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Abstract

ew standards of wireless digital communications are pushing the design of power
N amplifiers towards challenging constraints in terms of linearity and efficiency. While
these new systems demand active devices to work near saturation seeking power efficiency,
their inherent nonlinearity may drive the overall system to inadequate performance in
out-of-band emissions and in-band distortion. The need of digital compensation techniques
and the evolution in the design of new digital signal processing architectures make digital
predistortion (DPD) a convenient linearization approach.

Digital predistorters usually rely on behavioral models such as memory polynomials
(MPs), generalized memory polynomials (GMPs), dynamic deviation reduction-based
(DDR), etc. Volterra system identification suffers the “curse of dimensionality”, since the
complexity tends to grow exponentially in the number of coefficients as the memory and
nonlinear order become larger.

This Thesis is focused primarily on contributing to the modeling and linearization of
wireless communication systems. The main covered topics are the Volterra-Parafac and
the General Volterra Model for Complex Systems which address the structure of the DPD
and the structured compressed-sensing Volterra series and a method for linearization in a
range of average working operation levels, which focuses in how the coefficients of the
models have to be retrieved.
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Resumen (Abstract)

os nuevos estandares de comunicaciones digitales inaldmbricas estdn impulsando el
disefio de amplificadores de potencia con unas condiciones limites en términos de
linealidad y eficiencia. Si bien estos nuevos sistemas exigen que los dispositivos activos
trabajen cerca de la zona de saturacion en busca de la eficiencia energética, la no linealidad
inherente puede producir que el sistema muestre prestaciones inadecuadas en emisiones
fuera de banda y distorsién en banda. La necesidad de técnicas digitales de compensacion
y la evolucioén en el disefio de nuevas arquitecturas de procesamiento de sefiales digitales
posicionan a la predistorsion digital (DPD) como un enfoque practico.

Los predistorsionadores digitales se suelen basar en modelos de comportamiento como
el memory polynomial (MP), el generalized memory polynomial (GMP) y el dynamic de-
viation reduction-based (DDR), etc. Los modelos de Volterra sufren la llamada “maldicién
de la dimensionalidad”, ya que su complejidad tiende a crecer de forma exponencial a
medida que el orden y la profundidad de memoria crecen.

Esta tesis se centra principalmente en contribuir a la rama de conocimiento que enmarca
el modelado y linealizacién de sistemas de comunicacién inaldmbrica. Los principales
temas tratados son el modelo Volterra-Parafac y el modelo general de Volterra para sistemas
complejos, los cuales tratan la estructura del DPD y las series de Volterra estructuradas
con compressed-sensing y un método para la linealizacién en un rango de potencias de
operacion, que se centran en cémo los coeficientes de los modelos deben ser obtenidos.






Short Contents

Abstract VI
Resumen IX
Short Contents Xl
List of Acronyms XVII
Notation XIX
1 Overview 1
1.1 Introduction 1
1.2 Aims and Scope 2
1.3 Thesis Outline 3
2 Materials and Methods 5
2.1 Behavioral Modeling Background 5
2.2  Performance of Behavioral Models 7
2.3 Model Parameters and DPD Identification 10
2.4  Experimental Testbenches 16
3 Volterra-Parafac Digital Predistorters 21
3.1 Introduction 21
3.2 Volterra-Parafac Models and Frequency-Domain Techniques 22
3.3  Complexity Assessment 27
4 Formal Deduction of a Volterra Series Model for Complex-valued Systems 31

4.1
4.2
43
4.4

Introduction 31
Volterra Models for Real-valued Systems 32
Specific Volterra Models for Complex-valued Systems 32
A General Volterra Model for Complex Systems 33

Xl



Xl

Short Contents

Structured Compressed-Sensing Volterra Series
5.1  Introduction
5.2 Structured Compressed-Sensing for Volterra Series Models

Transmitter Linearization Adaptable to Power-Varying Operation
6.1 Introduction
6.2  DPD Structure and Identification Procedure

Results

7.1 Volterra-Parafac Digital Predistorters

7.2 Complex-valued Volterra Series Model

7.3 Structured Volterra Series Model

7.4  Transmitter Linearization Adaptable to Power-Varying Operation

Conclusions and future work
8.1  Conclusions

8.2  Future Work

8.3  Contributions

List of Figures
List of Tables
Bibliography

37
37
38

M
41
42

49
49
55
57
59

69
69
71
71

75
79
81



Abstract
Resumen

Contents

Short Contents

List of Acronyms

Notation
1 Overview
1.1 Introduction
1.2 Aims and Scope
1.3 Thesis Outline
2 Materials and Methods
2.1 Behavioral Modeling Background
2.1.1  \Volterra Series Models
2.2 Performance of Behavioral Models
2.2.1  Metrics of Performance
2.3 Model Parameters and DPD Identification
2.3.1 Digital Predistortion
2.3.2 Least Squares (LS)
2.3.3 Ridge Regression
2.34  The Least Absolute Shrinkage and Selection Operator (LASSO)
2.3.5  Selection of the Tuning Parameter
2.3.6  Adaptive Optimization
2.3.7 Steepest Descent
2.3.8 Least Mean Squares (LMS) Algorithm
2.4  Experimental Testbenches

2.4.1  University of Seville Testbench
2.4.2  Chalmers University of Technology Weblab

X

Vil

X

XVl
XIX

W N — -k

~N o o1t

10
11
12
13
14
14
14
16
16
16
17



XIv

Contents

Volterra-Parafac Digital Predistorters

3.1 Introduction

3.2  \Volterra-Parafac Models and Frequency-Domain Techniques
3.2.1  The Volterra-Parafac Baseband Model

3.2.2 Block Processing and FFT Algorithm Applied to the VP Structure

(B-VP DPD)
3.2.3 Particularization to OFDM Systems (FD-VP DPD)
3.3  Complexity Assessment
3.3.1 B-VP DPD Approach
3.32 FD-VP DPD Approach

Formal Deduction of a Volterra Series Model for Complex-valued Systems

41  Introduction

4.2  \Volterra Models for Real-valued Systems

4.3  Specific Volterra Models for Complex-valued Systems
4.4 A General Volterra Model for Complex Systems

Structured Compressed-Sensing Volterra Series
5.1  Introduction
5.2  Structured Compressed-Sensing for Volterra Series Models

Transmitter Linearization Adaptable to Power-Varying Operation
6.1 Introduction
6.2  DPD Structure and Identification Procedure
6.2.1 Proposed DPD Model for Joint Mitigation in Transmitters
6.2.2 Identification Procedure
6.2.3  Preceding DPD Models for Joint Mitigation

Results
7.1 Volterra-Parafac Digital Predistorters
7.1.1  Measured Performance for the B-VP DPD
7.1.2 Measured Performance for the FD-VP DPD
7.2 Complex-valued Volterra Series Model
7.3  Structured Volterra Series Model
7.4  Transmitter Linearization Adaptable to Power-Varying Operation
7.4.1 Linearization of a Basic Transmitter
7.4.2 Linearization of a Realistic Transmitter
7.4.3 Power Adaptability of ACC and CVS Linearizers

Conclusions and future work
8.1  Conclusions

8.2  Future Work

8.3  Contributions

21
21
22
22

24
26
27
28
28

31
32
32
33

37
37
38

41
41
42
43
44
47

49
49
49
52
55
57
59
59
63
65

69
69
7
7



Contents

XV

List of Figures
List of Tables
Bibliography

75
79
81






List of Acronyms

List of Acronyms

ACPR Adjacent Channel Power Ratio

ACEPR Adjacent Channel Error Power Ratio

BIC Bayesian Information Criterion

DDR Dynamic Deviation Reduction

DPD Digital Predistortion

DUT Device Under Test

EVM Error Vector Magnitude

FPGA Field-Programmable Gate Arrays

FV Full Volterra

GMP Generalized Memory Polynomial

LASSO Least Absolute Shrinkage and Selection Operator
LMS Least Mean Squares

LS Least Squares

LTE Long Term Evolution

MP Memory Polynomial

NMSE Normalized Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing
PA Power Amplifier

PAPR Peak-to-Average Power Ratio

PRSS Penalized Residual Sum of Squares

Xvil



XVviil

Chapter 0. Contents

QAM Quadrature Amplitude Modulation
RSS Residual Sum of Squares

VSA Vector Signal Analyzer

VSG Vector Signal Generator



i%)=l< Nx:??‘“
~

i Rt

Notation

Continuous-time variable

Discrete-time variable

Iteration index

Input signal in vector notation
Measurement matrix

Output signal in vector notation

Volterra kernel vector

Estimated output signal in vector notation
Input signal in continuous time ¢

Input signal in discrete time k&

Volterra kernel of i-th order
Continuous-frequency variable

Signal in frequency domain

Error signal

Hermitian of matrix A

Moore-Penrose pseudoinverse of matrix A

XIX






1 Overview

1.1 Introduction

Reducing the consumption of electrical energy is nowadays an issue of great worldwide
concern, not just because of the economic savings that this implies, but also because of
the reduction in pollution associated with the production of electricity. It is estimated that
telecommunications represent about an 8% of the total global energy consumption [1].
In addition, the trends of annual increase in electricity use by communications networks
indicate that this demand will continue to grow at a rapid rate [1]. This effect is due to the
fact that operators are continuously installing new stations to offer novel wireless broadband
services. In addition to the increase in energy prices, the growth in telecommunication
emissions is expected to reach 350 metric tons of carbon dioxide equivalent in 2020 [2].
This scenario of environmental and economic impact has gathered a rising interest that
translates into a movement towards the so-called green communications, in which special
attention is paid to the improvement of the energy efficiency in communication devices.

Mobile base stations use a significant amount of energy to transmit information. In
particular, the device that consumes most of the energy is the Power Amplifier (PA). PAs
have a particular feature in their operation: their efficiency is greater at high powers,
where the distortion appears, which is an undesirable effect. Therefore, if the device
needs to be efficient, it is necessary to operate at a high power. On the other hand, new
communication standards within the fourth and fifth generation (4G and 5G), define
signals with a high Peak-to-Average Power Ratio (PAPR). These excursion points of power
together with the distortion of the PAs at a high power make it necessary to decrease the
operating point, with the corresponding decrease in efficiency of the communications
device. This effect captured the interest of the scientific community, a scenario in which
Digital Predistortion (DPD) was presented as a very promising solution. This way, all the
desirable requirements for a communications system are met: operation at high powers
for ensuring energy efficiency and a high fidelity device, which allows the use of the new
transmission systems.

The evolvement of this scenario is characterized by the requirement of an efficient
spectrum to deliver those data rates in such a scarce resource. Linearity in the blocks of the
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transmitter of communication systems becomes a critical point in their design. The PA is
one of the nonlinear components that causes the final transmission data to be affected and
also not to comply with the linearity requirements of the standards. One possible solution
for this is the use of the PA in a low power region, where the device becomes more linear.
This is inefficient in terms of power, since the PA becomes more power-efficient when it is
operating in its saturation region. Nonlinear effects cause distortion that generates spectral
regrowth, out-of-band emissions, and in-band emissions. Hence, linearization techniques
should be developed to enable the simultaneous achievement of a high power-efficiency
and an efficient usage of the spectrum.

One of the most popular linearizing technique is DPD. These systems basically consist
of a digital transformation of the PA input signal, in which the cascade effect of the
predistorter and the nonlinearity of the amplifier results in a linear behavior. DPDs usually
rely on Volterra series, which can be considered like the extension of a Taylor polynomial
to a complex time-varying input, to represent the nonlinearity. Volterra series are usually
characterized by their order and memory depth. The memory depth models the dependence
of the output with the input in not just the same instant but also in the past. The order
enables the system to represent a nonlinear behavior. Volterra series suffer the curse of
dimensionality, since their number of parameters rapidly grows with the order and memory
depth.

1.2 Aims and Scope

Considering the previous work made in this research field, the main aim of this Thesis is
contributing to the study and development of new signal processing techniques applied to
the modeling and linearization of wireless communication systems. This general objective
can be split in the following primary aims:

* Development of novel models for the PA behavior.
* Development of new techniques for obtaining the model coefficients.

* Experimental characterization of the nonlinear mitigation performance of these
algorithms.

The scope of the nonlinear mitigation is wide, therefore some boundaries have been
adopted in order to make its amplitude reasonable.

