condi-
tions in the LHS of the rules. This leads to consider the following strategies to
improve the efficiency.

– Most specific to most general. If the rule activation can be controlled by a
single data, place it first.

– Data with the lowest number of occurrences in the working memory should
go near the top.

– Volatile data (ones that are added and eliminated continuously) should go
last, particularly if the rest of the conditions are mostly independent.

Those strategies try to minimise (in general), not only the number of β-nodes
that will exist in the network (and, therefore, the number of checks performed
until a token arrives into a terminal node), but also the number of β-nodes that
must be updated each time that a fact flows through their memories.

In resume, the key advantage of Rete is that rule conditions are only re-
evaluated when a fact is asserted or deleted. In this way, asserting a new fact is



simply a case of passing a token through the network, and a smaller number of
matching operations are performed. In a naive implementation, each new fact
would be compared against every single pattern of every rule, which means a
greater time complexity. Retracting a fact is identical to assertion, but items are
removed from node memories.

3 Rete and P System Simulation

In this section we explore how the Rete algorithm and the strategies described
in the previous section can be adapted to Membrane Computing simulators. We
assume that the reader is familiar with basic concepts related to this area, for
an extensive bibliography and documentation please refer to the handbook [23]
and the P systems webpage [25].

Since there is no implementation in vivo nor in vitro of P systems, the devel-
opment of in silico simulators has been one of the most active research lines
in the area [7,12]. In [9], a specification language for membrane systems called
P-Lingua has been presented. This language aims to be a standard to define
P systems. The P-Lingua framework also includes a Java library called pLin-
guaCore, which is able to parse (plain-text) files in P-Lingua format defining
P systems from a number of different models [6,14,18], checking whether they
contain any syntax or semantics errors. P-Lingua files can also be exported into
xml or binary formats, so that the converted files can then be used as the input
for simulation tools. Moreover, the library includes several built-in simulators
for each supported model. It is an Open Source software tool available at [26].

We will now discuss about the functioning of such simulator engines provided
by pLinguaCore. After parsing the P system defined in the input P-Lingua (.pli)
file, the simulation process of each computation step is carried out in two phases:
selection and execution of rules. In the first phase, the checking of the applica-
bility of the rules is made sequentially. Such method only simulates one possible
computation, so it is used for confluent P systems (that is, systems for which all
the computations with the same input lead to the same result).

Checking the applicability of rules normally consumes plenty of time in pLin-
guaCore simulators, and in fact, it is mainly in this checking subroutine where
the complexity of the simulation algorithm resides. For P systems where the rules
have an associated probability, there is an additional difficulty: deciding how to
implement the semantics, which informally indicate that rules should be applied
in a “maximally parallel way, according to their probabilities”. In particular,
pLinguaCore includes a variety of simulation algorithms for PDP systems: Bino-
mial Block Based (BBB) algorithm [1] does a random loop over blocks of rules
(i.e. rules having the same LHS), and assigns a maximal number of applications
to each one; Direct Non Deterministic distribution with Probabilities (DNDP)
algorithm [6] does also a random loop, but over the rules, and assigning a prob-
abilistic number of applications; and Direct distribution based on Consistent
Blocks Algorithm (DCBA) [16] performs a proportional distribution of objects
among blocks of rules before assigning a maximal, but probabilistic number of



applications to each rule. The main difference among these three approaches
is not their performance, but the fact that they produce significantly different
behaviours. DCBA is the one that tries to perform the selection of rules to be
applied in a more realistic or accurate way, from an ecological point of view.
Since it is the most common choice for PDP systems simulation, in what follows
we will focus particularly on it.

It is worth stressing the fact that the Rete-based algorithm that we intro-
duce in this paper is completely independent from the computation mode of
the considered P-system model (sequential, maximal/minimal parallelism, dis-
tributed, etc.). Indeed, the Rete network contains information about which rules
are “individually” applicable. When calculating applicable multisets of rules, the
computation model comes into play.

