
Using real-time information to reschedule jobs in a
flowshop with variable processing times

January 23, 2019

Abstract

In a time where detailed, instantaneous and accurate information on shop-floor
status is becoming available in many manufacturing companies due to Information
Technologies initiatives such as Smart Factory or Industry 4.0, a question arises re-
garding when and how this data can be used to improve scheduling decisions. While
it is acknowledged that a continuous rescheduling based on the updated information
may be beneficial as it serves to adapt the schedule to unplanned events, this rather
general intuition has not been supported by a thorough experimentation, particularly
for multi-stage manufacturing systems where such continuous rescheduling may intro-
duce a high degree of nervousness in the system and deteriorates its performance. In
order to study this research problem, in this paper we investigate how real-time in-
formation on the completion times of the jobs in a flowshop with variable processing
times can be used to reschedule the jobs. In an exhaustive computational experience,
we show that rescheduling policies pay off as long as the variability of the processing
times is not very high, and only if the initially generated schedule is of good quality.
Furthermore, we propose several rescheduling policies to improve the performance of
continuous rescheduling while greatly reducing the frequency of rescheduling. One of
these policies, based on the concept of critical path of a flowshop, outperforms the rest
of policies for a wide range of scenarios.

Keywords: Rescheduling, Flowshop, Industry 4.0, Variable Processing Times, Critical
Path

1

1 Introduction

Recent developments in Industrial Informatics and Information and Communications Technology

–such as Industry 4.0– seem to anticipate a situation in which the shop floor status in many manufac-

turing companies is instantly available (Chen et al., 2016). The potential challenges and advantages

of using this real-time data in production management have been discussed in different contribu-

tions, such as e.g. Waschneck et al. (2017). In this paper, we intend to focus on the potential of

using such real-time information to improve scheduling decisions in a manufacturing scenario where

the processing times of the jobs are subject to variability. More specifically, we wish to assess the

advantages of using information about the jobs already processed in some machines to reschedule

the subsequent jobs yet in a permutation flowshop where the processing times are not deterministic.

The choice of the flowshop environment is motivated by the enormous attention that this layout

has attracted from both academia and practice due to its challenging theoretical complexities and

wide applications in assembly/manufacturing industries, as well as in medical operations (see e.g.

Liu et al., 2017a for a recent recollection of flowshop scheduling applications, and Fernandez-Viagas

et al., 2017 for a recent review of the scientific literature). We consider the makespan as an indicator

of the performance of system, as it is undoubtedly the most common objective for flowshop schedul-

ing in general and specifically for the study of this problem under uncertainty (González-Neira et al.,

2017).

Despite this interest, the literature on rescheduling in the flowshop setting is rather scarce as

compared to rescheduling in other layouts. Even the analysis of rescheduling literature in other

layouts does not shed too much light on the subject of our research: In general, it is acknowledged

that the performance of the system is related to the frequency of rescheduling, which seems intuitive

as the schedule is continuously modified to take into account events that could not have been foreseen

at the time the initial schedule was developed. However, these rather general results are obtained for

the case where an infinite arrival of jobs is considered and it has to be noted that, in a permutation

flowshop setting, all jobs must follow the same route across all machines, so once a job enters into the

shop floor (i.e. in the first machine), then it should be processed according to the same sequence in

the rest of the machines. Since the sequence of the jobs already in the shop cannot change, the only

2

point in time where the shop floor information can be used is when a job has completed its processing

on the first machine, leaving this machine free for the subsequent jobs. In these circumstances, it

is not clear under which conditions rescheduling pays off: First, the permutation constraint limits

the number of choices (and potential advantages) for rescheduling. Second, although more data

are known, the rescheduling procedure has to rely on estimates of the completion times of the jobs

already in the shop, therefore some procedures to estimate such completion times and to perform

an efficient rescheduling –usually time consuming– have to be provided.

More specifically, in this paper we address the following two (interrelated) research questions:

1. Are there scenarios where it is advantageous to use real-time information on the (actual)

completion times of the jobs already in the shop to reschedule the remaining jobs so the

performance of the system is improved? What are the main features of these scenarios?

2. In those scenarios, how rescheduling should be performed? I.e. Which are the most efficient

methods to generate an initial schedule and to reschedule?

Note that the answers to these research questions have important implications for schedulers,

as they greatly influence the approach to schedule jobs in flowshops subject to processing times

variability. In the subsequent experimentation carried out in the paper, we will show, with respect

to 1), that there are advantages in resequencing using the available information if the variability of

processing times is low or medium (i.e. a coefficient of variation of the processing times between

0.5 and 1.0 in our experiments). These advantages blur for scenarios where the variability of the

processing times is high (i.e. a coefficient of variation of 1.5). Furthermore, we will show that the

quality of the initial schedule is critical to achieve such superior performance, so resequencing an

initial schedule of poor quality does not lead to a good system’s performance. Regarding 2), we pro-

pose several event-driven rescheduling policies that compare favourably to a continuous rescheduling

policy while being much less time consuming. Most notably, triggering the rescheduling procedure

based on the disruption of the critical path of the base schedule provides excellent results in terms

of performance and of rescheduling requirements.

The remainder of the paper is as follows: Section 2 presents the problem background and

discusses the related literature, while in Section 3 we formalise our problem and introduce the

3

required notation. In Section 4 we present different strategies that can be adopted to carry out

the resequencing process. The computational experience is described in Section 5 together with

the main results, while in Section 6 we present the conclusions of our work and point out future

research lines.

2 Background

In actual manufacturing systems, production is a highly dynamic process subject to different unex-

pected events and requirements (Hao and Lin, 2010). Therefore, shop floor managers must consider

different strategies, policies and methods to cope with this changing environment. The classical

paper by Vieira et al. (2003) describes a general framework to classify such strategies, policies and

methods and, in the following discussion of the related literature, we basically adopt their frame-

work, although we further differentiate some sub-categories to make explicit some the options. More

specifically, we consider that there are two main approaches for shop floor scheduling in dynamic

environments (Church and Uzsoy, 1992), i.e. dispatching rules, or schedule generation.

Under the approach of dispatching rules, whenever a machine becomes free, a priority rule

is employed to decide what job to process next. This approach is also known as a completely

reactive approach (Aytug et al., 2005). Dispatching rules are usually fast and can be implemented

easily, which constitutes a great advantage. However, there is empirical evidence that for complex

systems with high competition for resources, the schedule generation approach has the potential

to significantly outperform dispatching rules (see e.g. Ovacik and Uzsoy, 1994). Furthermore, in

our specific case, the constraint regarding the permutation of the jobs across the machines greatly

limits the potential of using dispatching rules.

Under the schedule generation approach, a schedule is developed so the starting times of each

job on each machine is determined in advance. Since different unforeseen events may take place,

two different strategies can be adopted:

• To maintain the initial schedule —also labelled base schedule–, other than a time shifting in

the Gantt chart (i.e. right-shifting or left-shifting the starting times of the jobs to delay or

advance the schedule but without changing the relative order of the operations). This option

4

is also labelled as fixed sequencing (Sabuncuoglu and Kizilisik, 2003). Clearly, the suitability

of this option depends on how the initial schedule has been generated and the nature of the

unforeseen events. If the schedule has been generated assuming a deterministic scheduling

setting, it is likely that the performance of the initial schedule is substantially worsened with

respect to the initial results expected. Another possibility is to develop a schedule which

explicitly considers the probability of unforeseen events when generating the initial schedule,

usually by minimizing the expected value of the objective function(s), i.e. to use stochastic

scheduling techniques to develop the base schedule. Finally, a third alternative would be

to employ (deterministic) robust scheduling in order to produce an initial schedule which

is rather insensitive to the unexpected events, i.e. the potential performance of the initial

schedule is sacrificed so a schedule is generated in order that its expected behaviour is not

too much degraded in front of unforeseen events.