Nonlinear phenomena can be studied in an enormous diversity of systems. The types
of systems herein studied are the power amplifier and the modulator, both from the per-
spective of its nonlinear behavior. The input signals of interest are digitally-modulated
communication signals, mainly focusing on those that support 4G and 5G. The kind of
models that have been worked are Volterra series and, when it comes to its prunning, the
signal processing techniques that have been applied are greedy algorithms and those based
on information theory.



1.3 Thesis Outline

1.3 Thesis Outline

This Thesis is developed through seven chapters, starting from the current introduction
and motivation of this thesis. First, chapter 2 establishes the theoretical and experimental
frameworks. The following chapters are divided into two conceptual groups. Chapters 3
and 4 belong to the discussion of which structure performs a better representation of the
DPD. In these, the models of the Volterra-Parafac family are first discussed and next the
complex Volterra series (CVS) is presented. Following the modeling part of this Thesis, the
next chapters are focused on retrieving the important coefficients of the model. In chapter
5, a heuristic unsupervised method that takes into account the structural information of
the model for retrieving the coefficients is shown, followed by a statistical method that
also performs the sparse regression in chapter 6. Chapter 7 includes the experimental
design and results for the theoretical part of the Thesis. Finally, in chapter 8 conclusions
are drawn and future work in this field is discussed.






2 Materials and Methods

Empires die, but Euclid’s theorems keep their youth forever.

ViTo VOLTERRA

This chapter describes the theory on which the rest of this Thesis is based. First, in section
2.1, the Volterra series theory is introduced followed by a description of the performance
metrics in section 2.2. The extraction of model parameters and DPD identification is
reviewed in 2.3 and the experimental testbenches used for the experimental part are
described in section 2.4.

2.1 Behavioral Modeling Background

Nonlinear distortion can be defined as the signal components, other than the original signal,
which are produced by nonlinear transformation of an input signal [3]. The Volterra series
theory, which models nonlinear distortion, was developed by Vito Volterra in the late 19th
century [4]. This theory was first applied by [5], where the response of a nonlinear device
to noise was analyzed. The continuous-time Volterra filter can be interpreted as the natural
expansion of a Taylor series in which the ability of capturing memory effects has been
enabled. The continuous time output response y(¢) to input x(¢) depends linearly on the
Volterra coefficients as

yO =ho+ [ m(xe—m)an + [ [ ho(mmxte—m)xe - n)dndn+

/// R, (T, T, Ty)X(t — T)x(t — 7). .. x(t — T,)dTyd 7T, ... AT, + ...,
(2.1)
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where A, is a constant and A (7,7, . .., T;) is the k-th order Volterra kernel. The causal
discrete-time Volterra filter is equivalently described by

y[k] = ho+ Zh Vx[k — k] + Z th ky ko )x[k — ky o[k — ko ]+
k=0 k1=0ky=0
o o (2.2)

Y hy(ky ks k)X — Ky Jx[k — ko] . x[k— k] +
ki=0ky=0  k,=0

Volterra series expansions have the following properties [6]:

Linearity with respect to the kernel coefficients: Although Volterra series repre-
sent a nonlinear behaviour between the input and the output of the system, the
kernels are linear with respect to the output of the system.

Symmetry of the kernels: The permutation of the indices in a Volterra series kernels
results in the same combination of input samples.

Multidimensional convolution property: A p-th order Volterra kernel may be writ-
ten as a p-dimensional convolution.

Stability property: A Volterra kernel of order p is bounded-input bounded-output
(BIBO) stable if
y - Z [y (ki k)| < oo (2.3)
p=

k=0 k,=

High kernel complexity: The number of parameters in Volterra series increases rapidly
with the polynomial order and memory. This is generally known as the curse of
dimensionality.

2.1.1 Volterra Series Models

PAs are passband devices. By assuming that the bandwidth of the signal is small with
respect to the center frequency, instead of using passband samples (at high sample rates),
baseband samples (at lower sample rates) can be used. The relation between the passband
signal () and its baseband formulation x(¢) follows

. ej277,'f()tx t +e*j2ﬂf0tx* t
(1) = ®) 5 ( ), (2.4)

where x*(¢) is the complex conjugate of x(¢). This complex baseband representation is
used in the rest of this Thesis. The discrete baseband representation of the general Volterra
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series has the structure of

P Q0 0 0 [ 0 Y
p1=0q1=092=q1  4p=4p—1qp+1=09p+2=4p+1  92p-1=92p—2
(2.5)
p 2p—1
h2p71(6117f]zy--~7612p71) Hx[k*qh] H X*[k*qj‘z]-
J1=1 J2=p+1

In the literature, this model is referred to as the Full Volterra (FV) model. In a practical
application, the number of coefficients of this most-general model increases rapidly with
the order 2P — 1 and the memory depth Q [7]. Because of this, pruned versions have been
extensively researched and developed.

2.2 Performance of Behavioral Models

The aim we pursue when a system is characterized by a behavioral model is to obtain an
transfer function that is able to represent the output precisely. For that purpose, several
performance metrics are defined and widely used [8]. In this section, these key indicators
are highlighted.

2.2.1 Metrics of Performance

The most widely used performance indicator is the Normalized Mean Square Error (NMSE).
The NMSE represents the ratio between the error power and the reference signal power,
and it measures the modeling accuracy capability of the model. It is defined as

NMSE = ¥moder = Yret 3
HYref”%

where y 4o iS the output of the model (stacking the samples in vector form) for an input
signal, y,.r is the reference signal vector and

, (2.6)

i=0

N, 7
V], = (Z(w)‘) 2.7)

is the £ norm of the vector V.= [v;,v,,...,vy |.

The Adjacent Channel Power Ratio (ACPR) is also extensively applied to get the model
performance. The ACPR takes into account the ratio between the power in the main
operation band to the power in the adjacent bands in the spectrum. Depending on which
band we are taking as a reference, the ACPR is usually tagged with a plus or a minus
symbol and a number. The + symbol indicates the upper channel and the — symbol stands
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Figure 2.1 Example of an AM/AM characteristic.

for the lower channel. The number indicates the channel (1 for the first, 2 for the second
and so on). The ACPR is defined as

.[;:hannelo |Y(f)|2df
NIGR

where Y (f) represents the spectrum of the signal y. The ACPR is calculated over the error
signal when it is taken as a performance indicator of a modeling and it is calculated over
the linearized signal when the evaluation of the linearization capabilities is performed.

The AM/AM and the AM/PM characteristics are the graphical representations of the
instantaneous power of the output and the instantaneous phase of the output versus the
instantaneous power of the input. An example of these representations are shown in figures
2.1 and 2.3. The AM/AM characteristic is sometimes represented using the instantaneous
gain instead of the instantaneous input power (see figure 2.2). The AM/AM plot gives
relevant information about the behaviour of the system, as

ACPR(,, x = (2.8)

fchannelHF

Linear gain The linear gain of the system is the slope of the AM/AM.
Compressed gain The compressed gain is the gain at the highest input power.

Memory effects Memory effects are evidenced by the width of the cloud at medium-low
powers.

Nonlinear effects Nonlinear effects are shown in this representation as the average
evolution of the output power with the input power.

The Error Vector Magnitude (EVM) is a performance indicator of in-band distortion
for digitally modulated signals. It is calculated over the received constellation with respect



2.2 Performance of Behavioral Models

s5f .« ... ]

(o))
o
T

Gain (dB)

N
)]
T

40

Input power (dBm)

Figure 2.2 Example of an AM/Gain characteristic.
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Figure 2.3 Example of an AM/PM characteristic.

to the ideal constellation at the transmitter. It measures how far are the points from the
ideal locations, giving a measure of the error in the constellation space.

P,
EVM = 136&7 (2.9)

reference

where P, is the amplitude of the error vector in the constellation space and P, s ence 1S
the coordinate associated to the transmitted symbol.
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2.3 Model Parameters and DPD Identification

2.3.1 Digital Predistortion

The basic principle of digital predistortion is to obtain a block that will be placed in front
of the nonlinear PA so that the combined action of these two systems produces a scaled
version of the input [9].

The input-output characteristic of a typical PA is shown in figure 2.4. In a PA, when the
signal level is low, the response is close to linear. At high signal levels, the PA produces
compression and generates distortion. When the PA is not able to deliver more power,
it is in saturation. The input-output response of a DPD is also presented. While the PA
shows a compressive characteristic, the DPD has an expansive characteristic that is the
symmetrical complementary of the PA with respect to a linear gain. The combination of
these two characteristics results in a linear relationship. The inverse characteristic of the
DPD will only work up to the saturation power of the PA, therefore we need to limit the
input signal level to prevent the PA becoming saturated.

Linear gain

H .’
DPD —f .*

I

PA

e
s

Ouput signal level

Input signal level

Figure 2.4 Input-output characteristic of a saturated PA and a DPD.

There is a need of upsampling in the input of the DPD. Since it generates harmonics in
anti-phase to compensate the nonlinear behavior of the PA, the Nyquist sample rate is no
longer valid. The sampling frequency needs to accommodate the new generated spectral
bands. The oversample rates will depend on the bandwidth of the input signal and the
DPD capability we are expecting. The typical oversampling rate is over five times the
signal bandwidth.

Digital predistortion is commonly considered as a traditional closed-loop digital adaptive
problem, in which the controller (the DPD) is tuned by some algorithm.
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1

In an indirect learning scheme [10], we aim at finding a postdistorter, that is, a block that
creates the linear input to the system at its output when it has in its input a scaled version
of the PA output. The scale is usually the average power gain of the PA, i.e., the DPD has
an expected gain of about the unit. This is required for stability of the DPD loop. The
estimation of the DPD coeflicients may be performed at once through Least Squares (LS)
or with an adaptive technique. These algorithms are introduced in the next sections.

X z y
—» DPD (—»

Figure 2.5 Schematic of a predistorter and a power amplifier.
2.3.2 Least Squares (LS)

The LS regression, which appeared formally formulated at the beginning of the 19th
century [11], is one of the most common techniques for regressing a linear set of equations,
since the error is penalized quadratically and it has only one solution. In the case of
Volterra series, although the relation between the inputx = [x(n),x(n—1),...,x(n—M —1)],
where M is the maximum number of samples taken into account and the output y =
[y(n),y(n—1),...,y(n—M —1)] is nonlinear by its definition, there exists a linear regression
between the vector of coefficients h and the output y, where the columns of the measurement
matrix X make the transformation from one space to another. The measurement matrix
structure is model-dependent. Its columns, X (i}> are the regressors of the model and
usually take the form of some kind of function of the input complex envelope x(k). For
example, the Memory Polynomial (MP) model [12] generates pth-order regressors lagged
g samples with the form x(k — ¢)|x(k — ¢)|P~'. Its Pth-order and maximum memory Q
measurement matrix has the following structure

) X (k)P *(k—Q) ¥ (k—0) P!
A=1) A= DR=DIPTT e x(k—0—1)x(k—0— 1)
Xnmp = : : : : :
*k—=(M—=1)) - x(k=(M=1)[e(k—(M=1)[P~1 - x(k—Q—(M—1))x(k—Q—(M—1))|P~!
(2.10)

N

h y

X @

X -y

Figure 2.6 Block diagram of Volterra series represented as a measurement process where
h is the vector of Volterra coefficients to be estimated.
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Taking into account this linear relation and following the block system shown in fig-
ure 2.6, the measurement equation § = Xh, the error vector can be defined as

e=y—y=y—Xh (2.11)
Minimizing the norm of the error is performed by finding the minimum of

le(h) |2 = e = (v ~hX)(y—Xh) o1
= yy" — y"Xh — h"X"y + h"X"Xh, '
where A" is the hermitian transpose of matrix A. Taking the derivative of this equation
with respect to the kernel vector and setting it to zero,

2
w = —2X"y4+2X"Xh =0, (2.13)

we get the so-called deterministic normal equation,
Xy = X" Xh, (2.14)

where h has become h since its value is the estimated optimum value after setting the
derivative equal to zero. Please note that X is not generally square, therefore it is not
invertible. Nevertheless, the product XX is an invertible square matrix, allowing us to
rearrange

h = (XAX)"'xfy. (2.15)

The term X = (X7X)~!X# is commonly known as the Moore—Penrose pseudoinverse,
which it is a generalization of the inverse matrix for non-square matrices. In a LS regression,
the estimate error € is orthogonal to the columns of the measurement matrix.

2.3.3 Ridge Regression

Ridge regression is similar to LS, with the exception that the Penalized Residual Sum of
Squares (PRSS) is minimized instead of the Residual Sum of Squares (RSS).

