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EQUILIBRIUM PROBLEMS ON RIEMANNIAN MANIFOLDS WITH

APPLICATIONS

CHONG LI∗, XIANGMEI WANG† , GENARO LÓPEZ‡ , AND JEN-CHIH YAO§

Abstract. We study the equilibrium problem on general Riemannian manifolds. The results on exis-

tence of solutions and on the convex structure of the solution set are established. Our approach consists in

relating the equilibrium problem to a suitable variational inequality problem on Riemannian manifolds, and

is completely different from previous ones on this topic in the literature. As applications, the corresponding

results for the mixed variational inequality and the Nash equilibrium are obtained. Moreover, we formulate

and analyze the convergence of the proximal point algorithm for the equilibrium problem. In particular,

correct proofs are provided for the results claimed in J. Math. Anal. Appl. 388, 61-77, 2012 (i.e., Theorems

3.5 and 4.9 there) regarding the existence of the mixed variational inequality and the domain of the resolvent

for the equilibrium problem on Hadamard manifolds.

Key words. Riemannian manifold, equilibrium problem, variational inequality problem, proximal point

algorithm
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1. Introduction. Let X be a metric space, Q ⊆ X a nonempty subset and F : X ×

X → (−∞,+∞] a bifunction. The equilibrium problem (introduced by Blum and Oettli in

[6]), abbreviated as EP, associated to the pair (F , Q) is to find a point x̄ ∈ Q such that

(1.1) F (x̄, y) ≥ 0 for any y ∈ Q.

As shown in [6, 36], EP contains, as special cases, optimization problems, complementarity

problems, fixed point problems, variational inequalities and problems of Nash equilibria;

and it has been broadly applied in many areas, such as economics, image reconstruction,

transportation, network, and elasticity. In recent years, EP has been studied extensively,

including the issues regarding existence of solutions and iterative algorithms for finding

solutions; see e.g., [5, 6, 12, 15, 21].

Since the classical existence results in EPs work for the case when Q is a convex set

and the bifunction F is convex in the second variable, some authors focused on exploiting
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2 EQUILIBRIUM PROBLEMS ON RIEMANNIAN MANIFOLD

the possible existence without the convexity assumption; see e.g., [3, 4, 9, 20]. One useful

approach used in [23] and [24] is to embed the underlying nonconvex and/or nonsmooth

Nash/Nash-type equilibrium problems into a suitable Riemannain manifold M to study the

existence and the location problems of the Nash/Nash-type equilibrium points. In particular,

Kristály established in [23], the existence results for Nash equilibrium points associated to

strategy sets {Qi ⊆ Mi}i∈I and loss-functions {fi}i∈I (I := {1, 2, . . . , n}) under the following

assumption:

(AK): each Qi is a compact and geodesic convex set of Mi for all i ∈ I

(see item (e) in Definition 2.3 for the notion of the geodesic convexity). This class of

approaches has also been used extensively in many optimization problems since some non-

convex and/or nonsmooth problems of the constrained optimization in Rn can be reduced

to convex and/or smooth unconstrained optimization problems on appropriate Riemannian

manifolds; see, for examples, [14, 30, 31, 40, 42]. More about optimization techniques and

notions in Riemannian manifolds can be found in [1, 2, 8, 18, 26, 27, 28, 43, 45] and the

bibliographies therein.

For the equilibrium problem (1.1) on a Riemannian manifold M , Colao et. al, by

generalizing the KKM lemma to a Hadamard manifold, established an existence result (i.e.,

[11, Theorem 3.2]) for solutions of EP under the following assumptions:

(AC-1): M is a Hadamard manifold and Q is closed and convex;

(AC-2): the set {y ∈ Q : F (x, y) ≤ 0} is convex for any x ∈ Q

(which was extensively studied in [47] for the generalized vector equilibrium problem). This

existence result was applied there to solve the following problems:

(P1). the existence problem of solutions for mixed variational inequality problems;

(P2). the well-definedness of the resolvent and the proximal point algorithm for solving

EP;

(P3). the existence problem of fixed points for set-valued mappings;

(P4). the existence problem of solutions for Nash equilibrium problems.

However, the applications to problems (P1)-(P3) above rely heavily on the following claim:

(1.2) the function y 7→ 〈ux, exp
−1
x y〉 is quasi-convex,

where x ∈ M and ux ∈ TxM ; see the proofs for Theorems 3.5, 3.10 and 4.9 in [11]. Unfortu-

nately, unlike in the linear space setting, claim (1.2) is not true in general as pointed out in

[42, Theorem 2.1, p. 299] or [25]. Note that, for any x ∈ M , the function defined by (1.2)

is convex at x (see Definition 2.4 (i)); this motivates us to introduce the new notion of the

point-wise (weak) convexity for a bifunction on general manifolds (see Definition 3.1 (c)).

Our main purpose in the present paper is to develop a new approach (based on the new

notion and the work in [28]) to study the issue on the existence and structure of solutions

for equilibrium problems on general Riemannian manifolds, which, in particular, covers

problems (1), (2) and (4) as special cases. In our approach, rather than assumptions (AK)

or (AC-1)-(AC-2), we make the following ones on the involved Q and F :
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• Q is a closed and weakly convex subset of Riemannian manifold M ;

• F is point-wise weakly convex on Q.

The technique used in the present paper for proving the main results is completely

different from the ones used in [11, 47, 23]. Actually, our technique here is mainly focused

on establishing the equivalence between the EP and a suitable variational inequality problem;

and then apply the corresponding results in [28] for the variational inequality problem to

study the existence of solutions and the convex structure of the solution set of the EP .

As applications to problems (P1), (P2) and (P4), we obtained some results on the exis-

tence of solutions and convexity of the solution sets for mixed variational inequality problems

and Nash equilibrium problems (see Theorem 5.1 and 5.2), as well as the convergence of the

proximal point algorithm for solving EP. In particular, the existence result for mixed vari-

ational inequality problems and the well-definedness results of the resolvent for solving EP

on Hadamard manifolds provide correct proofs for the corresponding ones [11, Theorem 3.5

and 4.9] (see the explanations before Corollaries 4.5 and 5.2 in Section 4 and 5, respectively);

while the existence result for the Nash equilibrium on general manifolds relaxes the geodesic

convexity assumption made on {Qi} in [23, Theorem 1.1] to the weaker one that each Qi is

weakly convex. It is worthwhile to notice that the geodesic convexity assumption for {Qi}

in [23] prevents its application to some special but important Riemannian manifolds, such as

compact Stiefel manifolds St(p, n) and Grassmann manifolds Grass(p, n) (p < n), in which

there is no geodesic convex subset; see Remark 5.1 in Section 5. Moreover, to our best

knowledge, the convex structure results on the solution set for mixed variational inequality

problems and Nash equilibrium problems are new even in Hadamard manifold settings.

The paper is organized as follows. In the next section, we introduce some basic notions

and notations on Riemannian manifolds, some properties about the (weakly) convex function

and the results about the VIP in [28] which will be used in our approach. In section 3, we

establish the existence and the uniqueness result of the solution and the convexity of the

solution set of the EP on general Riemannian manifolds. Following these, the formulation of

the proximal point algorithm for the equilibrium problem on general Riemnannian manifolds

is given and the convergence property about the algorithm is analyzed in section 4. The

last section is devoted to the applications to the Nash equilibrium problem and the mixed

variational inequality problem.

2. Notations and preliminary results.

2.1. Background of Riemannian manifolds. The notations used in the present

paper are standard; and the readers are referred to some textbooks for more details, for

example, [13, 39, 42].

Let M be a connected n-dimensional Riemannian manifold with the Levi-Civita connec-

tion ∇ on M . Let x ∈ M , and let TxM stand for the tangent space at x to M endowed with

the scalar product 〈, 〉x and the associated norm ‖.‖x, where the subscript x is sometimes
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omitted. Thus the tangent bundle, denoted by TM , is defined by

TM := {(x, v) : x ∈ M, v ∈ TxM}.

Fix y ∈ M , and let γ : [0, 1] → M be a piecewise smooth curve joining x to y. Then, the

arc-length of γ is defined by l(γ) :=
∫ 1

0
‖γ̇(t)‖dt, while the Riemannian distance from x to

y is defined by d(x, y) := infγ l(γ), where the infimum is taken over all piecewise smooth

curves γ : [0, 1] → M joining x to y. We use B(x, r) and B(x, r) to denote, respectively, the

open metric ball and the closed metric ball at x with radius r, that is,

B(x, r) := {y ∈ M : d(x, y) < r} and B(x, r) := {y ∈ M : d(x, y) ≤ r}.

A vector field V is said to be parallel along γ if ∇γ̇V = 0. In particular, for a smooth

curve γ, if γ̇ is parallel along itself, then γ is called a geodesic, that is, a smooth curve γ is

a geodesic if an only if ∇γ̇ γ̇ = 0. A geodesic γ : [0, 1] → M joining x to y is minimal if its

arc-length equals its Riemannian distance between x and y. By the Hopf-Rinow theorem

[13], if M is complete, then (M, d) is a complete metric space, and there is at least one

minimal geodesic joining x to y. One of the important structures on M is the exponential

map expx : TxM → M , which is defined at x ∈ M by expx v = γv(1, x) for each v ∈ TxM ,

where γv(·, x) is the geodesic starting at x with velocity v. Then, expx tv = γv(t, x) for each

real number t. Another useful tool is the parallel transport Pγ,·,· on the tangent bundle TM

along a geodesic γ, which is defined by

Pγ,γ(b),γ(a)(v) = V (γ(b)) for any a, b ∈ R and v ∈ Tγ(a)M,

where V is the unique vector field satisfying V (γ(a)) = v and ∇γ̇(t)V = 0 for all t. Then, for

any a, b ∈ R, Pγ,γ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M . We will write Py,x instead

of Pγ,y,x in the case when γ is a minimal geodesic joining x to y and no confusion arises.