For a first approximation to the study of how to use Rete algorithm ideas
within Membrane Computing we have chosen to focus on rules handling polari-
sation, which can be written in the following form

un11 · · · unkk [vm11 · · · vmll ]cs → . . .

(k and/or l can be 0) with u1, . . . , uk, v1, . . . , vl ∈ Γ .
Also, on many occasions the symbols of the alphabet have subscripts (gen-

erally numerical) used to describe rulesets. In general, the following possibilities
occur:

– Subscripts belong to a fixed set of possibilities:

ui[vj]cs → . . . such that 1 ≤ i, j ≤ 10

– The value of a subscript of an object is determined by other subscripts values:

ui,i+1[]cs → . . . such that 1 ≤ i ≤ 10

– Subscripts from different symbols may also be related:

ui,j[vi+1,j−1]cs → . . . such that 1 ≤ i, j ≤ 10

Generalising the above, rulesets schemes would be something of the form:

un1j1:Γ1 . . . unkjk:Γk : γk[vm1i1:Θ1 : θ1 . . . v
mk′
ik′ :Θk′ : θk′ ]cs → . . .

where each Γ is a relation over the symbol subscripts and each γ is a relation
over the symbol subscripts and all the subscripts of the previous symbols. In
such a scheme we can distinguish three kinds of conditions:

– A membrane labelled with s must have charge c : []cs
– Outside the membrane there must be at least nj copies of element uj and its

subscripts must verify Γj: u
nj
j:Γj : γj.

This condition is interrelated with the previous one as the membrane has
to be the same as in the previous conditions. Also, the object subscripts are
related in terms of γj with the subscripts of the objects in the former condi-
tions.



Fig. 2. Rete network for P systems

– Inside the membrane there must be at least mi copies of element vi and its
subscripts must verify Θi: [vmii:Θi : θi].

Equivalent interrelation to those listed above have to be taken into account.

So, for each symbol in a given P system configuration, the token passing
trough the network must contain information about the number of copies and
its subscripts. As the symbol is, at the same time, inside a membrane and,
probably, outside of one or more membranes a different token is sent for each
symbol situation.

Following the work introduced in [10], α-nodes can be divided into several
nodes, one for each condition over the arguments of a pattern. Moreover, we
consider here a strategy to reduce the amount of redundant information in the
network. We will allow these new detailed α-nodes to be used by several patterns,
in such a way that each pattern will not be associated to a single α-node, but
to a path from root α to a β-node.

For example, let us consider the following rules

1. aib3i[fi+1]+2 → . . . for 1 ≤ i ≤ 1000
2. b3i[fi+1e20]

+
2 → . . . for 1 ≤ i ≤ 1000

It is important to highlight that this strategy allows us to handle only two
templates of LHS, instead two thousand different (but similar) individual rules.



First of all, we can rewrite them as in Sect. 2.1, in order to put at the begin-
ning common conditions. Figure 2 shows the new syntax, together with the con-
structed network. Note that there are specific detailed α-nodes for conditions
about the membrane charge, about the region where the objects should be,
about the index of the objects, and about their multiplicity.

Considering that, in a given configuration, several membranes may have
the same label, all β-nodes (including those directly connected to root β) and
terminal-nodes have different slots to distinguish between them.

In production systems, the changes in the working memory correspond
mainly to adding or removing facts. In membrane computing, the modifica-
tions caused by the application of the rules mainly refer to polarization of the
membranes or their associated multisets of objects. Each time that something
is modified on a configuration, the corresponding tokens go trough the network,
and in β-nodes the inter–relations between them are checked. Moreover, the
checking does not yield a Boolean answer, but instead, the maximum number of
times that the related rules could be used is updated.