PRSS = ||y — Xh|[3+ A|[h[|3 = RSS +A|[hlf3, (2.16)

where A is the tuning parameter. Ridge regression trades off two different criteria. The first
term seeks coefficients that fit the data well, producing a small RSS. The shrinkage penalty
A|/h||3 has the effect of shrinking the coefficients towards zero. The tuning parameter 4
controls the impact of both terms on the regression. When A = 0, the shrinkage penalty
has no effect and the equation becomes the LS regression. When A — oo, the penalty grows
and the estimates approach zero. Ridge regression produces a set of estimates instead of a
single solution as the LS regression does, therefore a selection procedure for A4 is critical.
As the solution depends on the scaling of the predictors, a good practice is to standardize
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the predictors by dividing them by its ¢, norm:

X; = i (2.17)
(Xl

The advantage of Ridge regression over LS is the existence of the tuning parameter and
that it allows to control the bias-variance trade-off. As A4 increases, the flexibility of the
Ridge regression decreases, leading to decreased variance but increased bias.

In cases where the number of samples is higher than the number of regressors, as it is
with Volterra series, Ridge regression can perform well by trading off a small increase in
bias for a large decrease in variance.

An alternative formulation for Ridge regression is solving the problem

minizniZeHy—XhH% subjectto ||h||3 <. (2.18)
The estimator of a Ridge regression has a closed form that follows

hgigee = (XFX+ A1) 'X y, (2.19)

where I is the identity matrix.
2.3.4 The LASSO

The main disadvantage of Ridge regression is that all the p predictors are included in the
final model. The penalty A|/h||; will shrink all the coefficients towards zero, but it will
not set any of them exactly to zero, except for A = oo,

The LASSO is an alternative to the Ridge regression that overcomes this disadvantage.

ly —Xh|[3 + 4[|, =RSS+Ah],. (2.20)

The formulation is very similar to the Ridge regression but the penalty includes the ¢,
norm instead of the /,.

The LASSO shrinks the coefficients towards zero. However, in comparison with the
Ridge regression, the ¢; penalty forces the coefficients to be exactly equal to zero when the
tuning parameter A is large. The LASSO yields sparse models —which involve a subset
of variables—. In the case of the LASSO regression the selection of A is critical as well.

The equivalent to the formulation in 2.19 to the LASSO is

mini}mize{||y—Xh||%—|—l||h||l} subjectto  ||h||; <s. (2.21)
n

In a two-dimensional plane with coordinates f3; and f3,, Ridge regression seeks the
solution with the constraint B + B3 < s, while the LASSO constraint has the form |, | +
|B,| <s. Figure 2.7 shows the constraints for both regressions. The LS solutions are
marked as & and all the points in the same ellipse have a common value in RSS. The RSS
increases as the ellipses are further from the LS solution. The Ridge and LASSO solutions
are the first point at which an ellipse contacts the constraint region. The constraint of the
LASSO has a diamond shape and the Ridge regression’s is sphere-shaped. Since Ridge
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has no sharp points, this intersection will not generally occur in the axis -equivalent to
sparse solutions-. However, the LASSO constraint has corners in the axis which will often
intercept the ellipse at an axis. When this occurs, those coefficients will be equal to zero.
In higher dimensions, many of the coefficients may be equal to zero simultaneously.

B, B,

b JZ

Figure 2.7 Contours of the error and constraint functions for the LASSO (left) and Ridge
regression (right) in a space with coordinates 3, and f3,. The solid areas are
the constraint regions, |B;| + |B,| < s and BZ + B3 < s, while the ellipses are
the contours of the RSS. Figure adapted from [13].

2.3.5 Selection of the Tuning Parameter

The general technique for selecting a value for the tuning parameter is known as cross-
validation. Cross-validation is a simple procedure that consists on choosing a grid of 4
values and computing the cross-validation error for each value of A. The A that gives
the lowest cross-validation error is chosen and the model is re-fit with all the available
observations.

2.3.6 Adaptive Optimization

Adaptive optimization is a technique where the estimation of the kernel vector is updated
dynamically in the time. It has the advantage of being more robust to the change of
conditions of the system. This family of algorithms is able to follow the effects that may
appear with a change of any variable -signal type, power level, temperature, etc.- with the
counterpart of constantly update the model of the system. The scheme is very similar to
that of the LS, but taking into account only the last N samples of each of the signals. In
this topic, the index n is introduced to express the dependency with the time instant.

2.3.7 Steepest Descent

The block diagram followed in this topic is shown in figure 2.8. Please note that it has the
same structure than figure 2.6 with the addition of dependence on the time or iteration
variable n. For the derivation of the algorithm, we depart from the measurement process
equation that takes the form
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h(n) X(n) y(n) @ e(n)
[ |
x(n) ~y(n)

Figure 2.8 Block diagram of Volterra series represented as a measurement process where
h is the vector of Volterra coefficients to be estimated.

§(n) =h (n)X(n), (2.22)

where §(n) € CM is the estimated output in the iteration 7, h(n) € CV is the Volterra vector
with the N coefficients of the model, X(n) € CM*N s the measurement matrix, whose N
columns corresponds to the regressors of the model formed with a section of the last N
samples of the input signal x(n) = [x(n)x(n—1)...x(n — M + 1)]. The optimization error
is defined as

e(n) =y(n) —§(n) = y(n) —=h" (n)X(n). (2.23)
Considering the /,-norm as the cost function to minimize,
J(n) =E [|lem)l’] = E [(y(n) =" (n)X(n)) (y" (n) = X" (n)h(n))], (2.24)

and handling the terms considering the random character of X(n) and y(n),

(
2.25
W () [X(n)y" ()] 22
+h" (n)E [X(n)X" (n)] h(n)
The final cost function remains as
J(n) =07 +p"h(n) =" (n)p+h" (n)Rh(n), (2.26)

where p is the cross-correlation between X(n) and y” (n) and R is the correlation matrix
of X(n). If we set the direction of the kernel vector update to —VJ(n) = 2p — 2Rh(n),

h(n+1) = h(n) + % M=)
=h(n)+u[p—Rh(n)],

(2.27)

where U is the step size, which can be demonstrated that for the algorithm to converge, it
should have a value in the range of 0 < g < ﬁ, being A, is the maximum eigenvalue
of the correlation matrix R.
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2.3.8 LMS Algorithm

The a priori information required by the steepest descent algorithm is not always known.
One possible approach for this issue is to use estimated values for the cross-correlation
p and the correlation matrix R. The resulting algorithm is known as LMS, developed in
the 60s by Professor Bernard Widrow and his first PhD student Ted Hoff [14]. Using the
following instantaneous estimates:

B(n) = X(n)y" (1) e
Utilizing the direction of the update
—VJ(n) = —2X(n)y" (n) +2X(n)X? (n)h(n) = —2X(n)e" (n) (2.29)
in the update of the estimated Volterra vector
h(n+1) =h(n) + uX(n)e" (n), (2.30)

we get the LMS update equation. This update is extremely simple and it has the property
of averaging the large variance that the instantaneous estimates may have. Due to this
simplicity and good performance of the algorithm, it is considered a standard benchmark
against which other algorithms are compared.

2.4 Experimental Testbenches

The algorithms developed in this thesis have been probed through two different experi-
mental setups. Both facilities, which are maintained by the University of Seville and the
Chalmers University of Technology are described in this section.

2.4.1  University of Seville Testbench

The measurement platform of the University of Seville is shown in figure 2.9. It is based
on a evaluation board of the CGH40010 GaN HEMT transistor, from Cree Inc., driven
by a SMU200A Vector Signal Generator (VSG) [15] from Rohde & Schwarz, and a PXA
NO030A Vector Signal Analyzer (VSA) [16] from Agilent Technologies that records the
output with a maximum sampling frequency of 100 MHz. The VSG allows to modulate
the carrier with arbitrary baseband waveforms hence it allows to use a custom signal while
driving the Device Under Test (DUT). In the receiver side, the RF signal is down-converted
to baseband and the appropriate range, span and resolution bandwidth are set to optimize
the measurement dynamic range.

The DUT is the cascade of a ZHL4W driver amplifier from Minicircuits and a CGH40010
GaN HEMT transistor from Cree Inc. in its evaluation board, shown in figure 2.12. The
ZHL42W is operating in its linear region and acts as a driver for the CGH40010.



2.4 Experimental Testbenches

17

The set of equipments are controlled through either General-Purpose Instrumentation
Bus (GP-IB) or Registered Jack 45 (RJ45) physical channels by using the Standard Com-
mands for Programmable Instruments (SCPI). A custom Matlab script controls the sending
of the signal to the VSG and the settings to reproduce it in the transmitter. In the receiver,
the same configuration is applied to recover the signal properly. Next, the signal is down-
loaded to the Matlab workspace and it is postprocessed to adequate it to the algorithms.
The postprocessing consists on the following operations:

* Normalization: scaling of the signal taking into account the attenuations and gains
of the measurement chain.

* Time alignment: synchronization of the input and output signals in time.

 Partition into several datasets: sets for identification and validation of the models.

Figure 2.9 Experimental test bench. From left to right. Front: ZHL42W Minicircuits’
driver amplifier, CGH40010 Cree’s evaluation board, coupler and power load.
Back: SMU200A vector signal generator, PXA N9030A vector signal analyzer.

2.4.2 Chalmers University of Technology Weblab

The weblab for PA DPD and characterization maintained by the Chalmers University of
Technology [17] is shown in figure 2.11. This online laboratory has a web interface that
allows to take measurements directly from the Matlab workspace and compare distinct
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Figure 2.10 Evaluation board of the CGH40010 GaN HEMT transistor.

approaches to PA modeling and predistortion in a common test bench following the diagram
in figure 2.12. The weblab setup consists of the PXI chassis PXIe-1082 from National
Instruments Inc., which has the vector signal transceiver PXIe-5646R installed with a
maximum instantaneous bandwidth of 200 MHz and is capable of reproducing the signal
uploaded to the web interface. The DUT is the GaN PA CGH40006P in its test board. The
output of the PA is attenuated 30 dB and then connected to the VST receiver.

Figure 2.11 Picture of the Chalmers University of Technology weblab.
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Figure 2.12 Diagram of the Chalmers University of Technology weblab.






3 Application of Efficient Frequency
Domain Techniques to
Volterra-Parafac Digital
Predistorters

3.1 Introduction

Deployment of modern wireless communication systems, based on spectrally efficient
modulation schemes, is perhaps the principal agent that has pushed the renaissance of new
ultra-linear and highly efficient PAs. A great number of these wireless standards (WiFi,
WiMAX, LTE, DVB-T, etc.) use Orthogonal Frequency Division Multiplexing (OFDM)
and Quadrature Amplitude Modulation (QAM) signals with high PAPR that makes nec-
essary the application of amplitude-reduction approaches and linearization techniques.
In particular, the use of a DPD in the communication transmitter has demonstrated an
outstanding capability to procure linear compensation of the PA nonlinearities with no
degradation of the efficiency.

The main purpose of the DPD is the reduction of the spectral regrowth to provide a
low ACPR, but in-band and out-of-band linearization are often contending parts in the
optimization process, and a complete design must also include a high-quality in-channel
equalization to comply with the EVM specifications of the wireless communications
systems. A second important goal when the DPD is applied to an actual communications
system is to provide a good tradeoff between the necessary accuracy of the transmitted
signal and its computational complexity.

In the majority of DPDs, the proposed architecture is based on different time-domain
Volterra behavioral models: the Generalized Memory Polynomial (GMP) model [18], the
Dynamic Deviation Reduction (DDR) model [19], nonlinear two-box models [20], and
others. An alternative structure that exploits the symmetric Parafac decomposition of the

21
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Volterra kernels viewed as tensors has been demonstrated in [21]. This Volterra-Parafac
(VP) structure can be represented as an arrangement of parallel branches formed with
cascaded linear filters and static homogeneous nonlinearities. Recently, a new baseband
VP model with a reduced parametric complexity has been derived by using a doubly
symmetric Parafac decomposition [22]-[23].