The following lemma can be checked easily.

Lemma 2.1. Let x0 ∈ M and {xk} ⊂ M be such that limk→∞ xk = x0. Let u0, v0 ∈

Tx0
M and let {uk}, {vk} be sequences with each uk, vk ∈ Txk

M such that uk → u0 and

vk → v0. Then

expxk
uk → expx0

u0 and 〈uk, vk〉 → 〈u0, v0〉.

The following result is known in any textbook about Riemannain geometry, see e.g., [13,

Corollary, p. 73] or [39, Exercise 5, p. 39].

Lemma 2.2. Let γ : [a, b] → M be a piecewise differentiable curve. If l(γ) = d(γ(a), γ(b)),

then γ is a geodesic joining γ(a) and γ(b).

Consider a set Q ⊆ M and x, y ∈ Q. The set of all geodesics γ : [0, 1] → M with

γ(0) = x and γ(1) = y satisfying γ([0, 1]) ⊆ Q is denoted by ΓQ
xy, that is

ΓQ
xy := {γ : [0, 1] → Q : γ(0) = x, γ(1) = y and ∇γ̇ γ̇ = 0}.

In particular, we write Γxy for ΓM
xy, and Γxy is nonempty for all x, y ∈ M provided that M

is complete. Furthermore, for a subset Γ0 ⊆ Γxy, we use min−Γ0 to denote the subset of Γ0
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consisting of all minimal geodesics in Γ0. Thus γxy ∈ min−Γ0 means that γxy ∈ Γ0 and γxy
is minimal.

Recall that a Hadamard manifold is a complete simply connected m-dimensional Rie-

mannian manifold with nonpositive sectional curvatures. In a Hadamard manifold, the

geodesic between any two points is unique and the exponential map at each point of M is

a global diffeomorphism; see, e.g., [39, Theorem 4.1, p. 221]. Thus min−Γxy coincides with

Γxy in a Hadamard manifold for any x, y ∈ M .

2.2. Convex analysis on Riemmanian manifolds. Definition 2.3 below presents

the notions of the convexity for subsets in M , where item (e) is known in [23], and see e.g.,

[29, 43] for the others. As usual, we use C to stand for the closure of a subset C ⊆ M .

Definition 2.3. Let Q ⊆ M be a nonempty set. The set Q is said to be

(a) weakly convex if, for any x, y ∈ Q, there is a minimal geodesic of M joining x to y

and it is in Q;

(b) strongly convex if, for any x, y ∈ Q, the minimal geodesic in M joining x to y is

unique and lies in Q;

(c) locally convex if, for any x ∈ Q, there is a positive ε > 0 such that Q ∩ B(x, ε) is

strongly convex;

(d) r-convex if, for any x, y ∈ Q with d(x, y) ≤ r, the minimal geodesic in M joining x

to y is unique and lies in Q;

(e) geodesic convex if, for any x, y ∈ Q, the geodesic in M joining x to y is unique and

lies in Q.

Remark 2.1. (a) The following implications are obvious:

geodesic convexity ⇒strong convexity ⇒ r-convexity/weak convexity ⇒ local convexity.

(b) The intersection of a weakly convex set and a strongly convex set is strongly convex.

(c) All convexities (except the local convexity) in a Hadamard manifold coincide and are

simply called the convexity.

Recall that the convexity radius at x is defined by

(2.1) rx := sup

{

r > 0 :
each ball in B(x, r) is strongly convex

and each geodesic in B(x, r) is minimal

}

.

Then rx is well defined and positive, and rx = +∞ for each x ∈ M in the case when M is a

Hadamard manifold. Moreover, for any compact subset Q ⊆ M , we have that

(2.2) rQ := inf{rx : x ∈ Q} > 0;

see [39, Theorem 5.3, p. 169] or [29, Lemma 3.1].
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Consider now an extended real-valued function f : M → R := (−∞,∞] and let D(f)

denote its domain, that is, D(f) := {x ∈ M : f(x) 6= ∞}. Write Γf
xy := Γ

D(f)
xy for simplicity,

that is Γf
xy stands for the subset consisting of all γxy ∈ Γxy such that γ([0, 1]]) ⊆ D(f). In

the following definition, we introduce the notions of the convexity for functions, where item

(c) is known in [27, 28].

Definition 2.4. Let f : M → R be a proper function with a weakly convex domain

D(f), and let x ∈ D(f). Then, f is said to be

(a) convex (resp. strictly convex) at x if, for any y ∈ D(f) \ {x} and any geodesic

γxy ∈ Γf
xy the composition f ◦ γxy : [0, 1] → R is convex (resp. strictly convex) on (0, 1):

(2.3) f ◦ γxy(t) ≤ (resp. <)(1 − t)f(x) + tf(y) for all t ∈ (0, 1);

(b) weakly convex (resp. weakly strictly convex) at x if, for any y ∈ D(f) there exists

γxy ∈ min−Γf
xy such that (2.3) holds;

(c) weakly convex (resp. convex, strictly convex, weakly strictly convex) if so is it at

each x ∈ D(f).

Clearly, for a proper function f on M , the convexity implies the weak convexity, and

the strict convexity implies the convexity.

Let f : M → R be proper and weakly convex at x ∈ D(f). The directional derivative in

direction u ∈ TxM and the subdifferential of f at x are, respectively, defined by

f ′(x;u) := lim
t→0+

f(expx tu)− f(x)

t

and

∂f(x) := {v ∈ TxM : 〈v, u〉 ≤ f ′(x;u) for any u ∈ TxM}.

Then, by [27, Proposition 3.8(iii)], the following relationship holds between ∂f(x) and

clf ′(x; ·), the lower semi-continuous hull of f ′(x; ·):

(2.4) clf ′(x;u) = sup{〈u, v〉 : v ∈ ∂f(x)} for any u ∈ TxM.

Lemma 2.5. Let f : M → R be proper with a weakly convex domain D(f). Let x ∈ D(f)

and v ∈ TxM .

(i) If f is weakly convex (resp. weakly strictly convex) at x, then v ∈ ∂f(x) if and only

if, for some or any constant r > 0, and for any y ∈ D(f) ∩B(x, r), there exists a geodesic

γxy ∈ min−Γf
xy such that

(2.5) f(y) ≥ (resp. >)f(x) + 〈v, γ̇xy(0)〉.

(ii) If f is convex (resp. strictly convex) at x, then v ∈ ∂f(x) if and only if, for some

or any constant r > 0, the inequality (2.5) holds for any y ∈ D(f) ∩ B(x, r) and any

γxy ∈ min−Γf
xy.
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Proof. We only prove assertion (i) (as the proof for assertion (ii) is similar). To do this,

suppose that f is weakly convex (resp. weakly strictly convex) at x. It suffices to verify that

the following statements are equivalent:

(a) v ∈ ∂f(x).

(b) For any r > 0 and any y ∈ D(f) ∩B(x, r), there exists a geodesic γxy ∈ min−Γf
xy such

that (2.5) holds.

(c) There is some r > 0 such that for any y ∈ D(f) ∩ B(x, r), there exists a geodesic

γxy ∈ min−Γf
xy such that (2.5) holds.

We shall complete the proof by showing the implications (a) ⇒ (b) ⇒ (c) ⇒ (a). To do

this, assume (a). Then v ∈ ∂f(x), and by definition, we have that

(2.6) 〈v, u〉 ≤ f ′(x;u) for any u ∈ TxM.

Let r > 0 and y ∈ D(f) ∩B(x, r) be arbitrary. Noting that f is weak convex (resp. weakly

strictly convex) at x, there exists γxy ∈ min−Γf
xy such that the composite f ◦γxy : [0, 1] → R

is convex (resp. strictly convex) on [0, 1]. Therefore,

f ′(x; γ̇xy(0)) = inf
t>0

f(expx tγ̇xy(0))− f(x)

t
≤ (resp. <)f(y)− f(x).

This, together with (2.6), yields that

〈v, γ̇xy(0)〉 ≤ f ′(x; γ̇xy(0)) ≤ (resp. <)f(y)− f(x).

Hence (b) holds, and the implication (a) ⇒ (b) is checked. Noting that the implication (b)

⇒ (c) is evident, it remains to show the implication (c) ⇒ (a). To this end, assume (c). Then

one can choose r > 0 and γxy ∈ min−Γf
xy for any y ∈ D(f) ∩B(x, r) such that (2.5) holds.

Without loss of generality, one could assume that r ≤ rx. Let u ∈ TxM \ {0} be arbitrary,

and set s0 := r
‖u‖ . Then, for any s ∈ (0, s0), y(s) := expx(su) ∈ B(x, r) ⊆ B(x, rx). It

follows that the geodesic γxy(s) joining x and y(s) is unique. Therefore, γxy(s) is of the form:

γxy(s)(t) = expx(t(su)) for each t ∈ [0, 1],

and if y(s) ∈ D(f), then (2.5) holds with y(s) in place of y:

〈v, su〉 = 〈v, γ̇xy(s)(0)〉 ≤ f(y(s))− f(x) = f(expx(su))− f(x) for any s ∈ (0, s0).

Note that the above inequality holds trivially if y(s) /∈ D(f). Then, by definition, we get

that 〈v, u〉 ≤ f ′(x;u), and so (a) holds as u ∈ TxM is arbitrary. Thus, the implication (c)

⇒ (a) is shown and the proof is complete.

Fix x̄ ∈ D(f) and recall that f is center Lipschitz continuous at x̄ if there exits a

neighborhood U of x̄ and a constant L such that

|f(x)− f(x̄)| ≤ Ld(x, x̄) for any x ∈ U.

