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Summary. In the framework ofMembrane Computing, several efficient solutions to com-
putationally hard problems have been given. To find new borderlines between families of
P systems that can solve them and the ones that cannot is an important way to tackle the
P versus NP problem. Adding syntactic and/or semantic ingredients can mean passing
from non-efficiency to presumably efficiency. Here, we try to get narrow frontiers, setting
the stage to adapt efficient solutions from a family of P systems to another one. In order
to do that, a solution to the SAT problem is given by means of a family of tissue P systems
with evolutional symport/antiport rules and cell separation with the restriction that both
the left-hand side and the right-hand side of the rules have at most two objects.
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1 Introduction

Membrane Computing is a bio-inspired computing paradigm based on the structure
and behavior of living cells. There are several classes of P systems, the compu-
tational models of this paradigm. It was first introduced in [7], defining one of
the main models, cell-like P systems that abstract the hierarchical arrangement
of membranes within a single cell. In [4], the idea of the interactions of networks
of cells (placed in the nodes of a directed graph) between cells and between cells
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and their environment is used to develop tissue-like P systems, named by the en-
semble of cells in living beings. Another approach with the same structure are the
so-called spiking neural P systems [2], SN P systems for short, inspired by the way
that neurons communicate with each other by means of short electrical impulses
(spikes).

Within these models, several variants can be defined only by changing syntactic
and/or semantic ingredients, such as kinds of rules possible, length of rules, paral-
lelism permitted, number of objects and so on. Computational complexity theory
in the framework of Membrane Computing uses special variants of P systems called
recognizer membrane systems, devices that, given an initial configuration depend-
ing on an instance of a decision problem, return yes or no depending of the answer
to such instance. A deep vision of complexity can be seen in [8, 9].

Tissue P systems have been widely investigated from this point of view, giv-
ing characterizations for most of their variants. For instance, in [1] and [11], the
borderline of efficiency for tissue P systems with symport/antiport rules and cell
division by means of the length of communication rules is given, that is, pass-
ing from 1 to 2 means passing from non-efficiency to presumably efficiency. In [5]
and [10], a similar result is given for tissue P systems with symport/antiport rules
and cell separation, but in this case, rules with length at most 3 are needed in
order to solve efficiently computationally hard problems. Thus, three frontiers of
efficiency can be found here: two described before by means of the length of the
rules, and the third one when using rules with length at most 2, between separation
and division rules.

In [12], a new variant of these systems is defined. Based on the chemical re-
actions within cells and how reactives evolve into new components, evolutional
communication rules are described as a movement of components between differ-
ent cells or a cell and the environment but within the reaction objects can change
into something new. It is interesting to study these systems from the computa-
tional complexity theory point of view, and in [6], an efficient solution to the SAT
problem is given by these systems with some restrictions about the length of their
rules, but the narrowest borderline is not defined. The purpose of this paper is to
tight it.

The paper is organized as follows: first, we recall some concepts that are going
to be used through the work. In Section 3 the framework of tissue P systems with
evolutional symport/antiport rules is introduced. After that, Sections 4 and 5 are
devoted to give a solution to SAT by means of a family of P systems with evolutional
symport/antiport rules with cell separation and rules with length at most (2, 2)
and a formal verification of a design. Finally, some conclusions and open research
lines are exposed.

2 Preliminaries

In order to make this work self-contained, we introduce some notions that are
going to be used through the paper.
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2.1 Alphabets and sets

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by | u |. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (resp., empty) if
its support is a finite (resp., empty) set. We denote by ∅ the empty multiset and
we denote by M(Γ ) the set of all multisets over Γ .

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1+m2, is the multiset (Γ, g), when g(x) = f1(x)+f2(x) for each
x ∈ Γ .

2.2 Decision problems

A decision problem X can be informally defined as one whose solution is either
yes or no. This can be formally defined by an ordered pair (IX , θX), where IX is
a language over a finite alphabet ΣX and θX is a total Boolean function over IX .
The elements of IX are called instances of the problem X . Each decision problem
X has associated a language LX over the alphabet ΣX as follows: LX = {u ∈
EX | θX(u) = 1}. Conversely, every language L over an alphabet Σ has associated
a decision problem XL = (IXL , θXL) as follows: IXL = Σ∗ and θXL(u) = 1 if and
only if u ∈ L. Then, given a decision problem X we have XLX = X , and given a
language L over an alphabet Σ we have LXL = L.

It is worth pointing out that any Turing machine M (with input alphabet ΣM )
has associated a decision problem XM = (IM , θM ) defined as follows: IM = Σ∗

M ,
and for every u ∈ Σ∗

M , θM (u) = 1 if and only if M accepts u. Obviously, the
decision problem XM is solvable by the Turing machine.

3 Tissue P systems with evolutional communication rules

Definition 1. A recognizer tissue P system with evolutional symport/antiport
rules and cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, Σ,M1, . . . ,Mq,R, iout)

where:

• Γ and E are finite alphabets whose elements are called objects;
• Γ0 and Γ1 is a partition of Γ ;
• E ⊆ Γ ;
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• Mq, . . . ,Mq are multisets over Γ ;
• R is a finite set of rules, of the following forms:

1. Evolutional communication rules:
a) [u ]i[ ]j → [ ]i[u

′ ]j, where 1 ≤ i, j ≤ q, i �= j, u ∈ M+
f (Γ ) and

u′ ∈ Mf(Γ ) (evolutional symport rules);
b) [u ]i[ v ]j → [ v′ ]i[u′ ]j, where 1 ≤ i, j ≤ q, i �= j, u, v ∈ M+

f (Γ ) and
u′, v′ ∈ Mf (Γ ) (evolutional antiport rules);

2. [ a ]i → [Γ0]i[Γ1]i, where i ∈ {1, . . . , q}, i �= iout and a ∈ Γ ; (separation
rules);

• iout ∈ {0, 1, . . . , q}.
A recognizer tissue P system with evolutional symport/antiport rules and cell

separation of degree q ≥ 1

Π = (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q cells, labelled by 1, . . . , q such that (a) M1, . . . ,Mq

represent the multisets of objects initially placed in the q cells of the system; (b) E
is the set of objects initially located in the environment of the system, all of them
available in an arbitrary number of copies; (c) iout represents a distinguished region
which will encode the output of the system. We use the term region i (0 ≤ i ≤ q)
to refer to cell i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A configuration at any instant of a tissue P system with evolutional sym-
port/antiport rules and cell separation is described by the multisets of objects
in each cell and the multiset of objects over Γ \ E in the environment at that
moment. The initial configuration of Π = (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout) is
M1, . . . ,Mq; ∅).

An evolutional symport rule [u ]i[ ]j → [ ]i[u
′ ]j is applicable at a configu-

ration Ct at an instant t if there is a region i from Ct which contains multiset u.
By applying an eovlutional symport rule, the multiset of objects in region i from
Ct is consumed and the multiset of objects u′ is generated in region j from Ct+1.