Based on the encouraging results of PA linearization in [24], this chapter is dedicated to
demonstrate the design of two Volterra-Parafac DPDs under a frequency domain perspec-
tive and show their improvement capacity, mainly in terms of computational complexity.
In the first approach, the DPD operates on the discrete-time samples of the input waveform
to produce the predistorter signal. Block processing and frequency-domain techniques
are applied to improve the computational efficiency. We refer to this technique as block-
processed Volterra-Parafac (B-VP) DPD and it has been favourably compared to a DPD
designed with a high-standard model, the GMP. In the second case, the predistorter acts di-
rectly on the data symbols, exploiting an attractive feature of the VP model in the particular
case of OFDM systems, i.e., its ability to integrate the M-QAM symbols within the signal
processing technique. In this approach, designated as frequency-domain Volterra-Parafac
(FD-VP) DPD, the DPD input data is the block of M-QAM symbols corresponding to the
active subcarriers in the spectral domain, and the output is the discrete-time predistorter
signal.

The discussion of the Volterra-Parafac approach, block adaptive filtering and frequency-
domain techniques applied to VP models is developed in section 3.2. In section 3.3, the
computational complexity of the model is analyzed.

3.2 Volterra-Parafac Models and Frequency-Domain Techniques

Making use of the fact that the kernels of the full Volterra behavioral model can be seen as
symmetric multidimensional arrays, the tensorial Parafac decomposition has been applied
to introduce the VP representation [21]. Since in this work we use the corresponding
discrete-time baseband structure published in [23] to model the DPD, we dedicate the
following subsection to expose a brief overview of this VP representation and the parameter
identification procedure.

3.2.1 The Volterra-Parafac Baseband Model

The VP baseband model is composed of several branches, each one containing a low-
pass parallel Wiener structure with an nth-order baseband nonlinearity, as it is shown
in figure.3.1. The input to the DPD is given by the complex-envelope samples of the
wireless signal x[k], and the output is the complex-envelope of the predistorted signal u[k].
The number of branches for each nonlinear order is equal to the symmetrical rank of the
nth-order kernel, R,,, and the filter for the particular branch (n,r) is defined by its weights
wﬁlg) k], »W;(:Q>,, [k]. Therefore, the output of the filter at discrete time instant k is given by
the convolution

21K = wi T [K)x, (K], 3.1)
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Figure 3.1 Structure of the Volterra-Parafac baseband model.

where x, [k] = [x[k],x[k—1],--- ,x[k—Q,]]" is the input vector associated to the nth-order
Volterra regression term, and the weight vector wf,r) [k] is defined as

T
wlk] = [ng K]-wl) [k]} . (3.2)
If we write the output of the nonlinearity in the branch (n,r) as

2K, (3.3)

and collect the contribution of all the branches, the output of the VP model can be enunci-

ated as
N N
0-5 Law-£ 8

The primma in the first sum indicates that only the contribution of the odd-order terms is
included. Since the nonlinearity in each branch is already provided with the VP model, it
is only necessary to identify the parameters of the filters to evaluate the predistorter output.
The goal is that the output y[k] produced by the PA when it is driven by u[k], is equal to
the linearized signal y,,[k]. The complex least mean square (CLMS) algorithm can be
implemented to estimate wﬁ,’) [k] by defining the error with respect to the desired output,
elk] = yge[k] — y[k], and minimizing the real-valued cost function J(w[k]) = 1 |e[k]

"_1 s (3.4)

i Mgc
i [\’]50

>
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Observe that the cost function depends on the adjustable weight vector w(k], defined as
T
wi = {71 Wi ] W T TR 3)

A necessary and sufficient condition for J(w) to have a stationary point is

21 Lo 1 dy
v =3¢ W W =0 co

where the dependence of the output signal with the aggregated vector z[k] = zgl) k] - ZI(VN> k]
is explicited.

Applying the steepest descent algorithm, we obtain the update equation for the estimated
parameters:
aJ(w)

Wik+1] =W [k]—p g

(3.7)

Wik] '
The diagonal matrix @ contains the step sizes u,i’) that control the convergence speed and
the steady-state properties of the CLMS algorithm for each branch (n,r). The derivative
can be computed using the chain rule by regarding y[k] as a bivariate function y(z,z*) and
treating z and z* as independent variables. The update equation for the branch (n,r) adopts
the form

wlk+1] = w7 k] + 17 el (k] [K]. (3.8)
The defined variable
r n+1 r n— n—1, r n—3,_(r
& [k = ekl WP + e Wl W @R 39)

can be intuitively interpreted as the mapping of the output error e[k] onto the (n,r)-branch
filter output.

Once the update procedure (3.8) has converged, the system output is easily evaluated by
means of the convolutions (3.1) and the nonlinear memoryless equation (3.4). The direct
application of this procedure in a sample-by-sample way is expensive from a computational
cost perspective, hence the usefulness of the more efficient block processing techniques in
the frequency domain becomes evident.

3.2.2 Block Processing and FFT Algorithm Applied to the VP Structure (B-VP DPD)

An immediate strategy to reduce the computational complexity of the filter convolutions
is to incorporate, together with the block processing technique, the fast Fourier transform
(FFT) algorithms that efficiently perform the convolutions. Assuming this perspective in
the estimation procedure, we can segment the input signal in blocks of L samples each, and
keep the filter parameters fixed until a new block is received. For the sake of clarity, from
now on the input sequence will be written as x[I] = x[kL+1], where [ =0,1,...L—1is
the time index inside the kth block, and the filter parameters of the current block will be

denoted as w}(qu)( This approach allows to execute the update equation at a lower sampling
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Figure 3.2 Volterra-Parafac structure and implementation of block processing with efficient
frequency-domain techniques (B-VP DPD). The block index k is omitted.

rate, following the recursion for the block k + 1. If the definition e(r []= & )[kL +1]is
used, this update equation can be written as

Wi =wl Z (3.10)

It is well-known that block processing can be implemented in a computationally more
efficient manner by performing the parameter estimation in the frequency domain using
the FFT algorithm. We have selected the filter dimension equal to the block length L and
followed the procedure given by the unconstrained method [25], [26].

The resulting structure of this approach is depicted in figure 3.2. The input signal x[«]
is accumulated in a memory buffer to form L-point data blocks and transformed by the
Fourier transform matrix, denoted as F. Let us define the input signal diagonal matrix for
the current block k as

X, = diag{F[x[0],-- ,x,[L—1]]"} (3.11)

and the frequency-domain weight vector for each filter as

W =W w1 =Fwl), (3.12)

n,

then, the frequency-domain output vector of the filter (n,r) can be written as

an,{ — kanf}(. (3.13)
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Figure 3.3 A DPD with Volterra-Parafac structure for OFDM systems (FD-VP DPD). The
block index k is omitted.

Once the parameters W,(f,)( have been identified, the computation is implemented by using
efficient frequency-domain techniques and inverse-transforming the filter output to the time
domain. After applying the corresponding homogeneous nth-order baseband nonlinearity,
the predistorted output u,[!] is straightforwardly computed. If this B-VP approach is used
in the implementation of the DPD, the model operates over the time-domain input signal
to produce the time-domain predistorted signal u;[{].

3.2.3 Particularization to OFDM Systems (FD-VP DPD)

In OFDM systems, the transmitter generates the signal by assembling blocks of the input
M-QAM symbols, and mapping them into subcarriers in the frequency domain. Therefore,
the use of a DPD with the output in the time domain, but operating directly on the input
symbols of the kth block, denoted as X, (m), seems very attractive. With reference to
figure 3.3, the M-QAM modulator generates the symbol sequence, and the linear branch
processes these symbols by filtering, transforming them to the time domain with an inverse
FFT (IFFT), adding the cyclic prefix (CP) and filtering to conform a band-limited spectrum.
The modules that are represented with a dashed contour in the figure have been integrated
in the linear branch of the DPD, but these elements are inherent of a typical OFDM
transmitter.

In this second approach, the estimation procedure can be performed following the
general form of the frequency-domain update algorithm, given by

WL =W Xel). (3.13)

The vector sir,)( represents the frequency-domain transformation of the error vector in the

(n,r)-branch output, [,t,<f> is a diagonal matrix with the step sizes, and X|, refers to (3.11).
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The computation of the error term used in (3.14) depends on an output error like in
(3.9), but here this error shall compensate for the frequency-domain error between the
OFDM symbols passed through the PA model (Y;) and the linearized OFDM symbols
(X)), expressed as:

E.(m)=Y,(m)/G.—X;(m), (3.15)

where m stands for the frequency bins (m =0, ..., L), k is the block index, and G,. is the
target linearized gain.

Since the input symbols X} (m) and the parameters Wn(rk) (m) are specified in the frequency
domain, it is not necessary to compute the FFTs (3.11) and (3.12), and the filter operation is
performed by a simple product. In each nonlinear branch, an inverse transform to the time
domain and insertion of the CP modules are included. In the same form, an oversampling
operation is applied before the homogeneous nth-order memoryless nonlinear block. This
oversampling is necessary to match the sampling rate produced by the spectrum shaping
filter of the linear branch. Although in this FD-VP DPD structure, the input band is
approximately equal to the bandwidth of the OFDM signal, the approach is sufficient to
guarantee in-band equalization as well as minimization of the spectral regrowth in the
adjacent channels.

3.3 Complexity Assessment

A common measure to evaluate the complexity of a behavioral model for DPD is the number
of floating point operations (FLOPs) [7]. While both the identification complexity, running
complexity, and adaptation complexity may be distinguished, the running complexity is
the most demanding term. Its consideration entails the complexity associated with the
construction of the basis functions and filtering the basis with the model kernels.

To set the notation, the complexity associated with the Fourier transform or inverse
Fourier transform of a block of L points will be denoted as Crpy_;. Other elementary
operations such as the complex-to-complex product, the complex-to-real product, the
real-to-real product, the complex summation, and the square-modulus will be expressed
in terms of their complexity as C,,4c—cs Cproge—rs Cprodar—r» Coumes
The number of FLOPs corresponding to these elementary operations is detailed in Table 1
of [7]. As general remarks, considering that both of the proposed approaches yield a block
of L samples each time, in order to compare their complexity with a conventional DPD
computed in the time-domain, the per-sample complexity will be calculated by dividing
the complexity associated with a block of L samples over the block size. On the other
hand, let us recall that filtering a block of L points in the frequency domain with a filter of
L taps involves L complex products only, instead of L complex products and L — 1 complex
summations that would be required, per sample, to compute the convolution in the time
domain.

Regarding the per-sample complexity of the static nonlinearities, for order n =2p + 1
(p=1,...,P), p— 1real-to-real products are required, which refer to products among the
square-modulus terms to yield the (n — 1)-th power of the absolute value, in addition to
one complex-to-real product. Let us also recall that the branch-summation operator block
for both approaches involves a number of complex summations equal to the number of

and C 25 T€ spectively.
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branches minus one. In order to derive compact expressions for the complexity, the same
rank R will be assumed for all the nonlinear orders.

3.3.1 B-VP DPD Approach

For the construction of the basis functions, the following operations are required:

* A Fourier transform, corresponding to the time-domain to frequency-domain con-
version of the input signal.

* L complex-to-complex products per order and rank, resulting from the computation
of Z{') in (3.13).
* An L-point IFFT per order and rank.

* L square-modulus per order and rank (with the exception of the linear branch).