The center Lipschitz constant Lf
x̄ at x̄ is defined to be the minimum of all L such that above

inequality holds for some neighborhood U of x̄. Then it is clear that

Lf
x̄ = lim

δ→0+
sup

{

|f(x)− f(x̄)|

d(x, x̄)
: 0 < d(x, x̄) ≤ δ

}

.
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The following properties about the subdifferential of a (weakly) convex function can be

found in [28, Proposition 6.2] except (2.7) by definition.

Lemma 2.6. Let f : M → R be a proper function. Then the following assertions hold:

(i) If is weakly convex , then f is continuous on intD(f).

(ii) If x̄ ∈ intD(f) and f is weakly convex at x̄, then ∂f(x̄) is a nonempty, compact and

convex set satisfying

(2.7) ‖v‖ ≤ Lf
x̄ for any v ∈ ∂f(x̄).

The following lemma, which provides some sufficient conditions ensuring the sum rule

of subdifferential, was proved in [27, Proposition 4.3].

Lemma 2.7. Let f, g : M → R be proper functions such that f, g and f + g are weakly

convex at x ∈ intD(f) ∩ D(g). Then the following sum rule for the subdifferential holds:

∂(f + g)(x) = ∂f(x) + ∂g(x).

2.3. VIP: existence and convexity properties of solution sets. Let Q ⊆ M be

a nonempty subset and let A : Q ⇒ TM be a set-valued vector field defined on Q, that

is, A(x) ⊆ TxM is nonempty for each x ∈ Q. Consider the following variational inequality

problem (VIP for short) associated to the pair (A,Q): To find a point x̄ ∈ Q such that

(2.8) ∃v̄ ∈ A(x̄) s.t. 〈v̄, γ̇x̄y(0)〉 ≥ 0 for any y ∈ Q and γx̄y ∈ ΓQ
x̄y.

Any point x̄ ∈ Q satisfying (2.8) is called a solution of VIP, and the set of all solutions is

denoted by VIP(A,Q).

Variational inequality problem (2.8) was first introduced in [49], for single-valued vector

fields on Hadamard manifolds, and extended respectively in [29] and [28] for single-valued

vector fields and multivalued vector fields on general Riemannian manifolds. As we have

mentioned previously, our approach to solve the EP is founded strongly on some existence

results about the VIP, which are taken from [28]. For this purpose, we recall some notions

in the following definition; see, e.g, [26, 28].

Definition 2.8. Let Q ⊆ M be a subset and A : Q ⇒ TM be a set-valued vector field

on Q. A is said to be

(a) upper semi-continuous (usc for short) at x0, if, for any open set U satisfying A(x0) ⊆

U ⊆ Tx0
M , there exists an open neighborhood U(x0) of x0 such that Px0,xA(x) ⊆ U for any

x ∈ U(x0) ∩Q;

(b) upper Kuratowski semi-continuous (uKsc for short) at x0 if, for any sequences

{xk} ⊂ Q and {uk} ⊂ TM with each uk ∈ A(xk), relations limk→∞ xk = x0 ∈ Q and

limk→∞ uk = u0 imply u0 ∈ A(x0);

(c) usc (resp., uKsc) on Q if it is usc (resp., uKsc) at each x ∈ Q.
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By definition, it is evident that upper semi-continuity implies upper Kuratowski semi-

continuity. In the following example, we provide two set-valued vector fields which are useful

for our study in next sections of the present paper.

Example 2.1. Fix a point y ∈ M , and define vector fields Exp−1
(·) y :⇒ TM and

exp−1
(·) y :⇒ TM respectively by

Exp−1
x y := {u ∈ TxM : expx u = y} for each x ∈ M,

and

(2.9) exp−1
x y := {u ∈ Exp−1

x y : ‖u‖ = d(x, y)} for each x ∈ M.

Then one can check easily by definition and Lemma 2.1 that Exp−1
(·) y is uKsc on M and

exp−1
(·) y is usc on M .

Recall from [28] that a point o ∈ Q is called a weak pole of Q if for each x ∈ Q, min−Γox

is a singleton and min−Γox ⊆ Q. Clearly, any subset with a weak pole is connected. The

notions of the monotonicity in the following definition are well known; see for example

[11, 28].

Definition 2.9. Let Q ⊆ M be a subset and A : Q ⇒ TM be a set-valued vector field.

The vector field A is said to be

(a) monotone on Q if, for any x, y ∈ Q and γxy ∈ ΓQ
xy the following inequality holds:

〈vx, γ̇xy(0)〉 − 〈vy, γ̇xy(1)〉 ≤ 0 for any vx ∈ A(x), vy ∈ A(y);

(b) strictly monotone on Q if it is monotone and, for any x, y ∈ Q with x 6= y and

γxy ∈ ΓQ
xy the following inequality holds:

〈vx, γ̇xy(0)〉 − 〈vy, γ̇xy(1)〉 < 0 for any vx ∈ A(x), vy ∈ A(y).

Let Q ⊆ M be a closed connected and locally convex set. By [39, p. 170], there exists

a connected (embedded) k-dimensional totally geodesic sub-manifold N of M such that

Q = N . Following [28], the set intRQ := N is called the relative interior of Q. Moreover,

as in [28], we say that a closed locally convex set Q has the BCC (bounded convex cover)

property if there exists o ∈ Q such that, for any R ≥ 0, there exists a weakly convex compact

subset of M containing Q ∩B(o,R).

Remark 2.2. We remark that the notion of the BCC property defined above is a litter

stronger than that defined in [28, Definition 3.9], where it is required that the compact subset

containing Q∩B(o,R) is “locally convex” rather than “weakly convex”. From its proof, one

sees that the BCC property assumption defined in [28, Definition 3.9] seems insufficient for

[28, Theorem 3.10], while the stronger version of the BCC property defined here is sufficient.

For the remainder, we use V(Q) to denote the set of all uKsc set-valued vector fields A

such that A(x) is compact and convex for each x ∈ Q.
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Proposition 2.10 below extends the corresponding existence result in [28, Theorem 3.10]

(see the explanation made in Remark 2.3). The proof of Proposition 2.10 is similar to that

for [28, Theorem 3.10], and is kept here for completeness.

Proposition 2.10. Let Q ⊆ M be a closed locally convex subset with a weak pole

o ∈ intRQ and A ∈ V(Q). Then VIP(A,Q) 6= ∅ provided one of the following assumptions

holds:

(a) Q is compact;

(b) Q has the BCC property and there exists a compact subset L ⊆ M such that

(2.10) x ∈ Q \ L ⇒ [∀v ∈ A(x), ∃y ∈ Q ∩ L, γxy ∈ min−ΓQ
xy s.t. 〈v, γ̇xy(0)〉 < 0].

Proof. It was known in [28, Theorem 3.6] in the case when Q is compact. Below we

assume that assumption (b) holds. Then, there exists a compact subset L such that (2.10)

holds. Then there exist R > 0 and a weakly convex and compact subset KR of M such that

L ⊂ B(o,R) and Q ∩ B(o,R) ⊆ KR. Write QR := Q ∩ B(o,R), and Q̂R := Q ∩ KR for

saving the print space. Then

Q ∩ L ⊆ Q ∩B(o,R) ⊆ QR ⊆ Q̂R.

Thus, by (2.10), one checks that

(2.11) VIP(A, Q̂R) ⊆ VIP(A,QR) ⊆ Q ∩ L ⊆ B(o,R).

Moreover, since o ∈ intRQ is a weak pole of Q (and so the minimal geodesic γox joining o to

x is unique) and KR is weakly convex, one can check by definition that o is a weak pole of Q̂R

and o ∈ intRQ̂R (noting that Q ∩B(o,R) ⊆ KR). Thus [28, Theorem 3.6] is applied (with

Q̂R in place of A) to get that VIP(A, Q̂R) 6= ∅. In view of (2.11), ∅ 6= VIP(A,QR) ⊆ B(o,R),

and it follows from [28, Proposition 3.2] that

VIP(A,QR) = VIP(A,QR) ∩B(o,R) ⊆ VIP(A,Q),

and so VIP(A,Q) 6= ∅, completing the proof.

Remark 2.3. Let Q ⊆ M be a locally convex subset with a weak pole o ∈ intRQ. Recall

from [28] that the vector field A satisfies the coerciveness condition on Q if

sup
vo∈A(o),vx∈A(x)

〈vx, γ̇xo(0)〉 − 〈vo, γ̇xo(1)〉

d(o, x)
→ −∞ as d(o, x) → +∞ for x ∈ Q.

Then one checks directly by definition that the coerciveness condition for A implies that there

exists a compact subset L ⊆ M such that (2.10) in (b) of Proposition 2.10 holds (noting

that A(o) is compact). However, the converse is not true, in general, even in the Euclidean

space setting. To see this, one may consider the simple mapping A on Q := R defined by

A(x) := [−1, 1] if x = 0 and A(x) := sign(x) otherwise. Thus Proposition 2.10 is an

extension of the corresponding existence result in [28, Theorem 3.10].
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As usual, we set Dκ := π√
κ
if κ > 0 and Dκ := +∞ if κ ≤ 0 (see e.g., [28, 39]). The

following proposition lists some results on the structure of the solution set VIP(A,Q), which

are known in [28, Theorems 3.13, 4.6 and 4.8], respectively.

Proposition 2.11. Suppose that A ∈ V(Q) is monotone on Q ⊆ M and VIP(A,Q) 6= ∅.

Then the following assertion holds:

(i) If Q is a locally convex subset, then the solution set VIP(A,Q) is locally convex.

(ii) If A is strictly monotone on Q, then VIP(A,Q) is a singleton.

