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Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the es-
sential mechanisms for manipulating and transforming models. The correctness of software built using MDE 
techniques greatly relies on the correctness of model transformations. However, it is challenging and error 
prone to debug them, and the situation gets more critical as the size and complexity of model transformations 
grow, where manual debugging is no longer possible.

Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code cov-
erage information to estimate the likelihood of each program component (e.g., statements) of being faulty. 
In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. 
We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different state-
of-the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the 
best techniques, namely Kulcynski2, Mountford, Ochiai, and  Zoltar, lead the debugger to inspect a maximum 
of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a 
static approach for fault localization in model transformations, observing a clear superiority of the proposed 
SBFL-based method.
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1 INTRODUCTION

In Model-Driven Engineering (MDE), models are the central artifacts that describe complex 
systems from various viewpoints and at multiple levels of abstraction using appropriate modeling
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formalisms. Model transformations (MTs) are the cornerstone of MDE [28, 71], as they provide
the essential mechanisms for manipulating and transforming models. They are an excellent
compromise between strong theoretical foundations and applicability to real-world problems
[71]. Most MT languages are composed of model transformation rules.1 Each MT rule deals with
the construction of part of the target model. They match input elements from the source model
and generate output elements that compose the target model.

The correctness of software built using MDE techniques typically relies on the correctness of the
operations executed using MTs. For this reason, it is critical in MDE to maintain and test them as it
is done with source code in classical software engineering. However, checking whether the output
of a MT is correct is a manual and error-prone task, which suffers the oracle problem. The oracle
problem refers to, given an input for a system, the challenge of distinguishing the corresponding
desired, correct behavior from potentially incorrect behavior [13]. To alleviate this problem in the
model transformation domain, the formal specification of MTs has been proposed by the definition
and use of contracts [14, 18, 21, 104], i.e., assertions that the execution of the MTs must satisfy. These
assertions can be specified on the models resulting from the MTs, the models serving as input for
the MTs, or both, and they can be tested in a black-box manner. These assertions are typically
defined using the Object Constraint Language (OCL) [108].

However, even when using the assertions as oracle to test if MTs are faulty, it is still challenging
to debug them and locate what parts of the MTs are wrong. The situation gets more critical as
the size and complexity of MTs grow, where manual debugging is no longer possible, such as in
aviation, medical data processing [106], the automotive industry [94], or embedded and cyber-
physical systems [82]. Therefore, there is an increasing need to count on methods, mechanisms,
and tools for debugging them.

Some works propose debugging model transformations by bringing them to a different domain
such as Maude [102], DSLTrans [80], or Colored Petri Nets [110], where some specific analysis
can be applied. The problem with these approaches is that the user needs to be familiar with
such domains; besides, their performance and scalability can be worse than that of the original
model transformation [102]. There are a few works that propose the use of contracts to debug
model transformations [18, 22, 23]. Among them, the work by Burgueño et al. [18] is the closest to
ours. They address the debugging of ATL model transformations based on contracts with a static
approach that aims to identify the guilty rule, i.e., the faulty rule. It statically extracts the types
appearing in the contracts as well as those of the MT rules and decides which rules are more likely
to contain a bug. This is a static approach, since the transformation is not executed. Despite that, it
achieves relatively good results on several case studies [18]. However, the effectiveness of dynamic

approaches is an open question. Answering this question is one of the goals of this work.
Spectrum-Based Fault Localization (SBFL) is a popular technique used in software debugging

for the localization of bugs [3, 115]. It uses the results of test cases and their corresponding code
coverage information to estimate the likelihood of each program component (e.g., statements) of
being faulty. A program spectrum details the execution information of a program from a certain
perspective, such as branch or statement coverage [50]. SBFL entails identifying the part of the
program whose activity correlates most with the detection of errors.

This article presents and evaluates in detail the first approach that applies spectrum-based
fault localization in model transformations, extending our article with the initial ideas [99]. SBFL
being a dynamic approach, our approach takes advantage of the information recovered after
MT runs, which may help improve the results over static approaches [18] and at the same time
complement them. We follow the approaches in References [14, 18, 21, 104] and use the previously

1Throughout the article, we may also refer to model transformation (MT) rules as transformation rules or merely rules.



described contracts (assertions) as oracle to determine the correctness of MTs. Given an MT,
a set of assertions, and a set of source models, our approach indicates the violated assertions
and uses the information of the MT coverage to rank the transformation rules according to
their suspiciousness of containing a bug. Also, of the many existing techniques proposed in
the literature for computing the suspiciousness values [85, 115, 117], we select 18 of them and
compare their effectiveness in the context of MTs.

There is a plethora of frameworks and languages to define MTs. Among them, The ATLas trans-
formation language (ATL) [61, 84] has come to prominence in the MDE community both in the
academic and the industrial arenas, so the testing of ATL transformations is of prime importance.
This success is due to ATL’s flexibility, support of the main metamodeling standards, usability that
relies on strong tool integration within the Eclipse world, and a supportive development com-
munity [80]. To implement our approach and achieve automation, we have built a prototype for
debugging ATL model transformations. However, we may mention that the proposed approach is
applicable to any model transformation language as long as it is able to store the execution of the
transformation in traces. Therefore, the approach could be trivially applied to languages such as
QVT [45], Maude [26], Kermeta [56], and many more, since in most transformation languages it is
possible to define the generation of an extra target model that stores the traces (cf. Section 2.2.3).

We have thoroughly evaluated the approach using the implemented prototype. To do so, we
have selected four different case studies that differ regarding the application domains, size of meta-
models and transformations, and the number and types of features of ATL used. For instance, the
number of rules ranges from 8 to 39 and the lines of code from 53 to 1055. We have defined 117
OCL assertions for the four case studies, many of them taken from Reference [18], and have applied
mutation testing by creating 158 mutants using the operators presented in Reference [98], where
each mutant is a faulty variation of the original model transformation. Experimental results re-
veal that the best techniques place the faulty transformation rule among the three most suspicious
rules in around 74% of the cases. Looking into each of the four case studies, the best techniques
allow the tester to locate the fault by inspecting only 1.59, 2.99, 2.4, and 4.8 rules in each of the case
studies, which are composed of 9, 19, 8, and 39 rules, respectively. Furthermore, we compared our
approach with a state-of-the-art approach based on the static analysis of transformation rules and
assertions, observing a clear superiority of the proposed SBFL-based approach. The conclusions
from our experiments serve as a proof of concept of the effectiveness of SBFL techniques to aid in
the process of debugging model transformations.

Like ATL, our prototype is compliant with the Eclipse Modeling Framework and is completely
automated and executable, dealing with Ecore metamodels and XML Metadata Interchange (XMI)
model instances and tailored at iteratively debugging ATL model transformations, although it
could be trivially extended to support other transformation languages based on rules.

The remainder of this article is organized as follows. Section 2 presents the basics of our ap-
proach, namely it explains metamodeling, model transformations and the ATL language, and
spectrum-based fault localization. Then, Section 3 details our approach for applying SBFL in MTs
and explains the proposed methodology for debugging model transformations as well as the im-
plemented automation. It is followed by a thorough evaluation in Section 4, for which four case
studies have been used. The comparison with the static approach [18] is also presented in this
section. Then, Section 5 presents and describes some works related to ours, and the article finishes
with the conclusions and some potential lines of future work in Section 6.

2 BACKGROUND

In this section, we present the basics to understand our approach. First, an introduction to
metamodeling and an explanation of its most basic concepts are given. Then, we focus on a



Fig. 1. Model transformation pattern (from [28]).

detailed explanation of model transformations and the ATL transformation language, followed by
the introduction of the ATL MT that serves as running example. Finally, we explain the rationale
behind spectrum-based fault localization.

2.1 Metamodeling

MDE [29] is a methodology that advocates the use of models as first-class entities throughout
the software engineering life cycle. MDE is meant to increase productivity by maximizing
compatibility between systems, simplifying the process of design and promoting communication
between individuals and teams working on the system, since they can all share a high-level
picture of the system.

Metamodels, models, domain-specific languages (DSLs), and model transformations are, among
others, key concepts in MDE. A model is an abstraction of a system often used to replace the
system under study [66, 72]. Thus, (part of) the complexity of the system that is not necessary
in a certain phase of the system development is removed in the model, making it more simple
to manage, understand, study, and analyze. Models are also used to share a common vision and
facilitate the communication among technical and non-technical stakeholders [29].

Every model must conform to a metamodel. Indeed, a metamodel defines the structure and con-
straints for a family of models [75]. Like everything in MDE, a metamodel is itself a model, and it is
written in the language defined by its meta-metamodel. It specifies the concepts of a language, the
relationships between these concepts, the structural rules that restrict the possible elements in the
valid models, and those combinations between elements with respect to the domain semantic rules.

A metamodel dictates what kind of models can be defined within a specific domain, i.e., it de-
fines the abstract syntax of a DSL. The concrete syntax of DSLs can be defined in several ways,
normally either graphically or textually. To provide a DSL with semantics and behavior, its defin-
ing metamodel may not be enough. Therefore, apart from its concrete and abstract syntaxes, also
its semantics may need to be defined. For instance, model transformations can be used to give se-
mantics to a DSL by translating it to a different domain where further analysis, simulations, and so
on can be performed [103]. This mechanism enables the definition of flexible and reusable DSLs,
where several kinds of analysis can be defined [32, 76].

2.2 Model Transformations

Model transformations play a cornerstone role in MDE, since they provide the essential mecha-
nisms for manipulating and transforming models [16, 96]. They allow querying, synthesizing, and
transforming models into other models or into code, so they are essential for building systems
in MDE. A model transformation is a program executed by a transformation engine that takes
one or more input models and produces one or more output models, as illustrated by the model
transformation pattern [28] in Figure 1.2 Model transformations are developed on the metamodel
level, so they are reusable for all valid model instances. Most MT languages are composed of
model transformation rules, where each rule deals with the construction of part of the target

2In the article, we use the terms input/output models/metamodels and source/target models/metamodels indistinctly. 



model. They match input elements from the source model and generate output elements that
compose the target model.

There is a plethora of frameworks and languages to define MTs, such as Henshin [10], AGG
[97], Maude [26], AToM3 [30], e-Motions [86], VIATRA [27], MOMoT [35–37], QVT [45], Kermeta
[56], JTL [24], and ATL [62]. In most of these frameworks and languages, model transformations
are composed of transformation rules. Among them, we focus in this article on the ATL language
due to its importance in both the academic and the industrial arenas.

2.2.1 ATLas Transformation Language. ATL has come to prominence in the model-driven engi-
neering community due to its flexibility, support of the main meta-modeling standards, usability
that relies on strong tool integration with the Eclipse world, and a supportive development com-
munity [61, 84].

ATL is a textual rule-based model transformation language that provides both declarative and
imperative language concepts. It is thus considered a hybrid model transformation language. An
ATL transformation is composed of a set of transformation rules and helpers.3 Each rule de-
scribes how certain output model elements should be generated from certain input model ele-
ments. Declarative rules are called matched rules, while (unique) lazy and called rules are invoked
from other rules. Rules are mainly composed of an input pattern and an output pattern. The input
pattern is used to match input pattern elements that are relevant for the rule. The output pattern
specifies how the output pattern elements are created from the input model elements matched by
the input pattern. Each output pattern element can have several bindings that are used to initialize
its attributes and references.

Methods in the ATL context are called helpers. There exist two different, although very similar
from their syntax, kinds of helpers: the functional and the attribute helpers. Both can be defined
in the context of a given data type, and functional helpers can accept parameters, while attribute
helpers cannot. Functional helpers make it possible to define factorized ATL code that can then
be called from different points of an ATL program. Attribute helpers, in turn, can be viewed as
constants.

2.2.2 Transformation Example. The BibTeX2DocBook model transformation [54], taken from the
open-access repository known as ATL Transformation Zoo [12], is used throughout this article as
running example. It transforms a BibTeXML model to a DocBook composed document. BibTeXML4

is an XML-based format for the BibTeX bibliographic tool. DocBook [107] is an XML-based format
for document composition.

The aim of this transformation is to generate, from a BibTeXML file, a DocBook document that
presents the different entries of the bibliographic file within four different sections. The first and
second sections provide the full list of bibliographic entries and the sorted list of the different
authors referenced in the bibliography, respectively, while the third and last sections present the
titles of the bibliography titled entries (in a sorted way) and the list of referenced journals (in article
entries), respectively.

The metamodels of this transformation are displayed in Figure 2. The BibTeXML metamodel
(Figure 2(a)) deals with the mandatory fields of each BibTeX entry (for instance, author, year,
title, and journal for an article entry). A bibliography is modeled by a BibTeXFile element. This
element is composed of entries that are each associated with an id. All entries inherit, directly or
indirectly, from the abstract BibTeXEntry element. The abstract classes AuthoredEntry, DatedEntry,
TitledEntry, and BookTitledEntry, as well as the Misc entry, directly inherit from BibTeXEntry.

3https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language.
4http://bibtexml.sourceforge.net/.

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
http://bibtexml.sourceforge.net/


Fig. 2. Metamodels of the BibTeX2DocBook transformation (from Reference [54]).

Concrete BibTeX entries inherit from some of these abstract classes according to their set of 
mandatory fields. There are 13 possible entry types: PhDThesis, MasterThesis, Article, TechReport, 
Unpublished, Manual, InProceedings, Proceedings, Booklet, InCollection, Book, InBook, and Misc. An  
authored entry may have several authors.

The DocBook metamodel (Figure 2(b)) represents a limited subset of the DocBook definition. 
Within this metamodel, a DocBook document is associated with a DocBook element. Such an 
element is composed of several Books that, in turn, are composed of several Articles. An  Article 
is composed of sections (class named Sect1) that are ordered. A Sect1 is composed of paragraphs 
(class Para) that are also ordered within each section. Both Article and Sect1 inherit from the 
TitledElement abstract class.

The BibTeX2DocBook model transformation [54] is shown in Listing 1, which contains nine rules. 
We may mention that the transformation is shown here in a “compressed” way in order not to 
occupy too much space, since, normally, line breaks are used when, for instance, adding a new 
binding. The first rule, Main, creates the structure of a DocBook from a BibTeXFile and creates four 
sections with their corresponding titles. The paragraphs of each section are to be resolved when 
the remaining rules are executed. This rule uses the helpers authorSet, titledEntrySet, and  articleSet. 
They return, respectively, the sequence of distinct authors (with unique names), TitledEntries (with 
unique titles), and Articles (with unique journal names) referenced in the input BibTeX model.

The second rule, Author, creates a paragraph for each author and sets as content the author 
name. The third one creates a paragraph for each untitled entry and uses helper buildEntryPara 
to set its content. This helper builds a string containing all information of a given BibTeXEntry. 
The fourth rule, TitledEntry_Title_NoArticle, creates two paragraphs for each TitledEntry that is not 
an article and that is included in the set of TitledEntry with unique titles (helper titledEntrySet). 
The next one, TitledEntry_NoTitle_NoArticle, creates a paragraph for each TitledEntry that is not 
an article and is not included in the set of TitledEntry with unique titles. The next two rules, 
Article_Title_Journal and Article_NoTitle_Journal, create paragraphs for those articles whose title 
is either included in the set of TitledEntry with unique titles or not, respectively. Also, the article 
must be included in the set of Articles whose journal name is unique (helper articleSet). Finally, the 
eighth and ninth rules, Article_Title_NoJournal and Article_NoTitle_NoJournal, create paragraphs 
for those articles whose title is either included in the set of TitledEntry with unique titles or not, 
respectively. Also, the article must not be included in the set of Articles whose journal name is 
unique (helper articleSet). We refer the interested reader to the document explaining the complete 
model transformation [54].





Listing 1. BibTeX2DocBook MT.

2.2.3 ATL Internal Traces Mechanism. The ATL engine works in two steps. First, all elements 
are created. Second, their features are initialized. This second phase implies to resolve the corre-
sponding references. For instance, in the transformation shown in Listing 1, line 45 initializes the 
paras reference of the Sect1 element created. This reference will actually point elements that are 
created in the first phase by rule Author, as we explain with an example later.

To resolve these references, ATL uses an internal tracing mechanism. Thereby, every time a rule 
is executed, it creates a new trace and stores it in the internal trace model. A trace model can be 
automatically obtained from a transformation execution, e.g., by using Jouault’s TraceAdder [60], 
and is composed of a set of traces, one for each rule execution. In our approach, we obtain trace 
models that conform to the metamodel displayed in Figure 3(a). A trace captures the name of the 
applied rule and the elements instantiating classes of the source metamodel (sourceElems reference) 
that are used to create new elements that instantiate classes in the target metamodel (targetElems



Fig. 3. Traces in model transformations.

reference). The elements pointed by such references are represented with EObject, because, when
the metamodel is instantiated in a specific trace model, they can be any element of the source
and target models, respectively. The execution of both imperative—(unique) lazy and called—and
declarative—matched—rules are stored in the traces. This means that we have three models (the
source model, the target model and the trace model) linked by several so-called inter-model ref-
erences. Therefore, by navigating the traces, the ATL engine obtains information of which target
element(s) have been created from which source element(s) and by which rule.

An example that reflects the information stored in a trace model is displayed in Figure 3(b). In
the left-hand side of the figure we can see a sample source model composed of three elements. In
the right-hand side we have the target model obtained after transforming elements bib and a—to
keep the figure simple, we do not display the transformation of element e. The part in the middle of
the figure represents the trace model. Since two different elements, bib and a, are transformed by
two different rules, we have two traces, tr1 and tr2. The first one, created by the execution of rule
Main, records the generation of elements doc, boo, se2 and art from element bib; while tr2 stores
the generation of p1 from a by rule Author.

The interesting aspect in this figure is the paras reference between se2 and p1 in the target model,
created using the traces. The process how ATL resolves such association is the following. As men-
tioned, after creating all target elements in the first phase, it resolves the references in the second
phase. In our example, it means resolving the binding in line 45, where helper authorSet returns all
Authors in the source model. Therefore, such binding is expressing that the paras reference from
element se2 in the target model should point all elements of type Author in the source model, a in
our case. Of course, target elements cannot point source elements, so the ATL engine searches in
the traces to recover the target elements created from Author elements. In our example, it recovers
element p1, created from Author a, by inspecting trace tr2.

When ATL resolves the references, it recovers the first target element created by the cor-
responding rule, i.e., the first one that is specified in the rule (right after the to part of the
rule). For instance, element entry_para (line 71 in Listing 1) would be the one recovered when



Table 1. An Example Showing the Suspiciousness Value Computed Using
Tarantula (Taken from Reference [115])

Statement Code tc1 tc2 tc3 NCF NCS Susp Rank
s1 input(a) • • • 1 2 0.5 3
s2 i = 1; • • • 1 2 0.5 3
s3 sum = 0; • • • 1 2 0.5 3
s4 product = 1; • • • 1 2 0.5 3
s5 if (i < a) { • • • 1 2 0.5 3
s6 sum = a + i; • 1 0 1 1
s7 product = a ∗ i; // BUG: 2i→ i • 1 0 1 1
s8 } else { • • 0 2 0 10
s9 sum = a − i; • • 0 2 0 10
s10 product = a / i; • • 0 2 0 10
s11 } • • 0 2 0 10
s12 print(sum); • • • 1 2 0.5 3
s13 print(product); • • • 1 2 0.5 3
Execution Results S S F

resolving a binding reference with rule TitledEntry_Title_NoArticle. To specify a different element 
to recover when resolving the references, ATL provides the resolveTemp function. For instance, 
the resolveTemp function used in line 47 makes the engine retrieve the target element identified 
with the string “title_para,” i.e., the one created in line 72.