In summary, the complexity associated with the construction of the basis functions for a
block of L samples can be expressed as:

Cpasiss—ve = Cprr—r + R(P + 1)[LCprpge—c +Crpr—r] + LRPCi 2. (3.16)

Filtering itself corresponds to passing the block samples through the static nonlinearities
plus branch summation. This filtering corresponds to a per-sample complexity given by:

P
Cfilt,B—VP = RE(P - 1)Cpr0dr—r + PRCprodc—r + [R(P+ 1) - 1] Csumc—c . (317)
The per-sample FLOPs of a B-VP DPD structure of order N = 2P + 1 and rank R can be

obtained by dividing (3.16) over the block size L and combining with (3.17):

1 1
Cpyp= ZCFFTfL +R(P+1) Cprodcfc+ZCFFT7L +RPC| p+

P
+R§(P - l)cprodrfr +PRCpr0dc7r + [R(P+ 1) - 1] Csumcfc (318)

3.3.2 FD-VP DPD Approach

Here, it is assumed that the linear processes associated with the linear branch, except
the filtering by the equalizer W(11129 do not contribute to the system complexity, as they
belong to the OFDM modulator, i.e. M-QAM symbol mapping, serializer-deserializer,
L-point IFFT, CP insertion and spectrum-shape filtering. On the other hand, while CP
insertion does not contribute to complexity itself, because it only involves reading a
shifted segment of memory, it indirectly affects complexity as it changes the block size,
becoming L' = L+ Lp, where block-size L is augmented with the CP length (L.p).
Similarly, oversampling does not increase complexity either, as it is performed through
zero-padding, but the interpolation filter represents an additional cost per branch depending
on the filter length (M) and oversampling rate (ovs), equivalent to L' - ovs - C fitter FLOPs,
where Cj.p =M -Cpppye o+ (M — 1)Cyp,... Finally, including the complexity associated
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with the complex multiplications required by the equalizer filters Wflr,)(, IFFT blocks of
the nonlinear branches, the static nonlinearities and branch summation, the per-sample
complexity associated with a FV-VP structure of order N = 2P + 1 and rank R can be

expressed as:

L-R(P+1) R-P
T 71 . “prodc—c + mCFFT7L+

+R-P [M'Cprodcfc + (M_ I)Csumcfc] +

C _ =
FD-VP L -ovs

1
+ ER'P(P_ I)Cpradr—r+P'R'Cprodc—r+

R-P
+ e HRPH1) 1] (3.19)






4 Formal Deduction of a Volterra
Series Model for Complex-valued
Systems

4.1 Introduction

Volterra series (VS) is one of the most popular representations to model modern wireless
communication systems [27]. The baseband signal is used in the modulator to generate
the RF signal, possibly with linear and nonlinear impairments, and the power amplifier
(PA) delivers the signal at the desired level, adding further nonlinear distortion. Without
nonlinear effects, the complex envelope of the RF output signal can be viewed as a linear
transformation of the complex-valued baseband signal x[k] = x;[k] 4 jxo[k]. However, to
exploit the complete statistical characterization of data in complex-valued signal processing,
access to the information contained in the complementary correlation is required through
the introduction of widely linear (WL) transformations [28]-[29]. When nonlinear effects
need to be modeled for real-valued systems, the VS approach is a natural choice, however,
its extension to the complex-valued case is not a direct mapping, and particular models are
usually deduced to match specific problems. Examples of these are the proposals in array
processing and beamforming [30]-[31], or in the case of impairments compensation in
I/Q modulators [32], but the use of these particular models is not justified to describe the
output of other systems. The availability of a general complex-valued Volterra nonlinear
model is a relevant topic for the design of nonlinear communication systems. In this
chapter, the VS approach to a general nonlinear system with complex-valued signals by
using Wirtinger calculus [33] is extended.
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4.2 Volterra Models for Real-valued Systems

For a nonlinear system described by a Volterra model with a real-valued signal x[k] applied
at the input, the output y[k] can be written as [6]

=hy+Y, Z hyla, ka a,), (4.1)

n=1q,=0

where ,,[q,] is the nth-order Volterra kernel, [T,_, x[k — q,] = x[k — q,|x[k — q5] - - - x[k —
a9, = 91,492, »q,)" is a vector of delays of the nth-order term, with g, =0,1,---,Q,
forall r, and Q, = [Q,,0,, -~ ,Q,]" is the vector of maximum delays.

For bivariate nonlinear systems, the output can be expressed as a double Volterra series,
equation (1) of [34]. If the two input signals are x[k] and z[k], the discrete-time output is
expressed as

oo QnO o QOm
h00+2 Zh qn HXk qr+z Zhqum sz qs
n=1q,=0 m=1q,;;,=0

oo oo Qn ,m an

+ZZ Y Y nla.p,) ka q,sz p. (4.2)

n=1m=1q¢,=0p,=0

The vector of delays p,, and the vector of maximum delays P,, have been defined as in
(4.1). The multidimensional functions ,, ¢[q,] and A ,[q,,] are standard Volterra kernels
of order n and m, respectively, and the constant A, is the zeroth-order kernel. The third
group of sums contains the bivariate Volterra kernels hy, ;u[45P,,] and cross products of

X[k— qr] by Z[k - ps]'
4.3 Specific Volterra Models for Complex-valued Systems

In wireless communication systems it is necessary a nonlinear baseband model to express
the relationship between the input and the output complex envelopes. Let us review three
different situations.

* Baseband PA model. The baseband model of a power amplifier can be derived
from the Volterra series RF model (4.1) [27, 35]. In discrete-time, the baseband
Volterra input-output relationship is

o Qi m+1 2m+1
ylk] = Z Z P 1 [om 1] HXk q] [1 ¥'lk—aql, 4.3)
m=0q,,+1=0 r=m+2

where n = 2m 41 is the (odd) nonlinear order. Unlike the kernels of the real-valued
Volterra case, in this model 4,,[q,] is symmetric under any permutation of its first
m+ 1 indices, and it is also separately symmetric under any permutation of its last
m indices. In the literature, the model (4.3) is referred to as the full-Volterra (FV)
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model to distinguish it from other pruned baseband Volterra representations, e.g.,
the memoryless model. The FV model has been deduced exclusively for PAs, and
direct application to other systems is not proven.

* Beamforming. For the narrowband array processing problem, a proposal was
introduced in [30] and [31]. It is advanced by establishing the vector of complex
amplitudes of the signals at the output of the sensors, x,. The input-output relation
is defined as

Z Zwmq X ox, "), 4.4)
m=1qg=0

where w,,, , is a complex filter and ® denotes the Kronecker product. This approach
was applied to a third-order Volterra minimum variance distortionless response
beamformer, considering only polynomial terms of odd order.

* I/Q modulators. A proposal to model linear and nonlinear impairments in I/Q
modulators was presented in [32]. The output u[k] is given by

k]:u0+2{zhn0qn HXk qr+zh0nqn HXk qr’

q,=0 q,=0
n—1 Qu n

+ Z Z Py (4] ka ] I x*[k—q,/]}. 4.5)
u=1q,=0 r'=n—pu+1

This widely nonlinear (WNL) representation can be also viewed as a nonlinear
extension of the WL transformation and presents analogies with the WNL Volterra
beamformer (4.4).

Although the results reported above have shown a good performance in their respective
fields, a particular method cannot be assumed to be valid in another unknown situation.
The availability of a general nonlinear model that admits complex-valued input signals
is mandatory in the joint modeling of the modulator and the PA in a communications
transmitter, for instance.

4.4 A General Volterra Model for Complex Systems

The results concerning the output of nonlinear functions with complex arguments are not
new, although they have gone largely unnoticed by the engineering community [29]. In
particular, Wirtinger calculus (also denoted as CRR-calculus) presents an elegant approach,
which allows keeping all computations and derivations in the complex domain with ex-
pressions very similar to the real-valued case, and in a more efficient time-consuming
manner [36]. In a context where the input of the system x is complex-valued, the cor-
responding output y depends on x and also on the complex conjugate x*. In that case,
Wirtinger calculus allows treating x and x* as independent variables (Theorem 1 of [36]),
and therefore, the double Volterra series representation can be applied. If we replace z by
x* in (4.2), the complex-valued output of the system is obtained as
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oo Qn() o Qom
h00+2 Zh q” HXk qr+z Z hqum H)C k qs
n=1q,=0 m=1q,,=0

= oo Qn m Pn ,m

Z Z Z Z hnm 4P HXk q, Hx k p 4.6)

n=1m=1q,=0p;,=0

Remarking that the order of the cross-terms is given by v = n+ m, the corresponding
summation can be calculated by adding all the terms of the same order v, with m =
1,2,---,v —1, and then add all orders. If we change the notation in the three sums to
designate the order of the terms with the same index n, the relation (4.6) can be written as

010 Qo1
Yk =hoo+ Z hy olay]x[k—q,] + Z ho g, )% [k —q, ]+
q1=0 q1=0
=) Qn() QOn
Z{ZhnoanXk qr ZhannHXk qs
q,=0 q,=0

n—1 Qu—mm Pn—mm
+ Z Z Z hn mmqn m’pm I_IIXk qr Hx k Ps } 4.7)

m=1 q,=0 p,=0

The complex Volterra series (CVS) model (6.1) is the counterpart of the real-valued
Volterra series (4.1) when the input is complex-valued. Note that if the nonlinearity of the
system can be neglected, the CVS model is reduced to the WL transformation.

Equation (6.1) can be written in a more compact form. To that aim, let us rearrange the
elements of the nth-order tensor %,,_, ,,[q,,_ -] to form the vector h,,_,, ,, as

h, =k

n—m,m

0,0,---,01,h, 0,0, 1], ,

0 O n m, m] B 7hn—m,m[Qn—m,m’Qn—m,m’ e ’Pn—m,mHT' (4.8)

nfm,m[

h

n—m,m[

Recalling that the first n — m indices have maximum delays Q,_,,, ,, and the other m indices
have maximum delays P, _,, ,, and using the definitionxy = [x[k],x[k—1],--- x[k—

Qn7m7mﬂT, (6.1) can be rewritten as

hO O + Z Z hn m m an)?l'::l))k ® X;i’;:ll,n’hk‘ (4.9)

n=1m=

The CVS model is valid to describe the three examples exposed above. In the PA case,
only input products with x and x* appearing m + 1 and m times, respectively, must be
considered and (6.1) is reduced to the baseband FV model. It is important to note that the
CVS model has been demonstrated without any assumption on the internal structure of
these systems and nonetheless it presents all the terms required for the nonlinear detection
and estimation problem in narrowband array processing [30]—-[31]. If we consider an array
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of N, narrowband sensors in (6.1), then Q =P,_ym=N;— 1 forallnand0 <m <n.

In that case, the CVS model (4.9) reduces to the WNL Volterra beamformer (4.4) for
odd-order terms. Finally, in the case of I/Q modulators the WNL representation (4.5) is a
particular case of the CVS model. In this chapter we also refer to (6.1) as WNL model.
Considering the increased model complexity because of its structure with a larger
number of parameters, the technique presented in [37] was used to cope with this great

number of coefficients, relying on the sparsity assumption for the kernels of the model.

Recalling that the WNL model is linear with respect to the coefficients, (4.9) can be
rewritten as
y=X-h+te, (4.10)

where y is a column vector with the samples of the output complex-envelope, e is a noise
vector, h is a vector which arranges sequentially the normalized Volterra coefficients of
the model, and X is a measurement matrix whose columns stack the samples of the model
regressors for the same order and delay. The solution to (4.10) is the LS estimate for
the kernel vector. If only a few of the regressor coeflicients are active, it is possible to
apply the Orthogonal Matching Pursuit technique and the Bayesian Information Criterion
aimed at determining the active support set of model coefficients [37]. This approach
applied to the model provides a reduced-complexity structure which will be referred to as
WNL compressed-sensing (WNL-CS) model. The particular model coeflicients are still
solved by using (6.4), but here it only applies to the subset of active regressors defining
the WNL-CS structure.






5 Digital Predistortion of Power
Ampilifiers Using Structured
Compressed-Sensing Volterra
Series

5.1 Introduction

Recent advances in digital communication standards require the management of the trade-
off between efficiency and nonlinearity. Digital predistortion comes up as a solution
that allows the PA to operate near saturation, mitigating the distortion created in new
standard signals such as OFDM, which are characterized by a high PAPR. DPDs rely on
behavioral models [12], which usually take the form of Volterra series. The most general
FV [38] series has a rich set of terms to represent the modeled system, but this number of
components is usually very large due to its inherent structure. Given the limited real-time
computational capability of nowadays Field-Programmable Gate Arrays (FPGAs), as it is
desirable to keep an easy-to-manage number of components, researchers have developed a
set of pruning strategies —also called sparse recovery techniques— . These strategies can
be either ad-hoc, which include a subset of the FV such as the GMP or DDR among others,
or based on information theory, which do not include the information of the intrinsic
structure of the model [39]. Structural information based on the algorithm in [37] was
incorporated in [40]. In this chapter, we show the structural pruning of Volterra series and
validate the method in the DPD application, obtaining a reduced complexity model while
keeping the level of performance.

This chapter is organized as follows. The algorithm is first formulated. Then, the
experimental design of a DPD application for a commercial PA is presented and results
are discussed.

37
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Algorithm 1 Summary of the Structured Compressed-Sensing Algorithm for Volterra
Series Models
Input: n,, >0, x €[0,1], f(:), Xe C"™" yeC"
Output: S(t), n,,
Initialization :
1: 1y, 5(0) « @
2: fort =1tong,, do

max
Xg},r(r—l)
3: 9; — (1 — Ot) . maxiésm 7”)({1}“2

O
S X > 6,

5: — ¢ Xy,
i argmlnieil(“)ef( {}>
6 S(t)  S(r)ui®

1)
9: r(t) y—§®
10: endfor
1: 67 = [ly =303
12: napt < argmin, {2mIné6; +2n.In(2m)}

5.2 Structured Compressed-Sensing for Volterra Series Models

The structural compressed-sensing algorithm presented in this chapter can be considered
a particularization of the stagewise orthogonal matching pursuit (StOMP) algorithm,
which selects a fixed number of regressors in each iteration based on a threshold. The
improvement consists on the inclusion of a priority function that assigns the significance
of the coefficient within the model in the subset defined after the thresholding. The new
greedy algorithm for pruning Volterra model matrices taking into account the structural
information is summarized in Algorithm 1.