(iii) If M is of the sectional curvatures bounded from above by some κ ∈ [0,+∞) and Q

is a Dκ-convex subset, then the solution set VIP(A,Q) is Dκ-convex. .

3. Equilibrium problem. Throughout the whole section, we always assume that

• Q ⊆ M is a nonempty closed and locally convex subset;

• F : M ×M → R is a proper bifunction with 0 ≤ F (x, x) < +∞ for any x ∈ Q.

The domain D(F ) of F is defined by

D(F ) := {(x, y) ∈ M ×M : −∞ < F (x, y) < +∞}.

Recall that the EP associated to the pair (F,Q) is to find a point x̄ ∈ Q such that F (x̄, y) ≥ 0

for any y ∈ Q. Any point x̄ ∈ Q satisfying (1.1) is called a solution of EP (1.1), and the set

of all solutions is denoted by EP(F,Q).

3.1. Properties of bifunctions. In the following definition we introduce some mono-

tonicity and convexity notions for bifuctions on Riemannian manifolds. In particular, the

corresponding ones of items (a) and (b) in linear spaces are refereed to, for example, [10, 22];

while item (c) as far as we know are new and plays a key role in our study in the present

paper.

Definition 3.1. The bifunction F is said to be

(a) monotone on Q×Q if F (x, y) + F (y, x) ≤ 0 for any (x, y) ∈ Q×Q;

(b) strictly monotone on Q × Q if F (x, y) + F (y, x) < 0 for any (x, y) ∈ Q × Q with

x 6= y and

(3.1) F (x, x) = 0 for any x ∈ Q;

(c) point-wise weakly convex (resp. point-wise convex) on Q if, for any x ∈ Q, the

function F (x, ·) : M → R is weakly convex (resp. convex) at x.

Note that if F is monotone on Q × Q, then (3.1) holds (as F (x, x) ≥ 0 for any x ∈ Q

by assumption).

Let V : Q ⇒ TM be a vector field. Associated to V , we define the bifunction GV :

M ×M → R by

(3.2) GV (x, y) := sup
u∈V (x),v∈exp−1

x y

〈u, v〉 for any (x, y) ∈ M ×M,



12 EQUILIBRIUM PROBLEMS ON RIEMANNIAN MANIFOLD

where for any (x, y) ∈ M ×M , exp−1
x y is defined by (2.9), and we adopt the the convention

that sup ∅ = +∞. Proposition 3.2 below provides some properties of the bifunctions GV

that will be used in the sequel. As usual, for a subset Z of TxM , we use coZ to denotes the

closed and convex hull of the set Z in TxM .

Proposition 3.2. Suppose V (x) ⊆ TxM is nonempty for each x ∈ Q, and let GV be

defined by (3.2). Then the following assertions hold:

(i) If V (x) is compact-valued, then

(3.3) D(GV ) = Q ×M and GV (x, x) = 0 for any x ∈ Q.

(ii) GV (x, ·) ◦ γxy is convex on [0, 1] for any x, y ∈ Q and any geodesic γxy ∈ min−Γxy.

(iii) If G : Q×Q → R is point-wise weakly convex on Q, then so is GV +G.

(iv) ∂GV (x, ·)(x) = coV (x) for any x ∈ Q.

(v) If V (x) is compact-valued and V usc on Q, then the function x 7→ GV (x, y) is usc

on Q for each y ∈ Q.

Proof. Assertion (i) is clear by definition. To show assertion (ii), fix x, y ∈ Q and let

γxy ∈ min−Γxy and yt := γxy(t). Then we have that

(3.4) exp−1
x yt ⊆ t exp−1

x y for each t ∈ (0, 1).

Indeed, let vt ∈ exp−1
x yt with some t ∈ (0, 1). Then, ‖vt‖ = d(x, yt) = td(x, y) and

expx vt = yt. Define a curve β : [0, 1] → M by

β(s) :=

{

expx
s
t
vt, s ∈ [0, t],

γxy(s), s ∈ (t, 1].

Then l(β) = ‖vt‖+d(yt, y) = d(x, y). This means that β ∈ min−Γxy thanks to Lemma 2.2.

Therefore, 1
t
vt ∈ exp−1

x y by definition because β̇(0) = 1
t
vt; hence (3.4) holds. Thus

GV (x, γxy(t)) = sup
u∈V (x),vt∈exp−1

x yt

〈u, vt〉 ≤ t sup
u∈V (x),v∈exp−1

x y

〈u, v〉 = tG(x, y).

This shows that GV (x, γxy(·)) is convex on [0, 1] (noting that GV (x, x) = 0), and assertion

(ii) is shown as γxy ∈ min−Γxy is arbitrary.

Assertion (iii) follows immediately from assertion (ii). Now, we verify assertion (iv).

To proceed, let x ∈ Q and ξ ∈ TxM . Then for any t > 0 small enough, one has that

exp−1
x expx tξ = {tξ}. Thus noting that GV (x, x) = 0, we have by definition that

(3.5) GV (x, ·)
′(x; ξ) = lim

t→0+

supu∈V (x)〈u, tξ〉

t
= sup

u∈V (x)

〈u, ξ〉 = sup
u∈coV (x)

〈u, ξ〉.

This, together with (2.4), implies that

sup
u∈coV (x)

〈u, ξ〉 ≥ sup
u∈∂GV (x,·)(x)

〈u, ξ〉 for any ξ ∈ TxM,
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and so ∂GV (x, ·)(x) ⊆ coV (x) by [37, Corollary 13.1.1, p.113]. Moreover, by (3.5), one have

by definition that

∂GV (x, ·)(x) = ∂GV (x, ·)
′(x; 0) ⊇ coV (x).

Thus assertion (iv) is shown.

It remains to show assertion (v). To this end, fix y ∈ Q. Let ε > 0, x ∈ Q and let

{xn} ⊆ Q be such that limn→∞ xn = x. Since V and exp−1
(·) y are usc at x (see Lemma 2.1),

there is K ∈ N such that

(3.6) Px,xn
V (xn) ⊆ B(V (x), ε) and Px,xn

exp−1
xn

y ⊆ B(exp−1
x y, ε) for each n ≥ K.

Set R := max{|V (x)|, d(x, y)} (where |V (x)| := maxv∈V (x){‖v‖} < +∞ as V (x) is compact),

and, without loss of generality, assume that ε < R. Then, it follows from (3.6) that, for any

n > K,

sup
vn∈V (xn),un∈exp−1

xn y

〈vn, un〉 ≤ sup
v∈B(V (x),ε),u∈B(exp−1

x y,ε)

〈v, u〉 ≤ sup
v∈V (x),u∈exp−1

x y

〈v, u〉+ 3εR,

and so limn→∞GV (xn, y) ≤ GV (x, y) + 3Rε. Thus, assertion (v) holds as ε > 0 is arbitrary

and the proof is complete.

3.2. Relationship between VIP and EP. For the remainder of the paper, we will

make use of the following hypotheses for the bifunction F , where, as usual, we use δC(·) to

denote the indicator function of the nonempty subset C defined by δC(x) := 0 if x ∈ C and

+∞ otherwise:

(H1) F is point-wise weakly convex on Q and, x ∈ intD(F (x, ·)) for each x ∈ Q.

(H2) F + δQ×Q is point-wise weakly convex on Q.

(H3) For any y ∈ Q, the function x 7→ F (x, y) is usc on Q.

(H4) The function x 7→ F (x, x) is lower semi-continuous (lsc for short) on Q.

Remark 3.1. We remark that the latter part of hypothesis (H1) is particularly satisfied

if Q×Q ⊆ intD(F ). The first part of hypothesis (H1) and hypothesis (H2) are satisfied in the

case when Q is weakly convex and F (x, ·) is (weakly) convex for any x ∈ Q, which, together

with Hypothesis (H3) are standard assumption for the EP (see, e.g, [10, 11, 12, 20, 47]);

while hypothesis (H4) is particularly satisfied if F (x, x) = 0 for any x ∈ Q (which was used

in [10, 12, 20]).

Note that, by definition, the following implication holds:

(3.7) (H2)=⇒ Q is weakly convex.

Associated to the pair (F,Q), we define the set-valued vector field AF : Q ⇒ TM by

(3.8) AF (x) := ∂F (x, ·)(x) for any x ∈ Q.

Then the following proposition is clear from Lemma 2.6 (ii).
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Proposition 3.3. Suppose that F satisfies (H1). Then, the set-valued vector field AF

is well-defined, compact convex-valued on Q and satisfies

max
v∈AF (x)

‖v‖ ≤ LF
x for each x ∈ Q,

where LF
x stands for the center Lipschitz constant of F (x, ·) at x.

The following proposition establishes the relationship between the EP associated to the

pair (F,Q) and the VIP associated to the pair (AF , Q).

Proposition 3.4. Suppose that F satisfies (H1) and (H2). Then

(3.9) VIP(AF , Q) ⊆ EP(F,Q),

and the equality holds if (3.1) is additionally assumed.

Proof. Let x̄ ∈ Q and note that F satisfies (H1) and (H2). Then, by implication (3.7),

Q is weakly convex, and then the same argument for proving [28, Proposition 6.4] (with

F (x̄, ·), Q in place of f, A there) works for the following equivalence:

(3.10) x̄ ∈ VIP(AF , Q) ⇐⇒ [F (x̄, y) ≥ F (x̄, x̄) for any y ∈ Q].

Thus (3.9) follows from the assumption that F (x̄, x̄) ≥ 0; while the converse inclusion of

(3.9) holds trivially by (3.10) if (3.1) is additionally assumed. The proof is complete.