An evolutional symport rule [u ]i[ v ]j → [ v′ ]i[u′ ]j is applicable at a configura-
tion Ct at an instant t if there is a region i from Ct which contains multiset u and
there is a region j which contains multiset v. By applying an eovlutional symport
rule, the multiset of objects u in region i and multiset of objects v in region j from
Ct are consumed and the multiset of objects u′ is generated in region j and the
multiset of objects v′ in region i from Ct+1.

A separation rule [ a ]i → [Γ0 ]i[Γ1 ]i is applicable at a configuration Ct at an
instant t if there is a cell i from Ct which contains object a and i �= iout. By
applying a separation rule to such a cell i, (a) object a is consumed from such cell;
(b) two new cells with label i are generated at configuration Ct+1; and (c) objects
from Γ0 from the original cell are placed in one of the new cells, while objects from
Γ1 from the original cell are placed in the other one.

The rules of a tissue P system with evolutional symport/antiport rules and
cell separation are applied in a maximally parallel manner, following the previous
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remarks, and taking into account that when a cell i is being separated at one
transition step, no other rules can be applied to that cell i at that step.

A transition from a configuration Ct to another configuration Ct+1 is obtained
by applying rules in a maximally parallel manner following the previous remarks. A
computation of the system is a (finite or infinite) sequence of transitions starting
from the initial configuration, where any term of the sequence other than the
first one is obtained from the previous configuration in one transition step. If the
sequence is finite (called halting computation) then the last term of the sequence
is a halting configuration, that is, a configuration where no rule is applicable to
it. A computation gives a result only when a halting configuration is reached, and
that result is encoded by the multiset of objects present in the output region iout.

A natural framework to solve decision problems is to use recognizer P systems.

Definition 2. A recognizer tissue P system with evolutional symport/antiport
rules and cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ,M1, . . . ,Mq,R, iin, iout),

where

– the tuple (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout) is a tissue P system with evolu-
tional symport/antiport rules of degree q ≥ 1, where Γ strictly contains an (in-
put) alphabet Σ and two distinguished objects yes and no, and Mi (1 ≤ i ≤ q)
are multisets over Γ \Σ;

– iin ∈ {1, . . . , 1} is the input cell and iout is the label of the environment;
– for each multiset m over the input alphabet Σ, any computation of the system

Π with input m starts from the configuration of the form (M1, . . . ,Miin +
m, . . . ,Mq; ∅), it always halts and either object yes or object no (but not both)
must appear in the environment at the last step.

For each ordered pair of natural numbers (k1, k2) greater or equal to 1, the
class of recognizer P systems with evolutional symport/antiport rules and cell
separation with evolutional communication rules of length at most (k1, k2) is de-
noted by TSEC(k1, k2). This means that, given an evolutional communication
rule [u ]i[ v ]j → [ v′ ]i[u′ ]j the LHS (resp., RHS) of any evolutional communica-
tion rule in a system from TSEC(k1, k2) involves at most k1 = |u| + |v| objects
(resp., k2 = |u′|+ |v′| objects).

Next, we define the concept of solving a problem in a uniform way and in
polynomial time by a family of recognizer tissue P systems with evolutional sym-
port/antiport rules and cell separation.

Definition 3. A decision problem X = (IX , θX) is solvable in a uniform way
and in polynomial time by a family Π = {Π(n) | n ∈ N)} of recognizer tissue P
systems with evolutional symport/antiport rules and cell separation if the following
conditions hold:

1. the family Π is polynomially uniform by Turing machines; and
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2. there exists a polynomial encoding (cod, s) of IX in Π such that (a) for each
instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the
system Π(s(u)); (b) for each n ∈ N, s−1(n) is a finite set; and (c) the family
Π is polynomially bounded, sound and complete with regard to (X, cod, s).

The set of all decision problems that can be solved by recognizer tissue P sys-
tems with evolutional symport/antiport rules and cell separation with evolutional
communication rules of length at most (k1, k2) in a uniform way and polynomial
time is denoted by PMCTSEC(k1,k2).

4 Solution to SAT with evolutional communication rules and
separation rules

In [6] an efficient solution to the SAT problem is given by means of a family of P
systems from TSEC(3, 2). A frontier of efficiency is given, but some open problems
remain, as indicate Figure 1 of such work. It shows that the class of problems that
can be solved by P systems from TSEC(2, k) with k ≥ 2 is unknown. In this work
we improve this borderline closing the previous open questions, giving an efficient
solution of the SAT problems by means of a family of P systems from TSEC(2, 2).

Let us briefly recall the description of the SAT problem: given a boolean formula
in conjunctive normal form (CNF), to determine whether or not there exists an
assignment to its variables, called truth assignment, on which it evaluates true.

Theorem 1. SAT ∈ PMCTSEC(2,2)

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout)

from TSEC(2, 2) defined as follows:

1. Working alphabet Γ :
{yes, no, y1, y2, n1, n2,#} ∪
{ai,j | 1 ≤ i ≤ n, 0 ≤ j ≤ i} ∪
{a′i,j | 2 ≤ i ≤ n, 0 ≤ j ≤ i− 1} ∪
{aLi,j , aRi,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1} ∪
{αj , α

′
j , α

L
j , α

R
j | 1 ≤ j ≤ p+ 1} ∪

{ti, fi, t′i, t′′i f ′′
i , t

L
i , t

R
i , f

L
i , f

R
i | 1 ≤ i ≤ n} ∪

{βl,k, β
′
l,k, β

L
l,k, β

R
l,k | 0 ≤ k ≤ n, 1 ≤ l ≤ n} ∪

{xi,j,k, xi,j,k, x
∗
i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n+ j − 1} ∪

{x′
i,j,k, x

′
i,j,k, x

∗′
i,j,k, x

′′
i,j,k, x

′′
i,j,k, x

∗′′
i,j,k, x

′′′
i,j,k, x

′′′
i,j,k, x

∗′′′
i,j,k, |

0 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n} ∪
{cj,k | 1 ≤ j ≤ p, j ≤ k ≤ p} ∪ {δi | 0 ≤ i ≤ 4n+ p+ 2} ∪
{δ′i | 0 ≤ i ≤ 4n+ p}.
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2. Γ1 = Γ \ Γ0, Γ0 = {aLi,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1} ∪
{αL

j | 1 ≤ j ≤ p+ 1} ∪ {tLi , fL
i | 1 ≤ i ≤ n} ∪

{βL
l,k | 0 ≤ k ≤ n, k + 1 ≤ l ≤ n}

3. Input alphabet Σ: {xi,j,0, xi,j,0, x
∗
i,k,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

4. Environment alphabet E : {γ}.
5. M1 = {δ0, δ′0} ∪ {βn+p+1

l,0 | 1 ≤ l ≤ n},
M2 = {ai,0 | 1 ≤ i ≤ n} ∪ {αj | 1 ≤ j ≤ p+ 1}.