As  we  explain in Section 3, having this trace information is key in our approach, where we are 
interested only in the information of the rules that have been fired to apply our SBFL approach.

Please note that the availability of such a simple trace model is useful in many different model 
transformations languages, what also increases the applicability of our approach beyond ATL. For 
instance, Falleri et al. [33] propose a simple trace metamodel for Kermeta model transformations, 
and Anastasakis et al. [8] simply require the link between source and target models in an Alloy 
transformation. Rose et al. [87] mention the Fujaba and the MOLA (graphical transformation lan-
guage developed at the University of Latvia) traceability associations, similar to the one we use, 
and Troya and Vallecillo [102] apply the same trace metamodel to represent model transforma-
tions in Maude. Due to the importance of trace models, Jiménez et al. [123] propose a toolkit that  
allows not only the definition of model transformations but also supports trace generation.

2.3 Spectrum-Based Fault Localization

SBFL uses the results of test cases and their corresponding code coverage information to estimate 
the likelihood of each program component (e.g., statements) of being faulty. A program spectrum 
details the execution information of a program from a certain perspective, such as branch or state-
ment coverage [50]. Table 1 depicts an example showing how the technique is applied to a sample 
program [115]. This programs receives a natural number, a. If it is bigger than  1, then the program 
must print the result of adding 1 to such number as well as its double. Otherwise, it must print the 
number minus 1 as well as the number itself.

Having a look at the table, it horizontally shows the code statements of the program, i.e., its 
components. Note that a bug is seeded in statement s7, so that it does not multiply the number by 
2. Also note that SBFL considers all lines as statements, so, for instance, the line containing only
the character that closes a branch, “},” conforms statement s11. However, statement s5 includes 
a condition as well as the opening of a branch with character “{.” Therefore, the way of writing



a program may have an impact in the results returned by SBFL techniques. Vertically, the table
shows three test cases of the program. For each test case (i.e., tc1, tc2, and tc3), a cell is marked
with “•” if the program statement of the row has been exercised by the test case of the column,
creating what is known as coverage matrix [4]. Additionally, the final row depicts the outcome of
each test case, either “Successful” or “Failed,” conforming the so-called error vector [4]. Based on
this information, it is possible to identify which components were involved in a failure (and which
ones were not), narrowing the search for the faulty component that made the execution fail.

Once a coverage matrix and an error vector as those shown in Table 1 are constructed, a number
of techniques can be used to rank the program components according to their suspiciousness, that
is, their probability of containing a fault. For instance, a popular fault localization technique is
Tarantula [59], which for a program statement is computed as (NCF /NF )/(NCF /NF + NCS/NS ),
where NCF is the number of failing test cases that cover the statement, NF is the total number of
failing test cases, NCS is the number of successful test cases that cover the statement, and NS is the
total number of successful test cases. The suspiciousness score of each statement is in the range
[0,1], i.e., the higher the suspiciousness score of each component, the higher the probability of
having a fault. The values of NCF , NCS , and the Tarantula suspiciousness value for each statement
are given in the sixth, seventh, and eighth columns of Table 1, respectively. Let us focus for instance
in the row for statement s4. NCF is 1, because only the failing test case tc3 covers the statement.
Then, NCS is 2, because both tc1 and tc2 cover the statement, and they are successful test cases. By
applying the formula, we get a value of 0.5 for suspiciousness. Finally, the last column indicates
the position of the statement in the suspiciousness-based ranking where top-ranked statements
are more likely to be faulty. In the example, the faulty statement s7 is ranked first.

The effectiveness of suspiciousness metrics is usually measured using the EXAM score [117,
120], which is the percentage of statements in a program that has to be examined until the first
faulty statement is reached, i.e.,

EXAMScore =
Number o f statements examined

Total number o f statements
.

It is noteworthy that suspiciousness techniques may often provide the same value for different
statements, as they are tied for the same position in the ranking, e.g., statements s6 and s7 in Table 1.
To break ties, different approaches are applicable, such as measuring the effectiveness in the best-,
average-, and worst-case scenarios, using an additional technique to break the tie or using some
simple heuristics such as alphabetical ordering [115]. In the best-case scenario, the faulty statement
is inspected first in the tie. Conversely, the worst-case scenario is the one where it is inspected last.

In our example, assuming that the statement s7 is examined in second place (worst-case sce-
nario), the EXAM score of Tarantula in the previous example would be 2

13 = 0.153, i.e., 15.3% of
the statements must be examined to locate the bug.

The values that the EXAM score can have depend on the number of statements of the program
under test, which goes in the denominator of the formula. In the example, the best EXAM score for
a statement would be 1

13 = 0.0769. This EXAM score indicates that the buggy statement should be
examined first. On the contrary, the worst EXAM value is always 1. In the example, if a statement
is to be inspected last, then it has the EXAM score 13

13 = 1. Therefore, the set of values for the EXAM
score, from best to worst, is { 1

num_statements ,
2

num_statements , . . . ,
num_statements
num_statements }.

3 SPECTRUM-BASED FAULT LOCALIZATION IN MODEL TRANSFORMATIONS

In this section, we describe our SBFL approach for debugging model transformations. We first
describe how the coverage matrix and the error vector are constructed. This is followed by an
explanation of the suspiciousness calculation of the different transformation rules and the metric



Table 2. Tarantula [59] Suspiciousness Values for the Simplified BibTeX2DocBook MT When OCL2 Fails

T. Rule tc02 tc12 tc22 tc32 tc42 tc52 tc62 tc72 tc82 tc92 NC F NU F NCS NU S NC NU Susp Rank

tr1 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr2 (BUG) • • • • • • • • • 9 0 0 1 9 1 1 1

tr3 • • • • • • • • 7 2 1 0 8 2 0.44 7

tr4 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr5 • • • • • • • • • 8 1 1 0 9 1 0.47 6

tr6 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr7 • • 2 7 0 1 2 8 1 1

tr8 • • • • • • 5 4 1 0 6 4 0.36 8

tr9 • • • 2 7 1 0 3 7 0.18 9

Test Result F S F F F F F F F F

used for measuring the effectiveness of SBFL techniques. Then we describe the methodology to 
apply our approach. The section ends with an explanation of the implementation and automation 
of our approach.

3.1 Constructing the Coverage Matrix and Error Vector

The construction of the coverage matrix requires information about the execution of the MT with 
a set of source models: S = {s1, s2, . . . , sn }. These models must conform to the source metamodel. 
The oracle that determines whether the result of a MT is correct or not is a set of OCL assertions: 
O = {ocl1, ocl2, . . . ,oclm }. These assertions are defined by specifying the expected properties of the 
output models of the transformation or properties that the <input, output> model pairs must sat-
isfy. As an example, Listing 2 shows three OCL assertions for the model transformation described 
in Section 2.2.2, where classes of the source and target metamodels have the prefixes Src and Trg, 
respectively. We consider a test case as a pair composed of a source model and an OCL assertion: 
tci j  = < si , oclj >. Therefore, the test suite is composed of the Cartesian product of source models 
and OCL assertions: T = S × O = {tc11, tc12, . . . , tcnm }. The test case tci j  produces an error if the 
result of executing the MT with the source model si does not satisfy the OCL assertion oclj . It is  
worth noting that OCL assertions must hold for any source model. Therefore, an OCL assertion 
is not satisfied for a MT when there is, at least, one test case where it is violated. This means, for 
instance, that for ocl1 to be satisfied, it must be satisfied in {tc11, tc21, . . . , tcn1}.

We may recall that this article focuses on debugging and not testing. Thus, we do not impose any 
constraint on how the source models are generated, either manually or automatically, or on the 
type of OCL assertions used. However, please note that the effectiveness of SBFL is directly related 
to the design of the test cases. For instance, having only one test case is useless, since no coverage 
matrix can be created. Besides, the source models should have a good coverage of the MT and, at 
the same time, be diverse. This way, different source models will likely fire different parts of the 
model transformation, and together they will exercise all rules and will produce a useful spectra.

Table 2 depicts a sample coverage matrix constructed using our approach. Horizontally, the 
table shows the transformation rules in which we aim to locate bugs. In particular, we list the 
nine transformation rules <tr1, tr2, . . . , tr9> of the BibTeX2DocBook example [54], where a bug 
has been seeded in tr2. Vertically, the table shows 10 test cases aiming to check the correctness of 
constraint OCL2 in Listing 2, <tc02, tc12, . . . , tc92>. A cell is marked with “•” if the transformation 
rule of the row has been exercised by the test case of the column. The information about the rules 
triggered by a given test case can be collected by inspecting the trace model, e.g., using Jouault’s



Listing 2. Sample OCL assertions for the BibTeX2DocBook MT.

TraceAdder [60] (cf. Section 2.2.3). The final row depicts the error vector with the outcome of each
test case, either successful (“S”) or failed (“F”). In the example, all test cases fail except tc12, i.e.,
OCL2 is violated.

Note that by grouping those test cases using the same OCL assertion we can simplify debugging
by providing not only the most suspicious transformation rules but also the specific assertion
revealing the failure. This is very useful for the user of our approach, since (s)he can focus on
the non-satisfied assertion to repair the model transformation when the faulty rule is found. In
practice, this means that our approach needs to generate a coverage matrix and an error vector for
each violated OCL assertion, since each of them is dealt with independently from the others.

3.2 Calculating Suspiciousness

The following notation will be used throughout the article and is used in our implementation
to compute the suspiciousness of transformation rules from the information collected in the
coverage matrix and the error vector. This notation is directly translated from the context of
SBFL in software programs[115] by using transformation rules as the components (e.g., instead
of statements), namely:

NCF number of failed test cases that cover a rule
NU F number of failed test cases that do not cover a rule
NCS number of successful test cases that cover a rule
NU S number of successful test cases that do not cover a rule
NC total number of test cases that cover a rule
NU total number of test cases that do not cover a rule
NS total number of successful test cases
NF total number of failed test cases

Table 2 shows the values of NCF , NU F , NCS , NU S , NC , and NU for each transformation rule. The
values of NS and NF are the same for all the rows, 9 and 1, respectively, and are omitted. Based on
this information, the suspiciousness of each transformation rule using Tarantula is depicted in the
column “Susp,” followed by the position of each rule in the suspiciousness-based ranking. In the
example, the faulty rule tr2 is ranked first, tied with tr7. Assuming that the faulty rule was inspected
in the second place (worst-case scenario), the EXAM score would be calculated as 2

9 = 0.222%, i.e.,
22.2% of the transformation rules need to be examined to locate the bug.

3.3 Methodology

In this section, we describe the proposed methodology to help developers debug model transforma-
tions by using our approach based on spectrum-based fault localization. It is graphically depicted
in Figure 4.



Fig. 4. Debugging of a MT applying our SBFL approach.

(1) The inputs have to be provided, namely the Model Transformation under test as well as
the sets of Source Models and OCL Assertions.

(2) The approach executes and indicates whether there is any failure, ending the process if
there is none.

(3) If there is a failure, then it indicates the set of non-satisfied OCL assertions, i.e., those that
are violated for at least one test case. As explained in Section 3.1, it constructs a coverage
matrix and an error vector for each non-satisfied assertion and returns the suspiciousness-

based rankings in each case.
(4) The user picks the ranking of one of the OCL assertions to locate and fix the faulty rule that

made the assertion fail. As described in Section 4.2.5, we study the effectiveness of 18 SBFL
techniques. The idea is to use the ranking of the best techniques, which are discovered in
Sections 4.3 and 4.4.

(5) Now, the user has a Fixed Model Transformation that has potentially less bugs than the
original Model Transformation. The user can decide whether to use it as input for the
approach, together with the Source Models and OCL Assertions, or to keep repairing it
according to the suspiciousness rankings obtained for the remaining non-satisfied OCL
assertions.

(6) In the upcoming execution of the approach with the Fixed Model Transformation, fewer
OCL assertions should be violated, and the user would repeat the process to keep fixing
the bugs. This process is repeated iteratively until all bugs have been fixed.

3.4 Implementation and Automation

Our approach is supported by a toolkit. It has been implemented for debugging ATL model trans-
formations. Within one run, it executes the MT with all the input models, checks which assertions 
are violated, and returns the suspiciousness-based rankings for the violated assertions together 
with the corresponding coverage matrices and error vectors. Additionally, if we indicate as input 
the faulty rules, the approach also returns the EXAM score of the results. This is possible thanks 
to a Java program from which ATL transformations can be triggered, indicating their inputs and 
doing any post-processing with the outputs. In this section, we describe the implemented tasks 
used for automating and orchestrating all this process.

The overview of the implementation and automation of our approach is depicted in Figure 5. 
As we can see, it consists of six steps, which are explained in the following:



Fig. 5. Implementation and automation of our approach.

(1) The tool of which we have made use for checking the satisfaction of the OCL assertions is
OCL Classic SDK: Ecore/UML Parsers, Evaluator, Edit,5 which is part of the Eclipse Modeling

Tools. With this tool, we can check the satisfaction of OCL assertions of a given model
conforming to a metamodel. However, in our approach, the OCL assertions are typically
defined on both metamodels, namely the input and output metamodels. For this reason, we
need to merge both metamodels into one and do the same thing for the <input, output>
model pairs. Therefore, the first step in our approach takes the Input Metamodel and Output

Metamodel as input and, with the Merge Metamodels Transformation, it creates a Joint

Metamodel. Due to the possibility of having classes with the same name in the input and
output metamodels, this transformation puts the prefixes “Src” and “Trg” in all classes of
the input and output metamodels, respectively.

Besides, the OCL Checker requires the Java code of the Joint Metamodel. This can be
generated out of the box by the EMF Generator Model, so this is included in this first step.

(2) The next step in our approach is to run the ATL Transformation Under Test with all the
Input Models to generate the corresponding Output Models. Our Java program orchestrates
all these model transformation executions.

(3) For the same reason as explained in the first step, we need to merge the input and output
models into the so-called Joint Models. These models must conform to the Joint Metamodel

obtained in the first step. The Merge Models Transformation generates all the Joint Models

for all the <InputModeli ,OutputModeli> pairs.
(4) The next step is to check the Set of OCL Assertions. This must be done for all the Joint

Models constructed after the executions of the model transformation. As explained in the
first step, we need for this the Java code obtained from the Joint Metamodel. This step
produces as output information about the satisfiability of the OCL assertions, captured
in the figure as Matrices with (Non-)Satisfaction of OCL Assertions. This is different from
the coverage matrices explained before, since the purpose now is to identify those OCL

5https://eclipse.org/modeling/mdt/downloads/?project=ocl.

https://eclipse.org/modeling/mdt/downloads/?project=ocl


assertions that fail for at least one test case, so that coverage matrices and error vectors
will be then computed for such assertions. This matrix, used internally by the program,
has the OCL assertions as rows and the joint models as columns. Cell <i, j> is assigned
1 if the ith OCL assertion is not satisfied when executing the model transformation with
the jth input model, and 0 otherwise. Therefore, an OCL assertion has failed when there
is at least a 1 in its row.

(5) With the information obtained in the previous step, plus the information of the rules
execution stored in the Trace Models (cf. Section 2.2.3), this step, namely Suspiciousness-

Based Rankings Computation, produces the Suspiciousness-Based Rankings for all the non-
satisfied OCL assertions. In our implementation, we have integrated 18 techniques, so
18 rankings for each non-satisfied assertion are computed. Any other technique can be
trivially included in our tool.

To obtain these rankings, we first need to construct the coverage matrices and error
vectors. This is done with the information of the (non-)satisfied OCL assertions in the
execution of each input model. For the coverage information, we need the Trace Models.
This means that the coverage matrices are constructed by reading all trace models. As we
see for instance in Table 2, the coverage matrices store information of the rules exercised
in the execution with each input model. For the creation of the error vectors, we need
information of the non-satisfied OCL assertions.

With the information of the coverage matrices and error vectors, we are able to auto-
matically compute the eight values described in Section 3.2 for computing the suspicious-
ness, namely NCF , NU F , NCS , NU S , NC , NU , NS , and NF . Finally, with these values and
the formulae for calculating the suspiciousness with the 18 techniques considered in this
study (cf. Section 4.2.5 and Table 6), we obtain the Suspiciousness-Based Rankings. These
rankings, together with the coverage matrices, error vectors, and values, are returned as
comma-separated values (CSV) files by our tool. In particular, it returns a detailed CSV
file for each non-satisfied OCL assertion.

(6) Finally, our tool returns the EXAM scores—in the best-case, worst-case, and average-case
scenarios (cf. Section 4.2.6)—for all the 18 techniques and for every non-satisfied OCL
assertion. This information is inserted in the CSV files mentioned before. As explained in
Section 3.2, this score basically measures the percentage of rules that need to be checked
until the faulty rule is found. For this reason, we need as input information of which the
buggy rules are represented in the figure as Information About Buggy Rules. The automatic
computation of the EXAM score has been extremely useful for evaluating our approach,
since no manual calculations have been needed. The results of the evaluation are described
in the next section.

4 EVALUATION

4.1 Research Questions

The research questions (RQs) that we want to answer in this work are the following:

• RQ1 - Feasibility. Is it possible to automate the process of locating faults in model transfor-

mations applying spectrum-based techniques? Since, at the time of writing, there was no pro-
posal for applying spectrum-based techniques for locating faults in model transformations,
we want to answer whether this is feasible. This means that we want to check whether it is
possible to automatically obtain for a model transformation a suspiciousness-based rank-
ing, according to SBFL techniques, that indicates which rules should be inspected first in
case of failure.



Table 3. Model Transformations Used as Case Studies and Their Characteristics

Transformation
Name

# Classes MM
Input - Output # LoC

# Rules
M-(U)L-C # Helpers

Rule
inheritance

Imperative
part Conditions Filters resolveTemp

UML2ER 4 - 8 53 8-0-0 0 � × × × ×
BibTeX2DocBook 21 - 8 393 9-0-0 0 × × � � �

CPL2SPL 33 - 77 503 18-1-0 6 × × � � ×
Ecore2Maude 13 - 45 1055 7-7-25 41 × � � � �

• RQ2 - Effectiveness. How effective are state-of-the-art techniques for suspiciousness com-

putation in the localization of faulty rules in model transformations? Since many techniques
have been proposed in the literature in different fields, we want to determine how they be-
have, comparing among each other, in the context of model transformations. This means we
want to study which techniques provide the best suspiciousness-based rankings and which
ones provide the worst rankings.

