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Resumen

Este trabajo incluye la relación entre la Mecánica Cuántica y la posibilidad de realizar
comunicación segura, una revisión del protocolo BB84 y finalmente, una simulación

en MATLAB® del BB84 en escenarios plausibles.
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Abstract

This work includes the relationship between Quantum Mechanics and the possibility
of performing secure communication, a review of the BB84 protocol and finally, a

BB84 simulation in some possible scenarios using MATLAB® .
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1 Quantum Principles

In this chapter we shall review the postulates of Quantum Mechanics, emphasizing the
relationship of the quantum principles and theorems with the possibility of performing

secure quantum cryptography. We will follow the “Principles of Quantum Computation
and Information” [1] and “A quantum mechanics primer” [2].

1.1 First Postulate

A quantum system can be described by the state vector |ψ〉, which resides in the Hilbert
Space Hs associated with this system. The time evolution of the state, without performing
any measure, is governed by the Schrödinger equation:

ih̄
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 , (1.1)

where h̄≡ h/2π , h known as Plank’s constant (h≈ 6.626×10−34 Js) and Ĥ is a self-adjoint
operator known as the Hamiltonian of the system.

1.2 Second Postulate

We associate with any observable A a self-adjoint operator Â on the Hilbert Space Hs. The
only possible outcome of a measurement of the observable A is one of the eigenvalues of
this operator. If we write the eigenvalue equation for the operator Â,

Â |ai〉= ai |ai〉 , (1.2)

where |ai〉 is an orthonormal basis of eigenvectors of the operator Â and we write the state
vector over the eigenvectors orthogonal basis:

|ψ(t)〉= ∑
i

ci(t) |ai〉, (1.3)

then the probability that a measurement of the observable A at time t results in outcome ai
is:

pi(t) = p(a = ai|t) = |〈i|ψ(t)〉|2 = |ci(t)|2. (1.4)
From now on we shall use two-dimensional Hilbert spaces, which are necessary for the
description of the quantum information theory. For notation simplicity, we shall ignore the

1



2 Chapter 1. Quantum Principles

time dependence. The state vector can be written as:

|ψ〉= c1 |a1〉+ c2 |a2〉 , (1.5)

where |a1〉 and |a2〉 are the normalized eigenvectors of the operator Â. So the probability
of obtaining a1 is |c1|2, while the probability of obtaining a2 is |c2|2. As the addition of all
probability values must be 1,

|c1|2 + |c2|2 = 1. (1.6)

1.3 Third Postulate (Collapse Postulate)

If a system is described by the state vector |ψ〉 and the observable A is measured obtaining
the eigenvalue a1, then immediately after the measurement the state of the system will
correspond to the eigenvector |a1〉.

1.4 The Heisenberg uncertainty principle

From the previous postulates it can be deduced the following result: if Â and B̂ are operators
associated with observables of the same quantum system and |ψ〉 is the actual quantum
state, the following relation holds:

∆A∆B≥
∣∣〈ψ|[Â,B̂]|ψ〉∣∣

2
, (1.7)

where [Â,B̂] = ÂB̂− B̂Â is the commutator between these two operators and ∆A (∆B) the
standard deviation corresponding to the observable A (B) in the state |ψ〉.
The uncertainty principle tells us that if these two operators do not commute we will

not be able to predict with certainty the two observables at the same time. This is closely
related to the compatibility theorem, that will be stated below.

1.5 Compatibility Theorem

Having the two operators Â and B̂ associated with the observables A and B, the compatibility
theorem tells us that any of the following statemets implies the other two:

• Â and B̂ are compatible ([Â,B̂] = 0).

• Â and B̂ have a common eigenbasis.

• If we measure the observable A, immediately after the observable B and immediately
next the observable A again, the result of the third measure will necessary coincide
with the first.

Also the following statements are equivalent:

• Â and B̂ are incompatible ([Â,B̂] 6= 0).

• Â and B̂ do not have a common eigenbasis.
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• If we measure the observable A, immediately after the observable B and immediately
next the observable A again, the result of the third measure will not necessary coincide
with the first.

1.6 Entanglement

The Hilbert space Hs associated with a composite system is the tensor product of the Hilbert
spaces Hi associated with the system components i. In a bipartite system, we have:

H = H1⊗H2 (1.8)

A state in H is said to be entangled if it cannot be written as a simple tensor product of a
state |α1〉, belonging to H1 and a state |β1〉, belonging to H2. If a state is separable (not
entangled) then

|ψ〉= |α1〉⊗ |β1〉 . (1.9)
When two systems are entangled, it is not possible to assign state vector to each system.

Here we have an example of two spin-1
2 particles with the angular momentums spin up (↑)

and spin down (↓):
|ψ〉= 1√

2
(|↑↑〉+ |↓↓〉) (1.10)

When we say that two particles are entangled we mean that neither of systems have a
definite value.

1.7 The EPR paradox and Bell’s inequalities

This section is not necessary to understand the BB84 protocol of quantum cryptography.
Nevertheless, the EPR paradox and Bell’s inequalitieshave a great importance, not only
in the fundamental problems of quantum mechanics but also for the application of Bell’s
inequalities to quantum cryptography using entanglement [3].
As we know from the entanglement concept, when systems are entangled, we cannot

assign them individual state vectors. This concept contradicts the reality and locality
principles [4].

Reality principle: If with no perturbation on the system we can predict with certainty
the value of a physical magnitude, then there is a physical reality associated to this
magnitude.

Locality principle: If two systems are causally disconnected, any measurement per-
formed on one of the two systems cannot influence on the other.