4 Population Dynamics P Systems and DCBA Algorithm

Population Dynamics P systems are a variant of multienvironment P systems
with extended active membranes [5]. As discussed before, the simulation of PDP
systems has been a research topic for years. In total, up to 4 simulation algo-
rithms were defined, each trying to improve both in accuracy and in performance
for their predecessor. The latest defined algorithm is called DCBA [16], which
implements a proportional distribution of objects among rules with overlapping
LHS (i.e. competing for objects). Rules having the same LHS are arranged into
blocks, and these are also restricted to the consistency condition: rules within a
block must have the same LHS and the same charge in the RHS [16].

DCBA consists of 3 phases for the selection of rules: phase 1 (distribution),
phase 2 (maximality) and phase 3 (probabilistic). The general scheme is the
following:

1. Initialization of the algorithm: static distribution table (columns: blocks,
Rows: (objects,membrane))

2. Loop over Time
3. Selection stage:
4. Phase 1 (Distribution of objects along rule blocks)
5. Phase 2 (Maximality selection of rule blocks)
6. Phase 3 (Probabilistic distribution, blocks to rules)
7. Execution stage

As analysed in [17], Phase 1 is the bottleneck of the simulation in sequential
mode, taking more than the half of the run time. Whereas Phase 2 performs a
random loop over remaining blocks of rules to achieve maximality, and Phase 3
carries out a random multinomial distribution from blocks to rules, Phase 1 has
to deal with all the defined blocks of rules, and distribute the objects among



foreach environment ej , 1 ≤ j ≤ m do
Apply filters 1 and 2 to Tj using configuration Ct, obtaining the dynamic
table T ′

j ;
Check mutual consistency for the blocks remaining in T ′

j . Launch an error if
at least one inconsistency is found. Optionally, select a maximal subset of
consistent blocks, and continue;
Apply filter 3 to T ′

j (delete empty rows);
repeat

Add all non-null values in the rows of T ′
j ;

Normalize the values of T ′
j by using the total sum of rows;

Multiply each row by the number of copies of the corresponding object
in Ct;
Calculate the minimum of the previous values per column;
Select the block corresponding to the column with that minimum value;
Delete the number of copies of the objects in the LHS according to that
selection;
Apply filters 2 and 3 to T ′

j ;
until (Reached a maximum number of iterations) ∨ (All the column
minimums are 0);

end

Algorithm 3. DCBA selection (Phase 1)

them. Algorithm 3 shows a brief overview of Phase 1 (more details can be seen
in [16]).

Essentially, the proportional distribution of objects is carried out by using
a table which implements the relationship between rules and their LHS as fol-
lows: each column corresponds to each rule block, each row to a pair (object,
membrane), and the value in position (i, j) is 1/k, if the object of row i appears
k times in the LHS of block of j, or 0 otherwise. The algorithm always starts
with a static table, that will be the same for each transition step. The checking
of applicability of rules is carried by applying two filters to the static table, and
generating a dynamic table in turn. Depending on the current configuration of
the PDP system, the table is dynamically modified by deleting columns related
to non-applicable blocks: due to the charge associated to the membrane in the
LHS (filter 1), and due to the availability of objects in the LHS according to the
configuration (filter 2).

Finally, there is a further restriction within phase 1: if two non-consistent
blocks (having different associated right-hand charge) can be selected at the
same time given a configuration, then the simulation algorithm will return an
error, or optionally non-deterministically choose a subset of consistent blocks.

Evolution rules in PDP systems follow the scheme presented in previous
section. Moreover, each environment contains a P system. Since they do not
share objects directly, a separate Rete evolution network for each P system can
be considered.



foreach environment ej , 1 ≤ j ≤ m do
repeat

Add all non-null values in the rows of Tj ;
Normalize the values of Tj by using the total sum of rows;
Multiply each row by the number of copies of the corresponding object
in Ct;
Calculate the minimum of the previous values per column;
Select the block corresponding to the column with that minimum value;
Delete the number of copies of the objects in the LHS according to that
selection and send the corresponding tokens to the networks;

until (Reached a maximum number of iterations) ∨ (All the column
minimums are 0);

end
Algorithm 4. Phase 1 reduction due to the use of Rete networks

Environments can send (receive) objects to (from) other environments, by
means of a set of communication rules of the following form.