Proposition 3.5. Suppose that F satisfies (H1). Then the following assertions hold:

(i) If F is monotone (resp. strictly monotone) on Q×Q, then so is AF on Q.

(ii) If F satisfies (H3) and (H4), then AF is uKsc on Q; hence AF ∈ V(Q).

Proof. (i). Suppose that F is monotone on Q×Q. Let x, y ∈ Q, ux ∈ AF (x), uy ∈ AF (y)

and let γxy ∈ ΓQ
xy. We have to show

(3.11) 〈ux, γ̇xy(0)〉 − 〈uy, γ̇xy(1)〉 ≤ 0.

To do this, subdivide γxy into n subsegments with the equal length determined by the

consecutive points

x = x0 < x1 < . . . < xn−1 < xn = y

such that

d(xi−1, xi) =
l(γxy)

n
≤ r̄. i = 1, 2, . . . , n,

where r̄ := min{rz : z ∈ γxy[0, 1]} > 0 by (2.2). Thus, for each i = 1, 2, . . . , n, exp−1
xi−1

xi is

a singleton, and

(3.12) min−Γxi−1xi
= {γxi−1xi

} with γxi−1xi
(·) := expxi−1

(·)(exp−1
xi−1

xi).

Moreover, we have that

(3.13) exp−1
x0

x1 =
1

n
γ̇xy(0), exp−1

xn
xn−1 = −

1

n
γ̇xy(1),
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and

(3.14) exp−1
xi

xi+1 + exp−1
xi

xi−1 = 0 for each i = 1, 2, . . . , n− 1.

To proceed, set u0 := ux, un := uy and take ui ∈ AF (xi) for each i = 1, 2, . . . , n − 1. Now

fix i = 1, 2, . . . , n. Then, by assumption (H1), Lemma 2.5 (i) is applicable, and thus, thanks

to (3.12), we have that

F (xi−1, xi) ≥ 〈ui−1, exp
−1
xi−1

xi〉 and F (xi, xi−1) ≥ 〈ui, exp
−1
xi

xi−1〉,

as F (xi, xi) ≥ 0. This, together with the monotonicity of F , implies that 〈ui−1, exp
−1
xi−1

xi〉+

〈ui, exp
−1
xi

xi−1〉 ≤ 0; hence,

(3.15)

n
∑

i=1

(

〈ui−1, exp
−1
xi−1

xi〉+ 〈ui, exp
−1
xi

xi−1〉
)

≤ 0.

Since by (3.14), 〈ui, exp
−1
xi

xi−1〉+ 〈ui, exp
−1
xi

xi+1〉) = 0 for each i = 1, 2, . . . , n, and since

〈u0, exp
−1
x0

x1〉+
n−1
∑

i=1

(

〈ui, exp
−1
xi

xi−1〉+ 〈ui, exp
−1
xi

xi+1〉
)

+ 〈un, exp
−1
xn

xn−1〉

=

n
∑

i=1

(

〈ui−1, exp
−1
xi−1

xi〉+ 〈ui, exp
−1
xi

xi−1〉
)

,

it follows from (3.15) that 〈u0, exp
−1
x0

x1〉+ 〈un, exp
−1
xn

xn−1〉 ≤ 0. Thus (3.11) is seen to hold

by (3.13), and the proof for assertion (i) is complete.

(ii). Let x0 ∈ Q and let {xk} ⊂ Q, {uk} ⊂ TM with each uk ∈ AF (xk) such that

(3.16) lim
k→∞

xk = x0 and lim
k→∞

Px0,xk
uk = u0.

It suffices to show u0 ∈ AF (x0). To do this, write rB := rB(x0,rx0
) > 0 (see (2.2)). Without

loss of generality, we may assume that xk ∈ B(x0,
rB
2 ) for all k. Let y ∈ B(x0,

rB
2 ). Then,

for each k,

d(xk, y) ≤ d(x0, y) + d(x0, xk) ≤ rB,

and so exp−1
xk

y is a singleton. It immediately follows from (3.16) and Lemma 2.1 that

lim
k→∞

〈uk, exp
−1
xk

y〉 = 〈u0, exp
−1
x0

y〉.

Now, suppose hypotheses (H3) and (H4) are satisfied. Then,

(3.17) F (x0, y) ≥ limk→∞F (xk, y) and F (x0, x0) ≤ limk→∞F (xk, xk).

Recalling that each uk ∈ AF (xk) = ∂F (xk, ·)(xk), we get by (H1) that

F (xk, y) ≥ F (xk, xk) + 〈uk, exp
−1
xk

y〉 for each k;

hence

limk→∞F (xk, y) ≥ limk→∞(F (xk, xk) + limk→∞〈uk, exp
−1
xk

y〉)

= limk→∞F (xk, xk) + 〈u0, exp
−1
x0

y〉.
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This, together with (3.17), yields that

F (x0, y) ≥ F (x0, x0) + 〈u0, exp
−1
x0

y〉.

Thus, Lemma 2.5 is applicable to concluding that u0 ∈ ∂F (x0, ·)(x0) = AF (x0) as y ∈

B(x0,
rB
2 ) is arbitrary, and the upper Kuratowski semi-continuity of AF is proved. Further-

more, by Proposition 3.3, AF (x) is nonempty, compact and convex for each x ∈ Q. Hence

AF ∈ V(Q). Thus the proof is complete.

3.3. Existence and convexity properties of the solution set. Let F : M×M → R

and Q ⊆ M satisfy the conditions assumed at the beginning of the present section. We have

the following existence result on the solution of EP associated to the pair (F,Q).

Theorem 3.6. Suppose that Q contains a weak pole o ∈ intRQ and that F satisfies (H1)-

(H4). Then EP(F,Q) 6= ∅ provided that Q is compact, or assumptions (b) in Proposition

2.10 is satisfied with AF in place of A.

Proof. By hypotheses (H1) and (H2), we see from Proposition 3.4 that

(3.18) VIP(AF , Q) ⊆ EP(F,Q).

Moreover, by hypotheses (H3) and (H4), we get by Proposition 3.5 (ii) that AF ∈ V(Q).

Thus, by assumption, Proposition 2.10 is applicable to getting that

VIP(AF , Q) 6= ∅.

The result follows immediately from (3.18) and the proof is complete.

Remark 3.2. Assumption (b) in Proposition 2.10 is satisfied with AF in place of A if

Q has the BBC and one of the following assumptions holds (in particular, assumption (b2)

was used by Colao et al in [11]):

(b1) AF satisfies the coerciveness condition on Q.

(b2) There exists a compact set L ⊆ M such that

(3.19) x ∈ Q \ L ⇒ [∃y ∈ Q ∩ L s.t. F (x, y) < 0].

In fact, it is clear from Remark 2.3 in the case of (b1). To check this for the case of (b2),

let L ⊆ M , x ∈ Q \ L and let y ∈ Q ∩ L be given by (3.19) such that F (x, y) < 0. Then,

(3.20) F (x, y)− F (x, x) ≤ F (x, y) < 0.

By assumption (H2) and the definition of AF , we see that for any v ∈ AF (x), there exists

a minimal geodesic γxy ∈ min−ΓQ
xy such that F (x, y) ≥ F (x, x) + 〈v, γ̇xy(0)〉. This, together

with (3.20), implies that 〈v, γ̇xy(0)〉 < 0. Hence condition (2.10) is satisfied as x ∈ Q \ L is

arbitrary, and the proof is complete.

The following theorem provides the convexity properties of the solution set EP(F,Q),

which is a direct consequence of Propositions 3.4, 3.5 and 2.11 (noting by (3.7) that Q is

weakly convex).

Theorem 3.7. Suppose that F satisfies (H1)-(H3) and EP(F,Q) 6= ∅. Suppose further

that AF is monotone on Q with (3.1) (e.g., F is monotone on Q×Q). Then the following

assertions hold:
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(i) The solution set EP(F,Q) is locally convex.

(ii) If AF is strictly monotone on Q (e.g., F is strictly monotone on Q × Q), then

EP(F,Q) is a singleton.

(iii) If M is of the sectional curvatures bounded above by κ > 0, then EP(F,Q) is

Dκ-convex.

In particular, in the case whenM is a Hadamard manifold, hypothesis (H1) implies (H2),

and every convex subset has both weak poles and the BCC property. Thus the following

corollary is immediate from Theorems 3.6 and 3.7.

Corollary 3.8. Let M be a Hadamard manifold. Suppose that F satisfies (H1) and

(H3). Then the following assertions hold:

(i) If (H4) holds, then EP(F,Q) 6= ∅ provided that Q is compact, or one of (b1) and

(b2) in Remark 3.2 holds.

(ii) If F is monotone on Q×Q with EP(F,Q) 6= ∅, then EP(F,Q) is convex.

Remark 3.3. Assertion (ii) in Corollary 3.8 seems new even in the Hadamard man-

ifold setting; while assertion (i) was established in [11, Theorem 3.2] under the following

assumptions:

(c1) there exists a compact set L ⊆ M and y0 ∈ Q ∩ L such that F (x, y0) < 0 ∀x ∈ Q \ L;

(c2) the set {y ∈ Q : F (x, y) < 0} is convex for each x ∈ Q.

Clearly assumption (c1) implies our assumption (b2) in Remark 3.2. Moreover, as will

be seen in the application to the proximal point algorithm in the next section and to the

mixed variational inequalities in Subsection 5.2, assumption (c2) is not satisfied, in general

(thus [11, Theorem 3.2] is not applicable); while Corollary 3.8 is applicable because our

assumptions (H1) and (H2) presented here are satisfied there.