Let us consider a bipartite system in the singlet state:

|ψ〉= 1√
2
(|↑↓〉− |↓↑〉). (1.11)

The two particles have opposite spin, this means that if one particle is “up” (defined by the
state vector |↑〉 with the corresponding eigenvalue +1), the other is “down” (defined by the
state vector |↓〉 with the corresponding eigenvalue -1) and vice versa. In other words, if we
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measure one particle and obtain σz =+1 if we immediately measure the other particle we
will get with unit probability σz =−1. Let us consider that a source S emits two entangled
particles each travelling towards an observer, so that the two observers A and B are widely
separated like in the figure 1.1.

Figure 1.1 Schematic drawing of the EPR experiment from Principles of Quantum Computation and Infor-
mation.

Knowing that the two observers are far away that we can say that they are causally dis-
connected then quantum theory leads to a contradiction with locality and reality principles.
Bell’s inequalities are obtained assuming the principles of realism and locality [5]. Since

it is possible to devise situations in which quantum mechanics predicts a violation of these
inequalities, any experimental of such a violation excludes the possibility of a local and
realistic description of natural phenomena. In few words, Bell shows that the principles of
realism and locality lead to experimentally testable inequality relations in disagreement
with the predictions of quantum mechanics. Genuine Bell’s inequalities (based on realism
and locality principles) have not been violated in experiments yet, but a derivation from
these inequalities based on local realism and additional hypothesis, like the CHSH (Clauser,
Horne, Shimony and Holt) inequalities [6] which have been violated in laboratory. More
recently some other experiments have come closer to the requirements of the ideal EPR
scheme and agreement has always been found. Nonetheless, there is no general consensus
as to whether or not these experiments may be considered conclusive.



2 Quantum information

In this chapter we shall present the basic concepts of the quantum information theory [3].

2.1 Qubit: the quantum bit

In classical information the fundamental entity is the bit, a bit can carry two possible values.
The bit comes from a physical system where the value of the bit depends on being lower than
a margin (the bit carries a “0”) or higher than a margin (the bit carries a “1”). In quantum
information we have the qubit (quantum bit), a two-state (|0〉 and |1〉) quantum system. The
main difference is that the qubit does not carry a concret value but the superposition of the
two states. So a general way of expressing the qubit will be:

|Q〉= α |0〉+β |1〉 . (2.1)

The computational basis {|0〉, |1〉} is the two basis states composed by (any of) the two
distinct quantum states that the qubit can phisically be in. By taking into account the second
postulate in the equations (1.4) and (1.6) with |α|2+ |β |2 = 1, these complex numbers will
also determine the probabilities of obtaining a "0" or a "1".
We can also write the superposition of two qubits as:

|ψ〉= α |00〉+β |01〉+ γ |10〉+δ |11〉 (2.2)

2.2 Qubit sources

There are many different sources which can generate qubits, here we show two of the most
common and the one that we will use in the following chapters of this work (polarized
photons) [7].

2.2.1 Polarized photons

Photon qubits can be realized using polarization. The two arbitrary states could be the
horizontal |H〉 and vertical |V 〉 polarization. The main advantage is the fact that they can be
easily created and manipulated with high precision by optical elements. The inconvenience

5



6 Chapter 2. Quantum information

is that they are hard affected by environmental noise and need very sensitive devices that
may fail to detect them. A generic state of a polarized photon qubit can be:

|ψ〉= α |H〉+β |V 〉 . (2.3)

2.2.2 Spin-1
2 particle

Another quantum system is a spin-1
2 particle such as an electron. So the spin angular

momentums, spin up (↑) or spin down (↓) are the two quantum states. The main advantage
is the fact that they are very easy to create and manipulate. The inconvenience is that they
are very sensitive to environmental fluctuations of the electric potential so they can be most
probably affected if the path is too long. A generic state of a spin-1

2 particle qubit can be:

|ψ〉= α |↑〉+β |↓〉 . (2.4)

2.3 Qubit transformations

As well as the bits can be transformed using logic gates such as the OR, AND or negation
gates, qubits can be manipulated using unitary transformations in the Hilbert Space. We
will see single-qubit gates and two-qubit gates also known as entanglement generators.

2.3.1 Single-qubit gates. The Hadamard and Phase-shift gates

When a qubit goes through single-qubit gates it can swap the states or introduce a phase
change. The fundamental gate is the Hadamard transformation H, this gate turns the |0〉,
|1〉 basis into a new one, made from the superposition of this. Hadamard transformation is
defined as

H |0〉= 1√
2
(|0〉+ |1〉)

H |1〉= 1√
2
(|0〉− |1〉). (2.5)

Given that H2 = I, if a qubit goes through two Hadamard gates, it will remain unchanged.
Another common gate is the shifting gate φ :

φ |0〉= eiδ |0〉

φ |1〉= |1〉 . (2.6)

Any unitary operation on a single qubit can be constructed using only Hadamard and
phase-shifting gates.