• To reschedule, i.e. to modify the scheduling in view of the new data available. This approach

is labelled as scheduling/rescheduling (Sabuncuoglu and Kizilisik, 2003) or proactive-reactive

(Aytug et al., 2005), and it is the most commonly used method under uncertainty (Liu et al.,

2017b). The main decision in this case is to decide when the rescheduling process is triggered

(i.e. the so-called rescheduling policy). Different types of rescheduling policies may be adopted

(Church and Uzsoy, 1992):

– Continuous rescheduling (CR). Rescheduling is performed every time an event that is

recognised by the system (such as the arrival of new jobs, machine breakdown, or the

completion time of a job), occurs.

– Periodic rescheduling (PR). Rescheduling is performed periodically in given time in-

tervals –named rescheduling points–, which have been fixed in advance. The events

occurring between rescheduling points are ignored until the following rescheduling point.

– Event-driven rescheduling (EDR). Rescheduling is triggered upon the fulfilment of cer-

tain conditions related to the status of the shop floor. Note that both CR and PR can

be seen as a particular case of EDR (indeed this is the case in the framework by Vieira

et al., 2003), nevertheless we wish to explicitly differentiate these options as it is also

5

customary in the related literature (see e.g. Aytug et al., 2005).

In addition, it is commonplace to classify the manufacturing environment where the above

scheduling decisions take place either as static (the number of jobs to be scheduled is finite), or

dynamic (the number of jobs to be scheduled is assumed infinite), see Vieira et al. (2003).

Equipped with the above framework, we can classify the related literature on the flowshop

layout. Apart from several work dealing with dispatching rules (see e.g. El-Bouri, 2012, El Bouri and

Amin, 2015 and Heger et al., 2016), several contributions can be noted with respect to rescheduling

approaches. Akturk and Gorgulu (1999) suggest a strategy by which, after machine failure, part

of the initial schedule is rescheduled to match up with the original schedule at some point in time.

Since rescheduling takes place after each machine failure, their approach can be considered a CR

policy. Swaminathan et al. (2007) address the problem of flowshop scheduling where new jobs arrive

over time using a CR policy. They study the differences between enforcing the use of permutation

schedules or not. Their results conclude that there may be significant gains in performance when the

permutation requirement is relaxed. The paper by Katragjini et al. (2013) addresses rescheduling in

a dynamic permutation flowshop with different types of disruptions –random job arrivals, machine

breakdowns, and job ready time variations–, and presents a metaheuristic to continuously reschedule

the jobs with the two objectives of system performance and schedule stability. Rahman et al. (2013)

presents the order acceptance problem in a dynamic permutation flowshop subject to random job

arrivals. If the newly arrived job is accepted, then it can be scheduled using a right-shifting strategy,

or by conducting a reschedule using a memetic algorithm. The results conclude that rescheduling

using a memetic algorithm produces a lower makespan. Their approach also uses a CR policy.

Rahmani and Heydari (2014) address the problem of schedule generation and rescheduling in a

dynamic flowshop with variability of the processing times and random job arrivals. The schedule

generation is aimed to obtain a robust solution whereas a multi-objective linear programming model

(with makespan, schedule stability and robustness as objectives) is used to perform a continuous

rescheduling. The procedure is favourably compared against other heuristics. Liu et al. (2016)

study a permutation flowshop with sequence dependent setup times and different types of disruption

events (including processing time variation). They use a multi-objective metaheuristic to conduct

a CR policy in order to obtain a Pareto set of indicators of system’s performance and deviation

6

from initial schedule, which is obtained using a deterministic hybrid Genetic Algorithm. Liu et al.

(2017a) address the problem of scheduling a flowshop with machine breakdowns and unexpected

job arrivals under a predictive-reactive approach using CR. The rescheduling procedure aims at

considering simultaneously the robustness of the schedule, and customer and users satisfaction.

Finally, Liu et al. (2017b) address the problem of rescheduling a new order (consisting of many

jobs) arriving to a dynamic permutation flowshop where the objective is to minimise the makespan

of the new jobs while not violating the due date of the set of old jobs. Different CR policies mixing

new and old jobs while satisfying the problem constraints are tested.

As it can be seen from the review of the related literature, although rescheduling in permutation

flowshops has been addressed in several contributions, none of the references focuses on the research

questions posed in Section 1. More specifically, it can be seen that there is no study assessing the

potential advantages of rescheduling as compared with not to perform it. Despite its intuitive

advantages, there is also a substantial body on contradictory research that discourages frequent

replanning and scheduling in many shop floor layouts (see e.g. the review by Hozak and Hill,

2009), therefore this issue should be properly assessed. Furthermore, most of the studies assume

a dynamic flowshop. Finally, regarding the different rescheduling procedures and policies, it can

be seen that the most common policy is to perform CR and to reschedule using sophisticated

approximate methods. However, this renders the rescheduling process extremely time consuming

so it may not be feasible from a practical point of view (Pfeiffer et al., 2007). Therefore, it is of

interest to investigate whether there are other, less CPU-intensive, efficient policies and procedures.

To address these issues, first we formulate the problem under consideration in order to develop

the computational experience, while in Section 4 we discuss the different rescheduling policies and

procedures that can be considered.

3 Problem statement

In the deterministic permutation flowshop scheduling problem, there are n jobs to be processed

sequentially on a set of m machines. The permutation constraint indicates that the sequence of

the jobs is the same for all machines. Additionally, it is usually assumed that machines are always

7

available, and that there are no setup times. For a complete list of the assumptions in the classical

permutation flowshop problem, see e.g. Framinan et al. (2014).

Due to the permutation constraint, a sequence of jobs Π specifies a complete solution to the

problem. Let us denote Cij(Π) the completion time on machine i of job in order j in sequence Π.

Then, the maximum completion time or makespan of the solution Π can be computed using the

following recursive expression:

Cij(Π) = max{Ci−1,j ;Ci,j−1}+ pij ∀i = 1, . . . ,m, j = 1, . . . , n (1)

where pij denotes the processing time of job in position j (j = 1, . . . , n) on machine i (i =

1, . . . ,m). Clearly, C0,j = 0 and Ci,0 = 0. Then, Cmax = Cmn. Among all possible sequences, the

goal is to find the one yielding the minimum makespan. This decision problem is well-known to be

NP-hard for m > 2.

In our research we assume that the processing times are random variables with expected value

p̃ij . The objective is here to minimise the expected makespan. Clearly, since pij are random

variables, so are Cij , see (1). An estimate of the values of Cij – denoted as C̃ij – can be computed

using the expected value of the processing times, i.e.:

C̃ij(Π) = max{C̃i−1,j ; C̃i,j−1}+ p̃ij ∀i = 1, . . . ,m, j = 1, . . . , n (2)

also C̃0,j = 0 and C̃i,0 = 0.