4. Resolvent and proximal point algorithm for EP. As in the previous section,

we always assume that F : M ×M → R and Q ⊆ M satisfy the conditions assumed at the

beginning of Section 3. Recall the equilibrium problem is defines by (1.1) and its solution

set is denoted by EP(F,Q). The aim of this section is to introduce the resolvent and the

proximal point algorithm for EP (1.1) on general manifolds and show convergence of this

algorithm. The applications of the proximal point method to solve many different problems

in the Riemannian context could be fond in e.g., [26, 28, 46, 48].

Fix z ∈ M and define the bifunction Gz : M ×M → R by

Gz(x, y) := sup
u∈exp−1

x z,v∈exp−1
x y

〈−u, v〉x for any (x, y) ∈ M ×M.

In the following definition, we extend the notion of the resolvent defined in [11, definition

4.6] for the bifunction F on Hadamard manifolds to the general manifold setting. Let λ > 0.

Definition 4.1. The resolvent JF
λ : M ⇒ Q of F is defined by

(4.1) JF
λ (z) := EP(Fλ,z , Q) for any z ∈ M,
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where the bifunction Fλ,z : M ×M → R is defined as

Fλ,z(x, y) := λF (x, y) +Gz(x, y) for any (x, y) ∈ M ×M.

For the remainder, we always assume that M is of the sectional curvature bounded

above by κ ≥ 0. Recall that Dκ = π√
κ
if κ > 0 and Dκ = +∞ if κ = 0. Then, for any

z ∈ M , B(z, Dκ

4 ) is strongly convex (see, e.g., [39, p. 169]), and so exp−1
(·) z is a singleton on

B(z, Dκ

4 ).

Recall that AF is the set valued vector field associated to the bifunction F (see (3.8)).

Following [28], the resolvent JAF

λ : M ⇒ Q of AF is defined by

(4.2) JAF

λ (z) := VIP(AF
λ,z , Q) for any z ∈ M,

where AF
λ,z : M ⇒ TM is defined by

AF
λ,z(x) := λAF (x) − EQ

z (x) for any x ∈ Q,

with the set-valued vector field EQ
z : M ⇒ TM defined by

EQ
z (x) := {u ∈ exp−1

x z : expx tu ∈ Q ∀t ∈ [0, 1]} for any x ∈ Q

The following theorem provides an estimate for the domain of the resolvent JF
λ . Recall

that LF
z denotes the center Lipschitz constant of F (z, ·) at z ∈ M . Set

(4.3) DF
λ := {z ∈ Q : λLF

z <
Dκ

4
}.

Theorem 4.2. Suppose that F satisfies hypotheses (H1)-(H3) and is monotone on

Q×Q. Then,

(i) λd(0, AF (z)) <
Dκ

4 for each z ∈ DF
λ .

(ii) DF
λ ⊆ D(JF

λ ).

(iii) JF
λ (z) ∩B(z, Dκ

4 ) = JAF

λ (z) is a singleton for each z ∈ DF
λ .

Proof. Note that Q is weakly convex by implication (3.7). Moreover, by assumptions

made for F , one sees by Propositions 3.3 and 3.5 that AF ∈ V(Q) is monotone, and

d(0, AF (z)) ≤ LF
z for each z ∈ Q.

Thus assertion (i) follows from the definition of DF
λ in (4.3). Below we show assertions (ii)

and (iii). To do this, let z ∈ DF
λ . Then, λd(0, AF (z)) <

Dκ

4 by (i), and it follows from [28,

Lemma 4.3 and Corollary 5.4] (applied to AF , Q in place of V, A there) that

(4.4) JAF

λ (z) is a singleton and JAF

λ (z) ⊆ B(z,
Dκ

4
).

Moreover, thanks to hypotheses (H1) and (H2), we have by Proposition 3.2 (i) and (iii) that

the bifunction Fλ,z = λF +Gz satisfies hypotheses (H1) and (H2) (with Fλ,z in place of F ).
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Furthermore, for any x ∈ Q, F (x, x) = 0 by the monotonicity of F and Gz(x, x) = 0 by of

Proposition 3.2 (i); hence Fλ,z(x, x) = 0. Thus one can apply Proposition 3.4 to get that

(4.5) EP(Fλ,z , Q) = VIP(AFλ,z
, Q).

Noting that D(Gz(x, ·)) = M by Proposition 3.2 (i), we see from Lemma 2.7 and Proposition

3.2 (iv) that, for any x ∈ Q,

(4.6) AFλ,z
(x) := ∂(λF (x, ·) +Gz(x, ·))(x) = λAF (x) − coEQ

z (x).

Hence AF
λ,z(x) ⊆ AFλ,z

(x) for any x ∈ Q, and then VIP(AF
λ,z , Q) ⊆ VIP(AFλ,z

, Q). By

defintion (see (4.1) and (4.2)) and (4.5), it follows that

(4.7) JAF

λ (z) = VIP(AF
λ,z , Q) ⊆ VIP(AFλ,z

, Q) = EP(Fλ,z , Q) = JF
λ (z).

In light of (4.4), we see that JF
λ (z) 6= ∅, and so assertion (ii) holds as z ∈ DF

λ is arbitrary.

To show assertion (iii), note that AF
λ,z(x) = AFλ,z

(x) if d(x, z) < Dκ by (4.6). It follows

from (4.7) that

JAF

λ (z) ∩B(z,
Dκ

4
) = JF

λ (z) ∩B(z,
Dκ

4
).

This, together with (4.4), implies that JF
λ (z) ∩ B(z, Dκ

4 ) = JAF

λ (z) is a singleton, and so

assertion (iii) holds. The proof is complete.

The following theorem provides sufficient conditions for D(JF
λ ) = M . In particular,

in the Hadamard manifold setting, this result was claimed in [11, Theorem 4.9] under the

additional assumption (c1) in Remark 3.3 but the proof presented there is not correct.

Theorem 4.3. Suppose that F satisfies hypotheses (H1)-(H3) and is monotone on

Q×Q. Then, D(JF
λ ) = M provided that one of the following assumptions holds:

(a) Q is compact and contains a weak pole o ∈ intRQ;

(b) M is a Hadamard manifold.

Proof. Let z ∈ M . Then by the assumptions made for F and Proposition 3.2 (i), (iii)

and (v), one can checks easily that the bifunction Fλ,z = λF + Gz satisfies (H1)-(H4). To

complete the proof, it suffices to verify that JF
λ (z) 6= ∅, which is true by Theorem 3.6 in

case (a). Thus we only consider case (b). To do this, we assume that M is a Hadamard

manifold. Then, for any x, y ∈ M , exp−1
x y is a singleton and Fλ,z(x, y) is reduced to

Fλ,z(x, y) := λF (x, y) − 〈exp−1
x z, exp−1

x y〉.

Recalling from [11, (2.7)] that

〈exp−1
x z, exp−1

x y〉+ 〈exp−1
y w, exp−1

y x〉 ≥ d2(x, y) for any x, y ∈ M

and that F is monotone on Q×Q, we get that

(4.8) Fλ,z(x, y) + Fλ,z(y, x) ≤ −d2(x, y) for any (x, y) ∈ Q×Q.
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Below we show that Fλ,z satisfies (b2) in Remark 3.2: there is a compact subset L ⊆ M

such that

(4.9) x ∈ Q \ L ⇒ [∃ y ∈ Q ∩ L s.t. Fλ,z(x, y) < 0].

Granting this, we get JF
λ (z) = EP(Fλ,z , Q) 6= ∅ by Corollary 3.8, and the proof is complete.

To show (4.9), take y ∈ Q and set R := L
Fλ,z
y . Then R < +∞ as Fλ,z satisfies (H1), and

L := B(y,R) is as desired. To show this, let x ∈ Q\L and v ∈ AFλ,z
(y). Then, d(x, y) > R,

and ‖v‖ ≤ R by Proposition 3.3. Therefore, we have that

Fλ,z(y, x) ≥ Fλ,z(y, y) + 〈v, exp−1
y x〉 ≥ −Rd(x, y)

(noting that Fλ,z(y, y) = 0). This, together with (4.8), implies

Fλ,z(x, y) ≤ −d2(x, y)− Fλ,z(y, x) ≤ (R− d(x, y)) d(x, y) < 0.

Thus, (4.9) is shown, and the proof is complete.

To define the proximal point algorithm for solving EP (1.1), let x0 ∈ Q and {λk} ⊂

(0,+∞). Thus the proximal point algorithm can be formulated as follows.

Algorithm P Letting k = 1, 2, . . . and having xk, choose xk+1 such that

xk+1 ∈ JF
λk
(xk) ∩B(xk,

Dκ

4
).

Clearly, in the case when M is a Hadamard manifold, Algorithm P is reduced to the one

defined in [11]:

xk+1 ∈ JF
λk
(xk) for each k ∈ N.

The convergence result of Algorithm P is as follows.

Theorem 4.4. Suppose that F satisfies hypotheses (H1)-(H3) and is monotone on

Q×Q with EP(F,Q) 6= ∅. Let x0 ∈ Q and {λk} ⊂ (0,∞) be such that

(4.10) d(x0,EP(F,Q)) <
Dκ

8
,

(4.11) Σ∞
k=0λ

2
k = ∞ and λkL

F
xk

<
Dκ

4
for all k ∈ N.

Then, Algorithm P is well-defined, and converges to a point in EP(F,Q).

Proof. Recall that AF : Q ⇒ TM is defined by (3.8). By assumption, Propositions 3.4

and 3.5 are applicable; hence AF is monotone, AF ∈ V(Q), and

(4.12) VIP(AF , Q) = EP(F,Q)

(noting that (3.1) hold by the monotonicity assumption). Then, thanks to (4.10), one sees

that

(4.13) d(x0,VIP(AF , Q)) <
Dκ

8
.
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Let {x̃k} be a sequence generated by the following proximal algorithm with initial point

x̃0 := x0, which was introduced in [28] for finding a point in VIP(AF , Q):

(4.14) x̃k+1 ∈ JA
λk
(x̃k) for each k ∈ N.