2.3.2 Two-qubit gates. The Controlled NOT gate

The controlled NOT gate generates entanglement between two qubits. The first qubit acts
as a control and the second will be the target, so if the state of the first qubit is |1〉 the
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second qubit state will be flipped and nothing will happen if the first qubit state is |0〉:

|0〉c |0〉t → |0〉c |0〉t ,

|1〉c |0〉t → |1〉c |1〉t ,

|0〉c |1〉t → |0〉c |1〉t ,

|1〉c |1〉t → |1〉c |0〉t . (2.7)

2.4 The no-cloning theorem

We know that classical bits can be easily copied. We only have to be able to measure its
value and save in a memory. But when we are working with qubits we have a quantum
system, in which any measure is not a simple classical measure and makes the state vector
collapse on the eigenvector related to the resulting eigenvalue. This property makes us
think that copying a qubit will not be something determined nor even possible in most
cases.
The no-cloning theorem tells us that it is impossible to build a machine that operates

unitary transformations and is able to clone the generic state of a qubit [8].
Let us consider the generic quantum bit we want to copy:

|ψ〉= α |0〉+β |1〉 . (2.8)
The machine, in the initial state |Ai〉, should be able to perform a unitary transformation

U on the second qubit |φ〉 (this qubit is used to save the copied qubit) such us:

U(|ψ〉 |φ〉 |Ai〉) = |ψ〉 |ψ〉
∣∣A f ψ

〉
= (α |0〉+β |1〉)(α |0〉+β |1〉)

∣∣A f ψ

〉
, (2.9)

where the final state of the machine depends on the state |ψ〉. The action of the machine
on |0〉 and |1〉 must be:

U(|0〉 |φ〉 |Ai〉) = |0〉 |0〉
∣∣A f 0

〉
U(|1〉 |φ〉 |Ai〉) = |1〉 |1〉

∣∣A f 1
〉
. (2.10)

Because of the fact that unitary transformations are linear, then

U(|ψ〉 |φ〉 |Ai〉) = α |0〉 |0〉
∣∣A f 0

〉
+β |1〉 |1〉

∣∣A f 1
〉
, (2.11)

which is clearly different from the desired (2.9). So we can determine that only if we
know from the beginning that the state of the qubit is prepared in one out of two states we
will be able to prepare copies as desired. Then we can state that if a machine could copy
quantum states, based on the third postulate, this machine would destroy any information
from the non orthogonal states. So, this machine could perfectly work for two orthogonal
states such as the rectilinear pair of polarization states of a photon, but it would not be able
to copy any other superposition states. In sum, without having a prior knowledge of the
quantum state it is impossible to select a machine that copied that state.





3 Cryptography

Cryptography is the science or study of the techniques of secret writing, especially code
and cipher system, methods, and the like [9]. In this chapter we give a brief review of the
most important principles and elements involved in cryptography.

3.1 Principles of Cryptography

The objective of cryptography is to keep the message unknown from everybody else but
the receiver. This is achieved by the cipher, a rule that tells you how to encrypt so later it
can be also decrypted with some extra information. Some simple examples are substitution
or transposition [10].

Example 3.1.1 Encryption of the words “BE HUMBLE” using substitution.

Solution. We are going to substitute every letter with its following in the alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
"BE HUMBLE"→ "CF IVNCMF"

In a more advanced encryption and decryption, keys are used to do both, they make the
system stronger against an attack and are easier to distribute to the channel users. The
algorithms used to cipher make the encrypted message almost impossible to decrypt. Only
very powerful computers like quantum computers could potentially break the encryption.

3.2 Cryptography elements

3.2.1 Message

The message is the information we want to keep unknown from everybody else but the
receptor. For example: a word or a number.

3.2.2 Transmitter (Alice)

The transmitter is the one who has the message and will be able to encode it before sending
it to the receptor.

9



10 Chapter 3. Cryptography

3.2.3 Receptor (Bob)

The receptor has to be able to decode the encrypted message and get the original one.

3.2.4 Keys

The keys are the data that allows the transmitter and receptor being the only ones that can
encrypt and decrypt the message. There are symmetric and asymmetric keys. Symmetric
keys can be use both to decrypt and encrypt while we need one asymmetric key to encrypt
and other to decrypt. Symmetric keys are used in secret-key cryptography, where keeping
the privacy of the key is essential. On the other hand, asymmetric keys are the ones needed
in public-key cryptography where everybody knows the key to encrypt but only who has
the key to decrypt can do so.

3.3 Key Distribution

In order to allow the receptor or receptors to decrypt the message it is important that they
are the only ones that have the key. The classical problem is that the channel used to share
this key may not be 100% safe. Then a potential eavesdropper could obtain the key to break
the encryption. Quantum cryptography brings the certain that our key will not be obtained
by the eavesdropper when he attacks the quantum channel.

3.4 Vulnerability

In the actual public key cryptography breaking the encryption is very hard and almost
impossible for the most part of the computers, so we could say public key cryptography is
not vulnerable against key-break attacks. However, the appearance of quantum computers,
computers with an enormous calculus potential based on qubits, would make the key
cryptography vulnerable against these attacks. This new advance would be a big problem.
Nevertheless the quantum cryptography brings the tools to avoid this potential problem.



4 BB84 Protocol

The BB84 protocol was developed by Charles H. Bennett and Gilles Brassard [11].
They are two scientists who work at quantum information field, particularly they

brought the concept of quantum cryptography. Charles H. Bennett is a physicist from
the United States and he also developed the Bennett’s four laws of quantum information.
Gilles Brassard studied Computer Science, but he is known for his work related to quantum
cryptography, teleportation, entanglement and pseudo-telepathy. The protocol’s main
purpose is to distribute a key between two users with the certain that it remains unknown
for everybody else. It uses a quantum channel to make the secret communication possible,
this channel is based on polarized photons, which are sent and received by the specific
apparatus. The protocol also lies on the no-cloning theorem and the third postulate which
are essential to discover an eavesdropper action.

4.1 System description

The protocol uses polarized photons to encode the information. Both, the sender (Alice)
and receiver (Bob) will use two different polarization bases (rectilinear and diagonal), and
two possible values of the information (bits: “0” or “1”). For each photon the polarization
base is randomly chosen either for encoding or measuring, with no correlation between
Alice and Bob’s chosen bases. Alice sends a “0” or a “1” by polarizing the photon in the
randomly chosen base. The values of the polarization angles are the following:

Table 4.1 Polarization angles.