• RQ3 - Accuracy. Is our approach able to accurately locate faulty rules in model transforma-

tions? After studying the 18 techniques and comparing them, we want to conclude whether
it is possible to state that applying spectrum-based techniques can accurately help the de-
veloper in the debugging of model transformations. This will be answered affirmatively if
the techniques that are more effective, according to the answer to the previous RQ, provide
accurate suspiciousness-based rankings.

• RQ4 - Dynamic vs Static. How does our approach behave in comparison with a static ap-

proach? As it is approach dynamic, we want to compare its performance with a notable
approach for locating bugs in model transformations applying a static approach [18].

4.2 Experimental Setup

4.2.1 Case Studies. We have used four case studies to evaluate our approach and developed
solution. Two of them have been taken from the open-source ATL Zoo respository [12] and the
two others from research projects and tools. They all differ regarding the application domains, size
of metamodels, and the number and types of ATL features used. Table 3 summarizes some infor-
mation regarding the transformations. For instance, the size of the metamodels vary from 4 to 33
classes in the input metamodels and from 8 to 77 classes in the output metamodels. Regarding the
size of the transformations, the number of rules ranges from 8 to 39 (in the table, M stands for
matched rules, (U)L for (unique) lazy rules, and C for called rules) and the lines of code (LoC) from
53 to 1055. This means that the smaller transformation is approximately 20 times smaller, in terms
of LoC, than the biggest one. Furthermore, the transformations contain from no helper to 41 of
them. The table includes further information, namely whether rule inheritance, imperative rules,
conditions, and filters are used within the transformations. We have slightly tweaked some trans-
formations to increase their variability. For instance, in the BibTeX2DocBook, we have integrated
the helpers within the rules, since the same transformation with the same behavior can be written
with and without helpers [80], or in the CPL2SPL we have included some rules to transform fea-
tures that were not included in the original transformation. All transformations are available on
our website [100] and briefly described in the following:

• UML2ER. This transformation is taken from the structural modeling domain. It gener-
ates Entity Relationship (ER) diagrams from UML Class Diagrams. This transformation is
originally taken from References [111], and we have considered the version proposed in
Reference [18], which represents an extension. The aspect to highlight in this model trans-
formation is the high use of rule inheritance. If Ri < Rj means that Ri inherits from Rj,



then we have R8,R7 < R6; R6,R5 < R4; R4,R3,R2 < R1. The presence of inheritance may
worsen the results of SBFL techniques. Imagine we have, for instance, R3 < R2 < R1 in a
model transformation, and rule R3 is executed. In the trace, it is stored not only the execu-
tion of R3 but also the execution of R2 and R1, since the code in the out part of these rules
is actually executed. Therefore, if we have an error in one of the three rules, then the sus-
piciousness rankings will not make any difference between the three rules, with the three
of them having the same suspiciousness value.

• BibTeX2DocBook. This case study is the one used as running example in our article. It is
shown in Listing 1, and a complete description is available in Reference [54].

• CPL2SPL. This transformation, described in Reference [63], is a relatively complex example
available in the ATL Zoo [12]. It handles several aspects of two telephony DSLs, SPL and
CPL, and was created by the inventors of ATL.

• Ecore2Maude. This is a very large model transformation that is used by a tool called e-

Motions [86]. It converts models conforming to the Ecore metamodel into models that con-
form to the Maude [26] metamodel to apply some formal reasoning on them afterwards.

4.2.2 Test Suite. Since this is a dynamic approach, we need input models to trigger the model
transformations. For evaluating our work, we have developed a lightweight random model gener-
ator that, given any metamodel, produces a user-defined number of random model instances. The
rationale behind our model generator is to produce a set of models with a certain variability de-
gree. It creates an instance of the root class of the metamodel and, from such instance, it traverses
the metamodel and randomly decides, for each containment relationship, how many instances to
create for each contained class, if any. This process is repeated iteratively until the whole meta-
model is traversed. After all instances and containment relationships are set, non-containment
relationships are created, respecting the multiplicities indicated in the metamodel. Also, attributes
are given random values. Alternatively, it is possible to generate models with some predefined
structure, by indicating the minimum and maximum number of entities to create. The values to be
given to specific attributes can also be preset by the user.

For our evaluation, we have created 100 models conforming to the input metamodel of each of
the case studies with our model generator. We may mention that any model generator tool that
produces models with a certain degree of variability could be used for generating the models—
recall that such variability is necessary so that the input models exercise different parts of the
transformation, producing a useful spectra. For instance, the EMF (pseudo) random instantiator

could be used.6 Also, if there were enough models available produced manually, then these could
be used, and we would not need to execute any models generator.

In total, we have created 117 OCL assertions for the four case studies, as displayed in the first
part of column 3 in Table 4. These assertions are satisfied by the original version of the model
transformations. Some of them correspond to the OCL assertions defined in the static approach by
Burgueño et al. [18], since we want to compare our approach with this one (cf. Section 4.5)—see
the second part of column 3. As indicated in the table, we use 100 input models for evaluating each
case study. According to Section 3.1, the total number of test cases is measured as the Cartesian
product of input models and OCL assertions: |T | = |S | × |O |. As shown in the table, we have 1, 400,
2, 700, 3, 400, and 4, 200 test cases in each of the transformations, having a total of 11,700 test cases.

4.2.3 Mutants. To test the usability and effectiveness of our approach, we apply mutation anal-
ysis [58], so that we have produced mutants for all model transformations, where artificial bugs
have been seeded. We have used the operators presented in Reference [98] and have applied them

6It is described on http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/.

http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/


Table 4. Case Studies and Artifacts for the Evaluation

Case study
# Input
models

# OCL assertions
(/ from [18])

# Test suite
( |T | = |S | × |O |) # Mutants

# OCL assertions
violated

UML2ER 100 14/10 1,400 18 90

BibTeX2DocBook 100 27/16 2,700 40 269

CPL2SPL 100 34/15 3,400 50 150

Ecore2Maude 100 42/3 4,200 50 155

Total 400 117/44 11,700 158 664

in the different case studies. The aim of these operators is the same as the ones presented by
Mottu et al. [77], i.e., they try to mimic common semantic faults that programmers introduce in
model transformations. While Mottu et al. propose operators independent of any transformation
language, we use a set of operators specific for ATL [62]. For instance, Mottu et al. [77] present
several operators related to model navigation, such as ROCC: relation to another class change, which
in Reference [98] it is materialized as binding feature change.

Recall that the aim of our approach is to semantically check the correctness of model trans-
formations against a set of OCL assertions and to help localize the bugs. These OCL assertions
are specified on input and output models. This means that, to be able to apply the approach, the
model transformation needs to finish, i.e., it must generate output models. For this reason, the
model transformation mutants that we have generated do not throw runtime errors for any of the
test models created, i.e., they all finish their execution and generate output models. To be able to
have such restricting mutants and as many other approaches do [9, 46, 77], we have generated
them manually using the operators proposed in Reference [98].

In total, we have manually created 158 mutants, where each mutant is a variation of the original
model transformation. For instance, Listing 3 displays the excerpt of a mutant where the operator
binding deletion is used for deleting the only binding of rule 2. Our set of OCL assertions in the
different case studies is complete enough to kill all 158 mutants, i.e., all mutants make at least
one OCL assertion fail, indicating there is an error in the MT. Table 4 displays the number of
mutants that have been created for each case study (column 5), while Table 5 presents the mutation
operators [98] that have been used for creating the mutants, and the number of mutants in which
the operators are applied. Please note that fewer mutants have been created for the UML2ER case
study. This is due to the fact that this model transformation is the smallest one, and it is actually
almost four times smaller than the second smaller one in terms of lines of code (cf. Table 3).

We may mention that more than one mutation operators can be used for constructing one mu-
tant. For instance, we can combine out-pattern element addition with binding addition to create a
mutant that adds one more target element and updates one of its features. We have also created
mutants with more than one faulty rule. The reason for including higher-order mutants [57, 81]
is the definition of realistic mutants, i.e., mutants that produce valid models and reproduce typical
mistakes caused by developers. In fact, as presented in the survey on software fault localization
by Wong et al. [115], having programs with a single bug (i.e., each faulty program has exactly
one bug) is not the case for real-life software, which in general contains multiple bugs. Results
of a study [49] based on an analysis of fault and failure data from two large, real-world projects
show that individual failures are often triggered by multiple bugs spread throughout the system.
Another study [69] also reports a similar finding. The very same reality occurs in model trans-
formations, where it is not common to have isolated faults located in only one rule. Indeed, since
some rules have implicit relations among them (cf. Section 2.2.3), it is very common to have errors
spread in several rules.



Table 5. Mutation Operators Used and Number of Mutants Where They Are Applied

Mutantion Operator (from Reference [98]) UML2ER BT2DB CPL2SPL Ecore2Maude Total

In-pattern element addition 1 2 5 3 11

In-pattern element class change 0 1 4 0 5

Filter addition 1 0 5 5 11

Filter deletion 0 3 1 0 4

Filter condition change 3 6 1 0 10

Out-pattern element addition 4 5 11 10 30

Out-pattern element deletion 0 3 4 8 15

Out-pattern element class change 2 3 6 0 11

Out-pattern element name change 0 1 0 3 4

Binding addition 2 3 8 0 13

Binding deletion 3 13 17 11 44

Binding value change 3 17 12 15 47

Binding feature change 1 1 5 6 13

Total mutation operators used 20 58 79 61 218

Listing 3. Excerpt of a mutant of BibTeX2DocBook MT.

4.2.4 Set of Non-Satisfied OCL Assertions. As described, we have produced 158 mutants that
correspond to buggy versions of the model transformations in the different case studies. Each one
of them may violate one or more of the OCL assertions defined for the corresponding case study (of
course, more than one mutant may violate the same assertion). In total, the 158 mutants make 664
OCL assertions fail, as displayed in the last column of Table 4, so the results of our evaluation are
extracted from the 664 suspiciousness-based rankings obtained, one for each violated assertion.
These rankings are the results of suspiciousness values calculated with 664 coverage matrices and
with the corresponding 664 error vectors. These coverage matrices have different sizes depending
on the case study. All of them have 100 columns, since we are using 100 input models, and the
number of rows is determined by the number of rules in the model transformation.

4.2.5 Techniques for Suspiciousness Computation. We are interested in studying how different
techniques7 for computing the suspiciousness of program components behave in the context of
model transformations. To this end, we have surveyed articles that apply spectrum-based fault
localization techniques in different contexts and have selected the 18 techniques that, together with
their corresponding formulae, are displayed in Table 6. Tarantula [59] is one of the best-known
fault localization techniques. It follows the intuition that statements that are executed primarily
by more failed test cases are highly likely to be faulty. Additionally, statements that are executed
primarily by more successful test cases are less likely to be faulty. The Ochiai similarity coefficient
is known from the biology domain, and it has been proven to outperform several other coefficients
used in fault localization and data clustering [3]. This can be attributed to the Ochiai coefficient

7Throughout the evaluation, we use the terms techniques and metrics indistinctly.



Table 6. Techniques Applied for Suspiciousness Computation

Technique Formula

Arithmetic Mean [117] 2(NC F×NU S−NU F×NCS )
(NC F+NCS )×(NU S+NU F )+(NC F+NU F )×(NCS+NU S )

Barinel [2] 1 − NCS

NCS+NC F

Baroni-Urbani & Buser [114]
√

NC F×NU S+NC F√
NC F×NU S+NC F+NCS+NU F

Braun-Banquet [115] NC F

max (NC F+NCS ,NC F+NU F )

Cohen [78] 2×(NC F×NU S−NU F×NCS )
(NC F+NCS )×(NU S+NCS )+(NC F+NU F )×(NU F+NU S )

D* [113] (NC F )∗

NCS+NF+NC F

Kulczynski2 [78] 1
2 × ( NC F

NC F+NU F
+

NC F

NC F+NCS
)

Mountford [114] NC F

0.5×((NC F×NCS )+(NC F×NU F ))+(NCS×NU F )

Ochiai [3] NC F√
NF×(NC F+NCS )

Ochiai2 [11] NC F×NU S√
(NC F+NCS )×(NU S+NU F )×(NC F+NU F )×(NCS+NU S )

Op2 [78] NCF − NCS

NS+1

Phi [74] NC F×NU S−NU F×NCS√
(NC F+NCS )×(NC F+NU F )×(NCS+NU S )×(NU F+NU S )

Pierce [115] (NC F×NU F )+(NU F×NCS )
(NC F×NU F )+(2×NU F×NU S )+(NCS×NU S )

Rogers & Tanimoto [73] NC F+NU S

NC F+NU S+2(NU F+NCS )

Russel-Rao [85] NC F

NC F+NU F+NCS+NU S

Simple Matching [115] NC F+NU S

NC F+NCS+NU S+NU F

Tarantula [59]
NC F

NF

NC F

NF
+

NCS

NS

Zoltar [55] NC F

NC F+NU F+NCS+
10000×NU F ×NCS

NC F

being more sensitive to activity of potential fault locations in failed runs than to activity in passed
runs. Ochiai2 is an extension of such technique [11, 78, 115]. Kulczynski2, taken from the field of
artificial intelligence, and Cohen have showed promising results in preliminary experiments [78,
117]. Russel-Rao has shown different results in previous experiments [85, 116, 117], while Simple

Matching has been used in clustering [78]. Reogers and Tanimoto presented a high similarity with
Simple Matching when ranking in the study performed in Reference [78]. The framework called
Barinel [70] combines spectrum-based fault localization and model-based debugging to localize
single and multiple bugs in programs. Zoltar [55] is also a tool set for fault localization. Arithmetic

Mean, Phi (Geometric Mean), Op2, and Pierce have been considered in some comparative studies
with other metrics [78, 115, 117]. Mountford behaves as the second best technique, among 17 of
them, for a specific program in a study performed in Reference [114], where Baroni-Urbani and



Buser is also studied. As for D*, its numerator, (NCF )∗, depends on the value of “*” selected. This
technique resulted the best technique in the study performed in Reference [113], where “*” was
assigned a value of 2. We have followed the same approach, so we have (NCF )2 in the numerator
of the formula.

Note that the computation of these formulae may result in having zero in a denominator. Dif-
ferent approaches mention how to deal with such cases [79, 118, 119]. Following the guidelines of
these works, if a denominator is zero and the numerator is also zero, then our computation returns
zero. However, if the numerator is not 0, then it returns 1 [119].

4.2.6 Evaluation Metric. To compare the effectiveness of the different SBFL techniques, we ap-
ply the EXAM score described in Section 2.3. In the context of this work, this score indicates the
percentage of transformation rules that need to be examined until the faulty rule is reached. Its
value is in the range [1/(num rules), 1], and the higher its value, the worse.

Since there can be ties in the rankings obtained from the suspiciousness values, we compute
the EXAM scores in the best-, worst-, and average-case scenarios. If the faulty rule is ranked in
the same position as several other rules, then the best-case scenario assumes that the faulty rule is
inspected first. In this sense, if the faulty rule is tied with many other rules, then the EXAM score is
likely to be low. On the contrary, the worst-case scenario assumes that the faulty rule is inspected
last. For this reason, if the faulty rule is tied with many other rules, then the EXAM score is likely
to be high. In between we have the average-case scenario, which considers that the faulty rule is
located in the middle place of a tie. Therefore, if it is in a tie with (n − 1) other rules, then it will
be inspected in the (n/2)th position.

4.2.7 Execution Environment. All the runs have been executed in a PC running the 64-bit OS
Windows 10 Pro with processor Intel Core i7-4770 @ 3.40GHz and 16GB of RAM. We have used
Eclipse Modeling Tools version Mars Release 2 (4.5.2), and we had to install the plugins ATL (we
have used version 3.6.0) and ATL/EMFTVM (version 3.8.0). Finally, Java 8 is required.

4.3 Experimental Results

Table 7 shows the descriptive statistics of the EXAM score for each suspiciousness computation
technique when applied to each case study on the three evaluation scenarios (average-, best-,
and worst-case scenarios)—ignore for now the rows with the numbers for Burgueño’15, as those
numbers are commented in Section 4.5.3. We may recall that the EXAM score, in the range (0, 1],
indicates the percentage of transformation rules that need to be inspected to locate the faulty
rule. This score is never 0, since the inspection of the faulty rule counts. For this reason, since the
MTs under test for each case study contain a different number of rules (9 in Bibtex2DocBook, 19
in CPL2SPL, 39 in Ecore2Maude, and 8 in URML2ER), the best possible values (the case where the
faulty rule is ranked first in the suspiciousness rank) for the score are 1

9 = 0.1, 1
19 = 0.052631, 1

39 =
1
8

9
9

8
80.025641, and = 0.125, respectively. Conversely, the worst value is always 1 = = 19

19 = 39
39 = 

(the faulty rule is ranked last). The table also shows, in the last two columns, the average mean 
and standard deviation values considering all case studies.

Having a look at the average EXAM scores in the average-case scenario, we observe there are 
eight techniques where less than 25% of the rules need to be inspected to locate the faulty rule, i.e., 
their EXAM score is below 0.25. These are, ordered from lower to higher percentage, Mountford, 
Kulcynski2, Ochiai, Zoltar, Phi, Arithmetic Mean, Braun-Banquet, and  Op2. If we have a look at 
these eight techniques in the best-case scenario, then we see that Phi and Arithmetic Mean have the 
lowest, and therefore best, numbers. However, their numbers are the worst among these techniques 
in the worst-case scenario, implying that these techniques produced quite a large number of ties.