The stochastic behaviour of the flowshop motivates that the completion times of the jobs in the

initial schedule (see Figure 1a) do not have to be the same as the actual completion times when the

schedule is executed (see Figure 1b). More specifically, whenever job in position j in sequence Π

has completed its processing on the first machine of the flowshop, this machine is available for the

next job. In this situation, two options are possible:

• To proceed with the next job in Π, that is, to enter job in position j + 1 in the first machine.

We will refer to this option as to no rescheduling, as it results in sequencing the jobs according

to the initial sequence Π (except perhaps some right/left shifting of the jobs). This situation

is depicted in Figure 1c.

8

(a) Initial schedule

(b) Actual completion time of the job in the first machine and new (ex-
pected) machine availability

(c) No rescheduling (except left shifting of the scheduled jobs)

(d) Rescheduling in view of the expected machine availability

Figure 1: Options when the actual processing times on the first machine do not match the expected processing
times.

9

• To resequence the jobs in positions j+1 to n in Π to take into account the possible early/tardy

completion of the preceding jobs with respect to the initial sequence, see Figure 1d. Clearly,

resequencing the remaining jobs is equivalent to solving a decision problem with machine

availability constraints (see Perez-Gonzalez and Framinan, 2009 for a detailed analysis of this

problem). In the first machine, these availability is caused by the actual completion time of

job in position j, whereas for the remaining machines 2, . . . ,m is an estimated availability

based on the expected completion time of job in position j in these machines, even though it

incorporates some information regarding the actual completion times of the jobs.

As discussed in Section 2, there are potential merits in both options: On the one hand, re-

sequencing uses the available (real-time) data to cope with the uncertainty of the shop floor. On

the other hand, deterministic scheduling based on average processing times performs extremely

well for the stochastic flowshop, as shown by Framinan and Perez-Gonzalez (2015). Furthermore,

resequencing may introduce excessive nervousness in the scheduling process with perhaps little

practical advantage, given the fact that, although using some additional data, the computation of the

completion times of the remaining jobs is still based on estimates. Finally, if a rescheduling strategy

is to be carried out, its performance would depend on the rescheduling strategy adopted, i.e. when

to schedule (rescheduling frequency) and how to schedule (rescheduling procedure) (Sabuncuoglu

and Kizilisik, 2003). Different rescheduling strategies that can be adopted will be discussed in

Section 4.

A final remark is that, clearly, re-sequencing does not come at zero computational costs, as in

practical terms means that a new sequence has to be found in near real-time. However, although

extremely important in practice, in this research we will set aside this issue and assume that the

time can be ‘frozen’ so a true re-optimisation of the partial sequence can be conducted. By doing

so, we aim to establish the best case regarding the resequencing option, as it may turn out that,

under certain conditions, it is not profitable to re-sequence even if we could afford very long decision

intervals. This is also the usual strategy adopted in the rescheduling papers reviewed in Section 2.

10

4 Rescheduling strategies in permutation flowshops

In this section, we discuss different rescheduling strategies that may be adopted. In the flowshop

setting, the following issues have to be dealt to fully describe a rescheduling strategy:

1. The generation of the initial schedule, i.e. which procedure is to be used to generate a base

schedule.

2. The estimation of the machine availability for rescheduling: Since rescheduling with the

permutation flowshop constraint implies not to alter the sequence of the job already on the

shop, the completion times of these jobs have to be estimated to determine the (estimated)

availability of the machines in order to reschedule the remaining jobs.

3. The rescheduling procedure adopted, i.e. the algorithm to be employed to solve the result-

ing scheduling problem with machine availability constraints (using the estimated machine

availability in #2).

4. The rescheduling policy that is adopted, i.e. when the rescheduling procedure identified in

#3 is triggered.

The generation of the initial schedule (#1) and the rescheduling procedure (#3) are discussed

in Section 4.2, while #2 is described in Section 4.1. Finally, different rescheduling policies (#4) are

presented in Section 4.3.

4.1 Procedure for the estimation of machine availability

Upon the completion of the processing of job in position j in the first machine of the flowshop, we

can estimate the machine availability that would experience the jobs that have not yet entered in

the shop. More specifically, let ai(j) denote the availability of machine i after the processing of

job in position j in the first machine. The computation of this machine availability is illustrated in

Figure 2 and entails the following steps:

• For the first machine (i = 1), a1(j) is given by the real completion time of job in position j

on the first machine, i.e. :

11

Figure 2: Illustration of the estimation of machine availability

a1(j) = C1j .

• For the rest of the machines (i = 2, . . . ,m), two sub-cases can be distinguished:

– If, by the time the job in position j is finished on machine 1, machine i has completed the

processing of job in position j − 1 (i.e. if a1(j) > Ci,j−1), then the expected availability

is given by:

ai(j) = ai−1(j) + p̃ij i = 2, . . . ,m. (3)

– In contrast, if machine i has not completed the processing of job in position j − 1, we

must estimate the completion time of this job. To compute this estimate, let us denote

by k the position of the last scheduled job that is completed in machine i at time given

by a1(j), i.e. Ci,k ≤ a1(j). This is the last scheduled job for which we have all realized

completion times for machines 1, 2, . . . ,m. Let us define C̃l,k = Cl,k for l = 1, . . . ,m.

For the subsequent jobs in position r (r = k+1, . . . , j), their estimated completion times

are:

12

∗ For the first machine, note that all jobs in positions r = k + 1, . . . , j − 1 have com-

pleted their processing (otherwise job j cannot have completed its own processing),

therefore:

C̃1,r = C1,r ∀ r = k + 1, . . . , j. (4)

∗ For the remaining machines (l = 2, . . . ,m), the completion times of job in position

r have to be estimated if their real completion times fall behind a1(j) (see Figure 2).

Two cases can be distinguished: if Cl,r ≤ a1(j) then job in position r has completed

its processing time in machine l, therefore C̃l,r = Cl,r. In contrast, if Cl,r > a1(j)

then the job in position r has not completed its processing on machine l, but its

completion time can be estimated using previous estimates of the completion times,

i.e. max{C̃l,r−1, C̃l−1,r}+p̃lr. Note, however, that this latter expression may provide

a value lower than a1(j) which does not not reflect the real situation, as we know

that the processing time of this job has not completed at time a1(j). Therefore, we

can assume that at least this value should be greater or equal than a1(j). Equation

(5) summarises these options:

C̃l,r =

Cl,r if Cl,r ≤ a1(j)

max{a1(j); max{C̃l,r−1; C̃l−1,r}+ p̃lr} otherwise.
(5)

l = 2, . . . , i r = k + 1, . . . , j

Therefore,

ai(j) = C̃i,j .

In this manner, the ai(j) values can be computed upon the completion of a job in the first

machine of the flowshop in order to run the rescheduling procedure described in the next section.

13

Procedure IG(d, tlimit, T)
Π0 := Initial solution (random)
Perform a local search in the neighborhood of Π0. Let Π be the best so-found solution
repeat

d jobs at random are extracted in Π and reinserted one by one in the position yielding
the best (partial) makespan. Let us denote Π′ the so-obtained sequence.
Perform a local search in the neighborhood of Π′ . Let Π∗ be the best so-found solution.
if Cmax(Π∗) < Cmax(Π) or random ≤ e−

Cmax(Π∗)−Cmax(Π)
T then

Set Π := Π∗
until tlimit is not exceeded;
Return the best-so-found solution.

end

Figure 3: Main pseudocode of the Iterated Greedy algorithm

4.2 Procedures for Scheduling and Rescheduling

Different algorithms can be employed both to obtain the initial schedule as well as the successive

(re)schedules. In the problem under consideration, this is equivalent to obtaining an initial sequence

of jobs, and a modified sequence for the jobs not already in the shop subject to machine availability

constraints, respectively.