Polarization Bit Angle
Rectilinear 0 0º
Rectilinear 1 90º
Diagonal 0 45º
Diagonal 1 135º

Alice will save both the information bit and the polarization used to send. At the same
time Bob will measure the incoming polarized photons with his chosen base. So, if the
base is the same as Alice’s the bits will coincide, if not, in half of the cases it will coincide
and in the other half it will not. Bob will save the bits received and the polarization used to
measure.

11



12 Chapter 4. BB84 Protocol

4.2 Eavesdropper effect

Let us consider the following situation: an Eavesdropper (Eve) is attacking the communi-
cation, in such a wat that she intercepts the photons sent by Alice, and measures them by
randomly using one of the two basis. Then, she resends the photons to Bob, in the same
base that she has measured them. If Eve measures in a base that is different to Alice’s, the
polarization state of the photon will change. In this case, the bit value measured by Bob
will not coincide, in general, with the one sent by Alice. Even if both used the same basis
(compatibility theorem).

4.3 Result comparison and final key

Once all the bits have been transmitted, Alice and Bob publish in a public channel the
random bases they chose. They discard the bits in which the bases are different. So, they
will approximately keep half of the bit string. Then, Alice and Bob will also publish a part
of the remaining bits in order to estimate the error rate. These bits may have been affected
by Eve’s attack or a system error, and they will be discarded too, due to the fact that they
are now public. If the error rate is too high (higher than the threshold, commonly 5%) the
communication will be stopped, if the error rate is acceptable, then, Alice and Bob will do
some error corrections.

4.3.1 Information reconciliation

In order to make sure the key they share is strictly the same, it is necessary to remove the
wrong bits from the key. Alice and Bob divide their strings into subsets of length l with the
following condition Rl<< 1, R being the error rate that they obtained at the previous step.
Then Alice and Bob publish the parity of these subsets. In case the parities are different
they will divide the subset into two, repeating this process until the parities are the same or
discarding the string. Every time they publish the parity they will discard the last bit of the
block, this is done to make sure the eavesdropper has no information from the strings.

Example 4.3.1 We have the following keys:
key A : [ 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 ] key B : [ 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 ]

Solution. If l is 4 (we need to have a correct l to make sure we will not have more than 1
error in each block), we will divide the keys into 4 blocks of 4 bits and 1 of 2 bits. Then
we will share the parities of each block and remove the last bit. In case the parities are
different we will repeat the process dividing the block into two.
key A1 : [0 1 1 ��0] (parity = 0) key B1 : [0 1 0 ��0] (parity = 1)
key A2 : [1 0 1 ��0] (parity = 0) key B2 : [1 0 1 ��0] (parity = 0)
key A3 : [1 0 1 ��1] (parity = 1) key B3 : [1 0 1 ��1] (parity = 1)
key A4 : [1 0 0 ��1] (parity = 0) key B4 : [1 0 0 ��0] (parity = 1)
key A5 : [0 ��1] (parity = 1) key B4 : [0 ��1] (parity = 1)
So, we will continue the process for the blocks 1 and 4, where parities are different.
key A1.1 : [0 ��1] (parity=1) key B1.1 : [0 ��1] (parity=1)
key A1.2 : [��1] (parity=1) key B1.1 : [��0] (parity=0)
key A4.1 : [1 ��0] (parity=1) key B4.1 : [1 ��0] (parity=1)
key A4.2 : [��0] (parity=0) key B4.2 : [��0] (parity=0)
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Now all the parities are the same, so we rejoin the blocks with the remain bits.
final key A: [0 1 0 1 1 0 1 1 0]
final key B: [0 1 0 1 1 0 1 1 0]
We can see that the remaining key is half of the one that contained errors, if l is correctly

chosen, the final key will be aproximately half of the original one.

4.3.2 Privacy amplification

After removing all the errors with the information reconciliation, to make sure the eaves-
dropper has no information from the key, the raw key is divided into m blocks. Then the
parity of each block is calculated. The final key will be the consecutive parities of all the
blocks. m is chosen according to the following condition:

m = n− k− s (4.1)

where n is the number of bits from the key, k depends on the bits the eavesdropper might
have and it is calculated from the error rate and s, a security parameter. While k or s are
bigger, the shorter and safer the key will be, also the eavesdropper will have less or no
information at all.

4.4 Protocol simulations

In order to see how the protocol works, its limits and power we will see some simulations
already made by some investigators. This will help us on our own simulations and to
compare with our results. These are some of the different simulations:

• https://www.qkdsimulator.com/ is a web application that let us simulate with different
parameters where we can see the resulting number of bits Bob will have or a possible
eavesdropper detection.

• Quantum Key Distribution: Simulation and Characterizations (ICCMIT 2015) [12]:
The authors detail the simulation steps, and then they simulate the whole protocol to
see its behaviour with a communication between a master and a slave. They come to
the conclusion of the viability with satisfactory results.

4.5 Real implementation

This protocol can be implemented by some specific devices. Here we can see a setup from
Matthias Scholz [13]. Where the main parts are a photon source, polarization encoder and
reader and the photodetector.
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Figure 4.1 System schema.

4.5.1 Photon source

The photon source is a 5mW diode laser emitting at 633 nm [14]. To produce single photons
is required a big attenuation.

Figure 4.2 633nm Laser Diode.