Table 7. Descriptive Statistics of the EXAM Score per Scenario and Case
Study and Overall Values

Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER AVERAGE

Technique mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

AC

Arithmetic Mean .111 .284 .240 .105 .166 .171 .077 .175 .181 .188 .313 .229 .234 .205

Barinel .333 .391 .216 .184 .245 .146 .192 .237 .172 .406 .363 .176 .309 .178

Braun-Banquet .222 .277 .182 .105 .192 .199 .090 .160 .179 .188 .337 .319 .242 .219

B-U & Buser .333 .365 .236 .105 .172 .189 .077 .134 .142 .188 .336 .319 .252 .221

Cohen .333 .343 .229 .105 .169 .170 .077 .176 .182 .188 .313 .229 .250 .202

Dstar .222 .326 .310 .263 .293 .213 .231 .423 .344 .469 .537 .298 .395 .292

Kulcynski2 .111 .177 .142 .105 .185 .203 .077 .133 .139 .188 .331 .313 .207 .199

Mountford .111 .204 .151 .053 .157 .194 .077 .123 .111 .188 .337 .316 .205 .193

Ochiai .111 .188 .147 .105 .185 .193 .077 .134 .143 .188 .333 .318 .210 .200

Ochiai2 .444 .443 .270 .105 .180 .191 .077 .175 .182 .188 .313 .229 .278 .218

Op2 .111 .182 .149 .105 .226 .217 .154 .245 .228 .188 .331 .313 .246 .227

Phi .111 .268 .237 .105 .166 .172 .077 .172 .179 .188 .313 .229 .230 .204

Pierce .833 .682 .285 .737 .636 .283 .667 .596 .203 .688 .611 .301 .631 .268

Rogers & Tani. .556 .454 .277 .053 .206 .235 .077 .132 .140 .188 .302 .289 .273 .235

Russel Rao .222 .255 .121 .105 .240 .222 .333 .367 .182 .375 .438 .262 .325 .197

Simple Matching .556 .454 .277 .053 .206 .235 .077 .132 .140 .188 .302 .289 .273 .235

Tarantula .333 .398 .221 .092 .164 .191 .167 .211 .172 .438 .499 .259 .318 .211

Zoltar .111 .177 .142 .105 .182 .198 .154 .197 .185 .188 .331 .313 .222 .209

Burgueño’15 .388 .436 .245 .105 .239 .224 .167 .317 .312 .375 .476 .297 .367 .269

BC

Arithmetic Mean .111 .260 .233 .105 .161 .165 .026 .073 .112 .125 .196 .173 .173 .171

Barinel .333 .342 .235 .158 .229 .141 .051 .095 .112 .125 .168 .139 .208 .157

Braun-Banquet .222 .277 .182 .105 .180 .178 .026 .107 .175 .125 .308 .325 .218 .215

B-U & Buser .333 .365 .236 .105 .163 .171 .026 .081 .130 .125 .307 .326 .229 .216

Cohen .333 .320 .228 .105 .164 .163 .026 .075 .116 .125 .196 .173 .189 .170

Dstar .222 .325 .309 .263 .284 .202 .205 .372 .335 .438 .494 .310 .369 .289

Kulcynski2 .111 .177 .142 .105 .176 .185 .026 .080 .132 .125 .301 .320 .184 .195

Mountford .111 .203 .151 .053 .148 .175 .026 .069 .097 .125 .304 .325 .181 .187

Ochiai .111 .188 .147 .105 .176 .176 .026 .081 .135 .125 .304 .325 .187 .196

Ochiai2 .444 .416 .272 .105 .171 .174 .026 .072 .106 .125 .196 .173 .214 .181

Op2 .111 .182 .149 .105 .221 .210 .026 .193 .241 .125 .301 .320 .225 .230

Phi .111 .245 .228 .105 .161 .165 .026 .070 .108 .125 .196 .173 .168 .169

Pierce .667 .587 .260 .658 .605 .262 .359 .410 .169 .375 .461 .308 .516 .250

Rogers & Tani. .556 .450 .277 .053 .195 .229 .026 .080 .131 .125 .274 .292 .250 .232

Russel Rao .111 .141 .122 .053 .196 .205 .026 .171 .247 .125 .261 .319 .192 .223

Simple Matching .556 .450 .277 .053 .195 .229 .026 .080 .131 .125 .274 .292 .250 .232

Tarantula .333 .349 .241 .053 .146 .176 .026 .068 .112 .125 .304 .330 .217 .215

Zoltar .111 .177 .142 .105 .173 .180 .026 .144 .192 .125 .301 .320 .199 .208

Burgueño’15 .333 .342 .219 .0526 .106 .086 .154 .270 .279 .312 .458 .296 .253 .172

(Continued)



Table 7. Continued

Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER AVERAGE

Technique mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

WC

Arithmetic Mean .111 .307 .283 .105 .171 .179 .128 .276 .317 .250 .429 .359 .296 .285

Barinel .444 .441 .261 .211 .260 .155 .256 .380 .303 .625 .557 .299 .409 .255

Braun-Banquet .222 .277 .182 .105 .205 .224 .154 .213 .190 .250 .365 .315 .265 .228

B-U & Buser .333 .365 .236 .105 .181 .211 .128 .187 .161 .250 .365 .315 .275 .231

Cohen .333 .367 .269 .105 .174 .177 .128 .278 .318 .250 .429 .359 .312 .281

Dstar .222 .326 .311 .263 .302 .229 .282 .474 .357 .500 .579 .290 .420 .297

Kulcynski2 .111 .177 .142 .105 .194 .224 .128 .186 .155 .250 .360 .308 .229 .208

Mountford .111 .204 .151 .053 .167 .217 .128 .178 .134 .250 .369 .310 .230 .203

Ochiai .111 .188 .147 .105 .194 .215 .128 .188 .159 .250 .363 .314 .233 .209

Ochiai2 .444 .470 .303 .105 .189 .213 .128 .279 .322 .250 .429 .359 .342 .299

Op2 .111 .182 .149 .105 .231 .224 .231 .298 .219 .250 .360 .308 .268 .225

Phi .111 .292 .282 .105 .171 .179 .128 .273 .317 .250 .429 .359 .291 .284

Pierce 1,000 .777 .335 .737 .667 .311 1,000 .781 .297 1,000 .761 .350 .746 .323

Rogers & Tani. .556 .458 .277 .053 .217 .244 .128 .184 .156 .250 .331 .290 .297 .242

Russel Rao .333 .369 .156 .105 .284 .249 .641 .563 .161 .625 .615 .260 .458 .206

Simple Matching .556 .458 .277 .053 .217 .244 .128 .184 .156 .250 .331 .290 .297 .242

Tarantula .444 .448 .264 .105 .182 .214 .231 .354 .303 .750 .693 .269 .419 .262

Zoltar .111 .177 .142 .105 .191 .220 .231 .250 .185 .250 .360 .308 .244 .214

Burgueño’15 .444 .529 .317 .131 .372 .413 .179 .365 .371 0.5 .494 .303 .440 .351

Observing the eight techniques in the worst-case scenario, we see that Mountford and Kulcynski2 
are able to locate the faulty rule by inspecting less than 23% of the rules, so they seem to be the 
best techniques. In particular, Kulcynski2 is able to locate the faulty rule first in the rank in 45% of 
the cases in the worst-case scenario, and it ranks the guilty rule in the top 3—i.e., only up to three 
rules need to be inspected to locate the fault—in 70% of the cases. The EXAM scores for these 
two techniques in the worst-case scenario are similar to the ones in the best- and average-case 
scenarios, concluding that there are not many ties. These two techniques are closely followed by 
Ochiai and Zoltar, techniques that do not produce many ties either and that are able to locate the 
faulty rule by inspecting less than 25% of the rules in the worst-case scenario. We can conclude that 
the four techniques with best results are, in this order, Kulcynski2, Mountford, Ochiai, and  Zoltar. 
However, this ordering is not strict, since they behave slightly differently among them depending 
on the case study. In particular, to locate the fault, these techniques lead the debugger to inspect 
between 1.59 and 1.84 (of 9) rules in BibTex2DocBook, 2.98 and 3.5 (of 19) rules in CPL2SPL, between 
4.78 and 7.68 (of 39) rules in Ecore2Maude, and between 2.65 and 2.69 (of 8) rules in UML2ER in the 
average-case scenario. The average standard deviation in all scenarios is around 0.2 for these four 
techniques, meaning that the results they provide are quite stable.

Going back to the average-case scenario and looking for techniques that give bad results, there 
are five t echniques t hat n eed t o i nspect m ore t han 3 0% o f t he r ules t o l ocate t he f aulty one, 
namely Barinel, Russel Rao, Tarantula, Dstar, and  Pierce. Interestingly, the worst technique, so-
called Pierce [115], needs to inspect more than 63% of the rules. This means that it performs even 
worse than random testing, and this is true in all case studies. Regarding the other four, Dstar needs 
to inspect almost 37% of the rules even in the best-case scenario, what is not a good result either. 
If we go to the worst-case scenario, then all these techniques need to inspect more than 40% of the



rules, so we can conclude that they do not behave good, and therefore we do not recommend to
use them when applying SBFL in the MT domain.

The distributions of the results of each technique are graphically depicted in the box-plots of
Figure 6, so they are useful to analyze each case study separately and see if the conclusions drawn
so far are confirmed. The figure contains one box-plot per scenario (average-case labelled as AC,
best-case labelled as BC, and worst-case labelled as WC) and case study, where the Y and X axis
indicate the EXAM score and technique, respectively. These box-plots gather the results of the
EXAM scores obtained with all mutants and depict them in vertical boxes—ignore for now the
boxes for Burgueño’15, since they are commented in Section 4.5.3. The dots outside the boxes are
known as outliers.

Having a look at the average-case scenarios in Figure 6, we can appreciate how techniques are
categorized in two groups. On the one hand, techniques that perform well are represented by small
boxes located at the bottom of each box-plot. We refer to these techniques as good-performers. How-
ever, the boxes of techniques with bad performance are stretched and typically located around the
middle of the plot. We will name this group of techniques bad-performers. It is worth mentioning
that among the group of good-performers, the most reliable ones are those with smaller vertical
line segments above the box. This means that in the cases where faulty rules are difficult to locate,
they provide lower EXAM scores than other good-performers.

For instance, in the UML2ER case study for the average-case scenario, the set of most-reliable
good-performers comprises of Kulcynski2, Mountford, Zoltar, and Ochiai. In fact, the boxes of
these four techniques are quite stable and similar in all scenarios of all case studies. Some other
techniques, such as Op2, seem to provide similar performance, since for instance its boxes in
the UML2ER case study are similar to those of these four techniques. However, the boxes are
clearly worse in the Ecore2Maude and CPL2SPL case studies. At the same time, Mountford shows
slightly better performance than the other three good-performers in some box-plots, such as in the
CPL2SPL case study. Regarding the five techniques mentioned before that give bad results in the
table of descriptive statistics, they fit in the profile of bad-performers. We can observe that their
boxes are not uniform when comparing box-plots, having some boxes even located in the top of
the charts.

Finally, it is worth noting that the box-plots in the UML2ER case study present the highest
disparity among the three scenarios and that most techniques seem to behave worse in this case
study than in the other three, showing larger boxes. This suggests that it is more challenging for the
techniques to properly rank the faulty rule in this case study than in the other three case studies.
This may be due to the high use of rules inheritance in this case study, what might complicate the
location of the fault as explained in Section 4.2.1. Please also note, as commented in Section 4.2.3,
that fewer mutants have been created for this case study compared with the other three. This could
also have an impact in the results.

To study the data from a different perspective, namely the average values, we have constructed
Figure 7. The figure presents a matrix where the suspiciousness computation techniques are rep-
resented by rows, and the mutants of the different case studies are represented by columns. Each

cell is therefore colored according to its EXAM
Average
m,t , wherem represents the mutant (X-axis) and

t the technique (Y-axis).
As we can see in the color key, cells with lower values are lightly colored, while cells with higher

values are darkly colored. The lighter the shade of cell <i, j>, the better has performed technique j
in mutant i on average. Observing the four techniques with good performance mentioned before,
namely Kulcynski2, Mountford, Ochiai, and Zoltar, we see that their rows are lighter than the others
in most cases. Similarly, a dark column in the matrix points out a MT with high EXAM values,
meaning that it is hard to identify the faulty rule for such MT. This allows us to identify that



Fig. 6. Box-plot of the EXAM score of each technique per scenario and case study.



Fig. 7. Value per technique and case study.

the hardest case study in the study is UML2ER, with a significant amount of dark columns, what
supports the conclusion drawn before. As mentioned earlier, we hypothesize that the reason for the
techniques to behave worse in this case study than in the others is the high use of rules inheritance,
since part of the behavior of the children rules is encoded in the parent rules, what may jeopardize
the precision in the localization of the buggy rules.

Regarding performance in terms of run time, each run of our approach has taken between 4
and 75s (per mutant) on all the case studies. Please note that this is the time taken to execute the
MT with all the source models, print in the console the violated OCL assertions, and compute and
save in CSV files all the coverage matrices, error vectors, and suspiciousness rankings for all 18
techniques together with the automatically computed EXAM score for each violated assertion.

4.4 Statistical Results

The mutants and input models used in the evaluation were randomly generated, and thus a sta-
tistical analysis of the data was performed to study whether the differences observed among tech-
niques are due to chance or not. Since the differences observed among the best-, average-, and
worst-case scenarios are not disquieting, and to keep this article at a reasonable size, we focus on
the analysis of results obtained in the average scenario, as it provides a better approximation to
the accuracy of the technique in real settings.

4.4.1 Null Hypothesis Tests. The null hypothesis (H0) states that there is not a statistically sig-
nificant difference between the results obtained by different suspiciousness computation tech-
niques, while the alternative hypothesis (H1) states that at least for one pair of techniques such
difference is statistically significant. Statistical tests provide the probability (named p-value) of get-
ting the actual observed results based on the assumption that the null hypothesis is true. p-Values
range in [0, 1], for which researchers have established by convention that p-values under 0.05 rep-
resent so-called statistically significant values, and are sufficient to reject the null hypothesis. The
results of the study do not follow a normal distribution, as confirmed by Shapiro-Wilk normality
tests, thus the Friedman test was used for the analysis [40]. The resulting p-values were < 1−10



for the results of the four case studies, leading us to reject H0 for all of them. To find the specific
techniques with statistically significant differences, pairwise comparisons were performed using
Conover-Iman’s Test [52]. More specifically, we compared all the possible pairs of techniques, out
of 18 techniques under study, i.e., ( 18

2 ) = 18!
2!(18−2)! = 153 pairwise comparison per case study. Ad-

ditionally, we applied a correction of the p-values using the Holm post-hoc procedure [53], as
recommended in Reference [31]. The results of the corrected p-values for the pairwise compar-
isons of all techniques are available on the project’s website [100]. In summary, the percentage
of pairwise comparisons revealing statistically significant differences was 96% in Bibtex2DocBook,
82% in CPL2SPL, 78% in Ecore2Maude, and 49% in UML2ER. Again, these data highlight that the
latter case study is the one giving worse and more unstable results, which is consistent with the
conclusion drawn in the analysis of the results in Section 4.3.

4.4.2 Effect-Size Estimation. To further investigate the differences between the different suspi-
ciousness computation techniques, Vargha and Delaney’s ̂A12 statistic [105] was used to evaluate
the effect size, i.e., determine which technique performs better and to what extent. Table 8 shows
the effect size statistic for every pair of techniques. Each cell shows the ̂A12 value obtained when
comparing the suspiciousness computation technique in the column against the technique in the
row. Vargha and Delaney [105] suggested thresholds for interpreting the effect size: 0.5 means no
difference at all; values over 0.5 indicates a small (0.5–0.56), medium (0.57-0.64), large (0.65–0.71),
or very large (0.72–1) difference in favour of the technique in the column; values below 0.5 indi-
cate a small (0.5–0.44), medium (0.43–0.36), large (0.36–0.29), or very large (0.29–0.0) difference in
favour of the technique in the row. Cells indicating medium, large, and very large differences in fa-
vor of the column are shaded in light grey, grey, and dark grey, respectively. The values in boldface
are those where hypothesis test revealed statistical differences (p-value <0.05). As expected, there
is not a clear winner technique for all the case studies. However, the results confirm the superiority
of Mountford, Kulcynski2, Ochiai, and Zoltar, showing from medium to large differences in 35, 30,
29, and 28 (of 72) pairwise comparisons. Analogously, the results support the bad performance of
Pierce—outperformed by all of other techniques—Barinel and Tarantula.

4.5 Comparison Study

To answer RQ4 and to study whether our approach performs well in the location of faults in
model transformations, we want to compare its effectiveness with a state-of-the-art approach
based on the static analysis of transformation rules and assertions that obtained good results [18].
We believe the comparison of our approach with this one is fair and adequate for several reasons.
First, the model transformation language used as proof of concept in both approaches is ATL.
Second, OCL assertions are used in both approaches as oracle, i.e., to determine whether a model
transformation is correct or not. Third, both approaches determine an order in which the rules
must be examined to locate the faulty rules. Fourth, we are using in the evaluation of our approach
the same four case studies proposed in Reference [18]. Fifth, we are able to use the mutants devel-
oped for evaluating our approach to evaluate the approach in Reference [18], and we are also able
to compute the EXAM values (cf. Section 4.5.2) for such approach, so we can fairly compare both
approaches. Finally, in the set of OCL assertions that we have created for each case study in this
work, we have included all the OCL assertions the authors in Reference [18] proposed for evalu-
ating their approach8 (cf. third column of Table 4). We have used those assertions, as well as some
more that we have defined, for evaluating our approach. Since the tools developed for the static
approach [18] are available (cf. Section 4.5.1), we have been able to run the approach with them. We

8The OCL assertions used in Reference [18] are available at http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB.

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB
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have used the complete set of OCL assertions for comparing both approaches. To demonstrate that
the results are not biased due to the new defined OCL assertions, we have also made a comparison
considering only the OCL assertions defined in Reference [18]. This comparison is presented in
the appendix of this article, where the results presented and conclusions drawn are very similar.

In the following, we first summarize how the approach by Burgueño et al. works and computes
the rankings. Then, we explain how we are able to obtain EXAM values for such approach. Finally,
we present and discuss the results of the comparison.

4.5.1 Static Fault Localization in Model Transformations. The article by Burgueño et al. [18]
proposes a static approach for the localization of faults in model transformations. As in our ap-
proach, ATL is the language used as proof of concept and the assertions that the transformations
must satisfy are also defined in OCL. Therefore, it follows the same methodology as proposed in
this article (cf. Section 3.3). Also, like our approach, theirs is backed up by a tool. However, for
determining if any OCL assertion fails (step 2 in the methodology), their approach relies on an
external tool, namely TractsTool [19, 109]. This means that the user also needs to get familiarized
with this other tool.

When executed, this static approach computes, for all OCL assertions, the order in which rules
should be inspected to locate the bug. To do so, it computes, for each pair <assertion, rule>, the
probability that the assertion failure comes from the rule making use of the common denominator
that both have, namely the structural elements belonging to the metamodels. The approach builds
on the following steps:

(1) Footprint Extraction. The structural elements, referred to as footprints, of both model trans-
formation and assertions are extracted.

(2) Footprint Matching. The footprints extracted are compared for each rule and assertion.
(3) Matching Tables Calculation. The percentage of types overlapping, so-called alignment, for

each transformation rule and assertion is calculated. This information is used to produce
the matching tables.

(4) Matching Tables Interpretation. The resulting tables are analyzed for identifying the order
in which rules should be inspected in case any OCL assertion fails.

To apply this approach, three tools need to be executed, two of which are proposed and im-
plemented in Reference [18]. First, as mentioned, the TractsTool is executed to check which OCL
assertions fail. Then, the ATL Transformation Types Extractor is executed to generate a model with
the footprints of the ATL transformation. Finally, the Matching Tables Calculator uses, among oth-
ers, such model as input and generates the matching tables, indicating also the order in which
rules should be inspected in case of failure.9

Three matching tables are generated by this approach. They are matrices that have the OCL
assertions as rows and transformation rules as columns. Two of them need to be inspected to de-
termine the order in which rules should be inspected in case of failure—for a detailed explanation,
the interested reader is referred to Reference [18].