6. The set of rules R consists of the following rules:

1.1 Rules for (4k + 1)-th steps.
[ ai,i−1 ]2[ γ ]0 → [ a′i,i−1 t

′
i ]2[ ]0 , for 1 ≤ i ≤ n

[ ti ]2[ γ ]0 → [ t′′i ]2[ ]0
[ fi ]2[ γ ]0 → [ f ′′

i ]2[ ]0

}
for 1 ≤ i ≤ n

[ ai,j ]2[ γ ]0 → [ a′i,j ]2[ ]0 , for 2 ≤ i ≤ n, 0 ≤ j ≤ i− 2

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,k ]1[ γ ]0 → [β′
l,k ]1[ ]0

}
for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[xi,j,k ]1[ γ ]0 → [x′
i,j,k ]1[ ]0

[xi,j,k ]1[ γ ]0 → [x′
i,j,k ]1[ ]0

[x∗
i,j,k ]1[ γ ]0 → [x∗′

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n− 1

1.2 Rules for (4k + 2)-th steps.
[ a′i,i−1 ]2[ γ ]0 → [ ai,i f

R
i ]2[ ]0

[ t′i ]2[ γ ]0 → [ tLi ]2[ ]0

}
for 1 ≤ i ≤ n

[ t′′i ]2[ γ ]0 → [ tLi tRi ]2[ ]0
[ f ′′

i ]2[ γ ]0 → [ fL
i fR

i ]2[ ]0

}
for 1 ≤ i ≤ n

[ a′i,j ]2[ γ ]0 → [ aLi,j+1 a
R
i,j+1 ]2[ ]0 , for

2 ≤ i ≤ n,
0 ≤ j ≤ i− 1

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k ]1[ γ ]0 → [βL

l,k+1 β
R
l,k+1 ]1[ ]0 , for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′
i,j,k ]1[ γ ]0 → [x′′2

i,j,k+1 ]1[ ]0
[x′

i,j,k ]1[ γ ]0 → [x′′2
i,j,k+1 ]1[ ]0

[x∗′
i,j,k ]1[ γ ]0 → [x∗′′2

i,j,k+1 ]1[ ]0

⎫⎬
⎭

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n− 1

1.3 Rules for (4k + 3)-th steps.
[ ai,i ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
k,k ]1[ ]0 → [ ]1[β

O
k,k ]0

[βO
l,k ]1[ ]0 → [ ]1[βl,k ]0

}
for

O ∈ {L,R},
1 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′′
i,j,k ]1[ γ ]0 → [x′′′

i,j,k ]1[ ]0
[x′′

i,j,k ]1[ γ ]0 → [x′′′
i,j,k ]1[ ]0

[x∗′′
i,j,k ]1[ γ ]0 → [x∗′′′

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
1 ≤ k ≤ n

1.4 Rules for (4k)-th steps.
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[ aOi,j ]2[β
O
k,k ]0 → [ ai,j ]2[ ]0

[ rOi ]2[β
O
k,k ]0 → [ ri ]2[ ]0

}
for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n,
1 ≤ j ≤ n,
1 ≤ k ≤ n

[αO
j ]2[β

O
k,k ]0 → [αj ]2[ ]0 , for

O ∈ {L,R},
1 ≤ j ≤ p+ 1,
0 ≤ k ≤ n

[x′′′
i,j,k ]1[ γ ]0 → [xi,j,k ]1[ ]0

[x′′′
i,j,k ]1[ γ ]0 → [xi,j,k ]1[ ]0

[x∗′′′
i,j,k ]1[ γ ]0 → [x∗

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n

[ ]1[βl,k ]0 → [βl,k ]1[ ]0 , for 0 ≤ k ≤ n, k + 1 ≤ l ≤ n
2.1 Rules to check satisfied clauses.

[ ti ]2[xi,j,n+j−1 ]1 → [ cj,j ti ]2[ ]1
[ ti ]2[xi,j,n+j−1 ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,j,n+j−1 ]1 → [ ti ]2[ ]1

[ fi ]2[xi,j,n+j−1 ]1 → [ fi ]2[ ]1
[ fi ]2[xi,j,n+j−1 ]1 → [ cj,j fi ]2[ ]1
[ fi ]2[x

∗
i,j,n+j−1 ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ j − 2

[ cj,k ]2[ γ ]0 → [ cj,k+1 ]2[ ]0 , for 1 ≤ j ≤ p, j ≤ k ≤ p− 1
3.1 Rules to check if all clauses are satisfied by a truth assignment.

[αp+1 ]2[ δ
′
4n+p ]1 → [α′

p+1 ]2[ ]0
[αj cj,p ]2[ ]0 → [ ]2[ # ]0 , for 1 ≤ j ≤ p

4.1 General counters.
[ δi ]1[ γ ]0 → [ δi+1 ]1[ ]0 , for 0 ≤ i ≤ 4n+ p+ 1

[ δ′4i+1 ]1[ γ ]0 → [ δ′24i+2 ]1[ ]0 , for 0 ≤ i ≤ n− 1

[ δ′4i+k ]1[ γ ]0 → [ δ′4i+k+1 ]1[ ]0 , for 0 ≤ i ≤ n− 1, k ∈ {0, 2, 3}
[ δ′4n+i ]1[ γ ]0 → [ δ′4n+i+1 ]1[ ]0 , for 0 ≤ i ≤ p− 1

4.2 Rules to give a negative answer.
[αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0 , for 1 ≤ j ≤ p

[ ]2[n1 ]0 → [n1 ]2[ ]0
[n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1
[n2 ]2[ ]0 → [ ]2[ no ]0

4.3 Rules to give an affirmative answer.
[α′

p+1 ]2[ δ4n+p+2 ]1 → [ y1 ]2[ ]1
[ y1 ]2[ γ ]0 → [ y2 ]2[ ]0
[ y2 ]2[ ]0 → [ ]2[ yes ]0

7. The input cell is the cell labelled by 1 (iin = 1) and the output region is the
environment (iout = env).



Narrowing Frontiers of Efficiency 147

Let ϕ = C1 ∧ · · · ∧ Cp an instance of SAT problem consisting of p clauses
Cj = lj,1∨· · ·∨ lj,rj , 1 ≤ j ≤ p, where V ar(ϕ) = {x1, . . . , xn}, and lj,k ∈ {xi,¬xi |
1 ≤ i ≤ n}, 1 ≤ j ≤ p, 1 ≤ k ≤ rj . Let us assume that the number of variables, n,
and the number of clauses, p, of ϕ, are greater than or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows:
for each ϕ ∈ ISAT with n variables and p clauses, s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj} ∪ {x∗
i,j,0 | xi �∈ Cj ,¬xi �∈ Cj}

For instance, the formula ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x4)
is encoded as follows:

cod(ϕ) =

⎛
⎝x1,1,0 x2,1,0 x3,1,0 x∗

4,1,0

x∗
1,2,0 x2,2,0 x∗

3,2,0 x4,2,0

x∗
1,3,0 x2,3,0 x3,3,0 x4,3,0

⎞
⎠

We define codk(ϕ) as the set of elements of cod(ϕ) when the third subscript
equals k. In the same way, we define cod′k(ϕ), cod

′′
k(ϕ) and cod′′′k (ϕ) as the sets

of elements of cod(ϕ) when the third subscript equals k and elements are primed,
double primed and triple primed, respectively. For notation convenience, we define
codjk(ϕ) the subset of elements of codk(ϕ) with elements ofCj , . . . , Cp. For instance,
cod24(ϕ) would be the following set:

cod24(ϕ) =

(
x∗
1,2,4 x2,2,4 x∗

3,2,4 x4,2,4

x∗
1,3,4 x2,3,4 x3,3,4 x4,3,4

)

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).
Next, we informally describe how that system works.