Regarding the generation of the initial job sequence, it is obtained assuming a deterministic

behaviour of the flowshop, i.e. p̃ij the mean processing times of the jobs on each machine are

employed to solve the corresponding deterministic permutation flowshop scheduling problem.

With the generation of the initial sequence, we intend to analyse two different scenarios: In the

first one, the initial sequence should be of excellent quality no matter the costs required to obtain

it. In the second scenario, a random sequence would be used as initial sequence. In this manner,

we can investigate the effect of rescheduling if the starting sequence is of very high quality, and

also the influence of the initial sequence in the subsequent rescheduling, i.e. whether it pays off to

develop an initial sequence, or similar results could be obtained without it.

For these scenarios with initial solutions of very high quality, we use the IG (Iterated Greedy)

algorithm of Ruiz and Stützle (2007). The IG algorithm (see main pseudocode in Figure 3) it-

eratively performs a local search in the neighbourhood of the incumbent solution followed by a

diversification mechanism consisting on removing a number of positions from the incumbent solu-

tion and reinserting them in random positions. This algorithm is known to be the best method for

14

the problem under consideration (see Fernandez-Viagas et al., 2017 for a computational evaluation

of this method), so – particularly for the small instances in the testbed – we can be quite confident

that the makespan is optimal or close to the optimal (deterministic) value. In order to ensure a

good quality of the solution, we allow the algorithm a generous amount of computation time (30

seconds). The values of the parameters employed in the IG are the same as in Ruiz and Stützle

(2007), but in our case the seed solution for the IG is random, so in this way the random solution

could be interpreted as not performing any iteration of the IG algorithm. Note that our intention

is to assess the merits of different strategies for rescheduling (including not to reschedule), therefore

the IG algorithm is used as a proxy of the best initial solution that could be obtained, but we are

not claiming that using different parameters and/or starting solutions could not provide better (de-

terministic) results. Furthermore, the processing times variability induces a degree of stochasticity

that would blur these potential difference, in case they exist.

Regarding the development of a (possibly) modified sequence for the jobs not yet in the shop

when any of the rescheduling policies described in Section 4.3 is triggered, the following steps are

adopted:

Let us denote the initial (base) sequence of jobs by Π := (π1, . . . , πn). Every time job πj

completes its processing on the first machine:

1. An estimation of the machine availability is conducted according to the procedure described

in Section 4.1. At this point, jobs (π1, . . . , πj) are already in the shop, so ai(j) denotes such

estimation of the availability of the machines.

2. The problem of scheduling the remaining jobs (πj+1, . . . , πn) subject to the initial machine

availability ai(j) has to be solved. Since this problem is also NP-hard (as it is a general case

of the problem without the availability constraint), there are several options:

• To use a very high-quality procedure to solve this problem, leaving aside the time to

obtain the solution.

• To use a (nearly) real-time procedure with a good –but not necessary of very high

quality– performance.

15

When doing both choices we can take into account the results by Perez-Gonzalez and Framinan

(2009), which indicate that the procedures for the Fm||Cmax problem also perform well for

the availability-constrained version unless ai are extremely different (i.e. several times the

magnitude of the processing times of the jobs). Clearly, this is not our case as the increases

of these unavailability periods should not exceed, on average, the mean processing times of

the jobs. Therefore, we can adapt the IG algorithm to the problem under consideration, with

the same parameters as in the generation of the initial sequence, and be quite confident on

obtaining high-quality results for the problem with machine availability constraints. For the

second option, we adapt the NEH heuristic (Nawaz et al., 1983), which is known to be the

most efficient constructive heuristic for the unconstrained problem. In this manner, we can

model the two options described above.

3. The first job of the new sequence obtained by some of the methods described in the above

step enters in the first machine of the flowshop.

4.3 Rescheduling policies

The rescheduling procedure described in the previous section can be triggered every time a job

is completed in the first machine of the shop, or upon the fulfilment of additional requirements.

Perhaps the simplest way –and certainly the most popular in the literature reviewed in Section

2– is to perform a continuous rescheduling (CR) policy, i.e. to trigger the rescheduling procedure

every time that a job finishes its processing in the first machine of the shop. However, on the

one hand continuous rescheduling is very time consuming, as it has been already discussed. On

the other hand, such frequent rescheduling may introduce some instability in the system so its

performance may deteriorate. Therefore, we also propose two Event-Driven Rescheduling policies

that are described in the next subsections.

4.3.1 Discrepancy-Based Policy

Clearly, if the variability of the processing times is minimal, then there would be no need to resched-

ule, as the actual completion times would be very similar to those expected from the base schedule.

16

In this regard, it seems intuitive to argue that the need for rescheduling increases as the discrepancy

between the expected completion times and the actual processing times becomes higher. Therefore,

our first proposal is a policy labelled Discrepancy-Based Rescheduling or DBR, which, for each job

j which has just finished its processing on the first machine, it measures the relative discrepancy

between the expected completion time of this job in the first machine and its actual completion

time on this machine. If this relative discrepancy exceeds a certain value δ (a parameter of the

policy), then the rescheduling procedure is triggered. More specifically, the procedure is triggered

if the following condition holds:

∣∣∣∣∣ C̃1,j − C1,j

C̃1,j

∣∣∣∣∣ > δ (6)

It is clear that δ greatly influences the behaviour of this policy: for small δ values, this policy

is expected to be similar to a CR policy, whereas for large δ values, it is expected to be similar to

not to reschedule.

4.3.2 Critical Path Rescheduling Policy

The second rescheduling policy proposed in this paper is based on the concept of critical path of a

flowshop (Nowicki and Smutnicki, 1996). Given a sequence Π = (π1, . . . , πn), a graph G(Π) = (N,E)

can be obtained by connecting N = n ·m nodes (representing each operation of the n jobs on the

m machines of the flowshop), each one of weight p̃πi,j . A set of arcs E connects each node (i, j)

with nodes (i+ 1, j) and (i, j + 1). The resulting graph is depicted in Figure 4a. In this graph, the

critical path is the longest path to go from node (1, 1) to node (n,m). Clearly, the length of the

critical path is the (deterministic) makespan of the sequence Π, i.e.:

C̃max(Π) =
∑

∀(i,j)∈CP (Π)
p̃i,j

where CP (Π) is the set of nodes in the critical path of sequence Π. The interpretation of the

critical path in the Gantt chart is given in Figure 4b.

In a scenario with variable processing times it is clear that, if the realization of the processing

times of a given operation changes the previous critical path, then the makespan of this sequence

17

(a) Graph representation and critical path (b) Gantt chart with critical path

Figure 4: Example of the critical path concept.

might be greatly altered with respect to that initially expected. In contrast, if the actual processing

times of the current sequence do not change the initial critical path, then possibly there is no need

to reschedule the remaining jobs, as possibly some left/right shifting will suffice. Therefore, our

proposal is to use this alteration in the critical path as a mechanism to trigger the rescheduling.

More specifically, after the completion time of job j in the first machine, we check whether the

actual completion times have modified the critical path with respect to that of the current sequence.

If the resulting critical path is not the same, then the rescheduling procedure is triggered. This

policy is labelled CPR (Critical Path Rescheduling) policy, and does not require any parameter.