4.5.2 EXAM Values Computation. To obtain the suspiciousness-based rankings for the ap-
proach in Reference[18], we have obtained the matching tables of all 158 mutants, for which we
have made use of the available tools mentioned before, namely ATL Transformation Types Extrac-

tor and Matching Tables Calculator. We have developed a program that, for each case study, takes
the matching tables as input together with a CSV file that contains information of the buggy rules

9The ATL Transformation Types Extractor and Matching Tables Calculator tools are available at http://atenea.lcc.uma.es/

index.php/Main_Page/Resources/MTB/MTB.
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in each mutant and the OCL assertions that fail in such mutant. With those inputs, this program
computes the order in which the rules should be inspected for each of the OCL assertions that
fail, which is the same concept as the suspiciousness-based ranking proposed in spectrum-based
fault localization. Therefore, with this rules ordering, and since we have as input information of
the buggy rule of each mutant, we are able to easily compute the EXAM score. As output, our
program generates a CSV file indicating, for each mutant and each OCL assertion that fails, the
EXAM score in the best-, worst-, and average-case scenarios (cf. Section 4.2.6).

All the artifacts used for the comparison, namely the 158 mutants and 117 OCL assertions, to-
gether with all the matching tables generated for all case studies are available on our project’s
website [100].

4.5.3 Static Approach vs. Dynamic Approach: Results. As described, Table 7 provides the de-
scriptive statistics of the EXAM score, where Mountford, Kulcynski2, Ochiai, and Zoltar show the
best numbers. Regarding the static technique proposed by Burgueño et al. [18] (Burgueño’15 in the
table), it performs worse than these techniques. In the average-case scenario, the static approach
needs to inspect around 37% of the rules to locate the fault, which is much more than the 20% that
needs to be inspected by the best techniques. In particular, for each case study in the average-case
scenario, the static technique needs to inspect 2.3 (of 9) more rules in BibTex2DocBook (25.9% of the
MT), 1.387 (of 19) more rules in CPL2SPL (7.3% of the MT), 7.18 (of 39) more rules in Ecore2Maude

(18.4% of the MT), and 1.3 (of 8) more rules in UML2ER (16.2% of the MT) compared with the best
techniques in each case. Regarding the number of ties, there is no uniform behavior. For instance,
in BibTex2DocBook and CPL2SPL there are clearly more ties in the static technique compared to
the best dynamic techniques, since the difference in the EXAM score in the best- and worst-case
scenarios is bigger. As for Ecore2Maude and UML2ER, the number of ties seems to be similar among
both approaches.

Looking at the worst dynamic techniques, the static approach seems to behave better than some
of them. Having a look at the average mean (penultimate column), it behaves much better than
Pierce in the average-case scenario, since the latter technique needs to inspect more than 63% of
the rules to locate the fault. It also performs better than Dstar in this scenario, since this tech-
nique needs to inspect more than 39% of the rules. Finally, the static technique by Burgueño et
al. performs worse than Russel Rao in the average-case scenario but a bit better in the worst-case
scenario. Therefore, for now we can conclude that the static technique may behave better than 2
dynamic techniques and clearly behaves worse than other 15 techniques, but let us delve deeper
into the results.

We further analyze the results by looking at each case study in the box-plots of Figure 6. In
general, we notice that the results of the static approach are typically similar among the three sce-
narios, although the boxes are larger than those of most dynamic techniques, indicating a worse
performance. We can appreciate that the static approach behaves normally better than Pierce, con-
firming our previous finding. As for Dstar, its boxes are in many plots larger than the ones of the
static approach. However, in other plots its boxes are smaller, so we cannot confirm the superior-
ity of the static technique with regards to Dstar. For instance, in the BibTex2DocBook and CPL2SPL

case studies, the shape of the box-plots for Dstar seems to be normally better. Finally, regarding
Russel Rao, its boxes have in most cases better shapes than those of the static approach.

The effect-size estimations of the statistical analysis for the static approach are displayed in
Table 8. To begin with, we can see in the BibTex2DocBook case study that the four best SBFL
techniques are clearly better than the static approach by Burgueño et al. [18], since the values in
the row of the static approach are above 0.78 for the corresponding cells, indicating a very large
difference in favor of the technique in the column. Also, the technique that seemed to be similar



to the static approach, namely Dstar, is proved to be better in this case study. In general, the color
of the row shows that most techniques behave better than the static one.

In fact, looking at the four case studies, the numbers in the cells of the rows of the static approach
and the columns with the best SBFL techniques—Kulcynski2, Mountford, Zoltar, and Ochiai—are
always above 0.55, leaving no doubt that the static approach behaves worse. Besides, all these cells
reveal statistical differences (p-value <0.05, displayed in bold in the table).

The superiority of the static approach regarding Pierce is confirmed in all case studies. However,
it cannot be concluded that it is better than any other of the techniques, since the rows of the static
technique do not present a value <0.5 in more than two case studies for any of the other techniques.
Finally, we see that in the UML2ER case study the static approach behaves generally much worse
than most techniques. An explanation can be that the static approach, based on types matching,
does not behave well in the presence of rule inheritance.

In summary, we can confirm that all SBFL techniques have a better performance when locating
the faulty rule than the static technique, except for Pierce, where the static technique behaves
clearly better. Besides, the static approach normally presents more ties than the best dynamic
techniques.

Regarding performance in terms of runtime, static approaches are typically faster since they do
not need to execute the program under test. This is the same in our case, where the static approach
is faster. In any case, it requires to perform footprints extractions—both in OCL assertions and ATL
transformation rules—and footprints matching, that also requires some resources. Altogether, the
static approach takes from less than 1s (in UML2ER) to 42s (in Ecore2Maude) per mutant, less than
required by our dynamic approach (from 4 to 75se, cf. Section 4.3).

4.6 Discussion

The results of the exhaustive experiments described in the previous sections allow us to answer
the research questions formulated in Section 4.1.

4.6.1 RQ1 - Feasibility. The first research question, related to the feasibility of the approach,
“RQ1: Is it possible to automate the process of locating faults in model transformations applying

spectrum-based techniques?,” can be answered affirmatively. Indeed, we have automated the pro-
cess of locating the faulty rules in model transformations by means of a Java program10 that or-
chestrates ATL model transformations and uses the information stored in the traces to compute
the suspiciousness-based rankings based on the program spectra. This automation is explained in
Section 3.4. All the artifacts used as input and generated as output are available on our project’s
website [100].

Furthermore, even though our program has been implemented for ATL model transformations,
we are confident that it can be adapted for any transformation language that is able to store in a
trace model the result of the execution. In fact, the trace model is nothing but an output model.
Therefore, any model transformation language that is able to produce more than one output model
can generate a trace model as output.

4.6.2 RQ2 - Effectiveness. The second research question has to do with the comparison of the
techniques evaluated with our automated approach: “RQ2: How effective are state-of-the-art tech-

niques for suspiciousness computation in the localization of faulty rules in model transformations?”
This question has to do with how well the different techniques are able to position the faulty rule
in the suspiciousness-based ranking. According to the results presented in Sections 4.3 and 4.4, we
can conclude that the top four most-effective techniques are Kulcynski2, Mountford, Ochiai, and

10Available on Github: https://github.com/javitroya/SBFL_MT.
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Zoltar, the first two presenting slightly better overall results. At the other end, we have Pierce as
the least-effective technique. The top three of non-effective techniques is completed by Barinel and
Tarantula.

4.6.3 RQ3 - Accuracy. The third research question is related to the accuracy of the approach:
“RQ3: Is our approach able to accurately locate faulty rules in model transformations?” The answer to
this question is related to the previous one, since depending on the effectiveness of the techniques
we will conclude whether the approach is accurate or not. In particular, we need to look at the
most effective techniques. Evaluation results revealed that the best techniques place the faulty
transformation rule among the three most suspicious rules in around 74% of the cases. Looking into
each of the four case studies, the best techniques allow the tester to locate the fault by inspecting,
on average, only 1.59 rules (of 9) in BibTex2DocBook, 2.99 rules (of 19) in CPL2SPL, 4.8 rules (of 39) in
Ecore2Maude, and 2.4 rules (of 8) in UML2ER. According to these numbers, we can conclude that the
application of spectrum-based fault localization is accurate in the context of model transformations
if techniques such as Mountford, Kulcynski2, Zoltar, and Ochiai are applied, so we shall recommend
to apply this approach to debug model transformations. These conclusions are supported by the
evaluation of more case studies available on our project’s website [100].

4.6.4 RQ4 - Dynamic vs. Static. Our last research question has to do with the comparison of
our dynamic approach with a notable static approach [18]: “RQ4: How does our approach behave

in comparison with a static approach? ” In summary, we can conclude that most dynamic tech-
niques based on spectrum computation are better than the static approach for the localization of
faults in model transformations. This was expected, since dynamic techniques execute the model
transformation—from which they extract a lot of information—and the static approach does not.
However, the static approach is still clearly better than one dynamic technique, namely Pierce. Fur-
thermore, it also behaves better than other techniques, such as Dstar, Tarantula, Simple Matching,
Rogers and Tanimoto, and Barinel in some case studies. It is also noteworthy that both approaches
are complementary, and so it should be possible to define heuristics for the selection of the best
technique on each application scenario, or even combine them. For example, it is better to apply
the static approach in environments with low resources or when the transformations are very ex-
pensive to execute [65], for instance, in the case of transforming very large models [15, 25], and
when it is not possible to get model instances of the source metamodel at the time of developing
the model transformation.

4.7 Threats to Validity

According to Wohlin et al. [112], there are four basic types of validity threats that can affect the
validity of our study. We cover each of these in the following paragraphs.

4.7.1 Conclusion Validity Threats. Threats to the conclusion validity are concerned with the
issues that affect the ability to draw correct conclusions from the data obtained from the exper-
iments. To mitigate these threats, we have applied statical analysis to confirm the conclusions
drawn from the means and figures, and we have used the specific statistical tests and effect size
measures recommended by the guidelines on empirical methodology. Furthermore, all the assump-
tions required for the application of the tests were checked, and the raw data and scripts for repli-
cation are available in the companion materials of this article [100].

4.7.2 Construct Validity Threat. It is concerned with the relationship between theory and
what is observed. A possible construct validity threat (known as the mono-method bias) is related
to the use of one single metric, the so-called EXAM score, to evaluate the performance of the
approach and the suspiciousness computation techniques compared. Other metrics have been



proposed [115], such as the T-score [68], P-score [122], and N-score [43]. However, EXAM score 
is an accepted metric for measuring the quality of spectrum-based fault localization techniques, 
and has been used in a variety of works [115]. Moreover, we have decided to obtain the EXAM 
score as it is directly applicable in the context of model transformations. By considering the trans-
formation rules as units of examination, the EXAM score is easy to understand, since it is directly 
proportional to the amount of rules to be examined, rather than to an indirect measurement in 
terms of the amount of code that does not need to be examined, as proposed by other scores.

Another possible construct validity threat is the mono-operation bias, which is related to the use 
of a single treatment or technique that could bias our conclusions. Since we compare the approach 
with a static alternative [18] and have used up to 18 suspiciousness-computation techniques and 
4 use cases in our experiments, we consider that this threat is neutralized.

4.7.3 Internal Validity Threats. These threats are related to those factors that might affect the 
results of our evaluation. First, we may remark that this is a debugging approach, not a testing 
approach. Therefore, the objective of this work is not to generate high-quality test models, some-
thing addressed in related articles [6, 39, 44, 48, 95], but to localize the faults that triggered test 
failures. In fact, a key point in favor of our approach is that it can be used in conjunction with 
any method for test model generation, either random or guided. For evaluating our work, we have 
developed a lightweight random model generator that, given any metamodel, produces a user-
defined number of random model instances, as explained in Section 4.2.2. With this generator we 
have obtained a set composed of 100 source models in the test suite of each case study, so a total 
of 400 models have been generated. These models have achieved full coverage—all rules and lines 
of code have been exercised—in all case studies. However, using more complex input model gen-
eration approaches [6, 48] may be required in those cases where random generation is not enough 
to achieve a sufficient coverage.

A second threat is that we have used in total 117 OCL assertions in the first study and 44 in 
the dynamic-vs.-static comparison study (cf. Table 4). We have tried to minimize this threat by 
constructing a set of OCL assertions that cover much of the specifications of the transformations. 
Besides, for the comparison study to be fair, we have taken the OCL assertions proposed in Ref-
erence [18]. Third, we have tried to create a large set of mutants, composed of 158 of them, and 
we have aimed at maximizing the variation of semantic faults and mutation operators used. Hav-
ing used more or fewer mutants could have had an impact in the results. For instance, we recall 
that fewer mutants have been created for the UML2ER case study than for any of the other case 
studies, as commented in Section 4.2.3. Having used different mutation operators could have also 
had an impact in the results. For instance, some approaches propose mutation operators that yield 
run-time errors, such as the work by Sánchez-Cuadrado et al. [91], which proposes a powerful 
approach that relies on static analysis and type inference to locate, among others, run-time errors. 
However, please bear in mind that the purpose of the approach presented in this article is to local-
ize semantic faults, i.e., it needs the model transformation to finish and produce output models, so 
that their satisfaction can be checked against the set of OCL assertions available. That is why we 
have used a subset [98] of the operators defined in Reference [91] and that mimic semantic faults 
likely to be made by programmers [77], as explained in Section 4.2.3. In any case, our approach is 
complementary to those aiming at spotting bugs that produce runtime errors [91].

As a final threat to internal validity, we may mention a weakness of SBFL, and generally of all 
fault localization techniques [115], which is the incapability of locating bugs resulting from missing 
code [121]. Same thing happens with our approach, it is likely to produce bad results if there are 
missing rules. For this reason, and as commented above, our approach can be complemented with 
Sánchez-Cuadrado et al.’s [91] approach, which identifies rules absence with a static analysis.



Indeed, the target elements created in a transformation rule typically reference or are referenced
by target elements created in other transformation rules, so static analysis is a good technique for
identifying the absence of rules that should create referencing or referenced target elements. For
instance, in the model transformation shown in Listing 1, the target elements created by rule Main

reference the target elements created by all the other rules. Likewise, the target elements created
by all the other rules are referenced by those created by rule Main. Therefore, the absence of any
of these rules can be detected with a static analysis tailored at examining that there will be no
dangling references among the target elements created. Finally, this threat can also be mitigated
with the definition of proper OCL assertions. For instance, in the transformation of Listing 1, the
specification should dictate that there must be an element of class DocBook created for each element
of class BibTexFile, so that the number of instances of both classes must be the same after executing
the model transformation. This can be expressed with assertion OCL4 in Listing 2. Therefore, even
if we do not count on approaches like the one by Sánchez-Cuadrado et al. [91], the non-satisfaction
of assertions such as OCL4 can help the developer realize a rule is missing.

4.7.4 External Validity. These threats have to do with the extent to which it is possible to gen-
eralize the findings of the experiments. The first threat is that the results of our experiments have
been obtained with four case studies, which externally threatens the generalizability of our results.
To mitigate this threat, we have tried to select a set of model transformations that considers all
ATL constructs and where the model transformations differ in their domains, size of metamod-
els and transformation, and variability of features used within the transformations, as reflected in
Table 3. Furthermore, we have selected the same case studies as those used in the related article
compared to our approach in Section 4.5, published in 2015 in the IEEE Transactions on Software

Engineering journal [18]. Second, we have analyzed a set of 18 techniques for the computation of
the suspiciousness-based rankings. Although it is a large set, result of doing a thorough literature
review, we might have left aside some techniques that could give better results than the ones ob-
tained with the best techniques of our study. Also, we have implemented our approach for ATL
due to its importance both in industria and academia, so it would be interesting to test it with other
transformation languages. However, we do believe our approach would produce similar results for
any model transformation language based in rules as long as the result of their executions can be
stored in traces (cf. Section 2.2.3), that allows to construct the coverage matrix and error vector
and, therefore, apply SBFL techniques.

There are two other threats related to the external validity of the results that have to do with the
program spectra creation in our implementation. In particular, we have used in our prototype the
ATLas transformation language and have considered the rules, of any type, as unit of examination
and therefore as the components to be considered for constructing the spectra. Should we also have
considered helpers in the spectra, the results of techniques effectiveness could have been different.
This decision has been made considering related works that also check (ATL) transformations
correctness against OCL assertions. While some approaches only check whether an assertion is
violated or not by a model transformation [7, 19, 42, 80, 109], others propose to locate the fault
when an assertion is not satisfied [7, 22, 23], but none of them inspect the helpers—they remain
at the rule level. Crucial for our decision has been the static approach for locating faults proposed
by Burgueño et al. [18], which does not consider helpers either and only locate faults in ATL
rules. Should we have considered them, the thorough comparison with this approach presented in
Section 4.5 would have been unfair. After having proved the effectiveness of SBFL techniques in
the model transformation domain according to the extensive evaluation presented in this article, a
natural evolution of this work is to perform a thorough study considering helpers to check if these
techniques remain effective. In any case, if our current approach determines that a rule is faulty,



and it is calling a helper, then the user of the approach would inspect the rule and, if (s)he sees no
fault, (s)he would proceed by inspecting the helper, so this threat is reduced.

Finally, the other threat is that the components considered in our approach might be too coarse-
grained: our approach works at rule level This means that the user would need, for example, to put
more effort in locating a bug in a big rule than when doing it in a small rule. However, the com-
plexity of transformation rules and model transformations is inherent to the bridges they try to
build among different semantic domains, and different types of model transformations can be writ-
ten depending on the problem to be solved [28, 64]. For instance, the creator of ATL recommends
to use declarative code as much as possible.11 Besides, some approaches exist for modularizing
model transformations, so that they become as easy-to-understand and reusable as possible [34,
89]. Like with the threat before, another reason that led us to work at rule level in this approach is
that related works that aim to locate bugs in model transformations against OCL satisfaction also
propose approaches at rule level [22, 23], and especially the work with which we do an extensive
comparison [18].

5 RELATED WORK

Due to the lack of oracles and formal semantics in model transformation languages, some ap-
proaches propose to translate the transformation specifications to other domains where formal
treatment is possible. For instance, Troya and Vallecillo propose to translate ATL to the rewriting
logic framework Maude [102], where some formal analysis can be performed, although the trans-
lation is not fully automated. Anastasakis et al. propose to translate QVT model transformations
to Alloy to verify if some properties hold for the transformation, and there are also approaches for
verifying contracts for ATL transformations based on the Coq proof assistant [20, 83]. Oakes et al.
propose to translate the declarative part of ATL to the visual graph-based model transformation
engine DSLTrans [80]. Visual contracts similar to our OCL assertions but less expressive can be
then tested for satisfaction in DSLTrans. Similar visual contracts, using a visual language with
formal semantics called PaMoMo, are used by Guerra et al. [47], but in this case their approach
compiles such contracts into QVT and their satisfiability is checked with the PACO-Checker tool. A
big difference of our approach with these is that we do not need to leave the model transformation
development environment to check for the correctness of the MTs, so our approach stays within
the Eclipse Modeling Framework dealing with Ecore metamodels and XMI models and the user
does not need to be familiar with any other domain-specific language such as Maude, DSLTrans,
Alloy, or Coq. Furthermore, our approach helps locate the faulty rules, that is not addressed in
these approaches.