The solution proposed follows a brute force algorithm in the framework of
recognizer tissue P systems with separation and evolutional communication rules,
and it consists of the following stages:

• Generation stage: Using separation rules each 4 steps, we produce 2n mem-
branes labelled by 2 containing each possible truths assignment. At the same
time, we generate 2n copies of codn(ϕ). This stage spends n computation steps
exactly, being n the numer of variables of ϕ.

• First checking stage: With rules from 2.1, we can check which clauses from the
input formula ϕ have been satisfied by a specific truth assignment. This stage
takes exactly p steps.

• Second checking stage: With rules from 3.1, we remove objects αj such that
they are removed from a membrane if and only if the truth assignment asso-
ciated to that membrane makes true clause Cj . This stage takes exactly one
step.

• Output stage: With rules from 4.2 and 4.3, we can give an affirmative or a
negative answer depending on if the input formula is satisfiable or not. This
stage spends exactly 4 steps, regardless of whether the formula is satisfiable or
not.
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5 A formal verification

In this section, an exhaustive verification of the system is given.

Generation stage

At this stage, all truth assignments for the variables associated with the Boolean
formula ϕ(x1, . . . , xn) are going to be generated, by applying separation rules
from 1.2 in membranes labelled by 2. In such manner that in the 4i + 2-th step
(1 ≤ i ≤ n − 1) of this stage, separation rule associated with an object ai,i is
triggered, two new cells distributing ti and fi between them. In the last step of
this stage, each membrane labelled by 2 will contain a truth assignment of the
formula.

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multset cod(ϕ).

(a0) For each 4k (0 ≤ k ≤ n− 1) at configuration C4k we have the following:

• C4k(1) = {δ4k, δ′2
k

4k, codk(ϕ)
2k} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
• There are 2k membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;
– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(a1) For each 4k+ 1 (0 ≤ k ≤ n− 1) at configuration C4k+1 we have the following:

• C4k+1(1) = {δ4k+1, δ
′2k
4k+1, cod

′
k(ϕ)

2k} ∪ {β′2k
l,k | k + 1 ≤ l ≤ n}

• There are 2k membranes labelled by 2 such that each of them contains
– objects a′k+1,k, . . . , a

′
n,k;

– objects r′′1 , . . . , r
′′
k , being r ∈ {t, f}

– an object t′k+1; and
– objects α′

1, . . . , α
′
p+1.

(a2) For each 4k+ 2 (0 ≤ k ≤ n− 1) at configuration C4k+2 we have the following:

• C4k+2(1) = {δ4k+2, δ
′2k+1

4k+3, cod
′′
k+1(ϕ)

2k+1} ∪
{βO2k

l,k | O ∈ {L,R}, k+ 1 ≤ l ≤ n}
• There are 2k membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;
– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(a3) For each 4k+ 3 (0 ≤ k ≤ n− 1) at configuration C4k+3 we have the following:

• C4k+3(0) = {βO2k

k+1,k+1} ∪ {β2k+1

l,k+1 | k + 2 ≤ l ≤ n}
• C4k+3(1) = {δ4k+3, δ

′2k+1

4k+3, cod
′′′
k+1(ϕ)

2k+1} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
• There are 2k+1 membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;



Narrowing Frontiers of Efficiency 149

– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(b) C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)
2n}, and there are 2n membranes labelled by 2

such that each of them contains objects α1, . . . , αp+1, as well as a different
subset {r1, . . . , rn}, being r ∈ {t, f}.

Proof. (a) is going to be demonstrated by induction on k.

(a0)The base case k = 0 is trivial because at the initial configuration we have:
C0(1) = {δ0, δ′0, cod0(ϕ)}∪{βl,0 | 1 ≤ l ≤ n} and there exists a single membrane
labelled by 2 containing objects α1, . . . , αp+1 and objects a1,0, . . . , an,0. Then,
configuration C0 yields configuration C1 by applying the rules:

[ a1,0 ]2[ γ ]0 → [ a′1,0 t
′
1 ]2[ ]0

[ ai,0 ]2[ γ ]0 → [ a′i,0 , for 2 ≤ i ≤ n

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,0 ]1[ γ ]0 → [β′
l,0 ]1[ ]0 , for 1 ≤ l ≤ n

[xi,j,0 ]1[ γ ]0 → [x′
i,j,1 ]1[ ]0

[xi,j,0 ]1[ γ ]0 → [x′
i,j,1 ]1[ ]0

[x∗
i,j,0 ]1[ γ ]0 → [x∗′

i,j,1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ0 ]1[ γ ]0 → [ δ1 ]1[ ]0
[ δ′0 ]1[ γ ]0 → [ δ′1 ]1[ ]0

(a1) Thus, C1(1) = {δ1, δ′1, cod′1(ϕ)} ∪ {β′
l,0 | 1 ≤ l ≤ n} and in C1 there ex-

ists one membrane labelled by 2 such that its contents is the set of objects
{a′1,0, . . . , a′n,0}, the object t′1 and objects α′

1, . . . , α
′
p+1. Then, configuration C1

yields configuration C2 by applying the rules:
[ a′1,0 ]2[ γ ]0 → [ a1,1 f

R
1 ]2[ ]0

[ t′1 ]2[ γ ]0 → [ tL1 ]2[ ]0
[ a′i,0 ]2[ γ ]0 → [ aLi,1 a

R
i,1 ]2[ ]0 , for2 ≤ i ≤ n

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k ]1[ γ ]0 → [βL

l,k+1 β
R
l,k+1 ]1[ ]0 , for k + 1 ≤ l ≤ n

[x′
i,j,0 ]1[ γ ]0 → [x′′2

i,j,1 ]1[ ]0
[x′

i,j,0 ]1[ γ ]0 → [x′′2
i,j,0+1 ]1[ ]0

[x∗′
i,j,0 ]1[ γ ]0 → [x∗′′2

i,j,0+1 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ1 ]1[ γ ]0 → [ δ2 ]1[ ]0

[ δ′1 ]1[ γ ]0 → [ δ′22 ]1[ ]0

(a2)Thus, C2(1) = {δ2, δ′22, cod′′1 (ϕ)}∪{βO
l,1 | O ∈ {L,R}, 1 ≤ l ≤ n} and in C2 there

exists one membrane labelled by 2 such that its contents is the set of objects
{a1,1, . . . , an,1}, objects tL1 and fR

1 and objects αO
1 , . . . , α

O
p+1, for O ∈ {L,R}.