5 Computational experience

In this section we describe the experiments carried out to respond to the research questions posed

in Section 1. In Section 5.1 we discuss the design of the experiments, while in Section 5.2 we present

the results of the computational experience.

5.1 Design of the Experiments

The different procedures described in Section 4 are applied to the testbed of Taillard (1993), that

contains 120 flowshop scheduling instances with different numbers of jobs and machines. This

testbed has become an standard for the evaluation of the effectiveness of flowshop scheduling tech-

niques, and it is known to contain instances for which it is difficult to find their optimal values, as the

18

processing times in the instances have been chosen so that a lengthy tabu search procedure yields so-

lutions which are relatively far from their lower bounds. Out of these 120 instances, the first 100 ones

have been selected for our experimentation. Aside from the enormous computation times required

for the simulation of the re-sequencing procedure in the biggest instances (see below), we have opted

for this subset of instances in order to ensure that the IG procedure is able to find very good solutions

within the allocated CPU time. Therefore, the following combinations have been tested: (n,m) ∈

{(20, 5), (20, 10), (20, 20), (50, 5), (50, 10), (50, 20), (100, 5), (100, 10), (100, 20), (200, 10)}, with 10 in-

stances of each problem size.

Note that other testbeds for permutation flowshop problems exist, such as the VRF testbed

by Vallada et al. (2015). However, this testbed is relatively new and it seems reasonable to think

that the best-known values of these instances are not so close to their optima as those in Taillard’s

testbed, which, in many cases, are known to be in fact optimal. Since we will use these deterministic

best-known values to compute the quality of the approaches (see Section 5.2), we believe that using

these, in principle, tighter upper bounds would produce more consistent results.

The processing times in the instances are assumed to follow a log normal distribution, which has

two parameters: mean µ and standard deviation σ. This distribution has been widely employed to

model stochastic processing times (see e.g. Baker and Trietsch, 2011, Baker and Altheimer, 2012,

or Framinan and Perez-Gonzalez, 2015). Furthermore, we can easily control the variability of the

processing times by setting different levels of coefficient of variation cv = σ
µ . More specifically, we set

cv ∈ {0.5, 1, 1.5}, which are assumed to represent a low, medium and large variability respectively

in manufacturing shop floors (see Hopp and Spearman, 2008). In this manner, the processing times

given in Taillard’s testbed are interpreted as the mean value of these processing times (µ = p̃ij) and

σij the corresponding standard deviation is obtained once cv is given, i.e. σij = p̃ij · cv.

For each instance in the testbed, different rescheduling strategies have been tested. These are

labelled using the format (B, {RP,RA}), where B indicates how the base schedule is obtained,

RP indicates the rescheduling policy –i.e. when the rescheduling algorithm is triggered–, and RA

indicates the rescheduling algorithm employed. Using this notation, the following options have been

tested:

• (IG,−): The IG procedure described in Section 4.2 has been used to develop an initial

19

schedule, which has not been subsequently modified.

• (IG, {CR, IG}): The IG procedure has been used to develop an initial schedule, and the CR

rescheduling procedure described in Section 4.3 using the IG algorithm is triggered every time

a job has finished its processing in the first machine.

• (Rand, {CR, IG}): A random sequence has been used as initial schedule, and the CR reschedul-

ing procedure using the IG algorithm is triggered every time a job has finished its processing

in the first machine.

• (IG, {CR,NEH}): The IG procedure has been used to develop an initial schedule, and the

CR rescheduling procedure using the NEH heuristic is triggered every time a job has finished

its processing in the first machine.

• (IG, {DBR(δ), IG}): The IG procedure has been used to develop an initial schedule, and the

DBR rescheduling procedure described in Section 4.3.1 using the IG algorithm is triggered if

the conditions in Equation (6) have been fulfilled when a job has finished its processing in the

first machine, i.e. every time that the discrepancy has been greater than δ ∈ {0.25, 0.5}. For

δ > 0.5, preliminary experiments have detected that the rescheduling procedure was triggered

for all jobs, therefore it was equivalent to a CR policy.

• (IG, {CPR, IG}): The IG procedure has been used to develop an initial schedule, and the

CPR rescheduling procedure described in Section 4.3.2 using the IG algorithm is triggered if

the new information implies a change on the critical path of the current schedule.

The computational effort carried out involves solving 30 replications of 100 problem sizes for

each of the 7 options described above. Three out of these 7 options involve invoking of the IG

algorithm n−1 times with a time limit of 30 seconds for each coefficient of variation, which makes a

total equivalent computation time of 22.18 days only for the three continuous rescheduling options.

In total, the experimentation has taken the equivalent of several months of computations.

20

n
m

(I
G
,−

)
(I
G
,{
C
R
,I
G
})

(R
a
n
d
,{
C
R
,I
G
})

(I
G
,{
C
R
,N

E
H
})

(I
G
,{
D
B
R

(0
,2

5)
,I
G
})

(I
G
,{
D
B
R

(0
,5

),
I
G
})

(I
G
,{
C
P
R
,I
G
})

20
5

21
.3

79
19

.6
71

23
.2

63
20

.4
75

20
.8

80
22

.6
51

19
.3

68
20

10
27

.2
96

26
.6

69
30

.7
91

26
.3

96
26

.1
53

26
.4

67
25

.8
99

20
20

25
.1

44
25

.1
30

27
.2

50
26

.3
99

26
.0

33
24

.9
73

24
.4

89
50

5
17

.0
66

15
.2

18
16

.4
77

15
.4

96
15

.1
95

15
.5

27
13

.7
94

50
10

25
.5

66
24

.4
33

27
.0

24
26

.3
82

24
.5

50
24

.1
17

23
.8

10
50

20
29

.5
51

28
.3

15
29

.8
04

31
.3

87
27

.7
92

28
.0

42
28

.0
69

10
0

5
13

.3
52

12
.0

84
12

.6
68

12
.2

34
12

.2
10

12
.1

46
11

.8
93

10
0

10
20

.3
07

18
.4

68
20

.4
49

19
.9

00
18

.5
46

18
.0

88
17

.3
81

10
0

20
26

.9
07

25
.5

31
27

.0
27

28
.0

26
25

.4
49

24
.1

75
23

.9
15

20
0

10
16

.2
09

14
.8

92
15

.2
46

15
.5

96
14

.8
62

14
.3

19
13

.1
01

Av
er

ag
e

22
.9

52
21

.7
24

23
.8

62
22

.9
66

21
.8

68
21

.7
98

20
.9

58

Ta
bl

e
1:

Av
er

ag
e

R
PD

fo
r
cv

=
0.