As in our approach, Cheng et al. [22] propose to verify if ATL transformations satisfy OCL as-
sertions. However, to prove the correctness of the ATL transformation, they encode both the OCL
assertions and the ATL transformation specification into the Boogie language [88]. Boogie is a
procedure-oriented language that is based on Hoare-logic. Then, their developed VeriATL veri-
fication system indicates whether the ATL specification satisfies the specified OCL assertions or
not. However, this approach does not report useful feedback to help the transformation developers
fix the fault, which is the main objective of our approach. Cheng and Tisi [23] then build on this
approach and tool (VeriATL) with the goal of localizing the fault by applying natural deduction
and program slicing. However, instead of offering the developer with a rules ranking according to
their chance to contain a bug, their approach determines scenarios, which are slices of the model
transformation under test, where a certain OCL assertion is not satisfied together with the proof

11http://www.idi.ntnu.no/emner/tdt4250/Slides/M2M-atl-intria1117.pdf.
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tree. This is achieved by deriving sub-goals from the OCL assertions. Since this approach aims at
locating a fault from a different perspective than ours, they can complement each other.

Burgueño et al. [18] propose an approach with a similar purpose as ours, but their approach is
static. They also count on ATL model transformations and OCL assertions that must be checked
for correctness and try to locate the faulty rule without translating the OCL assertions nor ATL
transformations to any formal language. Their approach proposes to locate the faulty rules based
on matching functions that automatically establish alignments among the metamodels footprints
appearing in the transformation rules and those present in the OCL assertions. A comparison of
this approach and the one we present in this article has been done in Section 4.5, where we have
seen that most techniques for the spectrum-based localization of model transformations give better
results than this static approach. Furthermore, this approach does not check if an OCL assertion
is satisfied, but it resorts to the Tracts tool [19]. Contrarily, our approach does not need any input
from external tools. A good aspect of the static approach is that it does not need any input model,
since actually the transformation is not executed, and it requires shorter runtimes. This aspect
makes this approach very useful in several situations. For example, it is better to apply the static
approach in environments with low resources or when the transformations are very expensive to
execute [65], for instance in the case of transforming very large models [15, 25], and when it is
not possible to get model instances of the source metamodel at the time of developing the model
transformation. Both approaches are therefore tangential.

There are other approaches that propose static analysis for debugging model transformations.
Sánchez-Cuadrado et al. [91] combine static analysis and constraint solving to discover errors in
ATL model transformations such as navigation errors (like invalid collection operations and op-
erators), disconformities between the types used in the transformation and those declared in its
source/target metamodels, integrity constraints regarding the semantics of ATL, problems related
to dependencies between transformation rules and, in summary, any error that the current syntac-
tic checker of ATL is not able to identify. They even provide possible suitable quick fixes based on
speculative analysis [90]. These approaches have meant an important milestone in the evolution
of ATL. Our approach is orthogonal to these and, consequently, can serve to complement them.
Finally, Sánchez-Cuadrado et al. [92] have built, on top of their so-called anATLyzer tool described
in the previous cited articles, an approach for checking contracts specified in the target language.
Their approach translates these target contracts into source contracts by using the model transfor-
mation, so that they can predict, without the need to execute the model transformation, whether
any specific input model will yield (in)correct target models. Since they use the model transforma-
tion for generating source contracts, it has to be correct. Therefore, different from our approach,
this is not targeted to debugging model transformations, but to statically check target constraints
in a lightweight manner.

The approach we present in this work is perfectly in line with the approach we presented in Ref-
erence [101] with the aim of locating bugs in three application scenarios of model transformations,
namely regression testing, incremental transformations and migrations among transformation lan-
guages. Thus, the approach in Reference [101] proposes to automatically derive OCL assertions
from a given ATL model transformation, which are satisfied by the transformation. The approach
applies a technique known as metamorphic testing [93]. By applying metamorphic testing, and af-
ter identifying a set of patterns that normally takes place in the trace information stored after the
execution of a model transformation, it is able to automatically derive so-called likely metamor-
phic relations, which can be seen as precisely the OCL assertions used in the current work. In this
way, (i) in regression testing, (ii) when an original transformation is migrated to a different trans-
formation language, or (iii) an incremental transformation is developed with the same behavior of
the original transformation, the approach presented in this article can be used to check whether



the OCL assertions obtained for the original transformation by the approach in Reference [101] 
are satisfied in the latter evolved or modified transformations. Metamorphic testing has also been 
applied by He et al. [51], in this case for bidirectional model transformation testing.

We recall that this article focuses on debugging and not testing. Thus, we do not impose any 
constraint on how the source models are generated, either manually or automatically. In any case, 
some proposals for generating models have been proposed in the literature, where some of them 
require input by the tester. For instance, the model generator in Reference [17] requires the tester 
to provide metamodel fragments as input, or the one in Reference [95] requires input from the 
MMCC external tool [38] to provide model fragments. Other approaches propose the generation 
of models in different f ormats s uch a s t he H uman U sable Textual N otation [ 41], s o t hey need 
to be transformed prior to their use as input for model transformation languages integrated in 
the Eclipse Modeling Framework such as ATL. Some other more sophisticated model generators 
try to derive a set of input models from model transformations [44], what is not desired in our 
case, because we may be debugging erroneous transformations, and from OCL constraints [6, 48]. 
Most of these approaches can be used for generating test models for our approach. However, as 
explained in Section 4.2.2, we have used a lightweight model generator that, given a metamodel, it 
returns a set of random models conforming to such metamodel, where the models present certain 
variability among them with respect to the classes of the metamodel. Since none of the case studies 
contain complex graph constraints as preconditions that are difficult to cover with random graph 
generation, the models we have generated have obtained full coverage in all case studies, i.e., they 
have exercised all rules. However, in other cases, obtaining models with full coverage may require 
the use of more complex and computationally expensive methods and tools [5, 6, 44, 48, 95].

6 CONCLUSION

In this article, we have presented the first approach for debugging model transformations following 
an SBFL approach. We have implemented and automated it for the ATLas transformation language 
due to its importance in both industry and academia. However, we are confident that the approach 
can be extensible to any model transformation language as long as it can store the output of its 
execution in a trace model. The implemented automation has allowed us to perform a thorough 
evaluation.

Taking as input the model transformation under test and a set of source models and OCL asser-
tions that serve as oracle, our approach determines which assertions are not satisfied and, for each 
of them, it ranks the transformation rules according to their suspiciousness of being the faulty rule 
causing the failure. We have compared the effectiveness of 18 state-of-the-art techniques proposed 
in the literature for the suspiciousness computation of program components (e.g., statements) in 
the context of model transformations. The evaluation has been carried out using four case studies 
that differ regarding the application domains, size of metamodels, and the number and types of 
ATL features used. Our experiments conclude that the best techniques place the faulty transfor-
mation rule among the three most suspicious rules in around 74% of the cases. These conclusions 
are supported by more case studies, other than the four presented in this article, whose evaluation 
is available on our project’s website [100].

We have also evaluated our approach by comparing it with a static approach that presented 
notable results [18]. The conclusion is that applying dynamic techniques based on spectra compu-
tation allows to identify the faulty rule more quickly. However, the runtime of the static technique 
is shorter, and it does not need any input model, since the model transformation is not executed. 
Therefore, both approaches are tangential and can complement each other.

Summarizing, we have proved the effectiveness in the context of model transformations of SBFL, 
a technique never applied before for localizing faults in this domain. We have proved it is feasible to



automate such technique in this domain, offering novel ways of debugging model transformations.
Despite we have obtained good effectiveness results, further experiments can be performed as
future work. For instance, we can consider helpers in the program spectra, and even each line of
code could be considered as a component. In both cases, the trace model used has to be extended.
Also, to break ties in the suspiciousness rankings, we could use the rules execution frequency, as
some works have proposed for procedural programs [1, 67].

VERIFIABILITY

For the sake of verifiability, our prototype as well as all artifacts of the experiments are available
on our project’s website [100]. For each case study, it is available the transformation and its meta-
models, the OCL assertions defined, the transformation mutants together with information of the
mutation operators applied and the OCL assertions that fail with each mutant, as well as the CSV
files with the results generated by our program for all mutants and all OCL assertions. For the
comparison study, it is available for each case study the subset of mutants used together with the
matching tables generated with the approach in Reference[18] for each mutant, and the subset of
OCL assertions obtained from Reference [18]. Several files with statistical results and raw data and
scripts for replication are also available. Finally, the implemented prototype is available on Github:
https://github.com/javitroya/SBFL_MT.

APPENDIX

A STATIC-VS-DYNAMIC COMPARISON WITH REDUCED SET

OF OCL ASSERTIONS

The comparison study presented in Section 4.5 has compared our approach with the static ap-
proach by Burgueño et al. [18]. In that comparison, we have used all OCL assertions: those taken
from Reference [18] and several others defined for evaluating this work. This appendix is devoted
to presenting the figures and results for the comparison using only the OCL assertions defined
in Reference [18]. This way we show that the new OCL assertions defined for evaluating our ap-
proach are not tailored to defeat the approach by Burgueño et al.

As shown in the second part of the third column in Table 9, 44 OCL assertions, of the total
of 117 assertions created for the four case studies, have been taken from the static approach we
want to compare our approach with [18]. First, of the 158 mutants we have created for the four
case studies, we select those that make any of the 44 OCL assertions fail. They are a total of 104
mutants, so they are the ones to be considered in this comparison The second part of the fifth
and third columns of Table 9 display the number of mutants and OCL assertions considered in
each case study for the comparison study, respectively. All the artifacts used for the comparison,
namely the 104 mutants and 44 OCL assertions, together with all the matching tables generated
for all case studies are available on our project’s website [100].

The approach by Burgueño et al. as well as the way we compute the EXAM values are explained
in Sections 4.5.1 and 4.5.2, respectively. The descriptive statistics of the EXAM score provided by
the techniques when applied to the 104 MT mutants are shown in Table 10.

First, it is worth noting that the conclusions drawn from the experiments considering all OCL
assertions and mutants (cf. Sections 4.3 and 4.4) hold for this study with the 104 MT mutants, i.e.,
Mountford, Kulcynski2, Ochiai, and Zoltar have again the best numbers. Regarding the static tech-
nique proposed by Burgueño et al. [18], it performs worse than these techniques. In the average-
case scenario, the static approach needs to inspect around 35% of the rules to locate the fault,
which is much more than the 20% that needs to be inspected by the best techniques. In particular,
for each case study in the average-case scenario, the static technique needs to inspect 2.17 (of 9)

https://github.com/javitroya/SBFL_MT


Table 9. Case Studies and Artifacts for the Comparison

Case study
# Input
models

# OCL assertions
(/ from [18])

# Test suite
( |T | = |S | × |O |)

# Mutants
(/ comparison

study)
# OCL assertions

violated

UML2ER 100 14/10 1,400 18/16 90

BibTeX2DocBook 100 27/16 2,700 40/40 269

CPL2SPL 100 34/15 3,400 50/39 150

Ecore2Maude 100 42/3 4,200 50/9 155

Total 400 117/44 11,700 158/104 664

more rules in BibTex2DocBook (24.1% of the MT), 0.916 (of 19) more rules in CPL2SPL (4.82% of the 
MT), 5 (of 39) more rules in Ecore2Maude (12.8% of the MT), and 1.58 (of 8) more rules in UML2ER 
(19.75% of the MT) compared with the best techniques in each case. Regarding the number of ties, 
there is not a uniform behavior. For instance, in BibTex2DocBook and CPL2SPL there are clearly 
more ties in the static technique compared to the best dynamic techniques, since the difference in 
the EXAM score in the best- and worst-case scenarios is bigger. As for Ecore2Maude and UML2ER, 
the number of ties seems to be similar among both approaches.

Looking at the worst dynamic techniques, the static approach seems to behave better than some 
of them. Having a look at the average mean (penultimate column), it behaves much better than 
Pierce in the average-case scenario, since the latter technique needs to inspect more than 65% of 
the rules to locate the fault. It also performs better than Dstar in this scenario, since this technique 
needs to inspect more than 44% of the rules. Finally, the static technique by Burgueño et al. per-
forms slightly worse than Tarantula in the average-case scenario but a bit better in the worst-case 
scenario. Therefore, for now we can conclude that the static technique may behave better than 3 
dynamic techniques and clearly behaves worse than other 15 techniques, but let us delve deeper 
into the results.

We can further analyze the results by looking at each case study in the box-plots of Figure 8. In  
general, we notice that the results of the static approach are typically similar among the three sce-
narios, although the boxes are larger than those of most dynamic techniques, indicating a worse 
performance. We can appreciate that the static approach behaves normally better than Pierce, con-
firming our previous finding. As  for Dstar and Tarantula, their boxes are in  many plots similar 
to the ones of the static approach, each of them presenting slightly better results than the others 
in certain scenarios, so we cannot confirm the superiority of the s tatic t echnique with regards 
to these two techniques. Indeed, for instance, in the BibTex2DocBook case study, the shape of the 
box-plots for Dstar seem to be clearly better.

We have performed a statistical analysis for the comparison study, whose effect-size estimations 
are displayed in Table 11. We apply the same coloring as the one described in Section 4.4 for Table 8. 
To begin with, we can see in the BibTex2DocBook case study that the four best SBFL techniques 
are clearly better than the static approach by Burgueño et al. [18], since the values in the row of 
the static approach are above 0.78 for the corresponding cells, indicating a very large difference in 
favor of the technique in the column. Also, the technique that seemed to be similar to the static 
approach, namely Dstar, is proved to be much better in this case study. In general, the color of the 
row shows that most techniques behave better than the static one.

In fact, looking at the four case studies, the numbers in the cells of the rows of the static approach 
and the columns with the best SBFL techniques—Kulcynski2, Mountford, Zoltar, and  Ochiai—are 
always above 0.55, leaving no doubt that the static approach behaves worse. Besides, all these 
cells reveal statistical differences (p-value <0.05, displayed in boldface in the table), except for the



Table 10. Descriptive Statistics of the EXAM Score per Scenario and Case Study
in the Comparison Study

Technique

Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER Average

mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

Arithmetic Mean .222 .272 .221 .066 .169 .194 .192 .267 .225 .188 .314 .239 .256 .220

Barinel .333 .397 .198 .184 .254 .179 .269 .315 .197 .438 .334 .164 .325 .185

Braun-Banquet .333 .300 .173 .079 .192 .206 .115 .167 .208 .188 .347 .349 .252 .234

B-U & Buser .444 .404 .226 .079 .169 .195 .115 .123 .081 .188 .345 .349 .260 .213

Cohen .333 .348 .207 .079 .168 .190 .192 .267 .225 .188 .314 .239 .274 .215

Dstar .111 .265 .258 .263 .296 .212 .788 .654 .270 .500 .550 .304 .441 .261

Kulcynski2 .111 .173 .139 .079 .178 .202 .115 .151 .161 .188 .345 .349 .212 .213

Mountford .111 .203 .150 .053 .156 .199 .115 .126 .078 .188 .350 .347 .209 .194

A Ochiai .111 .185 .143 .092 .179 .196 .115 .151 .161 .188 .345 .349 .225 .228

C Ochiai2 .444 .462 .244 .079 .175 .195 .192 .267 .225 .188 .314 .239 .304 .225

Op2 .111 .175 .142 .105 .213 .214 .115 .167 .208 .188 .345 .349 .225 .228

Phi .111 .253 .218 .079 .167 .194 .192 .267 .225 .188 .314 .239 .250 .219

Pierce .833 .696 .274 .737 .641 .293 .731 .674 .198 .719 .625 .322 .659 .272

Russel Rao .222 .260 .112 .105 .226 .221 .231 .272 .180 .313 .456 .301 .304 .204

Rogers & Tani. .556 .518 .256 .053 .221 .274 .115 .123 .081 .125 .287 .301 .287 .228

Simple Matching .556 .518 .256 .053 .221 .274 .115 .123 .081 .125 .287 .301 .287 .228

Tarantula .333 .402 .202 .079 .160 .196 .244 .290 .197 .438 .521 .280 .343 .219

Zoltar .111 .173 .138 .079 .176 .199 .115 .128 .094 .188 .345 .349 206 .195

Burgueño’15 .389 .414 .230 .105 .204 .197 .141 .254 .251 .500 .542 .312 .354 .248

Arithmetic Mean .111 .256 .216 .053 .165 .191 .026 .051 .081 .125 .181 .163 .163 .163

Barinel .333 .360 .215 .158 .240 .173 .051 .051 .000 .125 .132 .050 .196 .110

Braun-Banquet .333 .299 .173 .053 .175 .177 .026 .095 .219 .125 .326 .357 .224 .232

B-U & Buser .444 .404 .226 .053 .156 .169 .026 .051 .081 .125 .324 .358 .234 .209

Cohen .333 .332 .206 .053 .165 .188 .026 .051 .081 .125 .181 .163 .182 .160

Dstar .111 .265 .258 .263 .283 .196 .692 .590 .258 .500 .513 .320 .413 .258

Kulcynski2 .111 .173 .139 .053 .165 .177 .026 .079 .170 .125 .324 .358 .185 .211

Mountford .111 .202 .150 .053 .144 .173 .026 .051 .081 .125 .326 .357 .181 .190

B Ochiai .111 .185 .143 .079 .166 .171 .026 .079 .170 .125 .324 .358 .189 .211

C Ochiai2 .444 .444 .248 .053 .162 .170 .026 .051 .081 .125 .181 .163 .210 .166

Op2 .111 .175 .142 .105 .209 .211 .026 .095 .219 .125 .324 .358 .201 .233

Phi .111 .237 .211 .053 .163 .192 .026 .051 .081 .125 .181 .163 .158 .162

Pierce .667 .592 .244 .605 .601 .268 .538 .487 .222 .438 .493 .332 .543 .267

Rogers & Tani. .556 .513 .258 .053 .214 .272 .026 .051 .081 .125 .266 .306 .261 .229

Russel Rao .111 .132 .109 .053 .174 .197 .026 .095 .219 .125 .313 .362 .179 .222

Simple Matching .556 .513 .258 .053 .214 .272 .026 .051 .081 .125 .266 .306 .261 .229

Tarantula .333 .365 .219 .053 .140 .173 .026 .026 .000 .125 .319 .362 .213 .189

Zoltar .111 .173 .138 .053 .163 .174 .026 .056 .097 .125 .324 .358 .179 .192

Burgueño’15 .333 .342 .208 .105 .133 .111 .103 .126 .079 .500 .522 .315 .281 .178

(Continued)



Table 10. Continued

Technique
Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER Average

mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

Arithmetic Mean .222 .283 .250 .079 .173 .197 .231 .482 .452 .250 .446 .392 .346 .323

Braun-Banquet .333 .300 .174 .105 .209 .242 .205 .238 .210 .250 .368 .342 .279 .242

B-U & Buser .444 .404 .226 .105 .181 .228 .205 .195 .108 .250 .366 .343 .287 .226

Cohen .333 .359 .233 .105 .172 .193 .231 .482 .452 .250 .446 .392 .365 .318

Dstar .111 .265 .257 .263 .308 .237 .833 .718 .288 .500 .587 .291 .470 .268

Kulcynski2 .111 .173 .139 .105 .190 .235 .205 .223 .168 .250 .366 .343 .238 .221

Mountford .111 .203 .150 .053 .168 .232 .205 .200 .100 .250 .375 .339 .237 .205

W Ochiai .111 .185 .143 .105 .191 .229 .205 .223 .168 .250 .366 .343 .241 .221

C Ochiai2 .444 .475 .266 .105 .187 .228 .231 .482 .452 .250 .446 .392 .398 .335

Op2 .111 .175 .142 .105 .217 .218 .205 .238 .210 .250 .366 .343 .249 .228

Phi .111 .264 .248 .105 .171 .197 .231 .482 .452 .250 .446 .392 .341 .322

Pierce 1,000 .799 .327 .737 .682 .327 1,000 .862 .237 1,000 .757 .358 .775 .312

Rogers & Tani. .556 .524 .255 .053 .228 .277 .205 .195 .108 .125 .308 .299 .314 .235

Russel Rao .333 .391 .149 .105 .277 .260 .436 .449 .179 .500 .600 .280 .429 .217

Simple Matching .556 .524 .255 .053 .228 .277 .205 .195 .108 .125 .308 .299 .314 .235

Tarantula .444 .433 .234 .105 .180 .229 .462 .554 .393 .750 .723 .281 .473 .284

Zoltar .111 .173 .138 .105 .188 .232 .205 .200 .116 .250 .366 .343 .232 .207

Burgueño’15 .444 .485 .284 .105 .275 .332 .179 .382 .433 .500 .563 .318 .426 .342

Ecore2Maude case study. The latter is due to the fact that the results in Ecore2Maude have been 
taken from only 9 mutants (cf. second part of the fifth column in Table 9), which are the ones 
that make the 3 OCL assertions considered in this case study fail, since only these assertions are 
defined in the evaluation of the static approach by Burgueño et al. (cf. Reference [18]—second part 
of third column in Table 9). Indeed, in the comparison with the complete set of OCL assertions (cf. 
Section 4.5.3), the cells of the Ecore2Maude also reveal statistical differences, since 42, instead of 3, 
OCL assertions are considered. Please note that the conclusions of both comparisons is the same.