Then, configuration C2 yields configuration C3 by applying the rules:
[ a1,1 ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
1,1 ]1[ ]0 → [ ]1[β

O
1,1 ]0

[βO
l,1 ]1[ ]0 → [ ]1[βl,1 ]0

}
for

O ∈ {L,R},
k + 1 ≤ l ≤ n
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[x′′
i,j,0 ]1[ γ ]0 → [x′′′

i,j,0 ]1[ ]0
[x′′

i,j,0 ]1[ γ ]0 → [x′′′
i,j,0 ]1[ ]0

[x∗′′
i,j,0 ]1[ γ ]0 → [x∗′′′

i,j,0 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,

[ δ2 ]1[ γ ]0 → [ δ3 ]1[ ]0
[ δ′2 ]1[ γ ]0 → [ δ′3 ]1[ ]0

(a3) Thus, C3(1) = {δ3, δ′23, cod′′′1 (ϕ)}, at the environment there is the multiset
{βO

1,1 | O ∈ {L,R}} ∪ {β2
l,1 | 2 ≤ l ≤ n} and in C2 there exists two membranes

labelled by 2 such that its contents is the set of objects {aO2,1, . . . , aOn,1} with

O = L (resp., O = R), object tL1 (resp., fR
1 ) and objects αO

1 , . . . , α
O
p+1, for

O = L (resp., O = R). Hence, the result holds for k = 0

• Supposing that, by induction, result is true for k (1 ≤ k ≤ n− 1); that is,

(a0) For each 4k (0 ≤ k ≤ n− 1) at configuration C4k we have the following:

– C4k(1) = {δ4k, δ′2
k

4k, codk(ϕ)
2k} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
– There are 2k membranes labelled by 2 such that each of them contains

· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a1) For each 4k+1 (0 ≤ k ≤ n−1) at configuration C4k+1 we have the following:

– C4k+1(1) = {δ4k+1, δ
′2k
4k+1, cod

′
k(ϕ)

2k} ∪ {β′2k
l,k | k + 1 ≤ l ≤ n}

– There are 2k membranes labelled by 2 such that each of them contains
· objects a′k+1,k, . . . , a

′
n,k;

· objects r′′1 , . . . , r
′′
k , being r ∈ {t, f}

· an object t′k+1; and
· objects α′

1, . . . , α
′
p+1.

(a2) For each 4k+2 (0 ≤ k ≤ n−1) at configuration C4k+2 we have the following:

– C4k+2(1) = {δ4k+2, , δ
′2k+1

4k+2cod
′′
k+1(ϕ)

2k+1}∪{βO2k

l,k | O ∈ {L,R}, k+1 ≤
l ≤ n}

– There are 2k membranes labelled by 2 such that each of them contains
· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a3) For each 4k+3 (0 ≤ k ≤ n−1) at configuration C4k+3 we have the following:

– C4k+3(0) = {βO2k

k+1,k+1} ∪ {β2k+1

l,k+1 | k + 2 ≤ l ≤ n}
– C4k+3(1) = {δ4k+3, δ

′2k+1

4k+3, cod
′′′
k+1(ϕ)

2k+1} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

• Then, by the induction hypothesis, we want to prove the result for k + 1.
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(a0) Then, configuration C4k+3 yields configuration C4(k+1) by applying the rules:

[ aOi,j ]2[β
O
k+1,k+1 ]0 → [ ai,j ]2[ ]0

[ rOi ]2[β
O
k+1,k+1 ]0 → [ ri ]2[ ]0

}
for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n,
1 ≤ j ≤ n

[αO
j ]2[β

O
k+1,k+1 ]0 → [αj ]2[ ]0 , for O ∈ {L,R}, 1 ≤ j ≤ p+ 1

[x′′′
i,j,k+1 ]1[ γ ]0 → [xi,j,k+1 ]1[ ]0

[x′′′
i,j,k+1 ]1[ γ ]0 → [xi,j,k+1 ]1[ ]0

[x∗′′′
i,j,k+1 ]1[ γ ]0 → [x∗

i,j,k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ ]1[βl,k+1 ]0 → [βl,k+1 ]1[ ]0 , for k + 2 ≤ l ≤ n
[ δ4k+3 ]1[ γ ]0 → [ δ4(k+1) ]1[ ]0
[ δ′4k+3 ]1[ γ ]0 → [ δ′4(k+1) ]1[ ]0

Therefore, the following holds:

– C4(k+1)(1) = {δ4(k+1), δ
′2k+1

4(k+1), codk+1(ϕ)
2k+1}∪ {β2k+1

l,k+1 | k+2 ≤ l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a1) Then, configuration C4(k+1) yields configuration C4(k+1)+1 by applying the
rules:

[ ak+1,k ]2[ γ ]0 → [ a′k+1,k t
′
k+1 ]2[ ]0

[ ti ]2[ γ ]0 → [ t′′i ]2[ ]0
[ fi ]2[ γ ]0 → [ f ′′

i ]2[ ]0

}
for 1 ≤ i ≤ k

[ ai,k+1 ]2[ γ ]0 → [ a′i,k+1 ]2[ ]0 , for 2 ≤ i ≤ n

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,k+1 ]1[ γ ]0 → [β′
l,k+1 ]1[ ]0

}
for k + 2 ≤ l ≤ n

[xi,j,k+1 ]1[ γ ]0 → [x′
i,j,k+1 ]1[ ]0

[xi,j,k+1 ]1[ γ ]0 → [x′
i,j,k+1 ]1[ ]0

[x∗
i,j,k+1 ]1[ γ ]0 → [x∗′

i,j,k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ4(k+1) ]1[ γ ]0 → [ δ4(k+1)+1 ]1[ ]0
[ δ′4(k+1) ]1[ γ ]0 → [ δ′4(k+1)+1 ]1[ ]0

Therefore, the folowing holds:

– C4(k+1)+1(1) = {δ4(k+1)+1, δ
′2k
4(k+1)+1, cod

′
k+1(ϕ)

2k+1} ∪ {β′2k
l,k | k + 1 ≤

l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects a′k+2,k+1, . . . , a
′
n,k+1;

· objects r′′1 , . . . , r
′′
k+1, being r ∈ {t, f}

· an object t′k+2; and
· objects α′

1, . . . , α
′
p+1.

(a2) Then, configuration C4(k+1)+1 yields configuration C4(k+1)+2 by applying
the rules:
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[ a′k+1,k ]2[ γ ]0 → [ ak+1,k+1 f
R
k+1 ]2[ ]0

[ t′k+1 ]2[ γ ]0 → [ tLk+1 ]2[ ]0
[ t′′i ]2[ γ ]0 → [ tLi tRi ]2[ ]0
[ f ′′

i ]2[ γ ]0 → [ fL
i fR

i ]2[ ]0

}
for 1 ≤ i ≤ k

[ a′i,k+1 ]2[ γ ]0 → [ aLi,k+2 a
R
i,k+2 ]2[ ]0 , for 2 ≤ i ≤ n

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k+1 ]1[ γ ]0 → [βL

l,k+2 β
R
l,k+2 ]1[ ]0 , for k + 2 ≤ l ≤ n

[x′
i,j,k+1 ]1[ γ ]0 → [x′′2

i,j,k+2 ]1[ ]0
[x′

i,j,k+1 ]1[ γ ]0 → [x′′2
i,j,k+2 ]1[ ]0

[x∗′
i,j,k+1 ]1[ γ ]0 → [x∗′′2

i,j,k+2 ]1[ ]0

⎫⎬
⎭

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ4(k+1)+1 ]1[ γ ]0 → [ δ4(k+1)+2 ]1[ ]0