(x)ej → (y1)ej1 · · · (yh)ejh

A new network for the set of communication rules has to be constructed, but
this is quite simple as their LHS include just one single condition, the existence
of an object in an specific environment.

These communitation network must be synchronised with the evolution net-
works for an accurate simulation. When the initial configuration is included,
for each object in the environments, a token is sent to the evolution network
associated to that environment and to the communication network. If during a
computation step of a simulation, an evolution rule of any P system sends out to
its environment an object, then a token removing it is sent to the corresponding
evolution network and, also, a token adding it to the corresponding environment
has to be sent to the communication network. Moreover, when a communica-
tion rule is used during a computation step, in addition to tokens sent trough
the communication network, a token has to be sent to the evolution network
associated to each receiving P system.

As mentioned before, each time that a token passes through the network the
maximum number of times that any rule affected by this change in a configura-
tion is updated. With this information, Tj is dynamically updated and there is
no need to use an initial static distribution table (step 1 in DCBA is replaced
by the construction of the networks). Indeed, it would not be necessary to apply
any filter to Tj . This updating includes checking mutual consistency launching
an error if an inconsistency is found. Algorithm4 briefly describes new Phase 1.

5 Conclusions and Future Work

In this paper we have presented how to use Rete-based checking for applicabil-
ity to improve the time consuming by DCBA. For further work new simulators



have to be added to pLinguaCore (and also to PMCGPU project), not unwrap-
ping rules and constructing Rete-based networks instead, and adapting selection
phase. The basic lines shown should be adapted to each specific model in order
to improve the efficiency of the designed simulator.

As is well known, one of the key points of the efficiency of the Rete algo-
rithm is the proper order in the conditions of the LHS of the rule. On the other
hand, one of its disadvantages is the memory consumed by β-nodes, what has
led to modified algorithms for production systems as [19] and the more recent
Rete* [24]. It will be interesting to study the impact of this drawback within
Membrane Computing framework. In order to test the performance, it is desir-
able to work on a battery of examples as diverse and demanding as possible (e.g.
in [17] a random generator of systems was used to stress the simulators).

On the other hand, the adaptation of the Rete algorithm has been made by
considering that the computer where the software runs has only one processor
and, in this way, the software simulation of the P systems is made sequentially
in a one-processor machine. Nonetheless, new hardware architectures are being
used for simulating P systems [2–4,15,17,20–22], so the parallel versions of the
Rete algorithm [11,13] and their relations with parallel simulators of P systems
will be considered in the future.

Acknowledgements. The authors acknowledge the support of the project TIN2012-
37434 of the Ministerio de Economı́a y Competitividad of Spain, cofinanced by FEDER
funds.

References

1. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on
P systems. Nat. Comput. 10(1), 39–53 (2011). Springer, Netherlands

2. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del Amor, M.Á., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to
SAT by using GPUs. J. Log. Algebr. Program. 79(6), 317–325 (2010). Membrane
computing and programming

3. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.Á., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes
on CUDA. Briefings Bioinformatics 11(3), 313–322 (2010)

4. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del Amor, M.Á., Pérez-
Jiménez, M.J., Ujaldón, M.: The GPU on the simulation of cellular computing
models. Soft Comput. 16(2), 231–246 (2012)

5. Colomer, M.A., Mart́ınez-del Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A.: A uniform framework for modeling based on P systems. In: 2010
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and
Applications (BIC-TA), pp. 616–621, September 2010

6. Colomer, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Com-
paring simulation algorithms for multienvironment probabilistic P systems over a
standard virtual ecosystem. Nat. Comput. 11(3), 369–379 (2012)



7. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Software for P systems. In: [23], chap. 17, pp. 437–454. Oxford
University Press Inc. (2010)

8. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem Expert Systems. IEEE Computer Society Press,
Los Alamitos (1990)

9. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-lingua 2.0. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol.
5957, pp. 264–288. Springer, Heidelberg (2010)

10. Graciani, C., Gutiérrez-Naranjo, M.Á., Pérez-Hurtado, I., Riscos-Núñez, A.,
Romero-Jiménez, Á.: A Rete-based algorithm for rule selection in P systems. Int.
J. Unconventional Comput. 9(5–6), 367–384 (2013)

11. Gupta, A., Forgy, C., Newell, A., Wedig, R.: Parallel algorithms and architectures
for rule-based systems. SIGARCH Comput. Archit. News 14(2), 28–37 (1986)

12. Gutiérrez-Naranjo, M.Á., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., et al. (eds.) Applications of Membrane
Computing. Natural Computing Series, pp. 411–436. Springer, Heidelberg (2006)

13. Kuo, S., Moldovan, D.: The state of the art in parallel production systems. J.
Parallel Distrib. Comput. 15(1), 1–26 (1992)

14. Maćıas–Ramos, L.F., Pérez–Hurtado, I., Garćıa–Quismondo, M., Valencia–
Cabrera, L., Pérez–Jiménez, M.J., Riscos–Núñez, A.: A P–Lingua based simu-
lator for spiking neural P systems. In: Gheorghe, M., Păun, Gh., Rozenberg, G.,
Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 257–281. Springer,
Heidelberg (2012)

15. Mart́ınez-del Amor, M.A., Garćıa-Quismondo, M., Maćıas-Ramos, L.F., Valencia-
Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Simulating P systems on GPU
devices: a survey. Fundamenta Informaticae 136, 269–284 (2015)

16. Mart́ınez-del-Amor, M.A., et al.: DCBA: simulating population dynamics P sys-
tems with proportional object distribution. In: Csuhaj-Varjú, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp.
257–276. Springer, Heidelberg (2013)

17. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population dynamics P systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg
(2012)

18. Mart́ınez-del Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez,
A.: A P-Lingua based simulator for tissue P systems. J. Log. Algebr. Program.
79(6), 374–382 (2010)

19. Miranker, D.P.: TREAT: a better match algorithm for AI production systems.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 42–47.
American Association for Artificial Intelligence, August 1987

20. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant app-
roach to hardware source code generation in reconfig-P. J. Log. Algebr. Program.
79(6), 383–396 (2010)

21. Peña-Cantillana, F., Dı́az-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A
parallel implementation of the thresholding problem by using tissue-like P systems.
In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.)
CAIP 2011, Part II. LNCS, vol. 6855, pp. 277–284. Springer, Heidelberg (2011)



22. Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.:
Implementation on CUDA of the smoothing problem with tissue-like P systems.
Int. J. Nat. Comput. Res. 2(3), 25–34 (2011)

23. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press Inc., New York (2010)

24. Wright, I., Marshall, J.: The execution kernel of RC++: RETE*: a faster RETE
with TREAT as a special case. Int. J. Intell. Games Simul. 2(1), 36–48 (2003)

25. The P systems webpage. http://ppage.psystems.eu/
26. The P–Lingua web site. http://www.p-lingua.org/wiki
27. The PMCGPU project site. http://sourceforge.net/projects/pmcgpu/

http://ppage.psystems.eu/
http://www.p-lingua.org/wiki
http://sourceforge.net/projects/pmcgpu/

	A New Strategy to Improve the Performance of PDP-Systems Simulators
	1 Introduction
	2 Production Systems
	2.1 The Rete Algorithm

	3 Rete and P System Simulation
	4 Population Dynamics P Systems and DCBA Algorithm
	5 Conclusions and Future Work
	References