The initialization, which corresponds to line 1 of Algorithm 1, consists on the definition
of the residual r(®) = y, that will be used for keeping the remaining part of the output still
to be modeled. The support set S(0) is empty in the first iteration, as no regressor is still
selected. In each iteration ¢, the algorithm calculates the correlation between the residual
r'") and each of the columns of the measurement matrix X normalized by its £,-norm (line
3). A first preselection is performed where all the regressors with absolute value of the
correlation greater than a fraction (1 — &) € [0,1] of the maximum are included in the
subset igr)e, shown in line 4. When the span « is equal to 0, the selection becomes that of the
classic OMP, which chooses only the maximum correlation within all the regressors, and
if it is equal to 1, no correlation-based sorting is made and only the structural information
of the model is evaluated for this arrangement. Then, the regressor with the lowest score
given by the priority function f(-) is included onto the support set. Then, the estimation
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of the Volterra vector h is obtained by a LS regression and the estimated output of the
model y<’ ) and the residual #*) are updated (lines 7-9). An example of this function is
given in the experimental design section. Finally, when all the regressors are sorted or
a fixed maximum of regressors to sort n,,, has been reached, a Bayesian Information
Criterion (BIC) is applied to obtain the optimum number of Volterra kernels n,,,,. The
model with the lowest BIC is selected according to line 12, where 67 is the estimation of
the error variance and n,. is the number of components.






6 Transmitter Linearization
Adaptable to Power-Varying
Operation

6.1 Introduction

The evident interest of the current published work about the linearization of wireless
communications transmitters reveals the convenience of adequate behavioral models for
the design of DPDs. The conventional baseband Volterra models, such as the FV [27], the
MP [12], or the GMP [18], are specific for PA, and have insufficient accuracy to represent
more general nonlinear systems with complex-valued input signals.

To comply with the objective of linearizing a transmitter, designers address several
challenging issues. In particular, the joint compensation of the I/Q-modulator and the
PA impairments [41]-[42], and the problem of concurrent dual-band PAs [43] have been
subject of concern in the last years. Another important goal is the design of a DPD that is
capable of following the changes in the PA operating conditions. This has been performed
by updating the DPD parameters in order to follow the power level changes [44]-[45].

Joint compensation of the I/Q modulator impairments and the PA nonlinearities are
addressed in [46] by using a structure composed of a MP model dependent on the signal
x(k) and a filter, augmented with a similar second branch dependent on the image signal
x* (k). A similar approach is presented in [47] for the case of a multiple-input multiple-
output (MIMO) transmitter. The generalized twin-box model [42] incorporates parallel-
Hammerstein (PH)-based branches that ignore the out-of-diagonal kernels and may contain
non-significant diagonal terms. In these approaches, some terms belonging to the GMP or
the FV models, which can be important, are not included.

In [44], a power-scalable DPD based on a two-box architecture with a set of precalculated
memoryless look-up table and a MP function to compensate the memory effects is proposed.
The need of a power-adaptive DPD to compensate distortion in level-variable conditions
was solved in [45] by adjusting the model parameters in accordance with the changes in the

M
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input power level. The procedure introduces extended scaling factors to track the varying
signal power with an interpolation approach. The model extraction in both proposals
requires PA measurements at multiple power levels and the number of coefficients is fixed
independently of the varying PA nonlinear operation.

In this chapter, we focus on a DPD design to linearize the transmitter in a range of
output power levels incorporating a model with a complete set of parameters to jointly
compensate the I/Q modulator impairments and the PA nonlinearities. The mathematical
deduction of the general complex-valued Volterra series (CVS) representation [48] is based
on Wirtinger calculus by considering the nonlinear system dependent on the input x(k) and
its complex-conjugate x*(k), operating these variables as real-valued. Then, the transmitter
can be viewed as a two-input system and analyzed using a double Volterra series approach.
Under the assumption of a Volterra representation, the CVS model is able to describe
the nonlinear behavior of a wireless communications transmitter. The present proposal
requires signal acquisition at only a single power operating point and the identified model
is directly extended to a wide range of power levels. The rise of the number of coefficients
in the CVS model makes necessary a suitable procedure to identify the model parameters
in an efficient and robust manner, as in [49]-[37], where a technique for model reduction
using the sparse structure of Volterra kernels was introduced. A thresholding procedure
contributes to the model effectiveness by reducing the number of coefficients as the system
enters into weakly nonlinear modes. In [50], the robustness of the procedure is confirmed
by verifying that the set of parameters identified at a given power level are applicable
to the accurate estimation of the system output over a wide dynamic range. Here, the
proposed approach is applied to the design of a DPD to accomplish the joint linearization
of transmitter I/Q modulator and PA impairments, under power-varying conditions.

The next sections of this chapter are organized as follows: After this introduction,
section 6.2 presents the rationale for the proposed identification method in regression
models. First, subsection 6.2.1 describes the framework of the CVS model in the context
of general discrete-time complex-valued nonlinear systems. Next, subsection 6.2.2 gives a
detailed theoretical justification of the proposed identification procedure and establishes
the power-scalable law for the model parameters. Subsection 6.2.3 reviews related works
for the joint compensation of I/Q modulator and PA impairments.

6.2 DPD Structure and Identification Procedure

Compensation of transmitter RF impairments, originated predominantly by I/Q imbalance
and nonlinearities, is one of the most important challenges for DPD designers. This
problem can be approached by following two different points of view. The first approach
is based on the knowledge of how the different blocks are assembled inside the transmitter
(see figure 6.1a) and an approximate input-output representation is deduced for the whole
system. An alternative perspective, where the predistorter is designed considering the
transmitter as a black box, is presented below. For comparison, the first approach is
discussed at the end of this section.
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(a)
Transmitter under test (TUT)

X 1/Q Yo Yy
Modulator

s4(k) s(k) s3(k) snlk)
R R R A
h(1) h(2) h(3) h(V)

Figure 6.1 Acquisition model with additive noise (a) and signal segmentation (b).

6.2.1 Proposed DPD Model for Joint Mitigation in Transmitters

In the context of Volterra series representation, any given system with complex-valued
input can be modeled by the CVS model [48]. Viewed as a black box, the relationship
for the input and output complex envelopes, x(k) and y,(k), of the DPD in a wireless
communications system can be expressed as

i n Q Q
yO(k) = hU,O + Z { Z Z Z hnfmm(qnfmvpm) X

n=1 {m=0q,=0p,=0

X nl:fx(qu)ﬁx*(kps)} . (6.1)

r=1 s=1

The vector of delays are q,, = [¢;,¢5," - ,qn]T and p,,, defined in a similar way, with a
maximum delay Q for all indices. The product of the input signal samples is denoted
as [T'_; x(k—gq,) = x(k—q;)x(k —g,)---x(k — q,) and the same notation is used for
the product of the image samples x*(k). For m = 0 and m = n, h, ((q,) and hy ,(p,)
are standard Volterra kernels and the products do not contain x*(k — p,) and x(k — g,),
respectively. The factor 4,,_,, ,,(Q,_n,P,) is @ Volterra kernel of order n dependent on the
two kinds of indices. '

The CVS model (6.1) with kg , = 0 can be viewed also as a linear combination of the
Volterra regressors [17_{" x(k—¢q,) [T;=; X" (k— p,). The M samples of the input signal can
be disposed to form the column vector x = [x(0),x(1),--- ,x(M — 1)]” and, if the Volterra
regressors are likewise organized to construct the regressor vectors &, the truncated version
of (6.1) can be rewritten as

Nr
Yo = Zhigia (6.2)
i=1
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where the ith regression coefficient #; comes from the Volterra kernels arranged in
an ordered-fashion, y, is a vector with the output samples disposed in the same way
as X, and Ny is the number of regressor vectors of the model. Examples of Volterra
regressor vectors are &, = x, corresponding to the memoryless linear regressor, and
£ = [(—q)x(—q) 2 x(1—q)|x(1—q) -+ .x(M — 1 — g) x(M — 1 —g)|*)" , correspond-
ing to the third-order memory polynomial regressor with a delay g. The regressor vectors
constitute a complete set in the case of the CVS model. Although &; are non-orthogonal,
a feasible recursive algorithm to estimate the Ny coefficients of (6.2) is the Orthogonal
Matching Pursuit (OMP) [51].

The so-called observation matrix X and the coefficients vector h are constructed by
stacking all column vectors &, and the model coefficients ;, respectively. Therefore, (6.2)
can be expressed in a compact matrix form [18],[37].

6.2.2 ldentification Procedure

In an experimental setup, the vector of the acquired samples, y, is contaminated by
equipment distortion and noise. Assuming an approximately distortionless setup, for
instance in laboratory conditions with high-performance equipment, the schematic of
the acquisition experiment can be modeled as in figure 6.1. Therefore, the input-output
relationship is

y=Xh+e, (6.3)

with a zero-mean additive white Gaussian (AWGN) noise e, stationary and complex-valued.
The model parameters can be identified by using a direct LS solution, given by

h=(X¥X)"'Xytw, (6.4)

where H represents the Hermitian transpose operation. The difference between the esti-
mated vector h and the true vector h is originated by the noise process w. Observe that the
selection of a model with lacking regressors is another important source of identification
error. For example, the FV and the GMP representations, as particular cases of (6.1), are
insufficient to model a transmitter with impairments.

The general character of the CVS model provides a complete set of regressors with a
high number of coefficients and, at the same time, an associated suitability for a pruning
procedure without a presumption on the significant regressors. The application of the
Bayesian information criterion (BIC) was proposed in [37, 50, 52] to select the significant
parameters. Whereas [52] is based on a simulated annealing algorithm with all the possible
variants of the model, the approach in [37] is based on the application of the OMP algorithm
to represent the PA output as its projection onto the span of Volterra regressors, and on
the BIC rule to discard the irrelevant coefficients, maintaining only the active regressors.
It is worth noticing that while LS identification is affected by regressor correlation, the
OMP algorithm guarantees the recovery of the exact value of the coefficients in a noiseless
environment in a given number of iterations [53].

The alternative procedure applied in [50] is mainly a parameters detection based on
statistical hypotheses testing. Referred to figure 6.1b), the entire set of acquired samples
is divided in N segments. Focusing on the ith coefficient of the estimated vector h, each
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segment returns an independent measurement of this particular coefficient. We can define
the vector h; constructed with the N different realizations of this random variable to decide
whether or not the ith coefficient has to be incorporated as an active parameter of the
model. We use the Neyman-Pearson (NP) approach to make the decision, based on two
hypotheses [54]:

* The measurement is produced by noise,

A it h; =w,,

* The measurement is produced by the presence of a model coefficient plus noise,

The probability density function under .77 is

1 — L (Bi—hy)" (h;—h;)

p(hi ) = —yave , (6.5)

where 62 is the variance of the complex-valued AWGN w;. Likewise, the probability
density function under .77 is expressed as

p(hi ) = —g—ye @ (6.6)
For a particular probability of erroneous measurement induced by noise, the NP theo-

rem states that the probability of true detection is maximized if the detector decides the
hypothesis .7, when the likelihood ratio L(fl,») exceeds a given threshold 7, i.e.,

L(h) =220 6.7)
Substituting (6.5) and (6.6) in the likelihood ratio and taking InZ(h;), we obtain
P 2 H, 1 2

and the decision
N
Re(hf’h;) = Re <Z hf(r)fzi(r)> > (6.9)
r=1

is equivalent to the likelihood ratio test (6.7). Under steady conditions, any coefficient is
an unknown constant /;(r) = h;, with its estimator being the average value

1
IZN

.}‘ll

h ~

1

hi(r). (6.10)

M=

r=1



46

Chapter 6. Transmitter Linearization Adaptable to Power-Varying Operation

Table 6.1 Summary of the Proposed Identification Procedure

1: Divide the input x(k) and measured output y(k) signal into N segments, each with M
samples.