[ δ′4(k+1)+1 ]1[ γ ]0 → [ δ′24(k+1)+2 ]1[ ]0
Therefore, the following holds:

– C4(k+1)+2(1) = {δ4(k+1)+2, δ
′2k+2

4(k+1)+2, cod
′′
k+2(ϕ)

2k+2} ∪ {β2k+1

l,k | k + 1 ≤
l ≤ n}

– There are 2k+1 membranes labelled by 2 such that each of them contains
· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a3) Then, configuration C4(k+1)+2 yields configuration C4(k+1)+3 by applying
the rules:

[ ak+1,k+1 ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
k+1,k+1 ]1[ ]0 → [ ]1[β

O
k+1,k+1 ]0

[βO
l,k+1 ]1[ ]0 → [ ]1[βl,k+1 ]0

}
for O ∈ {L,R}, k+ 2 ≤ l ≤ n

[x′′
i,j,k+2 ]1[ γ ]0 → [x′′′

i,j,k+2 ]1[ ]0
[x′′

i,j,k+2 ]1[ γ ]0 → [x′′′
i,j,k+2 ]1[ ]0

[x∗′′
i,j,k+2 ]1[ γ ]0 → [x∗′′′

i,j,k+2 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ4(k+1)+2 ]1[ γ ]0 → [ δ4(k+1)+3 ]1[ ]0
[ δ′4(k+1)+2 ]1[ γ ]0 → [ δ′4(k+1)+3 ]1[ ]0

Therefore, the following holds:

– C4(k+1)+3(0) = {βO2k+1

k+2,k+2} ∪ {β2k+2

l,k+2 | k + 3 ≤ l ≤ n}
– C4(k+1)+3(1) = {δ4(k+1)+3, δ

′2k+2

4(k+1)+3, cod
′′′
k+2(ϕ)

2k+2}∪{β2k+1

l,k+1 | k+2 ≤
l ≤ n}

– There are 2k+2 membranes labelled by 2 such that each of them contains
· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

• In order to prove (b) it is enough to notice that, on the one hand, from (a3)
configuration C4n−1

1 holds:

1 Here, 4n− 1 = 4k + 3 for k = n− 1.
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– C4n−1(1) = {δ4n−1, δ
′2n
4n−1, cod

′′′
n (ϕ)}.

– There are 2n membranes labelled by 2 such that each of them contains
· a different subset {rO1 , . . . , rOn }, being r ∈ {t, f} and O ∈ {L,R}; and
· objects αO, . . . , αO

p+1, for O ∈ {L,R}.
• On the other hand, configuration C4n−1 yields configuration C4n by applying

the rules:

[ rOi ]2[β
O
n,n ]0 → [ ri ]2[ ]0 , for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n

[αO
j ]2[β

O
n,n ]0 → [αj ]2[ ]0 , for O ∈ {L,R}, 1 ≤ j ≤ p+ 1

[x′′′
i,j,n ]1[ γ ]0 → [xi,j,n ]1[ ]0

[x′′′
i,j,n ]1[ γ ]0 → [xi,j,n ]1[ ]0

[x∗′′′
i,j,n ]1[ γ ]0 → [x∗

i,j,n ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ4n−1 ]1[ γ ]0 → [ δ4n ]1[ ]0
[ δ′4n−1 ]1[ γ ]0 → [ δ′4n ]1[ ]0

• Then, we have C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)
2n}, and there are 2n membranes

labelled by 2 such that each of them contains objects α1, . . . , αp+1, as well as
a different subset {r1, . . . , rn}, being r ∈ {t, f}. �

First checking stage

Following the generation stage comes the first checking stage, where objects cj,k
are created in order to know if clause Cj has been satisfied by the truth assignment
encoded in membranes labelled by 2. In each step, we fire rules for a single clause,
therefore in p steps we can obtain objects cj,k if this clause is satisfied. This can
be because of two reasons:

• Literal xi appears in clause Cj , and the the valoration of variable xi in a truth
assignment is True. Then, we can say that such truth assignment satisfies this
clause; or

• Literal ¬xi appears in clause Cj , and the the valoration of variable xi in a truth
assignment is False. Then, we can say that such truth assignment satisfies this
clause.

In any other way, variable xi has nothing to do with clause Cj . At the final
step of this stage, membranes labelled by 2 will have objects cj,p where Cj are
clauses satisfied by such truth assignment. We obtain an object α′

p+1 to use it in
the next stage.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a compuation of th system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (0 ≤ k ≤ p− 1) at configuration C4n+k we have the following:

• C4n+k(1) = {δ4n+k, δ
′2n
4n+k, cod

k
n(ϕ)

2n}
• There are 2n membranes labelled by 2 such that each of them contains
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– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,k, . . . , ck,k, where cj,k represents that clause Cj has been sat-

isfied by the truth formula encoded in such membrane.

(b) C4n+p(1) = {δ4n+p, δ
′2n
4n+p}, and there are 2n membranes labelled by 2 such

that each of them contains objects α1, . . . , αp+1, a different subset {r1, . . . , rn}
and objects cj when clause Cj is satisfied in that membrane.

Proof. (a) is going to be demonstrated by induction on k.

(a) The base case k = 0 is trivial because at the initial configuration we have:

C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)} and there exist 2n membranes labelled by
2 containing objects α1, . . . , αp+1 and a different subset {r1, . . . , rn}, being
r ∈ {t, f}. Then, configuration C4n yields configuration C4n+1 by applying the
rules:

[ ti ]2[xi,1,n ]1 → [ c1,1 ti ]2[ ]1
[ ti ]2[xi,1,n ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,1,n ]1 → [ ti ]2[ ]1

[ fi ]2[xi,1,n ]1 → [ fi ]2[ ]1
[ fi ]2[xi,1,n ]1 → [ c1,1 fi ]2[ ]1
[ fi ]2[x

∗
i,1,n ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 2 ≤ j ≤ p

[ δ4n ]1[ γ ]0 → [ δ4n+1 ]1[ ]0
[ δ′4n ]1[ γ ]0 → [ δ′4n+1 ]1[ ]0

Thus, C4n+1(1) = {δ4n+1, δ
′2n
4n+1, cod

2
4n+1(ϕ)

2n} and in C4n+1 there exist 2n

membranes labelled by 2 such that their contents are objects α1, . . . , αp+1, a
different subset {r1, . . . , rn}, being r ∈ {t, f} and objects c1,1 if some literal
present in Cj satisfies it2. Hence, the result holds for k = 1.
Supposing that, by induction, result is true for k (0 ≤ k ≤ p− 1); that is,

• C4n+k(1) = {δ4n+k, δ
′2n
4n+k, cod

k+1
n (ϕ)2

k}
• There are 2n membranes labelled by 2 such that each of them contains

– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,k, . . . , ck,k, where cj,k represents that clause Cj has been sat-

isfied by the truth formula encoded in such membrane.