In view of the second assumption in (4.11), and applying Theorem 4.2 (iii), we can check in-

ductively that Algorithm P is well-defined and that the generated sequence {xk} coincides

with {x̃k} and satisfies

λkd(0, AF (x̃k)) <
Dκ

4
for each k ∈ N.

This, together with the first assumption in (4.11) and (4.13), implies that [28, Corollary 5.8]

(with AF , Q in place of V , A) is applicable, and the sequence {x̃k} and so {xk} converges

to a point in VIP(AF , Q). Thus the conclusion follows immediately from (4.12), and the

proof is complete.

In the special case when M is a Hadamard manifold, assumption (4.10) and the second

one in (4.11) are satisfied automatically. Therefore the following corollary is direct from

Theorem 4.4, which was claimed in [11, Theorem 4.9, 4.10] (for constant parameters λk ≡

λ > 0) but with an incorrect proof there as we explained in Section 1).

Corollary 4.5. Suppose that M is a Hadamard manifold, and that F satisfies hy-

potheses (H1)-(H3) and is monotone on Q × Q with EP(F,Q) 6= ∅. Let {λk} ⊂ (0,∞) be

such that Σ∞
k=0λ

2
k = ∞. Then, Algorithm P is well-defined, and converges to a solution

in EP(F,Q).

5. Applications. This section is devoted to two applications of the results regarding

the solution set of the EP in the previous sections: One is to the Nash equilibrium and the

other to the mixed variational inequality.

5.1. Nash equilibrium. We consider the Nash equilibrium problem (NEP for short)

on Riemannian manifolds in this subsection, which is formulated as follow. Let I =

{1, 2, . . . ,m} be a finite index set which denotes the set of players, and let (Mi, di), i ∈ I,

be a Riemannian manifold. For each i ∈ I, let Qi ⊆ Mi be the strategy set of the i-th

player, and fi : M → R be his loss-function, where M := M1 × M2 × · · · × Mm is the

product manifold with the standard Riemannian product metric. The Nash equilibrium

problem associated to Q := Q1×Q2× · · ·×Qm ⊆ M and {fi}i∈I consists of finding a point

x̄ = (x̄i) ∈ Q such that

(5.1) fi(x̄) = min
yi∈Qi

fi(x̄1, . . . , x̄i−1, yi, x̄i+1, . . . , x̄m) for each i ∈ I.

Any point x̄ ∈ Q satisfying (5.1) is called a Nash equilibrium point of the NEP, and we

denote the set of all Nash equilibrium points by NEP({fi}i∈I , Q).

The most well-known existence results for the classical NEP in the linear space setting

is due to Nash [33, 34], where it is assumed that each Qi is compact and convex and each fi
is (quasi)convex in the i-th variable. Further extensions and applications of Nash’s original

work could be founded in [16, 32, 35, 41] and references therein. Kristály seems the first
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one to consider the existence and localization of NEP in the framework of Riemannian

manifolds; see [23]. Recently, Kristály used in [24] a variational approach to analyzed the

NEP with nonconvex strategy sets and nonconvex /nonsmooth payoff functions in Hadamard

manifolds.

To proceed, we assume for the whole subsection that

(HN-a) Qi is closed and weakly convex in Mi and Q ⊆ int
⋂

i∈I D(fi);

(HN-b) for each i ∈ I, fi is continuous on Q;

(HN-c) for each i ∈ I, fi and fi + δQ are weakly convex in the i-th variable.

To apply our results in the previous sections, we, following [11] and [38], reformulate

NEP (5.1) as an EP as follows. Let r := (ri) ∈ Rm
++ := {(ri) ∈ Rm : each ri > 0}, and

define the bifunction Fr : M ×M → R as the weighted positive sum of the functions {fi}:

Fr(x, y) :=
∑

i∈I

ri (fi(x1, . . . , xi−1, yi, xi+1, . . . , xn)− fi(x))

for any x = (xi)i∈I , y = (yi)i∈I ∈ M . Then, it is easy to check that

(5.2) EP(Fr, Q)=NEP({fi}i∈I , Q).

In the spirit of the idea in [38] for the NEP in the Euclidean space setting, we introduce the

pseudosubgradient mapping gr : M → TM for functions {fi} in the Riemannian manifold

setting, which is defined by

gr(x) := (r1∂1f1(x), r2∂2f2(x), . . . , rm∂mfm(x)) for each x ∈ M,

where, for each i ∈ I and x ∈ M , ∂ifi(x) stands for the subdifferential of the function

fi(x1, . . . , xi−1, ·, xi+1, . . . , xm) at xi, that is

∂ifi(x) := ∂fi(x1, . . . , xi−1, ·, xi+1, . . . , xm)(xi).

By definition, we check that

(5.3) AFr
(x) := ∂Fr(x, ·)(x) = gr(x) for any x ∈ Q.

The main theorem in this subsection is as follows, which provides the results on the existence,

the uniqueness and the convexity of the Nash equilibrium point.

Theorem 5.1. Let r ∈ Rm
++. Then the following assertions hold:

(i) Suppose that Q contains a weak pole o ∈ intRQ. Then NEP({fi}i∈I , Q) 6= ∅ provided

that Q is compact, or Q has the BCC property and that there exists a compact subset L ⊆ M

such that

(5.4) x ∈ Q \ L ⇒ [∀v ∈ gr(x), ∃y ∈ Q ∩ L, γxy ∈ min−ΓQ
xy s.t. 〈v, γ̇xy(0)〉 < 0].

(ii) If gr is strictly monotone on Q, then NEP({fi}i∈I , Q) is at most a singleton.

(iii) If gr is monotone on Q and NEP({fi}i∈I , Q) 6= ∅, then NEP({fi}i∈I , Q) is locally

convex, and NEP({fi}i∈I , Q) is Dκ-convex if M is additionally assumed to be of the sectional

curvatures bounded above by some κ ≥ 0.
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Proof. In view of (5.2), (5.3), (5.4) and thanks to Theorems 3.6 and 3.7 (applied to Fr

in place of F ), it suffices to show that Fr satisfies hypotheses (H1)-(H4) made in Section 3.

Note that (H3) follows trivially from assumption (HN-b); while (H4) is clear as Fr(x, x) = 0

for any x ∈ Q. Thus we only need to show that Fr satisfies hypotheses (H1) and (H2). To

do this, let x = (xi)i∈I ∈ Q, and write

Di := D(fi(x1, . . . , xi−1, ·, xi+1, . . . , xm)) for each i ∈ I.

Then

(5.5) D(Fr(x, ·)) = D1 × . . .×Di × . . .×Dm.

By assumption (HN-a), each Qi ⊆ intDi and so

x ∈ Q ⊆ intD(Fr(x, ·)).

Furthermore, in light of assumption (HN-c), one sees that each Di is weakly convex in Mi.

This, together with (5.5), implies that D(Fr(x, ·)) is weakly convex in M . We claim that

Fr(x, ·) and Fr(x, ·)+ δQ×Q(x, ·) are weakly convex in M . Granting this, (H1) and (H2) are

checked. In fact, let y = (yi), z = (zi) ∈ D(Fr(x, ·)). Then, by assumption (HN-c), for each

i ∈ I, there is a geodesic γi ∈ min−ΓDi
ziyi

such that

(5.6) fi(x1, . . . , xi−1, ·, xi+1, . . . , xm) ◦ γi is convex on [0, 1].

Define γzy[0, 1] → M by γzy(t) := (γ1(t), γ2(t), . . . , γm(t)) for each t ∈ [0, 1]. Then, γzy ∈

min−Γ
Fr(x,·)
zy (see, e.g., [7]), and

Fr(x, ·) ◦ γzy =
∑

i∈I

fi(x1, . . . , xi−1, ·, xi+1, . . . , xm) ◦ γi.

This means that Fr(x, ·) ◦ γzy is clearly convex thanks to (5.6), and so Fr(x, ·) is weakly

convex in M . Similarly, one can checks that Fr(x, ·) + δQ×Q(x, ·) is also weakly convex in

M . Thus the claim stands, and the proof is complete.

Remark 5.1. Assertion (i) extends the corresponding one in [23, Theorem 1.1], which

was proved under the assumption that each Qi is compact and geodesic convex. It is worthy

remarking that the geodesic convexity assumption for Qi prevents its application to some

special but important Riemannian manifolds, such as compact Stiefel manifolds St(p, n) and

Grassmann manifolds Grass(p, n) (p < n), in which there is no geodesic convex subset (see

[1, p. 104 (5.27)]).

Example 5.1 below provides the case where our existence result of Theorem 5.1 is appli-

cable but not [23, Theorem 1.1]. Note also that the NEP in Example 5.1 is originally defined

on the Euclidean space, and the corresponding existing results in the Euclidean space setting

(see, e.g., [16, 32, 33, 34]), to the best our knowledge, are nor applicable because the set Q2

involved is not convex in the usual sense.

Example 5.1. Consider the Nash equilibrium problem (5.1) with the associated Q :=

Q1 ×Q2 ⊆ R× R3 and {fi}i=1,2 defined respectively as follows:

Q1 := [−1, 1], Q2 := {(t1, t2, t3) : t
2
1 + t22 + t23 = 1, t1 > 0, |t2| ≤

1

2
, t3 > 0},
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f1(x1, x2) = (x1 − t3)
2 and f2(x1, x2) = arccos t1 for any x1 ∈ R, x2 = (t1, t2, t3) ∈ R

3.

Clearly Q2 ⊂ R3 is not convex, and so the existence results in the Euclidean space setting

are not applicable.