The superiority of the static approach regarding Pierce is confirmed i n t he o ther t hree case 
studies. However, it cannot be concluded that it is better than any other of the techniques, since 
the rows of the static technique do not present a value <0.5 in more than one case study for any 
of the other techniques. Finally, we see that in the UML2ER case study the static approach behaves 
generally much worse than most techniques. An explanation can be that the static approach, based 
on types matching, does not behave well in the presence of rule inheritance.

In summary, we can confirm that all SBFL techniques have a better performance when locating 
the faulty rule than the static technique, except for Pierce, where the static technique behaves 
clearly better. Besides, the static approach normally presents more ties than the best dynamic 
techniques.



Fig. 8. Box-plot of the EXAM score of each technique per scenario and case study including Reference [18]
(Burgueño’15).



Table 11. Effect-size Estimations for the Comparison with Reference [18]



REFERENCES

[1] Rui Abreu, Alberto Gonzalez-Sanchez, and Arjan J. C. van Gemund. 2010. Exploiting count spectra for Bayesian
fault localization. In Proceedings of the 6th International Conference on Predictive Models in Software Engineering

(PROMISE’10). ACM, Article 12, 10 pages. DOI:http://dx.doi.org/10.1145/1868328.1868347
[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-based multiple fault localization. In Pro-

ceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE ’09). IEEE Computer Society,
Los Alamitos, CA, 88–99. DOI:http://dx.doi.org/10.1109/ASE.2009.25

[3] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A practical evaluation of spectrum-
based fault localization. J. Syst. Softw. 82, 11 (2009), 1780–1792. DOI:http://dx.doi.org/10.1016/j.jss.2009.06.035

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. 2007. On the accuracy of spectrum-based fault localization. In Pro-

ceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques-MUTATION (TAICPART-

MUTATION’07). IEEE Computer Society, Washington, DC, USA, 89–98. DOI:http://dx.doi.org/10.1109/TAIC.PART.
2007.13

[5] Shaukat Ali, Muhammad Zohaib Iqbal, and Andrea Arcuri. 2014. Improved heuristics for solving OCL constraints
using search algorithms. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation

(GECCO’14). ACM, New York, NY, 1231–1238. DOI:http://dx.doi.org/10.1145/2576768.2598308
[6] S. Ali, M. Zohaib Iqbal, A. Arcuri, and L. C. Briand. 2013. Generating test data from OCL constraints with search

techniques. IEEE Trans. Softw. Eng. 39, 10 (2013), 1376–1402. DOI:http://dx.doi.org/10.1109/TSE.2013.17
[7] Jesús Manuel Almendros-Jiménez and Antonio Becerra-Terón. 2016. Automatic generation of ecore models for test-

ing ATL transformations. In Proceedings of the 6th International Conference on Model and Data Engineering (MEDI’16).
LNCS, Vol. 9893. Springer, 16–30. DOI:http://dx.doi.org/10.1007/978-3-319-45547-1_2

[8] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. 2008. On challenges of model transformation
from UML to alloy. Softw. Syst. Model. 9, 1 (2008). DOI:http://dx.doi.org/10.1007/s10270-008-0110-3

[9] Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry, and Jean-Luc Dekeyser. 2015.
Towards an automation of the mutation analysis dedicated to model transformation. Softw. Test. Verif. Reliabil. 25,
5–7 (2015), 653–683. DOI:http://dx.doi.org/10.1002/stvr.1532

[10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer. 2010. Henshin: Ad-
vanced concepts and tools for in-place EMF model transformations. In Proceedings of ACM/IEEE 21st International

Conference on Model Driven Engineering Languages and Systems (MODELS’10), Vol. 6394. 121–135.
[11] Fatmah Yousef Assiri and James M. Bieman. 2017. Fault localization for automated program repair: Effectiveness, per-

formance, repair correctness. Softw. Qual. J. 25, 1 (2017), 171–199. DOI:http://dx.doi.org/10.1007/s11219-016-9312-z
[12] ATL. 2006. ATL Zoo. Retrieved from http://www.eclipse.org/atl/atlTransformations.
[13] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The oracle problem in software testing: A survey.

IEEE Trans. Softw. Eng. 41, 5 (May 2015), 507–525. DOI:http://dx.doi.org/10.1109/TSE.2014.2372785
[14] Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Simmonds, Robert France, Sudipto Ghosh, Franck

Fleurey, and Yves Le Traon. 2006. Model transformation testing challenges. In Proceedings of the ECMDA Workshop on

Integration of Model Driven Development and Model Driven Testing. http://www.cs.colostate.edu/ france/publications/
TransTestin

[15] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. 2015. Distributed model-to-model transformation
with ATL on MapReduce. In Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language

Engineering (SLE’15). ACM, New York, NY, 37–48. DOI:http://dx.doi.org/10.1145/2814251.2814258
[16] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-Driven Software Engineering in Practice. Mor-

gan&Claypool.
[17] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon. 2006. Metamodel-based test generation

for model transformations: An algorithm and a tool. In Proceedings of Annual IEEE International Symposium on

Software Reliability Engineering (ISSRE’06). 85–94.
[18] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo. 2015. Static fault localization in model transformations. IEEE

Trans. Softw. Eng. 41, 5 (May 2015), 490–506.
[19] Loli Burgueño, Manuel Wimmer, Javier Troya, and Antonio Vallecillo. 2013. TractsTool: Testing MTs based on con-

tracts. In Invited Talks, Demonstration Session, Poster Session, and ACM Student Research Competition (MODELS’13).
CEUR.

[20] Daniel Calegari, Carlos Luna, Nora Szasz, and Alvaro Tasistro. 2010. A type-theoretic framework for certified model
transformations. In Proceedings of Brazilian Symposium on Formal Methods (SBMF’10). 112–127. DOI:http://dx.doi.
org/10.1007/978-3-642-19829-8_8

[21] Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien. 2004. OCL for the specification of model
transformation contracts. In Proceedings of the OCL and Model Driven Engineering Workshop. http://web.univ-pau.
fr/ ecariou/papers/workshop-ocl-mde-uml2004-pape.

http://dx.doi.org/10.1145/1868328.1868347
http://dx.doi.org/10.1109/ASE.2009.25
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1109/TAIC.PART.2007.13
http://dx.doi.org/10.1109/TAIC.PART.2007.13
http://dx.doi.org/10.1145/2576768.2598308
http://dx.doi.org/10.1109/TSE.2013.17
http://dx.doi.org/10.1007/978-3-319-45547-1_2
http://dx.doi.org/10.1007/s10270-008-0110-3
http://dx.doi.org/10.1002/stvr.1532
http://dx.doi.org/10.1007/s11219-016-9312-z
http://www.eclipse.org/atl/atlTransformations
http://dx.doi.org/10.1109/TSE.2014.2372785
http://www.cs.colostate.edu/ france/publications/TransTestin
http://www.cs.colostate.edu/ france/publications/TransTestin
http://dx.doi.org/10.1145/2814251.2814258
http://dx.doi.org/10.1007/978-3-642-19829-8_8
http://dx.doi.org/10.1007/978-3-642-19829-8_8
http://web.univ-pau.fr/ ecariou/papers/workshop-ocl-mde-uml2004-pape
http://web.univ-pau.fr/ ecariou/papers/workshop-ocl-mde-uml2004-pape


[22] Zheng Cheng, Rosemary Monahan, and James F. Power. 2015. A Sound Execution Semantics for ATL via Translation

Validation. Springer International Publishing, Cham, 133–148. DOI:http://dx.doi.org/10.1007/978-3-319-21155-8_11
[23] Zheng Cheng and Massimo Tisi. 2017. A Deductive Approach for Fault Localization in ATL Model Transformations.

Springer, Berlin, 300–317. DOI:http://dx.doi.org/10.1007/978-3-662-54494-5_17
[24] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. 2011. JTL: A bidirectional and

change propagating transformation language. In Software Language Engineering. LNCS, Vol. 6563. Springer, 183–202.
DOI:http://dx.doi.org/10.1007/978-3-642-19440-5_11

[25] Cauê Clasen, Marcos Didonet Del Fabro, and Massimo Tisi. 2012. Transforming very large models in the cloud: A
research roadmap. In Proceedings of the 1st International Workshop on Model-Driven Engineering on and for the Cloud.
Springer, Copenhagen, Denmark. https://hal.inria.fr/hal-00711524

[26] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn
Talcott. 2007. All About Maude—A High-Performance Logical Framework. LNCS, Vol. 4350. Springer. DOI:http://dx.
doi.org/10.1007/978-3-540-71999-1

[27] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza, and Dániel Varró. 2002. VIATRA—
visual automated transformations for formal verification and validation of UML models. In Proceedings of the 17th

International Conference on Automated Software Engineering (ASE’02). IEEE/ACM, 267–270. DOI:http://dx.doi.org/
10.1109/ASE.2002.1115027

[28] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based survey of model transformation approaches. IBM Syst.

J. 45, 3 (2006), 621–646.
[29] Alberto Rodrigues da Silva. 2015. Model-driven engineering: A survey supported by the unified conceptual model.

Comput. Lang. Syst. Struct. 43 (2015), 139–155. DOI:http://dx.doi.org/10.1016/j.cl.2015.06.001
[30] Juan de Lara and Hans Vangheluwe. 2002. AToM3: A tool for multi-formalism and meta-modelling. In Proceedings

of the 5th International Conference on Fundamental Approaches to Software Engineering (FASE’02). LNCS, Vol. 2306.
Springer, 174–188. DOI:http://dx.doi.org/10.1007/3-540-45923-5_12

[31] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera. 2011. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol. Comput. 1, 1 (2011), 3–18. DOI:http://dx.doi.org/10.1016/j.swevo.2011.02.002

[32] Francisco Durán, Steffen Zschaler, and Javier Troya. 2013. On the reusable specification of non-functional properties
in DSLs. In Proceedings of the 5th International Conference on Software Language Engineering (SLE’12). Revised Selected

Papers (LNCS). Springer, 332–351. DOI:http://dx.doi.org/10.1007/978-3-642-36089-3_19
[33] Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut. 2006. Towards a traceability framework for model

transformations in Kermeta. In Proceedings of the European Conference on Model Driven Architecture—Traceability

Workshop (ECMDA-TW’06). 31–40. https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102855
[34] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi. 2017. Model transformation modularization as a

many-objective optimization problem. IEEE Trans. Softw. Eng. 43, 11 (2017), 1009–1032. DOI:http://dx.doi.org/10.
1109/TSE.2017.2654255

[35] Martin Fleck, Javier Troya, and Manuel Wimmer. 2015. Marrying search-based optimization and model transforma-
tion technology. In Proceedings of First North American Search Based Software Engineering Symposium (NasBASE’15).
1–16.

[36] Martin Fleck, Javier Troya, and Manuel Wimmer. 2016. Search-based model transformations. J. Softw. Evol. Process

28, 12 (2016), 1081–1117. DOI:http://dx.doi.org/10.1002/smr.1804
[37] Martin Fleck, Javier Troya, and Manuel Wimmer. 2016. Search-based model transformations with MOMoT. In Pro-

ceedings of Theory and Practice of Model Transformations (ICMT’16). Springer, 79–87.
[38] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. 2009. Qualifying input test data for model

transformations. Softw. Syst. Model. 8, 2 (2009), 185–203. DOI:http://dx.doi.org/10.1007/s10270-007-0074-8
[39] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. 2009. Qualifying input test data for model

transformations. Softw. Syst. Model. 8, 2 (2009), 185–203. DOI:http://dx.doi.org/10.1007/s10270-007-0074-8
[40] Milton Friedman. 1940. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math.

Stat. 11, 1 (1940), 86–92. http://www.jstor.org/stable/2235971
[41] Pau Giner and Vicente Pelechano. 2009. Test-driven development of model transformations. In Proceedings of

ACM/IEEE 21st International Conference on Model Driven Engineering Languages and Systems (MODELS’09). LNCS,
Vol. 5795. Springer, 748–752.

[42] Martin Gogolla and Antonio Vallecillo. 2011. Tractable Model Transformation Testing. Springer, Berlin, 221–235.
DOI:http://dx.doi.org/10.1007/978-3-642-21470-7_16

[43] C. Gong, Z. Zheng, W. Li, and P. Hao. 2012. Effects of class imbalance in test suites: An empirical study of spectrum-
based fault localization. In Proceedings of the IEEE 36th Annual Computer Software and Applications Conference Work-

shops. 470–475. DOI:http://dx.doi.org/10.1109/COMPSACW.2012.89

http://dx.doi.org/10.1007/978-3-319-21155-8_11
http://dx.doi.org/10.1007/978-3-662-54494-5_17
http://dx.doi.org/10.1007/978-3-642-19440-5_11
https://hal.inria.fr/hal-00711524
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1109/ASE.2002.1115027
http://dx.doi.org/10.1109/ASE.2002.1115027
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1007/3-540-45923-5_12
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1007/978-3-642-36089-3_19
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102855
http://dx.doi.org/10.1109/TSE.2017.2654255
http://dx.doi.org/10.1109/TSE.2017.2654255
http://dx.doi.org/10.1002/smr.1804
http://dx.doi.org/10.1007/s10270-007-0074-8
http://dx.doi.org/10.1007/s10270-007-0074-8
http://www.jstor.org/stable/2235971
http://dx.doi.org/10.1007/978-3-642-21470-7_16
http://dx.doi.org/10.1109/COMPSACW.2012.89


[44] Carlos A. González and Jordi Cabot. 2012. ATLTest: A White-Box Test Generation Approach for ATL Transformations.
Springer, 449–464. DOI:http://dx.doi.org/10.1007/978-3-642-33666-9_29

[45] Joel Greenyer and Ekkart Kindler. 2010. Comparing relational model transformation technologies: Implementing
query/view/transformation with triple graph grammars. Softw. Syst. Model. 9, 1 (2010), 21–46.

[46] Esther Guerra. 2012. Specification-driven test generation for model transformations. In Theory and Practice of Model

Transformations, Zhenjiang Hu and Juan de Lara (Eds.). Springer, Berlin, 40–55.
[47] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes

Schönböck, and Wieland Schwinger. 2013. Automated verification of model transformations based on visual con-
tracts. Automat, Softw, Eng, 20, 1 (2013), 5–46. DOI:http://dx.doi.org/10.1007/s10515-012-0102-y

[48] Esther Guerra and Mathias Soeken. 2015. Specification-driven model transformation testing. Softw, Syst, Model, 14,
2 (2015), 623–644. DOI:http://dx.doi.org/10.1007/s10270-013-0369-x

[49] M. Hamill and K. Goseva-Popstojanova. 2009. Common trends in software fault and failure data. IEEE Trans, Softw,

Eng, 35, 4 (2009), 484–496. DOI:http://dx.doi.org/10.1109/TSE.2009.3
[50] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. 2000. An empirical investigation of the

relationship between spectra differences and regression faults. Softw, Test, Verif, Reliabil, 10, 3 (2000), 171–194.
DOI:http://dx.doi.org/10.1002/1099-1689(200009)10:3〈171::AID-STVR209〉3.0.CO;2-J

[51] Xiao He, Xing Chen, Sibo Cai, Ying Zhang, and Gang Huang. 2018. Testing bidirectional model transformation using
metamorphic testing. Information and Software Technology (2018). DOI:http://dx.doi.org/10.1016/j.infsof.2018.07.010

[52] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2013. Nonparametric Statistical Methods. John Wiley & Sons.
[53] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 2 (1979), 65–70. SJSADG
[54] INRIA. 2005. ATL Transformation Example: BibTeXML to DocBook. Retrieved from https://www.eclipse.org/atl/

atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf.
[55] Tom Janssen, Rui Abreu, and Arjan J. C. van Gemund. 2009. Zoltar: A spectrum-based fault localization tool. In

Proceedings of the 2009 ESEC/FSE Workshop on Software Integration and Evolution @ Runtime (SINTER’09). ACM,
New York, NY, 23–30. DOI:http://dx.doi.org/10.1145/1596495.1596502

[56] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. 2011. Model driven language engineering with Kermeta.
In Generative and Transformational Techniques in Software Engineering III. LNCS, Vol. 6491. Springer, 201–221.
DOI:http://dx.doi.org/10.1007/978-3-642-18023-1_5

[57] Yue Jia and Mark Harman. 2009. Higher order mutation testing. Inf. Softw. Technol. 51, 10 (2009), 1379–1393. DOI:
http://dx.doi.org/10.1016/j.infsof.2009.04.016

[58] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of mutation testing. IEEE Trans. Softw.