2: Estimate the parameter vectors ﬁ(r), r=1,...,N using the OMP algorithm with the
same pre-defined N, number of components for all models.

3: For all the CVS components, compute the average coefficients 7zl-.

4: Sweep the thresholding level to apply the hypothesis test to all coefficients.

5: Take the thresholding level that optimizes the BIC rule.

Operating with (6.9), we can decide J#] if

= 1

There is a trade off between the deficit of model coefficients (if the threshold is high),
and the inclusion of undesired noise (if the threshold is chosen too low).

(6.11)
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The proposed procedure is as follows. Once the set of coefficients has been estimated by
the OMP algorithm for each segment of the acquired signal (see figure 6.1b), the average
71,» and the hypothesis test (6.11) are computed for all coefficients. The lower the threshold
level, the more coefficients (regressors) will be incorporated to the model and the BIC
criterion is used to decide the optimum number of regressors n, [37]. Due to the sparse
character of the Volterra kernels, many coefficients can be discarded without a significant
loss in accuracy.

Here the BIC rule with its explicit dependence on the NMSE. If the NMSE is expressed
in dB, the variance is given by

A 1 M—1
62 = (M Yy |y(m)|2> x 10NMSE/10 (6.12)
m=0
and substituting in (23) of [37], the BIC rule becomes
n,y = argmin {NMSE + X—; 1010g(2M)} . (6.13)

This procedure, summarized in Table 6.1, and that published in [37], start with the OMP,
a method that estimates the set of coefficients by iteratively adding new components to
the coefficients vector. The difference is that in this work the coefficients computed with
several segments of the signal are averaged and a further thresholding step is implemented
to get the sparse model structure.

According to the results in [50], the normalized coefficients originated in the nonlinear-

ities of the I/Q branches are not dependent on level variations at the modulator output and
the coefficients associated to the FV regressors are normalized according to the PA input

level [37]. For example, if A , is a FV nth-order normalized coefficient (n odd) for an
0



6.2 DPD Structure and Identification Procedure

47

input signal with a power level Py, and this level changes to P = A%p Py (A > 0, real-valued),
the corresponding normalized coefficients follow the relation

AG) ’
b 1\" B Pi() n/2
=(—-) == . (6.14)
hm|, A P
i0
Once the normalized parameters of the DPD have been computed at a given input level, Py,
they can be straightforwardly scaled to adapt the coefficients to other level P. Odd-order

normalized parameters shared with the FV model follow an exponential scaling with the
average input power, so that the magnitudes at P, and P are related as:

n-AP(dB)

AWl =p® 10 20 (6.15)

P

P

where AP(dB) = P(dBm) — P,(dBm) and 7 is the coefficient order. Those normalized
coeflicients not included in the FV model (e.g., the image or the even-order parameters
associated with impairments of the I/Q modulator), are not dependent on the power
level. In that case, the way the DPD is adapted to a decrement in power level is by
excluding parameters with values below a given threshold, and not recalculating the
coefficients [44, 45].

6.2.3 Preceding DPD Models for Joint Mitigation

In the previous procedure, the transmitter is viewed as a black box and the CVS model
is adopted for the DPD. Another perspective is to assume the internal architecture of
the transmitter (figure 6.1a) and deduce the DPD structure to join the mitigation of PA
and I/Q-modulator impairments under reasonable approximations [41]-[47]. In [41], the
rationale is to compensate the impairments in the reverse order that they appear. Based on
the knowledge of the ensemble arranged by the modulator and the PA, a first MP structure
is proposed for the PA DPD and then the modulator compensation is implemented with
a widely linear (WL) model. This point of view is further extended to a general FV
model [46] and to the augmented complex conjugate (ACC) model for joint mitigation of
distortion in MIMO transmitters [47]. The output for the ACC model in a single-input
single-output (SISO) transmitter is written as

N
Z (k)} + h, (6.16)

Mz

y(k) =

n=1

where the prima symbols in the sums indicate that only odd orders are considered,
H,{x} = Zh (k= q)|"~x(k — q) (6.17)

and A, {x"(k)} is defined in the same form.
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The two viewpoints discussed above have strengths and weaknesses. When the trans-
mitter composition is exploited, the principal advantage is the achievement of a simpler a
priori structure for the DPD [47]. This favourable feature is based on the assumption of
the particular modulator model, in this case a WL transformation. The WL supposition
does not consider the contribution of the nonlinearities in the modulator baseband [55]-
[56], but it is a good approximation in cases where the modulator nonlinearity can be
neglected. On the other hand, making no assumptions about the internal architecture of the
transmitter, the CVS model gives a complete (and huge) set of regressors. However, many
of them are negligible because of the inherent sparse characteristics of the DPD. If the
CVS representation is complemented with the compressed-sensing technique described in
section 6.2.2, the result is a reduced model with only the indispensable number of active
coefficients.



7 Results

This chapter covers the experimental design and results of the theory shown in the previous
chapters.

7.1 Volterra-Parafac Digital Predistorters

As a proof of concept for the proposed DPD structures, they have been validated experi-
mentally with a commercial PA. The measurement setup is described in 2.4.1.

In order to tradeoff the available bandwidth at the VSG with the occupied bandwidth
due to the PA nonlinearity, and ensure an accurate representation of the spectral regrowth
at the PA output, the test signal was a 15-MHz OFDM signal generated according to the
LTE-downlink standard. A sequence of 16-QAM symbols were assigned to all the active
subcarriers and an oversampling rate ovs = 6 was used to generate the OFDM signal
characterized by a PAPR about 12.0 dB. Acquisition with the signal analyzer was managed
by Agilent VSA-89600 software, operating in the raw acquisition mode.

The device under test was the evaluation board of a commercial PA based on the
CGH40010 GaN HMET device, from Cree Inc., at a frequency of 3.6 GHz and biased
with a quiescent drain-to-source current about 200 mA. Driving the test PA in the range of
output levels from +25 to +-30 dBm ensured a nonlinear operating condition characterized
by ACPR levels in the range of —40 to —36 dBc, exceeding the requirements of unwanted
emissions for the LTE standard, and in-band distortions characterized by EVM values in
the range of 3—4%.

7.1.1 Measured Performance for the B-VP DPD

A conventional indirect learning approach was followed for the identification of the inverse
PA functions by running the frequency domain version of the adaptive CLMS algorithm
over a pair of uncompensated output and input 15-MHz LTE training datasets at an average
output level of +32.4 dBm. The dc current level was 240.8 mA. The target gain of the
linearized PA was carefully selected about 15.4 dB to account for the PAPR of the test
signal. An attenuation of about 2.7 dB in the DPD ensured that the peak-envelope-power
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(PEP) at the PA input did not exceed the maximum range of the identification dataset,
yielding an output level of 430 dBm and a dc current about 203 mA. This shift in the
actual working operation point with respect to the training level introduced imperfections
in the identification process that were removed by repeating the identification procedure
with predistorted and compensated datasets in an iterative fashion. Two or three iterations
were enough to optimize the DPD operation.

A thirteenth-order B-VP DPD with a block size L = 1024 sa and rank R = 1 was
tested to validate the proposed structure. In order to ease the convergence of the CLMS
identification algorithm, the initial set of equalizing filters, W%, were derived from a
memoryless structure of the same order, identified by performing a LS estimate from the
training datasets. The running complexity of the proposed model was evaluated according

to (3.18), yielding 100 FLOPs/sa.

To compare the results obtained with the proposed approach, a thirteenth-order GMP
predistorter was designed and tested. The memory of the GMP DPD was configured so
that the linearization results were similar to those obtained with the B-VP DPD. According
to [18], a model with no even-order terms, no leading-envelope terms, diagonal terms,
and non-diagonal terms arranged with .}, = {0} and .}, = {1,...,0} for the signal
and lagging envelope index arrays, respectively, was chosen. A maximum delay of Q =
15 samples was introduced for orders one to seven in the diagonal part, and for orders
one to five in the non-diagonal part. The rest of the kernels were assumed memoryless.
The running complexity of this GMP-DPD implementation was adapted from (16) to (18)
in [7], yielding 828 FLOPs/sa.

The AM/AM and AM/PM characteristics of the uncompensated and linearized PA are
plotted in figure 7.1. It is revealed that the slope of the AM/AM curve is reduced under
DPD operation, what is related to the gain compression referred above. On the other hand,
there is an evident reduction of dispersion in the low input-level range of the AM/PM
characteristic compared to the uncompensated PA, which is a sign of mitigation of memory
effects in the predistorted PA.

The efficacy of both DPDs to remove spectral regrowth is shown in figure 7.2. The
uncompensated case corresponds to a test signal driving the PA with the same average
output level than the linearized PA. The ACPR data associated with these spectra are
summarized in Table 7.1, which reveal that the B-VP DPD performs quite similar than
GMP DPD, with the latter gaining a reduction of about 2 dB in the first adjacent channels.
However, this improvement is accomplished at the cost of a computational complexity
that, in this case, is increased by eight times.

The same conclusions can be drawn for in-band linearization performance, which can
be evaluated from figure 7.2 with the spectra of the error signal. Notice that there is
only a slight difference between the B-VP and GMP cases at the edges of the channel
band. Accordingly, this difference does not affect to the constellation diagram, as shown
in figure 7.3, as the scatter plots for both DPDs are indistinguishable. This result is
also supported by the negligible difference of EVM (see Table 7.1), with both methods
accomplishing a reduction of the EVM from the uncompensated value of 3.9% to a
linearized value of 0.4%. In terms of the NMSE between the output of the predistorted
PA and the reference signal, the values reported in Table 7.1 reveal that the B-VP DPD is
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Figure 7.1 AM/AM (a) and AM/PM (b) characteristics of the unpredistorted and linearized
GaN PA driven by a 15-MHz LTE signal.

only 0.6 dB above the GMP DPD, which is also related to the fact that the NMSE is more
influenced by the in-band rather than the out-of-band performance.



52

Chapter 7. Results

' ]
of ’ : = = =Error w/o DPD

= = =Error GMP DPD
_1ot = = =Error VP DPD
w/o DPD
—— GMP DPD
-20 ——FV DPD

PR ahhsaatat L UTS

Power Spectrum (dB)
&
o

. /:—"‘Ws‘mﬁ:: |
0! \

3570 3580 3590 3600 3610 3620 3630
Frequency (MHz)

Figure 7.2 Normalized power spectral density of the GaN PA at an average output level of
+30 dBm without DPD (blue), employing the GMP-based DPD (green) and
the proposed B-VP DPD (red). Dashed lines correspond to the error spectrum.

Table 7.1 DPDs performance comparison in terms of out-of-band emissions in the first
and second adjacent channels with the GaN PA at P, , = +30 dBm

Cases under ACPR (dBc)

study -30MHz | -15MHz | +15MHz | +30 MHz
W/o DPD -55.60 -36.41 -36.55 -55.80
GMP DPD -59.80 -56.99 -57.59 -60.60
VP DPD -59.90 -55.08 -55.68 -60.60

7.1.2 Measured Performance for the FD-VP DPD

In this case, the predistorter was configured with seventh-order, rank R = 1, and 1024-
points IFFTs. Signal generation was arranged starting with 16-QAM symbols mapped onto
900 active subcarriers to build the 15-MHz LTE signal. A raised-cosine shaping filter was
applied in the linear branch of the DPD with a roll-off factor of 0.1 and a delay of 96 sa,
while the length of anti-aliasing FIR filter for the rest of the branches was M = 10. The
signal level was configured to drive the PA in a nonlinear operating condition characterized
by an output level of +26.2 dBm. The predistorter signal generation was performed
off-line, and relied on a behavioral model of the PA, a seventh-order GMP model with a
maximum delay of Q = 15 sa, which was identified by applying standard LS to the input
and output LTE waveforms at the operating frequency. The coefficients of the equalizing



7.1 Volterra-Parafac Digital Predistorters

53

0.8

06 L ........ ................. N ....... ]
0db..... ........ L ........ ........ U ........ L |

S @ 8

1] ......... ........ EEU ........ ........ .........

nz‘, ______ ______ ’ _________ '

D FUPR ........ [N ....... ]

Quadrature-Phase Component (V)

I U TR L L RSN i

s ¢ ©o =

08 -06 -04 -02 1] 0z 04 0.6
In-Fhase Component (%)

Figure 7.3 Transmitted constellation of the GaN PA associated with the 15-MHz LTE
signal at an average output level of 430 dBm without DPD (blue), employing
the GMP-based DPD (green) and the proposed B-VP DPD (red). The + marks
correspond to the reference constellation for the transmitted symbols.