5

n
m

(I
G
,−

)
(I
G
,{
C
R
,I
G
})

(R
a
n
d
,{
C
R
,I
G
})

(I
G
,{
C
R
,N

E
H
})

(I
G
,{
D
B
R

(0
,2

5)
,I
G
})

(I
G
,{
D
B
R

(0
,5

),
I
G
})

(I
G
,{
C
P
R
,I
G
})

20
5

43
.5

32
41

.8
47

44
.6

94
44

.7
23

41
.5

79
41

.2
16

41
.1

78
20

10
56

.2
18

54
.0

68
61

.8
54

56
.2

57
56

.2
30

57
.7

41
55

.7
78

20
20

58
.5

81
58

.6
97

61
.6

98
57

.9
95

58
.0

31
59

.4
87

57
.9

94
50

5
34

.4
30

33
.8

18
34

.3
46

33
.1

60
33

.5
49

33
.0

88
32

.6
23

50
10

52
.8

06
52

.3
46

52
.2

90
53

.0
82

51
.7

66
52

.5
01

52
.1

05
50

20
62

.4
62

60
.4

03
64

.8
44

65
.0

48
62

.0
77

62
.1

44
61

.4
32

10
0

5
26

.8
28

25
.5

43
26

.2
66

26
.7

33
26

.3
11

27
.7

08
25

.2
11

10
0

10
41

.3
59

39
.7

79
42

.0
45

41
.1

71
41

.2
39

40
.7

47
38

.1
05

10
0

20
57

.2
89

56
.6

68
56

.7
83

58
.7

86
56

.0
88

54
.3

96
54

.6
49

20
0

10
33

.6
07

31
.7

66
32

.6
36

31
.6

31
32

.6
13

31
.5

71
30

.0
53

Av
er

ag
e

48
.1

67
47

.0
19

49
.4

24
48

.5
51

47
.4

30
47

.6
70

46
.5

64

Ta
bl

e
2:

Av
er

ag
e

R
PD

fo
r
cv

=
1.

0

n
m

(I
G
,−

)
(I
G
,{
C
R
,I
G
})

(R
a
n
d
,{
C
R
,I
G
})

(I
G
,{
C
R
,N

E
H
})

(I
G
,{
D
B
R

(0
,2

5)
,I
G
})

(I
G
,{
D
B
R

(0
,5

),
I
G
})

(I
G
,{
C
P
R
,I
G
})

20
5

65
.4

60
65

.0
73

65
.8

35
62

.0
49

58
.9

28
67

.2
54

59
.3

71
20

10
77

.9
59

77
.7

75
82

.0
43

83
.9

21
83

.9
19

78
.7

31
81

.6
44

20
20

86
.7

66
87

.9
20

93
.5

70
87

.6
19

91
.2

58
90

.1
88

87
.4

75
50

5
47

.1
92

46
.2

28
45

.9
64

49
.4

11
47

.7
41

49
.5

29
45

.8
85

50
10

80
.1

47
76

.6
78

81
.3

62
74

.6
54

76
.8

75
75

.8
06

76
.0

62
50

20
94

.3
08

95
.0

21
99

.8
83

98
.6

29
10

0.
45

3
95

.4
96

95
.9

54
10

0
5

40
.0

61
38

.4
07

40
.3

32
40

.1
01

40
.0

19
41

.5
88

38
.4

61
10

0
10

60
.8

20
60

.9
81

62
.5

97
62

.0
77

61
.5

62
62

.4
93

60
.0

13
10

0
20

88
.5

49
86

.2
43

85
.8

50
87

.7
53

85
.2

64
85

.6
00

84
.9

04
20

0
10

49
.3

50
48

.5
24

48
.4

45
49

.5
41

48
.9

73
50

.1
22

45
.7

05
Av

er
ag

e
71

.2
51

70
.4

81
73

.0
48

71
.8

02
71

.7
80

71
.8

54
69

.9
74

Ta
bl

e
3:

Av
er

ag
e

R
PD

fo
r
cv

=
1.

5

21

5.2 Results

The results for each value of cv are summarised in Tables 1, 2 and 3 in terms of the Average Relative

Percentage Deviation (RPD), where the RPD of instance i for a procedure p is computed as:

RPD(i, p) = Cmax(i, p)− C∗max(i)
C∗max(i) · 100 (7)

where Cmax(i, p) is the makespan obtained by applying procedure p on instance i, and C∗max is

the best-known value for instance i assuming deterministic processing times.

In order to compute the savings in triggering the rescheduling procedures achieved by the dif-

ferent event-driven rescheduling policies –i.e. (IG, {DBR(0, 25), IG}), (IG, {DBR(0, 5), IG}) and

(IG, {CPR, IG})–, we also measure the relative reduction in the number of times (RRN) that the

rescheduling processes is triggered for a given rescheduling policy with respect to that of the con-

tinuous rescheduling. More specifically, for each instance i and a rescheduling policy p we compute:

RRN(i, p) = NCRi −NRi,p
NCRi

(8)

where NCRi is the number of times that a continuous rescheduling policy would trigger the

rescheduling process (i.e. the number of jobs in instance i minus one), and NR(i, p) is the number

of times that rescheduling policy p triggers the rescheduling process. The average RNN values for

each problem size are shown in Table 4.

In order to check the statistical significance of the results, the 95% confidence intervals for the

different coefficient of variations are shown in Figures 5, 6, and 7 respectively. Finally, the results

of Tukey HSD are shown in Tables 5, 6, and 7.

An ANOVA conducted on all the results establishes that the most significant factor is the

coefficient of variation, therefore it makes sense to divide the discussion of the results along the

different values of cv. For scenarios with low variability (i.e. cv = 0.5), it can be seen that there

are advantages on rescheduling as compared with no rescheduling as long as the base schedule is

a good one and we use an excellent rescheduling algorithm (in our case, IG). This can be clearly

seen in Table 1 and in Figure 5 by checking that there are statistically significant differences be-

22

Problem size cv = 0.5 cv = 1.0 cv = 1.5
n m δ = 0.25 δ = 0.5 CPR δ = 0.25 δ = 0.5 CPR δ = 0.25 δ = 0.5 CPR

20 5 0.487 0.937 0.905 0.379 0.898 0.814 0.376 0.860 0.737
20 10 0.560 0.993 0.761 0.463 0.958 0.657 0.394 0.908 0.595
20 20 0.895 1.000 0.794 0.745 0.993 0.696 0.670 0.975 0.599
50 5 0.429 0.901 0.948 0.305 0.844 0.882 0.254 0.752 0.826
50 10 0.274 0.803 0.908 0.123 0.701 0.854 0.101 0.604 0.821
50 20 0.384 0.987 0.847 0.205 0.965 0.801 0.117 0.883 0.772

100 5 0.417 0.823 0.969 0.283 0.773 0.939 0.220 0.704 0.909
100 10 0.280 0.757 0.953 0.086 0.679 0.918 0.057 0.571 0.895
100 20 0.296 0.804 0.926 0.084 0.752 0.899 0.028 0.649 0.876
200 10 0.283 0.676 0.982 0.119 0.623 0.957 0.046 0.525 0.947

Average 0.447 0.889 0.890 0.297 0.840 0.829 0.246 0.767 0.781

Table 4: Average RRN for the event-driven policies and the different coefficients of variations.

tween (IG,−) and any of the rescheduling policies that use IG for both schedule generation and

rescheduling. (IG,−) obtains sequences that are, on average, around 10% worse than those ob-

tained by the (IG, {CPR, IG}) policy (the best-performing rescheduling policy) and 3.6% worse

than those obtained by the (IG, {CR, IG}) policy (the worst-performing rescheduling policy). If

these differences are measured using the best of the tested policies as C∗max(i), this figure is about

27% for (IG, {CPR, IG}) and about 10% for (IG, {CR, IG}). This speaks for substantial per-

formance differences between these cases. The results also show that these potential rescheduling

advantages blur if the base schedule is not excellent (see (Rand, {CR, IG}) in Figure 5) or if the

rescheduling algorithm is not excellent, see (IG, {CR,NEH}).

Among the rescheduling policies that can be implemented, the results also show that it is

better to implement event-driven rescheduling policies as compared to continuous rescheduling.