4.5.2 Polarization encoder and reader (EOM)

In order to polarize the photons and read their polarization the experiment uses two electro-
optic modulators, one for each task. The one used to encode will polarize into four different
states (0º, 45º, 90º, 135º) depending which bases (rectilinear or diagonal) and the bit value
(‘0’ or ‘1’). While the other will project the sent photon onto the basis state chosen by Bob,
so only the bits where the bases coincide will certainly keep their values [15].

Figure 4.3 Electro-Optic Modulator.
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4.5.3 Photodetector

A photodetector connected to a computer to convert the information detected into bits and
save them. This photodetector must be able to read every single photon [16]. In case the
polarization chosen from Alice and Bob is not the same, the computer that saves both,
the bit and the polarization chosen by Bob will discard it. The greatest inconvenient of
Quantum Cryptography is the deficient work of these devices that introduce a high error
probability to the system.

Figure 4.4 Photodetector.

4.6 Practical errors

Although as we have already seen the protocol is theorically 100% secure. When it is
implemented with real devices we come across some defaults due to the precision of the
elements, the environmental noise or the non correct working of the devices. Some of these
can be associated to an error that will be introduced to the system that will only change
some bits and can be fixed at information reconciliation. However, some others will be
discussed because they can help the eavesdropper to get the key without being discovered
[17].

4.6.1 Multi-photons

We know that the photon source used must only send one photon each output. However
there is a probability of emitting multi-photons. In case this happens, the eavesdropper
can make an attack called PNS (Photon Number Splitting), where he will not disturb the
conversation between Alice and Bob, and still get the information of the key. This attack
consists in saving one photon at a quatum memory and let the other go to Bob. Once Alice
and Bob share their bases, the eavesdropper will measure in their correct base, rectilinear
or diagonal, those bits stored.





5 Protocol simulation

The aim of the simulation is to see the global behaviour when we are using the BB84
protocol for key distribution. The simulation will have some variables which include:

protocol parameters, eavesdropper actions and possible errors. We will work following
the quantum concepts we have already seen such as no cloning theorem or compatibility
theorem. As well, we will simulate every step included in the protocol from the first bits
and polarization chosen until the final bit string that Alice and Bob will keep. We will
use MATLAB® due to the fact that this tool helps us to get some graphics that give us the
possibility to well understand the whole information we can get and compare the results
among the different scenarios.

5.1 Simulation Parameters

Code 5.1 Function parameters.

function y = BB84simulation(simulations, N, error, comp, startEve,
endEve, threshold, s)

5.1.1 Number of simulations

The parameter simulations determines the times the experiment will be repeated keeping
the same parameters. This is useful to have as results the means of every simulation results,
which are much more accurate (particular events have less effect).

5.1.2 Number of bits

N is the number of bits Alice will send. The higher this number is the longer the final key
will be. Like the number of simulations, this parameter will make the simulation last longer
while we introduce higher numbers.

5.1.3 System error rate

error(%) will represent all the noises or devices failures that make Bob get wrong bits even
if there is no polarization conflicts. We have simplified this in just one parameter. So, we
will suppose an error rate that comes from all the system defects. We will see how this

17
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error rate works and the maximum the communication will allow before stopping the key
distribution.

5.1.4 Bits comparison

comp is the number of bits Alice and Bob will announce, and immediately discard, in
the public channel in order to get the bit error rate due to eavesdropper, noises or devices
failures.

5.1.5 Eavesdropper actuation

The way the eavesdropper (Eve) will attack the communication will be determined by
the start startEve and the end endEve of the attack. These parameters are referred to the
positions of the bits at the Alice’s string where the attack takes place (beginning and end).

5.1.6 Threshold error

threshold(%) is the maximum error rate Alice and Bob will allow. If the error rate obtained
in the bits comparison is higher than this threshold the communication will be immediately
stopped and they will discard the key.

5.1.7 Privacy amplification parameter

The parameter s is the one related to the privacy amplification, as the following equation
subsets = n− k− s. So we will be able to select the value in order to have a more safety
but shorter key.

5.2 Simulation code

We can see the complete code used to simulate in the appendix A.

5.2.1 Random bits and polarization generation

In order to generate the polarization that Alice, Bob and Eve will randomly choose and the
bit string that Alice will send, we will use a function that let us have the same probability of
obtaining one or another bit or polarization value (randi). We will encode the polarization
into an array whose elements could take two possible values “0” (rectilinear) and “1”
(diagonal). The bits transmitted (Alice’s qubits) will be randomly generated with the same
possible values, but also the ones received will be first initiated with the same length but
they will be empty.

Code 5.2 Bits and polarization generation.

polAli = randi(2,1,N)-1;\%Alice polarization 0 = rectilinear 1 =
diagonal

polBob = randi(2,1,N)-1;\% Bob polarization 0 = rectilinear 1 =
diagonal

polEve = randi(2,1,N)-1;\%Eve polarization 0 = rectilinear 1 =
diagonal
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qbitAli = randi(2,1,N)-1;\%Alice bits
qbitBob = zeros(1,N);\%Bob bits (empty)
qbitEve = zeros(1,N);\%Eve bits (empty)

5.2.2 System error

We will use another array, initially an exact copy of Alice’s qubits, with the particularity
that some bits will change with the system error probability we have selected. From now
on, part of this array (based on the polarization coincidence) is the information that Bob
and Eve will have from Alice, the qubits affected by the errors.