Then, configuration C4n+k yields configuration C4n+k+1 by applying the rules:

2 Here, objects # are created, but they are not used anymore, so they are not going to
be noted here.
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[ ti ]2[xi,k+1,n+k ]1 → [ ck+1,k+1 ti ]2[ ]1
[ ti ]2[xi,k+1,n+k ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,k+1,n+k ]1 → [ ti ]2[ ]1

[ fi ]2[xi,k+1,n+k ]1 → [ fi ]2[ ]1
[ fi ]2[xi,k+1,n+k ]1 → [ ck+1,k+1 fi ]2[ ]1
[ fi ]2[x

∗
i,k+1,n+k ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, k + 2 ≤ j ≤ p

[ cj,k ]2[ γ ]0 → [ cj,k+1 ]2[ ]0 , for 1 ≤ j ≤ p, k ≤ k ≤ p− 1
[ δ4n+k ]1[ γ ]0 → [ δ4n+k+1 ]1[ ]0
[ δ′4n+k ]1[ γ ]0 → [ δ′4n+k+1 ]1[ ]0

Thus, C4n+k+1(1) = {δ4n+k+1, δ
′2n
4n+k+1, cod

k+2
4n+k+1(ϕ)

2n} and in C4n+k+1

there exist 2n membranes labelled by 2 such that their contents are objects
α1, . . . , αp+1, a different subset {r1, . . . , rn}, being r ∈ {t, f} and objects
c1,k, . . . , ck,k if some literal present in Cj satisfies them.

In order to demonstrate (b) it is enough to notice that, on the one hand, from
(a) configuration C4n+p−1 holds:

• C4n+p−1(1) = {δ4n+p−1, δ
′2n
4n+p−1, cod

p
n(ϕ)

2n}
• There are 2n membranes labelled by 2 such that each of them contains

– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,p−1, . . . , cp−1,p−1, where cj,p−1 represents that clause Cj has been

satisfied by the truth formula encoded in such membrane.

On the other hand, configuration C4n+p−1 yields configuration C4n+p by applying
the rules:

[ ti ]2[xi,p,n+p−1 ]1 → [ cp,p ti ]2[ ]1
[ ti ]2[xi,p,n+p−1 ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,p,n+p−1 ]1 → [ ti ]2[ ]1

[ fi ]2[xi,p,n+p−1 ]1 → [ fi ]2[ ]1
[ fi ]2[xi,p,n+p−1 ]1 → [ cp,p fi ]2[ ]1
[ fi ]2[x

∗
i,p,n+p−1 ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ cj,p−1 ]2[ γ ]0 → [ cj,p ]2[ ]0 , for 1 ≤ j ≤ p− 1
[ δ4n+p−1 ]1[ γ ]0 → [ δ4n+p ]1[ ]0
[ δ′4n+p−1 ]1[ γ ]0 → [ δ′4n+p ]1[ ]0

Then, we have C4n+p(1) = {δ4n+p, δ
′2n
4n+p}, and in C4n+p there are 2n mem-

branes labelled by 2 such that each of them contains a different subset {r1, . . . , rn},
being r ∈ {t, f}3, objects α1, . . . , αp+1 and objects cj,p when clause Cj has been
satisfied by the truth assignment encoded in such membrane. �
3 This subset is not used anymore, so it will not be noted from now on.
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Second checking stage

Here, when rules from 3.1 are fired at the (4n+p+1)-th step, objects αj within a
membrane labelled by 2 are removed if and only if the truth assignment associated
to that membrane makes true clause Cj , that is, if there is at least one object cj in

such membrane. At configuration C4n+p we have C4n+p(1) = {δ4n+p, δ
′2n
4n+p} and

each membrane labelled by 2 contains objects α1, . . . , αp and objects cj such that
the corresponding truth assignment satisfies the clause Cj . By applying rules from
3.1 and rule [ δ4n+p ]1[ γ ]0 → [ δ4n+p+1 ]1[ ]0, object δ4n+p evolves into δ4n+p+1

within the membrane labelled by 1, and in each membrane labelled by 2, objects
αj such that their corresponding object cj,p are “removed” from the system, and
let the next stage to check whether or not they are present, besides the object
αp+1, that is prepared, evolving to α′

p+1, to react with the remaining objects αj .
This stage takes exactly one step.

Output stage

The output phase starts at the (4n+ p+ 2)-th step, and takes exactly four steps,
regardless of whether the input formula ϕ is satisfied or not by some truth assign-
ment.

• Affirmative answer: If the input formula ϕ of SAT problem is satisfiable then at
least one of the truth assignments from a membrane with label 2 has satisfied
all clauses. Then, there will be a membrane labelled by 2 such that all objects
αj , with 1 ≤ j ≤ p have dissapeared in the previous step. At configuration
C4n+p+1, we have C4n+p+1(1) = {δ4n+p+1} and in each membrane labelled by 2
there remain objects αj if the corresponding truth assignment does not make
true clause Cj and one object α′

p+1. In this step, only rule [ δ4n+p+1 ]1[ γ ]0 →
[ δ4n+p+2 ]1[ ]0 will be fired and rules [αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0 will be

fired in membranes labelled by 2 such that at least one clause is not satisfied
by the corresponding truth assignment. Then, at configuration C4n+p+2, we
have C4n+p+2(1) = {δ4n+p+2, n

t
1}, being t the number of truth assignments

that have at least one clause not satisfied by the corresponding truth assign-
ment, and membranes labelled by 2 contains an object α′

p+1 if and only if the
corresponding truth assignment makes true all clauses from ϕ, and can contain
objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corresponding truth
assignment.
In the next step, applying rules [ ]2[n1 ]0 → [n1 ]2[ ]0 and [α′

p+1 ]2[ δ4n+p+2 ]1 →
[ y1 ]2[ ]1, we obtain an object y1 in a membrane labelled by 2 if and only if the
corresponding truth assignment makes true the input formula. Let us remark
that more than one membrane labelled by 2 can contain a truth assignment
that makes true ϕ, but in this case, we as we want to know if at least one truth
assignment makes true the input formula ϕ, we only want one object y1. Then,
at configuration C4n+p+3 we have that C4n+p+3(1) = ∅ and in membranes la-
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belled by 2, we can have objects n1
4, adding up to t in all membranes labelled

by 2, being t the number of truth assignments that do not make true the in-
put formula, an object α′

p+1 if the corresponding truth assignment makes true
all clauses, excepting one membrane labelled by 2 which corresponding truth
assignment makes true the input formula that will contain an object y1, and
can contain objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corre-
sponding truth assignment. In the next step the only rule that can be fired is
[ y1 ]2[ γ ]0 → [ y2 ]2[ ]0, that will be useful to synchronize the affirmative and
the negative answer. Let us note that rule [n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1 can-
not be fired because object δ4n+3 has been consumed in the previous step by
an object α′

p+1. Then, at configuration C4n+p+4, we have that C4n+p+4(1) = ∅
and in membranes labelled by 2, we can have objects n1, adding up to t in
all membranes labelled by 2, being t the number of truth assignments that do
not make true the input formula, an object α′

p+1 if the corresponding truth as-
signment makes true all clauses, excepting one membrane labelled by 2 which
corresponding truth assignment makes true the input formula that will con-
tain an object y2, and can contain objects αj , 1 ≤ j ≤ p, if clause Cj is not
satisfied by the corresponding truth assignment. At the last step of the com-
putation, rule [ y2 ]2[ ]0 → [ ]2[ yes ]0 is fired, sending an object yes to the
environment. Then, at configuration C4n+p+5, we have that C4n+p+5(1) = ∅
and in membranes labelled by 2, we can have objects n1, adding up to t in
all membranes labelled by 2, being t the number of truth assignments that do
not make true the input formula, an object α′

p+1 if the corresponding truth as-
signment makes true all clauses, excepting one membrane labelled by 2 which
corresponding truth assignment makes true the input formula, and can con-
tain objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corresponding
truth assignment, and there will be an object yes in the environment. Here,
the computation halts and returns an affirmative answer.