Particularly, the proposed Critical-Path Rescheduling policy outperforms the rest of the policies,

and this difference is statistically significant, as it can be seen in the Tukey HSD data in Table

5. Furthermore, it can be seen in Table 4 that the CPR policy requires a very small number of

reschedules (a saving of around 90% with respect to CR) and does not need setting any parameter,

which represents another advantage as compared to DBR policies.

When analysing the trade-off between a good base schedule followed by no rescheduling, and a

bad base schedule followed by a good rescheduling algorithm (i.e. (IG,−) vs. (Rand, {CR, IG})

in Figure 5), the second option is better, not only on average but also in statistical terms. This

23

Figure 5: Mean and 95% CI for cv = 0.5

fact speaks for the relative robustness of deterministic scheduling in front of low variability (i.e.

cv = 0.5) of the processing times.

For an scenario with medium variability (cv = 1.0), Figure 6 shows that there are advantages on

rescheduling as compared with no rescheduling as long as the base schedule is a good one and we use

a combination of an excellent rescheduling algorithm (in our case, IG) and a suitable rescheduling

policy (Critical Path). Otherwise, there may be advantages in rescheduling with respect to the

average values (see Table 2), but they are not statistically significant. The difference between

(IG, {CPR, IG}) and (IG,−) for this case are around 5% with respect to deterministic scheduling,

and around 8% with respect to the best tested option. Therefore, although the differences between

the strategies shrink, there are still substantial differences between them.

24

Figure 6: Mean and 95% CI for cv = 1.0

Among the rescheduling policies, (IG, {CPR, IG}) is still the best one regarding the average

values, and also taking into account the smaller number of times that the rescheduling procedure is

triggered, see Table 4. Finally, when analysing the trade-off between a good base schedule followed

by no rescheduling, and a bad base schedule followed combined with a good rescheduling algorithm

(i.e. (IG,−) vs. (Rand, {CR, IG}) in Figure 6), the second option is still better with respect to the

average quality of the solutions, although there are not statistically significant differences between

them, see Table 6.

Finally, for an scenario with high variability (cv = 1.5), there are no statistically significant

differences between the different options of rescheduling and not rescheduling when all problem

sizes are aggregated. However, the analysis of the larger instances (n = 200) reveals that there are

statistical differences between the methods (see Figure 8). This is indicating that, even for these

25

Figure 7: Mean and 95% CI for cv = 1.5

scenarios with high variability, rescheduling –particularly if triggered using the Critical Path Policy

proposed in this paper– also pays off.

6 Conclusions

This paper explores the value of using real-time data for conducting rescheduling decisions in a per-

mutation flowshop where the processing times are assumed to be stochastic. To do so, we compare

the expected performance of well-known rescheduling strategies (including not rescheduling, or per-

forming a continuous rescheduling policy), and propose two novel event-driven rescheduling policies,

with triggering mechanisms based on the concepts of discrepancy with respect to the expected com-

26

Subsets
Method Sample size 1 2 3 4
(IG, {CPR, IG}) 3000 20.1719
(IG, {CR, IG}) 3000 21.041139
(IG, {DBR(0.5), IG}) 3000 21.050505
(IG, {DBR(0.25), IG}) 3000 21.167193
(IG, {CR, NEH}) 3000 22.22911
(IG,−) 3000 22.277568
(Rand.{CR, IG}) 3000 23.000002
Sig. 1 0.991 1 1
Mean squared error 45.162
Alpha 0.05

Table 5: Tukey HSD for cv = 0.5.

Subsets
Method Sample size 1 2 3 4
(IG, {CPR, IG}) 3000 44.912831
(IG, {CR, IG}) 3000 45.493531 45.493531
(IG, {DBR(0.25), IG}) 3000 45.948307 45.948307 45.948307
(IG, {DBR(0.5), IG}) 3000 46.059851 46.059851 46.059851
(IG,−) 3000 46.711231 46.711231 46.711231
(IG, {CR, NEH}) 3000 46.858676 46.858676
(Rand, {CR, IG}) 3000 47.745502
Sig. 0.106 0.069 0.342 0.196
Mean squared error 277.184
Alpha

Table 6: Tukey HSD for cv = 1.0.

Subsets
Method Sample size 1 2
(IG, {CPR, IG}) 3000 67.547393
(IG, {CR, IG}) 3000 68.284935
(IG,−) 3000 69.061143 69.061143
(IG, {DBR(0.25), IG}) 3000 69.499301 69.499301
(IG, {CR, NEH}) 3000 69.575527 69.575527
(IG, {DBR(0.5), IG}) 3000 69.68064 69.68064
(Rand, {CR, IG}) 3000 70.588082
Sig. 0.082 0.426
Mean squared error 890.009
Alpha

Table 7: Tukey HSD for cv = 1.5.

27

Figure 8: Mean and 95% CI for cv = 1.5 and n = 200.

pletion times, and on the disruption of the critical path respectively. All these policies are tested in

scenarios with different variability of processing times, and also analysed using different procedures

to generate the initial schedule and to perform the rescheduling of the remaining jobs. The compu-

tational results show that, when variability of the processing times is low to medium (a coefficient

of variation between 0.5 and 1 in our research), rescheduling improves the performance in the shop

floor, reducing the ARPD values with respect to the option of not to reschedule. In contrast, when

the processing time variability is very high (a coefficient of variation of 1.5 in our experiments),

there are no statistically significant differences between rescheduling and not rescheduling, even if

the mean and the standard deviation of ARPD are lower in the first case. The results also make clear

that it is critical to start with a good base schedule, and that event-driven policies are competitive

with continuous rescheduling while requiring a much smaller number of reschedules. Particularly,

28

the proposed scheduling policy based on the critical path concept obtains the best results for all

scenarios tested. Finally, the expected performance of re-sequencing does not seem to be affected

by the number of machines in the shop, at least within the limits of our experiments. However, it

is affected by the number of jobs, indicating a higher benefit from re-sequencing when the number

of jobs is high.

The results obtained have a number of implications for schedulers and decision makers. First,

our research is motivated by the technological advances in IT in the manufacturing domain –such

as Industry 4.0 or SmartFactory–, which make real-time information on shop floor status instantly

available for decision makers. However, there may be substantial costs in the deployment of this

infrastructure. Our research shows that, at least within the limitations of our study, that investments

in gathering real-time data at the scheduling level may pay off depending basically on the variability

of the shop floor and, to a lesser extent, on the number of jobs to be scheduled. While there is

a range of low/middle variability where this information can be used to provide a more efficient

schedule, this is not the case for environments with very high variability (coefficient of variation of

1.5).

The results also emphasize the importance of employing a very good base schedule, as poor-

quality schedules cannot be repaired by high-quality rescheduling. In our research we have assumed

that this base schedule is deterministic, but it would be also interesting to test the performance of

base schedules obtained using (static) stochastic scheduling, or robust schedules.

The importance of the rescheduling procedure is also stressed: Contrary to a perhaps common

intuition based on the results available for single-stage scheduling, continuous rescheduling does

not necessarily is the best rescheduling strategy for flowshops. Instead, event-driven scheduling

guided by the disruption of the initial schedule may yield better results. Particularly, rescheduling

triggered by the concept of critical path has shown to provide the best overall results, being a policy

extremely simple to implement (i.e. no parameter setting is required).