Code 5.3 System error.

qbitAli1 = qbitAli; \%qbits which affected by system error will
arrive to Eve and Bob

errorSystem = error*10^5;
prob = randi(10000000,1,N);

for R = 1:N
if prob(R) < errorSystem

if qbitAli1(R) == 0
qbitAli1(R) = 1;

else
qbitAli1(R) = 0;

end
end

end

5.2.3 Bits received by Eve and Bob

We will have two different scenarios, one in which we will be inside the range where Eve
is attacking and other where there is no attack. We will differentiate each one with the
parameters startEve and endEve in a “for loop”. If Eve is acting, she will measure with the
polarization she had chosen and she will save the consequent bits, then Bob will measure
but according to Eve polarization. He will have with 100% probability the same bit that
Eve has if Eve and Bob’s polarization is the same, if not, the bits will be chosen randomly.
In the case Eve is not attacking, Bob will compare his polarization with Alice’s, where if
the polarization coincides bits will be the same and randomly generated when polarizations
are different.

Code 5.4 Bob and Eve qubits measure.

\%bits obtained by Eve
for R = 1:N

if R > startEve && R < endEve
if polAli(R) == polEve(R)

qbitEve(R) = qbitAli1(R);
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else
qbitEve(R) = randi(2)-1;

end
end

end

\%bits obtained by Bob
for R = 1:N

if R > startEve && R < endEve
if polBob(R) == polEve(R)

qbitBob(R) = qbitEve(R);
else

qbitBob(R) = randi(2)-1;
end

else
if polAli(R) == polBob(R)

qbitBob(R) = qbitAli1(R);
else

qbitBob(R) = randi(2)-1;
end

end
end

5.2.4 Polarization publication

We remove from the arrays the bits whose polarization differs. We do this by loading in a
new array the bits whose polarization is the same.

Code 5.5 Polarization comparison.

i=0;
for R= 1:N

if polAli(R) == polBob(R)
i= i+1;
rawAlice(i) = qbitAli(R);
rawBob(i) = qbitBob(R);

end
end

5.2.5 Bits comparison and error rate

We select a number of bits determined by the parameter comp from the remaining key. We
count the errors and get the error rate that will be used in the future. The bits will have
the same gap in between, from the first to the last bit of the key in order to have a closer
error rate to the entire key error rate. If this error rate is higher than the threshold the
communication will be immediately stopped.

Code 5.6 Bits comparison.
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longrawAlice = length(rawAlice);
longrawBob = length(rawBob);
step = floor(longrawBob/comp);
if step > 1

i = 1;
limit = longrawAlice;
while i <= limit

if rawAlice(i) ~= rawBob(i)
biterrors = biterrors +1;

end
rawAlice(i) = [];
rawBob(i) = [];
i = i + step - 1;
limit = limit-1;

end
else

j=0;
while j < comp

if rawAlice(1) ~= rawBob(1)
biterrors = biterrors +1;

end
rawAlice(1) = [];
rawBob(1) = [];
j= j+1;

end
end

5.2.6 Information reconciliation

After removing a part of the key, the remaining key may have some errors, so we need to
remove them. First we will calculate the parameter l, the length of the subsets in which we
will divide the key, with the condition Rl<< 1. Then we send the bit strings with length l
to a function that will do the information reconciliation algorithm as follow:

Code 5.7 Algorithm to remove errors.

function y = depuraError2(code1, code2)
L = length(code1);

if L > 1

L = length(code1);
\%we compare parities calculaParidad returns the parity of the

code
if calculaParidad(code1) == calculaParidad(code2)

\%if are the same we remove last bit and return the
codes

code1(L) = [];
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code2(L) = [];

y = code1;
else if L > 2

\%if not we divide the code into 2 halves if it is possible

code1(L) = [];
code2(L) = [];
L = length(code1);
\%we calculate the positions to divide the code

if mod(L,2) == 0
half = floor(L/2);

else
half = floor(L/2) +1;

end
\%we repeat the process for the halves
y1 = depuraError2(code1(1:half),code2(1:half));
y2 = depuraError2(code1((half+1):L),code2((half+1):L));
y = horzcat(y1,y2);

else
\%in case the code is 2 or lower, dividing is useless

so we
\%return empty value
y =[];

end
end

else
\%if L= we return empty value

y = [];
end

Once all the subsets errors have been removed we concatenate them to get the entire key.

Code 5.8 Information reconciliation.

\%if the error rate is lower than the threshold we start the
information

\%reconciliation
if errorRate < threshold && errorRate > 0

L = floor(0.05/errorRate);
\%number of subsets
if rem(longrawAlice,L) == 0

M = floor(longrawAlice/L);
else

M = floor(longrawAlice/L)+1;
end
keyFinalBob = [];
keyFinalAlice = [];
for R = 1:M-1
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keyFinalBob = horzcat(keyFinalBob,depuraError2(rawAlice(
L*(R-1)+1:L*R),rawBob(L*(R-1)+1:L*R)));

end

keyFinalBob = horzcat(keyFinalBob, depuraError2(rawAlice(L*
M+1:longrawAlice),rawBob(L*M+1:longrawBob)));

for R = 1:M-1

keyFinalAlice = horzcat(keyFinalAlice,depuraError2(
rawBob(L*(R-1)+1:L*R),rawAlice(L*(R-1)+1:L*R)));

end

keyFinalAlice = horzcat(keyFinalAlice, depuraError2(rawBob(L
*M+1:longrawAlice),rawAlice(L*M+1:longrawBob)));

5.2.7 Privacy amplification

We will divide the remaining key into a number of subsets whose parities will form the final
key. So we first calculate the number of these subsets according to the following equation
subsets = n− k− s. n is the number of bits of the remaining key, k will be calculated
depending on the previous error rate (k will represent the possible bits Eve could have)
ands is the parameter we chose at the beginning of the simulation. Finally, we concatenate
all the parities.