Below, we shall consider the problem on the Riemannian manifold M := R× S
2, where

S
2 :=

{

(t1, t2, t3) ∈ R
3
∣

∣ t21 + t22 + t23 = 1
}

is the 2-dimensional unit sphere. Denote x := (0, 0, 1), y := (0, 0,−1), and consider system

of coordinates Φ: (0, π)× [0, 2π] ⊂ R2 → S2 \ {x,y} around x ∈ S2 \ {x,y} defined by

Φ(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ)T for each (θϕ) ∈ (0, π)× [0, 2π].

Then the Riemannian metric on S2 \ {x,y} is given by

g11 = 1, g12 = 0, g22 = sin2 θ for each θ ∈ (0, π) and ϕ ∈ [0, 2π],

and the geodesics of S2 \ {x,y} are great circles or semicircles; see [42, p. 84] for more

details.

Restricting f1 and f2 to M = R × S2, one can check by definition that assumptions

(HN-a)-(HN-c) are satisfied (noting that arccos t1 = d(x2, z0) for each x2 = (t1, t2, t3) ∈ S2,

where z0 := (1, 0, 0)), and that Q ⊂ M is compact and has a weak pole in intQ. Thus,

Theorem 5.1 is applicable and guarantees NEP({f1, f2}, Q1 ×Q2) 6= ∅. Indeed, by a simple

calculation, we see that NEP({f1, f2}, Q1 × Q2) = {(1, (1, 0, 0))}. However, the existence

result in [23, Theorem 1.1] is not applicable because there is no geodesic subset on S2.

As explained before (see the paragraph right before Corollary 3.8), the following corol-

lary is a direct consequence of Theorem 5.1. In particular, assertion (i) was proved in [11,

Theorem 3.12] with each Qi being compact; while assertion (ii) is new even in the Hadamard

manifold setting.

Corollary 5.2. Suppose that each Mi is a Hadamard manifold. Then, the following

assertions hold:

(i) The solution set NEP({fi}i∈I , Q) 6= ∅ provided Q is compact, or there exists a com-

pact subset L ⊆ M such that (5.4) holds for some r ∈ Rm
++.

(ii) If there exists some r ∈ Rm
++ such that gr is monotone on Q, then NEP({fi}i∈I , Q)

is convex.

Remark 5.2. In view of (5.3), one checks by Remark 3.2 (applied to gr, Fr in place

of AF , F ) that a compact subset L exists such that (5.4) holds provided one of the following

assumptions holds:

(a) gr satisfies the coerciveness condition on Q;

(b) there exists a compact set L ⊆ M such that

x ∈ Q \ L ⇒ [∃y ∈ Q ∩ L s.t. Fr(x, y) < 0].
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5.2. Mixed variational inequalities. Let Q ⊂ M be a nonempty closed subset.

Given a vector field V : Q → TM and a real-valued function f : M → R. The mixed

variational inequality problem (MVIP for short) associated to V and f is to find x̄ ∈ Q,

called a solution of the MVIP, such that

(5.7) 〈V (x̄), γ̇x̄y(0)〉+ f(y)− f(x̄) ≥ 0 for any y ∈ Q, γx̄y ∈ ΓQ
x̄y.

The set of all solutions of MVIP (5.7) is denoted by MVIP(V, f,Q). The MVIP has been

studied extensively in the linear space setting; see, e.g., [17, 19, 44]; and it seems that [11]

is the first paper to explore the MVIP in the Hadamard manifold setting, where only the

existence issue of the solution for the MVIP is concerned with.

To reformulate the MVIP as an EP considered in the previous sections, we define F :

M ×M → (−∞,+∞] as follows:

(5.8) F (x, y) := sup
u∈exp−1

x y

〈V (x), u〉x + f(y)− f(x) for any (x, y) ∈ M ×M,

where exp−1
x y is defined by (2.9) and we adopt the convention that a − (+∞) = +∞ for

any a ∈ R.

Proposition 5.3. Let F : M ×M → (−∞,+∞] be defined by (5.8). Suppose that f is

convex. Then we have

(5.9) MVIP(V, f,Q) = EP(F,Q).

Proof. It is evident that MVIP(V, f,Q) ⊆ EP(F,Q). To show the converse inclusion, let

x̄ ∈ EP(F,Q) and it suffices to prove that (5.7) holds. To this end, let y ∈ Q and γx̄y ∈ ΓQ
x̄y.

We have to show that

(5.10) 〈V (x̄), γ̇x̄y(0)〉+ f(y)− f(x̄) ≥ 0.

Take t̄ ∈ (0, 1] such that d(x̄, γx̄y(t̄)) ≤ rx̄ (note that rx̄ > 0 by (2.1)). Denote ȳ := γx̄y(t̄).

Then ȳ ∈ Q and ΓQ
x̄ȳ = {γx̄ȳ} is a singleton, where γx̄ȳ : [0, 1] → M is defined by

γx̄ȳ(s) := γx̄y(t̄s) for any s ∈ [0, 1].

Then γ̇x̄ȳ(0) = t̄γ̇x̄y(0). In view of x̄ ∈ EP(F,Q) and ȳ ∈ Q, we see that

〈V (x̄), γ̇x̄ȳ(0)〉+ f(ȳ)− f(x̄) = 〈V (x̄), t̄γ̇x̄y(0)〉+ f(ȳ)− f(x̄) ≥ 0.

Noting that f(ȳ)−f(x̄)
t̄

≤ f(y)−f(x̄) by the convexity of f ◦γx̄y (as f is convex), we conclude

that (5.10) holds, which completes the proof.

We assume in the present subsection that

(HM-a) f is convex and Q ⊆ intD(f) is closed weakly convex.

(HM-b) V is continuous on Q.
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The following theorem gives the existence, the uniqueness and the convexity property

about the solution set MVIP(V, f,Q).

Theorem 5.4. The following assertions hold:

(i) Suppose that Q contains a weak pole o ∈ intRQ. Then MVIP(V, f,Q) 6= ∅ provided

that Q is compact, or Q has the BCC property and there exists a compact subset L ⊆ M

such that

(5.11) x ∈ Q \ L ⇒ [∀v ∈ ∂f(x), ∃y ∈ Q ∩ L, γxy ∈ min−ΓQ
xy s.t. 〈V (x) + v, γ̇xy(0)〉 < 0].

(ii) If V + ∂f is strictly monotone on Q, then MVIP(V, f,Q) is at most a singleton.

(iii) If V + ∂f is monotone on Q and MVIP(V, f,Q) 6= ∅, then MVIP(V, f,Q) is locally

convex, and is Dκ-convex if M is additionally assumed to be of the sectional curvatures

bounded above by some κ ≥ 0.

Proof. We first show that F satisfies hypotheses (H1)-(H4) made in Section 3. To do

this, let GV : M ×M → R be defined by (3.2), and let G : M ×M → R be defined by

(5.12) G(x, y) := f(y)− f(x) for any (x, y) ∈ Q×M.

Then F = GV +G. Noting by assumption (HM-a) that both G and G+δQ×Q are point-wise

weakly convex on Q, we see from Proposition 3.2(iii) that F = GV + G and F + δQ×Q =

GV + (G + δQ×Q) are point-wise weakly convex on Q. This particularly means that F

satisfies (H2). To show (H1) and (H4), recalling (3.3) in Proposition 3.2(i), one checks that

D(F (x, ·)) = D(G(x, ·))
⋂

D(GV (x, ·)) = D(f) for any x ∈ Q.

In view of assumption (HM-a), (H1) is checked; while (H4) is trivial since, by (3.3), F (x, x) =

0 for any x ∈ Q. Thus it remains to check (H3). Since by assumption (HM-a), the function

x 7→ G(x, y) is continuous on Q (see Lemma 2.6 (i)). In view of assumption (HM-b),

Proposition 3.2(v) is applicable to getting that x 7→ GV (x, y) is usc on Q and so is F . Thus,

(H3) is checked. Next, we check that

(5.13) AF (x) = V (x) + ∂f(x) for each x ∈ Q,

where AF is defined by (3.8). Granting this, one verifies that conditions of Theorems 3.6 and

3.7 are satisfied, and then assertions (i)-(iii) follow by (5.9) (which is valid by assumption

(HM-a)). To show (5.13), let x ∈ Q. Then ∂GV (x, ·)(x) = V (x) by Proposition 3.2(iv).

Thus, by assumption (HM-a), one applies Lemma 2.7 to obtain (5.13) and the proof is

complete.

With a similar argument that we did for Corollary 5.2, but using Theorem 5.4 in place

of Theorem 5.1, we have the following corollary. In particular, assertion (i) was claimed

in [11, Theorem 3.5] with its proof being incorrect; while assertion (ii) is new even in the

Hadamard manifold setting.

Corollary 5.5. Suppose that M is a Hadamard manifold. Then, the following asser-

tions hold:
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(i) The solution set MVIP(V, f,Q) 6= ∅ provided Q is compact, or there exists a compact

subset L ⊆ M such that (5.11) holds.

(ii) If V +∂f is monotone on Q with MVIP(V, f,Q) 6= ∅, then MVIP(V, f,Q) is convex.

Remark 5.3. Under one of the following assumptions, a compact subset L ⊆ M exists

such that (5.11) holds:

(a) V satisfies the coerciveness condition on Q;

(b) ∂f satisfies the coerciveness condition on Q and V is monotone on Q.

Indeed, in view of assumption (HM-a), we see that ∂f is monotone on Q by definition of

the subdifferential of f . Assuming (b) or (c), it is easy to verify by definition that V + ∂f

satisfies the coerciveness condition on Q. Thus, one checks that (5.11) is satisfied as we

have explained in Remark 2.3 with V + ∂f in place of A.
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