Finally, it has to be noted that stochastic modelling is sometimes used to capture the fact that

there are no accurate estimations of the processing times. In view of the results obtained when

the variability is very high, it would be advisable to devote time and resources to provide accurate

processing times before deploying an (optimisation-based) scheduling and/or rescheduling system,

29

as these may not reap the expected benefits in the case of highly variable processing times.

A number of possible avenues worth of research can be derived from our research. First, our

study is limited to a specific layout and objective function. It will be interesting to check whether the

conclusions obtained also extend to different settings and objectives. Particularly, due date related

objectives seem to be very interesting, as the objective function would be a combination of stochastic

(processing times) and deterministic (due dates) data, so it may result in a different behaviour than

the one obtained for the makespan. Extending the work to other multi-stage settings such as the

hybrid flowshop could be also interesting. Second, in view of the extensive CPU requirements

of the scheduling and rescheduling algorithms employed – which may not be affordable in some

manufacturing scenarios–, it would be interesting to develop new fast heuristics for rescheduling, as

those currently available (borrowed from the deterministic flowshop scheduling case) do not perform

well under the scenario with processing time variability. Third, in some manufacturing scenarios, the

permutation constraint does not have to be necessarily enforced. Therefore, it could be interesting

to analyse whether there are advantages in rescheduling without the permutation constraint, as the

results for maximum tardiness in Swaminathan et al. (2007) seem to attest. Note that this option

would provide more decision points for re-scheduling (i.e. n ·m − 1 as compared to n − 1 in our

experiments) and a more extensive use of available data can be done.

References
Akturk, M. S. and Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European

Journal of Operational Research, 112(1):81–97.

Aytug, H., Lawley, M., McKay, K., Mohan, S., and Uzsoy, R. (2005). Executing production schedules
in the face of uncertainties: A review and some future directions. European Journal of Operational
Research, 161(1):86–110.

Baker, K. and Altheimer, D. (2012). Heuristic solution methods for the stochastic flow shop problem.
European Journal of Operational Research, 216(1):172–177.

Baker, K. and Trietsch, D. (2011). Three heuristic procedures for the stochastic, two-machine flow
shop problem. Journal of Scheduling, 14(5):445–454.

Chen, C.-C., Chen, C.-L., Ciou, C.-Y., and Liu, J.-X. (2016). Communication scheduling scheme
based on big-data regression analysis and genetic algorithm for cyber-physical factory automa-
tion. In 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 -
Conference Proceedings, pages 2603–2608.

30

Church, L. and Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling policies in
dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3):153–163.

El-Bouri, A. (2012). A cooperative dispatching approach for minimizing mean tardiness in a dynamic
flowshop. Computers and Operations Research, 39(7):1305–1314.

El Bouri, A. and Amin, G. R. (2015). A combined OWA-DEA method for dispatching rule selection.
Computers and Industrial Engineering, 88:470–478.

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. (2017). A new vision of approximate methods for
the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation.
European Journal of Operational Research, 257(3):707–721.

Framinan, J., Leisten, R., and Ruiz, R. (2014). Manufacturing Scheduling Systems: An Integrated
View of Models, Methods, and Tools. Springer.

Framinan, J. and Perez-Gonzalez, P. (2015). On heuristic solutions for the stochastic flowshop
scheduling problem. European Journal of Operational Research, 246(2):413–420.

González-Neira, E., Montoya-Torres, J., and Barrera, D. (2017). Flow-shop scheduling problem
under uncertainties: Review and trends. International Journal of Industrial Engineering Com-
putations, 8 (4):399–426.

Hao, X. and Lin, L. (2010). Job shop rescheduling by using multi-objective genetic algorithm. In
Proceedings of the 40th International Conference on Computers and Industrial Engineering.

Heger, J., Branke, J., Hildebrandt, T., and Scholz-Reiter, B. (2016). Dynamic adjustment of
dispatching rule parameters in flow shops with sequence-dependent set-up times. International
Journal of Production Research, 54(22):6812–6824.

Hopp, W. and Spearman, M. (2008). Factory Physics (Third Edition). Irwin, Chicago.

Hozak, K. and Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling
frequencies. International Journal of Production Research, 47(18):4955–4970.

Katragjini, K., Vallada, E., and Ruiz, R. (2013). Flow shop rescheduling under different types of
disruption. International Journal of Production Research, 51(3):780–797.

Liu, F., Wang, S., Hong, Y., and Yue, X. (2017a). On the robust and stable flowshop scheduling
under stochastic and dynamic disruptions. IEEE Transactions on Engineering Management,
64(4):539–553.

Liu, W., Jin, Y., and Price, M. (2017b). New scheduling algorithms and digital tool for dynamic
permutation flowshop with newly arrived order. International Journal of Production Research,
55(11):3234–3248.

Liu, X.-P., Liu, F., and Wang, J.-J. (2016). An enhanced memetic algorithm for combinational
disruption management in sequence-dependent permutation flowshop. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9771:548–559.

31

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91–95.

Nowicki, E. and Smutnicki, C. (1996). A fast tabu search algorithm for the permutation flow-shop
problem. European Journal of Operational Research, 91(1):160–175.

Ovacik, I. and Uzsoy, R. (1994). Exploiting shop floor status information to schedule complex job
shops. Journal of Manufacturing Systems, 13(2):73–84.

Perez-Gonzalez, P. and Framinan, J. (2009). Scheduling permutation flowshops with initial avail-
ability constraint: Analysis of solutions and constructive heuristics. Computers and Operations
Research, 36(10):2866–2876.

Pfeiffer, A., Kádár, B., and Monostori, L. (2007). Stability-oriented evaluation of rescheduling
strategies, by using simulation. Computers in Industry, 58(7):630–643.

Rahman, H., Sarker, R., and Essam, D. (2013). Permutation flow shop scheduling with dynamic
job order arrival. In 2013 IEEE Conference on Cybernetics and Intelligent Systems (CIS), pages
30–35.

Rahmani, D. and Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected
arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1):84–
92.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.

Sabuncuoglu, I. and Kizilisik, O. B. (2003). Reactive scheduling in a dynamic and stochastic fms
environment. International Journal of Production Research, 41(17):4211–4231.

Swaminathan, R., Pfund, M., Fowler, J., Mason, S., and Keha, A. (2007). Impact of permuta-
tion enforcement when minimizing total weighted tardiness in dynamic flowshops with uncertain
processing times. Computers and Operations Research, 34(10):3055–3068.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285.

Vallada, E., Ruiz, R., and Framinan, J. (2015). New hard benchmark for flowshop scheduling
problems minimising makespan. European Journal of Operational Research, 240:666–677.

Vieira, G. E., Herrmann, J. W., and Lin, E. (2003). Rescheduling manufacturing systems: A
framework of strategies, policies, and methods. Journal of Scheduling, 6(1):39–62.

Waschneck, B., Altenmüller, T., Bauernhansl, T., and Kyek, A. (2017). Production scheduling in
complex job shops from an industrie 4.0 perspective: A review and challenges in the semiconduc-
tor industry. In CEUR Workshop Proceedings.

32

	Introduction
	Background
	Problem statement
	Rescheduling strategies in permutation flowshops
	Procedure for the estimation of machine availability
	Procedures for Scheduling and Rescheduling
	Rescheduling policies
	Discrepancy-Based Policy
	Critical Path Rescheduling Policy

	Computational experience
	Design of the Experiments
	Results

	Conclusions