Code 5.9 Privacy amplification.

keyLength = length(keyFinalAlice);
k = floor(2*errorRate*keyLength);
subsets = keyLength - k - s;
L = floor(keyLength/subsets);
definitiveKeyBob = [];
definitiveKeyAlice = [];
for R = 1:subsets-1

definitiveKeyBob = horzcat(definitiveKeyBob,
calculaParidad(keyFinalBob(L*(R-1)+1:L*R)));

end
definitiveKeyBob = horzcat(definitiveKeyBob,calculaParidad(

keyFinalBob(L*R+1:keyLength)));

for R = 1:subsets-1
definitiveKeyAlice = horzcat(definitiveKeyAlice,

calculaParidad(keyFinalAlice(L*(R-1)+1:L*R)));
end
definitiveKeyAlice = horzcat(definitiveKeyAlice,

calculaParidad(keyFinalAlice(L*R+1:keyLength)));
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5.2.8 Final results

In every single simulation we will save the initial error rate, the final key length and the
possible final key errors. Finally we will calculate the mean of these results to have a global
view of all the simulations.



6 Simulation results

Once we have explained how the simulation works, we are going to simulate some possible
scenarios to see the results. Also, we will see how the modification of every parameter
affects the simulation. Finally, we will repeat the simulations with different Alice’s bits
string lengths and numbers of the bits we use to compare in order to get an optimum value
of this parameter.

6.1 Scenarios

6.1.1 Scenario 1

There is no error system and the eavesdropper is not attacking the communication.

Table 6.1 Parameters value.

Parameter Variable Value
Simulations simulations 50
Alice’s bits N 5000
System error error 0
Comparison bits comp 1500
Eve’s attack start startEve 0
Eve’s attack end endEve 0
Threshold threshold 5
Security parameter s 0

After simulating, we can see that we can decrement the comparison bits without any
problem due to the non-existence of error (no eavesdropper and no system error).
We start introducing some system error to the simulation to see what happens. With a

0.1% system error we will need at least 2400 bits to compare, this result show the difficulty
of finding the wrong bit. If we raise the error to a 3% that could represent a maximum,
knowing that the threshold is 5%, we see that the mean of the resulting key length after the
information is approximately only 4. With a 4% or more we get an empty key in the most
cases. The causes are: the communication stop in most cases and the high error affecting
which will make the information reconciliation discard so many bits.
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6.1.2 Scenario 2

Now we are introducing a significant Eve’s attack.

Table 6.2 Parameters value.

Parameter Variable Value
Simulations simulations 50
Alice’s bits N 5000
System error error 0
Comparison bits comp 1500
Eve’s attack start startEve 0
Eve’s attack end endEve 2000
Threshold threshold 5
Security parameter s 0

After simulating, we check that the system detects the presence of Eve. The error
rate obtained is about a 16%, much higher than the threshold, so the communication is
immediately stopped.

6.1.3 Scenario 3

Now we are introducing an Eve’s attack that the system could accept.

Table 6.3 Parameters value.

Parameter Variable Value
Simulations simulations 50
Alice’s bits N 5000
System error error 0
Comparison bits comp 1500
Eve’s attack start startEve 0
Eve’s attack end endEve 200
Threshold threshold 5
Security parameter s 0

The error rate is lower that the threshold so the communication continues. The resulting
key is shorter than the one in the Scenario 1. If we now introduce some system error, this
forces us to increment the comparison bits to avoid final key errors. So, we get a shorter
key again.

6.2 Parameters optimization

We will repeat the simulations done with the Scenario 2 where we have an acceptable error
rate introduced by the eavesdropper. In this case, we will modify the bits used to compare.
We will see the optimum value of this parameter which gives us the longest key without
including any error. The code used to draw these graphics is at the Appendix B.
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Figure 6.1 Final key errors and Length. 500 bits sent.
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Figure 6.2 Final key errors and Length. 1000 bits sent.
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Figure 6.3 Final key errors and Length. 5000 bits sent.

We can see a similarity between the graphics where the optimum number of bits to
compare is between the 40% . This result makes us think that is better to compare more
bits rather than trying to remove the exact bits in the information reconciliation.





7 Quantum Cryptography Nets in Spain

Recently this year (2018) in Spain, Huawei, UPM(Universidad Politécnica de Madrid)
and Telefónica have worked in common to demonstrate the viable use of quantum

cryptography in commercial optic nets. They have created a net where the communications
are encrypted using Quantum Key Distribution. The results obtained show the viability of
using Quantum Cryptography, this could mean the start of the Quantum Cryptography era.
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8 Conclusions

We have seen the problem of vulnerability the quantum computation brings to cryp-
tography. Nevertheless, we have also seen that quantum cryptography can solve

this problem. In order to see how the protocol works, we have simulated some possible
scenarios that are similar to real channel conditions where we have checked that the protocol
works as expected. The only problem we have faced is the fact that a minimum error can
significantly affects the final key. Finally, the successful experiment made in Spain shows
the real possibility of quantum cryptography implementation.
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Appendix A
Simulation code

Code A.1 BB84simulation.m.