• Negative answer: If the input formula ϕ of SAT problem is not satisfiable then
none of the truth assignments encoded by a membrane labelled by 2 makes
the formula ϕ true. Thus, some object αj (1 ≤ j ≤ p) will be within all
membranes labelled by 2 will not remain in such membranes. At configuration
C4n+p+1, we have C4n+p+1(1) = {δ4n+p+1} and in each membrane labelled
by 2 there remain objects αj if the corresponding truth assignment does not
make true clause Cj . In this step, only rules [αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0, for

1 ≤ j ≤ p and rule [ δ4n+p+1 ]1[ γ ]0 → [ δ4n+p+2 ]1[ ]0 will be fired. Then,
at configuration C4n+p+2 we have in the environmet 2n copies of object n1,
C4n+p+2(1) = {δ4n+p+2} and membranes labelled by 2 will contain objects αj

(1 ≤ j ≤ p) when clauses Cj are not satisfied by the corresponding truth
assignment. In the (4n + p + 3)-th step, rule [ ]2[n1 ]0 → [n1 ]2[ ]0 will
be fired. Here, objects n1 will be sent to a membrane labelled by 2. Then,

4 Let us note that a membrane containing an object n1 does not say that the corre-
sponding truth assignment does not makes true the input formula. In fact, we can
have more than one object n1 within a single membrane labelled by 2.
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at configuration C4n+p+3 we have C4n+p+3(1) = {δ4n+p+2} and membranes
labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is not satisfied by the
corresponding truth assignment, and can contain t objects n1 (0 ≤ t ≤ 2n). At
the (4n+p+4)-th step rule [n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1 is fired, since object
δ4n+3 has not been consumed by any rule from 4.3, creating an object n2 in a
membrane labelled by 2. Then, at configuration C4n+p+4 we have C4n+p+4(1) =
∅ and membranes labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is
not satisfied by the corresponding truth assignment, and can contain t objects
n1 (0 ≤ t ≤ 2n), and one of them contains an object n2. At the last step of
the computation, rule [n2 ]2[ ]0 → [ ]2[ no ]0 is fired, sending an object no to
the environment. Then, at configuration C4n+p+5 we have that C4n+p+5(1) = ∅
and membranes labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is
not satisfied by the corresponding truth assignment, and can contain t objects
n1 (0 ≤ t ≤ 2n), and there will be an object no in the environment. Here, the
computation halts and returns a negative answer.

Result

Proof. The family of P systems previously constructed verifies the following:

• Every system of the family Π is a recognizer P systems from TSEC(2, 2).
• The family Π is polynomially uniform by Turing machines because for each

n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the family
is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 9n2p + 6n2 + 3np2

2 − 3np + 22n + p2

2 + 13p
2 + 14 ∈

Θ(max{n2p, np2}).
– Initial number of cells: 2 ∈ Θ(1).
– Initial number of objects in cells: n2 + n(p+ 1) + p+ 3 ∈ Θ(n2).

– Number of rules: 8n3 + 27n2p
2 + 4n1 + 19np

2 + 23n+ p2

2 + 17p
2 + 11 ∈ Θ(n3).

– Maximal number of objects involved in any rule: 4 ∈ Θ(1).
• The pair (cod, s) of polynomial-time computable functions defined fulfill the

following: for each input formula ϕ of SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset of the system Π(s(ϕ)), and for each n ∈ N, s−1(n)
is a finite set.

• The family Π is polynomially bounded: indeed for each input formula ϕ of SAT
problem, the deterministic P system Π(s(ϕ))+ cod(ϕ) takes exactly 4n+p+5
steps, being n the number of variables of ϕ and p the number of clauses.

• The family Π is sound with regard to (X, cod, s): indeed, for each formula ϕ,
if the computation of Π(s(ϕ))+ cod(ϕ) is an accepting computation, then ϕ is
satisfiable.

• The family Π is complete with regard to (X, cod, s): indeed, for each input
formula ϕ such that it is satisfiable, the computation of Π(s(ϕ)) + cod(ϕ) is
an accepting computation. �
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Corollary 1. NP ∪ co−NP ⊆ PMCTSEC(2,2).

Proof. It suffices to notice that SAT problem is a NP-complete problem, SAT ∈
PMCTSEC(2,2), and the complexity classPMCTSEC(2,2) is closed under polynomial-
time reduction and under complement. �

6 Conclusions and future work

In [6] a tight frontier of efficiency in the framework of tissue P systems with
evolutional symport/antiport rules and cell separation is defined by the length
of the RHS, that is, passing from 1 to 2 is enough to pass from non-efficiency
to presumably efficiency while the length of the LHS is at least 3. This result
is demonstrated giving a solution of the SAT problem by means of a family of P
system from TSEC(3, 2). But an open problem remains open here: what happens
with P systems from TSEC(k, 2) (k ≥ 2)? Can we solve computationally hard
problems restricting the length of the LHS to 2?

In this paper, an efficient solution to the SAT problem is given by means of
a family of P systems from TSEC(2, 2), so the previous problem is solved. Then,
we can conclude here with a similar figure to the presented in [6] but with the new
results included.

Of course, after this work we can define several clear research lines to continue
investigating these kinds of P systems.

– What happens when the environment “dissapear”?
– Do the structure matter? By this we mean using cell-like structure with this

kind of rules.
– In [12] another definition of length is given. Let k be the length of the rule

defined as follows: if r ≡ [u ]i[ v ]j → [ v′ ]i[u′ ]j , k = |u|+ |v|+ |u′|+ |v′|. Then
the complexity class of tissue P systems with evolutional communication rules
with at most length k and cell separation is denoted by PMCTSEC(k). What
are the borderline here?

– What is the upper bound of these systems? In [3] a characterization of tissue
P systems with symport/antiport rules and both cell division and separation
is given matching their efficiency to the class P#P, and it seems that this class
of P system can reach the same complexity class.
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P = PMCTSEC(k1,k2) NP ∪ co−NP ⊆ PMCTSEC(k1,k2)
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tado, L. Valencia-Cabrera (eds.) Proceedings of the Tenth Brainstorming Week on
Membrane Computing, Volume II, Seville, Spain, January 30 - February 3, 2012,
Report RGNC 01/2012, Fénix Editora, 2012, pp. 105-140.
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