Eng. 37, 5 (2011), 649–678. DOI:http://dx.doi.org/10.1109/TSE.2010.62
[59] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization

technique. In Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering (ASE’05).
ACM, New York, NY, 273–282. DOI:http://dx.doi.org/10.1145/1101908.1101949

[60] Frédéric Jouault. 2005. Loosely coupled traceability for ATL. In Workshop Proceedings of European Conference on

Model Driven Architecture—Traceability Workshop (ECMDA’05).
[61] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A model transformation tool. Sci. Com-

put. Program. 72, 1-2 (2008), 31–39.
[62] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez. 2006. ATL: A QVT-like trans-

formation language. In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,

Languages, and Applications (OOPSLA’06). ACM, 719–720. DOI:http://dx.doi.org/10.1145/1176617.1176691
[63] Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, and Fabien Latry. 2006. Building DSLs with AMMA/ATL,

a case study on SPL and CPL telephony languages. In Proceedings of the ECOOP Workshop on Domain-Specific Pro-

gram Development. Nantes, France. https://hal.inria.fr/inria-00353580
[64] Begashaw Gezu Kirsie. 2010. Guideline and Evaluation of Model Transformation Engineering Approaches. Master’s

thesis. KTH Industrial Engineering and Management, Sweden.
[65] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado,

Juan De Lara, István Ráth, Dániel Varró, Massimo Tisi, and Jordi Cabot. 2013. A research roadmap towards achieving
scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering

(BigMDE’13). ACM, New York, NY, Article 2, 10 pages. DOI:http://dx.doi.org/10.1145/2487766.2487768
[66] Thomas Kühne. 2006. Matters of (meta-) modeling. Softw. Syst. Model. 5, 4 (2006), 369–385. DOI:http://dx.doi.org/10.

1007/s10270-006-0017-9
[67] H. J. Lee, L. Naish, and K. Ramamohanarao. 2010. Effective software bug localization using spectral frequency

weighting function. In Proceedings of the IEEE 34th Annual Computer Software and Applications Conference. 218–
227. DOI:http://dx.doi.org/10.1109/COMPSAC.2010.26

http://dx.doi.org/10.1007/978-3-642-33666-9_29
http://dx.doi.org/10.1007/s10515-012-0102-y
http://dx.doi.org/10.1007/s10270-013-0369-x
http://dx.doi.org/10.1109/TSE.2009.3
http://dx.doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
http://dx.doi.org/10.1016/j.infsof.2018.07.010
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf
http://dx.doi.org/10.1145/1596495.1596502
http://dx.doi.org/10.1007/978-3-642-18023-1_5
http://dx.doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/1176617.1176691
https://hal.inria.fr/inria-00353580
http://dx.doi.org/10.1145/2487766.2487768
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1109/COMPSAC.2010.26


[68] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. 2006. Statistical debugging: A hypothesis testing-
based approach. IEEE Trans. Softw. Eng. 32, 10 (Oct. 2006), 831–848. DOI:http://dx.doi.org/10.1109/TSE.2006.105

[69] Lucia, F. Thung, D. Lo, and L. Jiang. 2012. Are faults localizable? In Proceedings of the 2012 9th IEEE Working Confer-

ence on Mining Software Repositories (MSR’12). 74–77. DOI:http://dx.doi.org/10.1109/MSR.2012.6224302
[70] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. 2014. Extended comprehensive study of

association measures for fault localization. J. Softw. Evol. Process 26, 2 (2014), 172–219. DOI:http://dx.doi.org/10.
1002/smr.1616

[71] Levi Lúcio, Moussa Amrani, Jürgen Dingel, Leen Lambers, Rick Salay, Gehan Selim, Eugene Syriani, and Manuel
Wimmer. 2016. Model transformation intents and their properties. Softw. Syst. Model. 15, 3 (2016), 647–684.

[72] Jochen Ludewig. 2003. Models in software engineering – an introduction. Softw. Syst. Model. 2, 1 (2003), 5–14.
DOI:http://dx.doi.org/10.1007/s10270-003-0020-3

[73] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014. Slice-based statistical fault localization.
J. Syst. Softw. 89 (Mar. 2014), 51–62. DOI:http://dx.doi.org/10.1016/j.jss.2013.08.031

[74] A. E. Maxwell and A. E. G. Pilliner. 1968. Deriving coefficients of reliability and agreement for ratings. Br. J. Math.

Statist. Psych. 21, 1 (1968), 105–116. DOI:http://dx.doi.org/10.1111/j.2044-8317.1968.tb00401.x
[75] S. J. Mellor, K. Scott, A. Uhl, D. Weise, and R. M. Soley. 2004. MDA Distilled: Principles of Model-driven Architecture.

Vol. 88. Addison-Wesley.
[76] Antonio Moreno-Delgado, Francisco Durán, Steffen Zschaler, and Javier Troya. 2014. Modular DSLs for flexible

analysis: An e-motions reimplementation of palladio. In Proceedings of the 10th European Conference on Modelling

Foundations and Applications (ECMFA’14). LNCS. Springer, 132–147.
[77] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. 2006. Mutation Analysis Testing for Model Transformations.

Springer, Berlin,, 376–390. DOI:http://dx.doi.org/10.1007/11787044_28
[78] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-based software diagnosis. ACM

Trans. Softw. Eng. Methodol. 20, 3, Article 11 (Aug. 2011), 32 pages. DOI:http://dx.doi.org/10.1145/2000791.2000795
[79] L. Naish, Neelofar, and K. Ramamohanarao. 2015. Multiple bug spectral fault localization using genetic program-

ming. In Proceedings of the 2015 24th Australasian Software Engineering Conference. 11–17. DOI:http://dx.doi.org/10.
1109/ASWEC.2015.12

[80] Bentley James Oakes, Javier Troya, Levi Lúcio, and Manuel Wimmer. 2018. Full contract verification for ATL using
symbolic execution. J. Softw. Syst. Model. 17, 3 (2018), 815–849. DOI:http://dx.doi.org/10.1007/s10270-016-0548-7

[81] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. 2017. Subtle higher order mutants. Inf. Softw. Technol. 81 (2017),
3–18. DOI:http://dx.doi.org/10.1016/j.infsof.2016.01.016

[82] Magnus Persson, Martin Törngren, Ahsan Qamar, Jonas Westman, Matthias Biehl, Stavros Tripakis, Hans
Vangheluwe, and Joachim Denil. 2013. A characterization of integrated multi-view modeling in the context of em-
bedded and cyber-physical systems. In Proceedings of the 11th ACM International Conference on Embedded Software

(EMSOFT’13). IEEE Press, Los Alamitos, CA, Article 10, 10 pages. http://dl.acm.org/citation.cfm?id=2555754.2555764
[83] Iman Poernomo and Jeffrey Terrell. 2010. Correct-by-construction model transformations from partially ordered

specifications in Coq. In Proceedings of International Conference on Formal Engineering Methods (ICFEM’10). 56–73.
DOI:http://dx.doi.org/10.1007/978-3-642-16901-4_6

[84] Eclipse Modeling Project. 2015. Atlas Transformation Language—ATL. Retrieved from http://eclipse.org/atl.
[85] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. 2013. Using automated program repair for evaluating the

effectiveness of fault localization techniques. In Proceedings of the 2013 International Symposium on Software Testing

and Analysis (ISSTA’13). ACM, New York, NY, 191–201. DOI:http://dx.doi.org/10.1145/2483760.2483785
[86] Jose E. Rivera, Francisco Duran, and Antonio Vallecillo. 2009. A graphical approach for modeling time-dependent

behavior of DSLs. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC’09). IEEE, 51–55. DOI:http://dx.doi.org/10.1109/VLHCC.2009.5295300
[87] Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek, Pieter Van Gorp, Sebastian Buchwald, Tassilo Horn,

Elina Kalnina, Andreas Koch, Kevin Lano, Bernhard Schätz, and Manuel Wimmer. 2014. Graph and model trans-
formation tools for model migration. Softw. Syst. Model. 13, 1 (2014), 323–359. DOI:http://dx.doi.org/10.1007/
s10270-012-0245-0

[88] K. Rustan and M. Leino. 2008. This Is Boogie 2. Technical Report. Manuscript KRML 178.
[89] Jesús Sánchez-Cuadrado and Jesús García-Molina. 2009. Modularization of model transformations through a phasing

mechanism. Softw. Syst. Model. 8, 3 (Jul 2009), 325–345. DOI:http://dx.doi.org/10.1007/s10270-008-0093-0
[90] Jesús Sánchez-Cuadrado, Esther Guerra, and Juan de Lara. 2018. Quick fixing ATL transformations with speculative

analysis. Softw. Syst. Model. 17, 3 (2018), 779–813. DOI:http://dx.doi.org/10.1007/s10270-016-0541-1
[91] Jesús Sánchez-Cuadrado, Esther Guerra, and Juan de Lara. 2017. Static analysis of model transformations. IEEE Trans.

Softw. Eng. 43, 9 (2017), 868–897. DOI:http://dx.doi.org/10.1109/TSE.2016.2635137

http://dx.doi.org/10.1109/TSE.2006.105
http://dx.doi.org/10.1109/MSR.2012.6224302
http://dx.doi.org/10.1002/smr.1616
http://dx.doi.org/10.1002/smr.1616
http://dx.doi.org/10.1007/s10270-003-0020-3
http://dx.doi.org/10.1016/j.jss.2013.08.031
http://dx.doi.org/10.1111/j.2044-8317.1968.tb00401.x
http://dx.doi.org/10.1007/11787044_28
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1109/ASWEC.2015.12
http://dx.doi.org/10.1109/ASWEC.2015.12
http://dx.doi.org/10.1007/s10270-016-0548-7
http://dx.doi.org/10.1016/j.infsof.2016.01.016
http://dl.acm.org/citation.cfm?id=2555754.2555764
http://dx.doi.org/10.1007/978-3-642-16901-4_6
http://eclipse.org/atl
http://dx.doi.org/10.1145/2483760.2483785
http://dx.doi.org/10.1109/VLHCC.2009.5295300
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/s10270-008-0093-0
http://dx.doi.org/10.1007/s10270-016-0541-1
http://dx.doi.org/10.1109/TSE.2016.2635137


[92] J. Sánchez-Cuadrado, E. Guerra, J. de Lara, R. Clarisó, and J. Cabot. 2017. Translating target to source constraints
in model-to-model transformations. In Proceedings of the ACM/IEEE 20th International Conference on Model Driven

Engineering Languages and Systems (MODELS’17). 12–22. DOI:http://dx.doi.org/10.1109/MODELS.2017.12
[93] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes. 2016. A survey on metamorphic testing. IEEE Trans. Softw. Eng.

42, 9 (2016), 805–824. DOI:http://dx.doi.org/10.1109/TSE.2016.2532875
[94] Gehan M. K. Selim, Shige Wang, James R. Cordy, and Juergen Dingel. 2012. Model Transformations for Migrating

Legacy Models: An Industrial Case Study. Springer, Berlin, 90–101. DOI:http://dx.doi.org/10.1007/978-3-642-31491-9_
9

[95] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. 2009. Automatic model generation strategies for model trans-
formation testing. In Proceedings of the International Conference on Manufacturing Technologies (ICMT’09). LNCS,
Vol. 5563. Springer, 148–164.

[96] Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation: The heart and soul of model-driven software
development. IEEE Softw. 20, 5 (2003), 42–45.

[97] Gabriele Taentzer. 2003. AGG: A graph transformation environment for modeling and validation of software. In
Proceedings of the 2nd Workshop on Applications of Graph Transformations with Industrial Relevance (AGTIVE’03).
LNCS, Vol. 3062. Springer, 446–453. DOI:http://dx.doi.org/10.1007/978-3-540-25959-6_35

[98] Javier Troya, Alexander Bergmayr, Loli Burgueno, and Manuel Wimmer. 2015. Towards systematic mutations for
and with ATL model transformations. In Proceedings of the IEEE 8th International Conference on Software Testing,

Verification and Validation Workshops (ICSTW’15). 1–10. DOI:http://dx.doi.org/10.1109/ICSTW.2015.7107455
[99] Javier Troya, Sergio Segura, José Antonio Parejo, and Antonio Ruiz-Cortes. 2017. An approach for debugging model

transformations applying spectrum-based fault localization. In XXII Jornadas de Ingeniería del Software y Bases de

Datos (JISBD’17). https://biblioteca.sistedes.es/submissions/uploaded-files/JISBD_2017_paper_32.pdf.
[100] Javier Troya, Sergio Segura, José Antonio Parejo, and Antonio Ruiz-Cortés. 2017. Spectrum-Based Fault Localization

in Model Transformations. Retrieved from https://gestionproyectos.us.es/projects/itim/wiki.
[101] Javier Troya, Sergio Segura, and Antonio Ruiz-Cortés. 2018. Automated inference of likely metamorphic relations

for model transformations. J. Syst. Softw. 136 (2018), 188–208. DOI:http://dx.doi.org/10.1016/j.jss.2017.05.043
[102] Javier Troya and Antonio Vallecillo. 2011. A rewriting logic semantics for ATL. J. Obj. Technol. 10, 5 (2011), 1–29.

DOI:http://dx.doi.org/10.5381/jot.2011.10.1.a5
[103] Javier Troya and Antonio Vallecillo. 2014. Specification and simulation of queuing network models using domain-

specific languages. Comput. Stand. Intef. 36, 5 (2014), 863–879. DOI:http://dx.doi.org/10.1016/j.csi.2014.01.002
[104] Antonio Vallecillo and Martin Gogolla. 2012. Typing model transformations using tracts. In Proceedings of the 5th

International Conference on Theory and Practice of Model Transformations (ICMT’12). Springer, 56–71. DOI:http://dx.
doi.org/10.1007/978-3-642-30476-7_4

[105] András Vargha and Harold D. Delaney. 2000. A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. J. Educ. Behav. Stat. 25, 2 (2000), 101–132.

[106] D. Wagelaar. 2014. Using ATL/EMFTVM for import/export of medical data. In Proceedings of the 2nd Software De-

velopment Automation Conference.
[107] Leonard Muellner Norman Walsh. 1999. DocBook: The Definitive Guide. O’Reilly & Associates. http://www.docbook.

org/tdg/
[108] Jos Warmer and Anneke Kleppe. 2003. The Object Constraint Language: Getting Your Models Ready for MDA. Addison-

Wesley.
[109] Manuel Wimmer and Loli Burgueño. 2013. Testing M2T/T2M transformations. In Proceedings of the International

Conference on Model Driven Engineering Languages and Systems (MODELS’13). Springer, 203–219.
[110] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner Retschitzegger, and Wieland

Schwinger. 2009. A Petri Net based debugging environment for QVT relations. In Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering (ASE’09). IEEE, 3–14.
[111] Manuel Wimmer, Salvador Martínez, Frédéric Jouault, and Jordi Cabot. 2012. A catalogue of refactorings for model-

to-model transformations. J. Obj. Technol. 11, 2 (Aug. 2012), 2:1–40. DOI:http://dx.doi.org/10.5381/jot.2012.11.2.a2
[112] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell. 2012. Experimentation in Software

Engineering. Springer.
[113] W. E. Wong, V. Debroy, R. Gao, and Y. Li. 2014. The DStar method for effective software fault localization. IEEE

Trans. Reliabil. 63, 1 (Mar. 2014), 290–308. DOI:http://dx.doi.org/10.1109/TR.2013.2285319
[114] W. E. Wong, V. Debroy, Y. Li, and R. Gao. 2012. Software fault localization using DStar (D*). In Proceedings of the IEEE

6th International Conference on Software Security and Reliability. 21–30. DOI:http://dx.doi.org/10.1109/SERE.2012.12
[115] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization.

IEEE Trans. Softw. Eng. 42, 8 (2016), 707–740. DOI:http://dx.doi.org/10.1109/TSE.2016.2521368

http://dx.doi.org/10.1109/MODELS.2017.12
http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1007/978-3-642-31491-9_9
http://dx.doi.org/10.1007/978-3-642-31491-9_9
http://dx.doi.org/10.1007/978-3-540-25959-6_35
http://dx.doi.org/10.1109/ICSTW.2015.7107455
https://biblioteca.sistedes.es/submissions/uploaded-files/JISBD_2017_paper_32.pdf
https://gestionproyectos.us.es/projects/itim/wiki
http://dx.doi.org/10.1016/j.jss.2017.05.043
http://dx.doi.org/10.5381/jot.2011.10.1.a5
http://dx.doi.org/10.1016/j.csi.2014.01.002
http://dx.doi.org/10.1007/978-3-642-30476-7_4
http://dx.doi.org/10.1007/978-3-642-30476-7_4
http://www.docbook.org/tdg/
http://www.docbook.org/tdg/
http://dx.doi.org/10.5381/jot.2012.11.2.a2
http://dx.doi.org/10.1109/TR.2013.2285319
http://dx.doi.org/10.1109/SERE.2012.12
http://dx.doi.org/10.1109/TSE.2016.2521368


[116] Xiaoyuan Xie. 2012. On the Analysis of Spectrum-based Fault Localization. Ph.D. Dissertation. Faculty of Information
and Communication Technologies, Swinburne University of Technology, Australia.

[117] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol. 22, 4, Article 31 (Oct. 2013), 40
pages. DOI:http://dx.doi.org/10.1145/2522920.2522924

[118] X. Xue and A. S. Namin. 2013. How significant is the effect of fault interactions on coverage-based fault localizations?
In Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.
113–122. DOI:http://dx.doi.org/10.1109/ESEM.2013.22

[119] Shin Yoo. 2012. Evolving human competitive spectra-based fault localisation techniques. In Search Based Software

Engineering, Gordon Fraser and Jerffeson Teixeira de Souza (Eds.). Springer, Berlin, 244–258.
[120] Yanbing Yu, James A. Jones, and Mary Jean Harrold. 2008. An empirical study of the effects of test-suite reduction on

fault localization. In Proceedings of the 30th International Conference on Software Engineering (ICSE’08). ACM, New
York, NY, 201–210. DOI:http://dx.doi.org/10.1145/1368088.1368116

[121] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv Gupta. 2007. Towards locating execution omission er-
rors. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’07). ACM, 415–424. DOI:http://dx.doi.org/10.1145/1250734.1250782
[122] Zhenyu Zhang, W. K. Chan, T. H. Tse, Peifeng Hu, and Xinming Wang. 2009. Is non-parametric hypothesis testing

model robust for statistical fault localization? Inf. Softw. Technol. 51, 11 (2009), 1573–1585. DOI:http://dx.doi.org/10.
1016/j.infsof.2009.06.013

[123] Álvaro Jiménez, Juan M. Vara, Verónica A. Bollati, and Esperanza Marcos. 2015. MeTAGeM-trace: Improving trace
generation in model transformation by leveraging the role of transformation models. Sci. Comput. Program. 98 (2015),
3–27. DOI:http://dx.doi.org/10.1016/j.scico.2014.09.003

http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1109/ESEM.2013.22
http://dx.doi.org/10.1145/1368088.1368116
http://dx.doi.org/10.1145/1250734.1250782
http://dx.doi.org/10.1016/j.infsof.2009.06.013
http://dx.doi.org/10.1016/j.infsof.2009.06.013
http://dx.doi.org/10.1016/j.scico.2014.09.003