function y = BB84simulation(simulations, N, error, comp, startEve,
endEve, threshold, s)

threshold = threshold/100;
errorRateTotal=0;
finalErrorTotal=0;
keyLengthTotal=0;
for P = 1:simulations

biterrors=0;
polAli = randi(2,1,N)-1;\%random Alice polarization where 0 is

rectilinear and 1 diagonal
polBob = randi(2,1,N)-1;\%random Bob polarization where 0 is

rectilinear and 1 diagonal
polEve = randi(2,1,N)-1;\%random Eve polarization where 0 is

rectilinear and 1 diagonal

qbitAli = randi(2,1,N)-1;
qbitBob = zeros(1,N);
qbitEve = zeros(1,N);

qbitAli1 = qbitAli; \%qbits which affected by system error will
arrive to Eve and Bob

errorSystem = error*10^5;
prob = randi(10000000,1,N);

for R = 1:N
if prob(R) < errorSystem

if qbitAli1(R) == 0
qbitAli1(R) = 1;

else
qbitAli1(R) = 0;

end
end

end
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\%bits obtained by Eve
for R = 1:N

if R > startEve && R < endEve
if polAli(R) == polEve(R)

qbitEve(R) = qbitAli1(R);
else

qbitEve(R) = randi(2)-1;
end

end
end

\%bits obtained by Bob
for R = 1:N

if R > startEve && R < endEve
if polBob(R) == polEve(R)

qbitBob(R) = qbitEve(R);
else

qbitBob(R) = randi(2)-1;
end

else
if polAli(R) == polBob(R)

qbitBob(R) = qbitAli1(R);
else

qbitBob(R) = randi(2)-1;
end

end
end

i=0;
for R= 1:N

if polAli(R) == polBob(R)
i= i+1;
rawAlice(i) = qbitAli(R);
rawBob(i) = qbitBob(R);

end
end

\%bits comparison
longrawAlice = length(rawAlice);
longrawBob = length(rawBob);
step = floor(longrawBob/comp);
if step > 1

i = 1;
limit = longrawAlice;
while i <= limit

if rawAlice(i) ~= rawBob(i)
biterrors = biterrors +1;
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end
rawAlice(i) = [];
rawBob(i) = [];
i = i + step - 1;
limit = limit-1;

end
else

j=0;
while j < comp

if rawAlice(1) ~= rawBob(1)
biterrors = biterrors +1;

end
rawAlice(1) = [];
rawBob(1) = [];
j= j+1;

end
end

longrawAlice = length(rawAlice);
longrawBob = length(rawBob);
errorRate = biterrors/comp;
errorRateTotal = errorRateTotal + errorRate;
\%if the error rate is lower than the threshold we start the

information
\%reconciliation
if errorRate < threshold

if errorRate == 0
keyFinalBob = rawBob;
keyFinalAlice = rawAlice;

else
L = floor(0.05/errorRate);
\%number of subsets
if rem(longrawAlice,L) == 0

M = floor(longrawAlice/L);
else

M = floor(longrawAlice/L)+1;
end
keyFinalBob = [];
keyFinalAlice = [];
for R = 1:M-1

keyFinalBob = horzcat(keyFinalBob,depuraError2(rawAlice(
L*(R-1)+1:L*R),rawBob(L*(R-1)+1:L*R)));

end

keyFinalBob = horzcat(keyFinalBob, depuraError2(rawAlice(L*
M+1:longrawAlice),rawBob(L*M+1:longrawBob)));
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for R = 1:M-1

keyFinalAlice = horzcat(keyFinalAlice,depuraError2(
rawBob(L*(R-1)+1:L*R),rawAlice(L*(R-1)+1:L*R)));

end

keyFinalAlice = horzcat(keyFinalAlice, depuraError2(rawBob(L
*M+1:longrawAlice),rawAlice(L*M+1:longrawBob)));

end
biterrors= 0;
for R= 1:length(keyFinalAlice)

if keyFinalBob(R) ~= keyFinalAlice(R)
biterrors = biterrors +1;

end
end

\%amplificacion de la privacidad calcular k,
keyLength = length(keyFinalAlice);
k = floor(2*errorRate*keyLength);
subsets = keyLength - k - s;
L = floor(keyLength/subsets);
definitiveKeyBob = [];
definitiveKeyAlice = [];
for R = 1:subsets-1

definitiveKeyBob = horzcat(definitiveKeyBob,
calculaParidad(keyFinalBob(L*(R-1)+1:L*R)));

end
definitiveKeyBob = horzcat(definitiveKeyBob,calculaParidad(

keyFinalBob(L*R+1:keyLength)));

for R = 1:subsets-1
definitiveKeyAlice = horzcat(definitiveKeyAlice,

calculaParidad(keyFinalAlice(L*(R-1)+1:L*R)));
end
definitiveKeyAlice = horzcat(definitiveKeyAlice,

calculaParidad(keyFinalAlice(L*R+1:keyLength)));
\%
\% display(definitiveKeyAlice);
\% display(definitiveKeyBob);
biterrorsfinales = 0;
for R= 1:length(definitiveKeyAlice)

if definitiveKeyBob(R) ~= definitiveKeyAlice(R)
biterrorsfinales = biterrorsfinales +1;

end
end
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keyLengthTotal = keyLengthTotal + length(definitiveKeyBob);
finalErrorTotal = finalErrorTotal + biterrorsfinales;

else if errorRate == 0

end
end

end
errorRateMedia = errorRateTotal/simulations;
biterrorsFinalesMedia=finalErrorTotal/simulations;
keyLengthMedia=keyLengthTotal/simulations;

y= [errorRateMedia biterrorsFinalesMedia keyLengthMedia];
end





Appendix B
Graphics code

Code B.1 graphics.m.

function graphics (N, step)
comp = [0:step:(2*N/5)+step];
i=0;
for comp1 = 0:step:(2*N/5)+step

i= i+1;
results = BB84simulation(50, N, 0, comp1, 0, floor(N/10), 5, 0);
finalErrors(i) = results(2);
finalLength(i) = results(3);
end
clf reset
figure(1)
stem(comp,finalErrors), hold on, stem(comp,finalLength,’r’), legend

(’errors’,’key length’), xlabel(’Bits compared’);
end
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