Table 7.2 DPDs performance comparison for LTE-downlink signals with the GaN PA at

P,,=+30dBm
Cases under EVM | NMSE | Computational
study (%) (dB) cost (FLOPs/sa)
W/o DPD 3.89 | -27.68 -
GMP DPD 0.36 | -48.30 828
VP DPD 0.40 | -47.69 100

filters Wflr,)( were set by running the adaptive block-CLMS algorithm (14) with a block
length L = 1024. To compute the frequency-domain error (15), a compressed value of the
target gain G, was chosen to ensure that the PA model range was not exceeded when the
DPD is driven by the input signal. These settings were applied to generate the predistorted
data corresponding to a validation LTE test signal comprising 56 OFDM symbols, which
were sequentially passed through the structure depicted in figure 3.3 and applied to the PA
input.

As in the B-VP type, the proposed FD-VP DPD has been compared with a conventional
time-domain DPD, in this case a seventh-order GMP predistorter selected to optimize
the error and configured with maximum delay of Q = 15 sa in a way similar to that
compared to the B-VP DPD. Table 7.3 illustrates that the proposed FD-VP DPD achieves
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Figure 7.4 Measured power spectral density of the test PA with different DPD linearizers.
The unpredistorted PA was driven at an input level to yield the same output
power than the linearized PA (+26.2 dBm).

a similar performance to the DPD based on the GMP model, while significantly reducing
the computational cost per sample associated to the generation of the predistorted signal.
The results of the ACPR confirm that both the FD-VP DPD and the GMP DPD provide
an improvement over 17 dB with respect to the nonlinear signal at the same average
output power level. Despite the fact that the spectral regrowth of the un-predistorted PA
signal failed to comply with the requirements of the LTE-downlink standard, the ACPR
requirements were fulfilled after applying both DPDs. Figure 7.4 shows the power spectral
density of the LTE signal with and without DPD, demonstrating the reduction of the
spectral regrowth and the similarity between the results obtained by both DPDs. 1t is
worth mentioning that these results were achieved by deriving the DPD settings from the
aforementioned adaptive algorithm, but using a single estimate of PA model. Although
both approaches led to similar values, there is room for improvement in the reduction of
the ACPR by using more accurate estimates of the PA model in an iterative fashion.

In-band distortion mitigation of the DPDs can be assessed in terms of the EVM. Table 7.3
reveals that the proposed DPD reduces the EVM from 3.0% to 0.6%, while the GMP DPD
produces a higher dispersion of the received symbols around the reference constellation
points, with an associated EVM of 1.4%. The more notable mitigation of the in-band
distortion for the proposed DPD can be observed in figure 7.5, where one symbol of the
16-QAM constellation of the received LTE signal has been zoomed in. Finally, the NMSE
between the sampled signal in the receiver and the theoretical reference is calculated to
evaluate the overall linearization achieved. As it can be observed in Table 7.3, the residual
error of the LTE signal significantly decreases with the proposed DPD, reducing the NMSE
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Figure 7.5 16-QAM constellation of a received 15-MHz LTE-downlink signal without
DPD (red dots), with a GMP DPD (blue dots), and with the proposed FD-VP
DPD (black dots). The reference constellation point is plotted with a green ‘+’
mark. One symbol has been zoomed in.

Table 7.3 DPD performance comparison for a 15-MHz LTE-downlink signal (P,,, =

+26.2 dBm)
Cases under | NMSE ACPR (dBc) EVM | Computational
study (dB) Lower | Upper | (%) | cost (FLOPs/sa)
W/o DPD —-30.2 | =39.5 | =39.6 | 3.0 —
GMPDPD | —41.7 | —=57.2 | —58.0 1.4 939
FD-VPDPD | —44.5 | —56.6 | —56.9 | 0.6 255

of the nonlinear signal by more than 14 dB.

Regarding the complexity of the DPD data generation, the cost per sample associated
with (3.19) is 255 FLOPs under the aforementioned settings. This figure can be fairly
compared with the particular implementation of this GMP DPD, as shown in Table 7.3: it
would require 939 FLOPs per sample.

7.2 Complex-valued Volterra Series Model

An experimental study based on the testbench introduced in section 2.4.1 has been con-
ducted. The VSG served as an I/Q modulator, providing a flexible interface to introduce
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Table 7.4 Modeling performance in terms of the NMSE and ACEPR for the test PA with
impairments in the I/Q modulator

Model ACEPR (dBc) NMSE | #
~30MHz | ~15MHz | In-Band | +15MHz | +30MHz | (dB) | Coeff.

FV-CS —62.8 547 | 317 | 546 | —664 | 316 16

WNL-CS | —68.8 652 | 545 | —65.1 682 | —527 | 129

1/Q impairments. The VSG output was fed into a commercial PA constructed with the
CGH40010 GaN HEMT transistor, from Cree Inc. The test signal was a 15-MHz orthog-
onal OFDM signal generated at 3.6 GHz according to the Long Term Evolution (LTE)
downlink standard. In the receiver side, the RF signal was measured at the VSA with a
sampling rate of 92.16 MS/s providing over 360000 samples. The test signal was composed
of 56 OFDM symbols and model identification was performed with only one symbol.

Following the usual methodology for behavioral modeling of transmitter architectures,
model parameters were identified by applying a conventional LS procedure to the input-
output measurement datasets, providing the NMSE between the modeled and measured
signal as a quality metric, in addition to the Adjacent Channel Error Power Ratio (ACEPR),
the latter evaluated for both the upper and lower adjacent channels.

Modeling performance of the proposed WNL approach was compared to the FV, given
its demonstrated accuracy in the context of PAs. Considering the PA operation point, both
models were configured with thirteenth-order, a memory length Q = 3 for orders one to
five, and memoryless kernels for higher orders. Due to the relatively large number of
coefficients in the general proposal (248 for the FV model and 1370 for the WNL model),
the compressed-sensing algorithm [37] was applied to select the appropriate kernels of
both models.

According to Table 7.4, under I/Q modulator impairments, the FV compressed-sensing
(FV-CS) model reduces the number of coefficients to 16 and degrades the NMSE to
—31.6 dB, while the pruned WNL-CS model consists of 129 coeflicients and presents
an NMSE of —52.7 dB that outperforms the former in about 20 dB. While the number
of the WNL-CS coeflicients can be high, an increase of the FV-CS coefficients leads to
overfitting because the appropriate regressors are missing. This behavior is confirmed
by the predicted spectra plotted in figure 7.6, showing that the model tightly matches the
measured signal, while the FV-CS model fails in the description of spectral regrowth in the
adjacent channels. These outcomes are even more evident in figure 7.7, where the spectra
of the error are depicted. As a reference we include in this figure the results for the test PA
without I/Q modulator impairments (dash-dot line), showing a very low spectrum error
inside the signal band for the FV-CS model. Let us clarify that impairments were removed
from the I/Q modulator output by using a precompensator based on [32], and therefore
this case resembles a nonlinear system for which the baseband PA model holds. However,
when I/Q impairments are present, the FV model cannot describe accurately the output
and the in-band error degrades by almost 30 dB. On the contrary, the WNL preserves
the performance in that case. The spectrum of the error predicted by the WNL-CS under
compensated I/Q impairments, not shown, is almost the same as the FV-CS model.
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Figure 7.6 Normalized power spectral density of the measured (dotted line) and modeled
(solid lines) output of the PA driven at 3.6 GHz with an impaired I/Q modulator.

7.3 Structured Volterra Series Model

A set of measurements were acquired in order to validate the predistortion capabilities
of the algorithm. The weblab introduced in section 2.4.2 was used. The measurements
were taken at an output power of +35.2 dBm. The test signal is compound of 56 OFDM
symbols of a 15-MHz OFDM signal generated from 16-QAM symbols modulated onto
900 subcarriers and filtered by a raised-cosine with roll-off factor of 0.1, according to the
LTE-downlink standard. This signal exhibits a PAPR of about 11 dB and a hard clipping

to the 7 samples with the highest absolute value was applied to reduce the PAPR to 10 dB.

An oversampling of 1 to 6 applied to the original signal results in a sampling frequency
of 92.16 MHz which was also used to record the measurements. The test signal contains
over 360000 samples.

A GMP model was selected to test the algorithm. This model has the structure shown
in (7.1), where a configuration of seventeenth order and a maximum distance from the
diagonal of 10 was set. This corresponds to K, = K, =K. =16,L, =10and L, = M, =
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Figure 7.7 Spectrum of the error signal between the measured and modeled output of the
PA driven at 3.6 GHz with an impaired I/Q modulator (solid lines) and an I/Q
modulator with precompensated impairments (dot-dashed line).

L.= M, =5. The resulting Volterra model contains 1087 components.

Ks Lg
y(k) =), Y apx(k—1D)|x(k—1)["+
p=01=0
+Y Y Y byx(k—D)x(k—1—m)[P+ (7.1)
=11=0m=1
pKE L. M.
+Y Y Y CpimX (k=) |x(k—1+m)[P.

p=11=0m=1

The thresholding function designed for this experiment was f({,m,p) = || Fm|+ (p+1)
according to the form of the GMP regressors of x(k —)|x(k—[£m)|” . This function
assigns a higher score —which corresponds to less priority— to high orders and lags,
considering a memory fading behavior [57]. The number of maximum components to be
considered n,,, was set to 200.

The predistorter was calculated through the indirect learning scheme [10]. The 30% of
the signal with the highest maximum value at the output of the PA was used for modeling
and the span value from O to 1 with an increment of 0.2 was swept. Once the predistorter
was identified, the validation was carried out with the complete signal and the predistorted
signal was obtained placing the previous PA input signal at the input of the DPD. The
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output of the DPD was then sent to the web platform and the performance parameters of
NMSE, ACPR and EVM were measured in the returned signal.

Table 7.5 Performance results of DPD in a sweep of span a values.

ACPR-2 ACPR-1 ACPR+1 ACPR+2| EVM| NMSE| #
case (dBc) (dBc) (dBc) (dBc) (%) (dB) | Coeft.

w/o DPD -38.04  -32.82 -32.93 -38.00 | 5.00 | -25.52 -
0.00| -39.76  -36.83 -36.82 -39.80 | 2.82 | -30.46 | 200
0.20| -42.57 -40.46 -40.51 -42.75 1.89 | -33.90 | 198
040 -44.15 -41.35 -41.29 -44.17 1.78 | -34.49 | 190
0.60| -44.65 -42.92 -42.91 -4474 | 1.46 | -36.18 | 148
0.80| -50.04  -48.58 -48.71 -50.24 | 0.80 | -41.52 17
1.00| -55.09 -53.88 -54.13 -55.37 | 0.52 | -45.62 | 194

The performance parameters of the DPD are presented in Table 7.5. The ACPR, EVM
and NMSE values experience a decrease with the span, which indicates that the introduction
of the span enhances the predistortion capabilities of the model. The signal without
predistortion is characterized by a first lower and upper ACPRs of —32.82 dBc and
—32.93 dBc. The predistortion enhances this values from about 4 dB for & =0 to 21 dB
in the case of o = 1, where the minimum values of —53.88 dBc and —54.13 dBc are
reached. Similar improvements are achieved for the second lower and upper ACPRs, where
the minimum is also obtained in the same case and take the values of —55.09 dBc and
—55.37 dBc, corresponding to an improvement of about 17 dB with respect to the case
without DPD. These values are in accordance with figure 7.8, where the power spectral
density (PSD) of the predistorted signal for the best case is compared to the case without
DPD. The reduction of the spectral regrowth achieved by the DPD agrees with the PSD of
the error signal, which shows a low in-band and out-of-band error densities. The EVM
is decreased from a 5 % to a 2.8 % for ¢ = 0 and a 0.52 % in the case of & = 1. This
enhancement is clear in the constellation shown in figure 7.9, where the predistorted case
shows a reduction in dispersion compared to the signal without predistorsion. The NMSE
is reduced from —25.52 dBm without predistortion to —30.45 dB for the lowest value of
the span and to —45.62 dB for @ = 1. Finally, the number of components in the pruned
model results in roughly the same value for all the range of the span, which indicates that
the pruning capabilities of the algorithm remains at the same performance level.

7.4 Transmitter Linearization Adaptable to Power-Varying Operation

To illustrate the proposed method, the joint compensation and linearization of two trans-
mitters, with adaptable capability in a wide dynamic range, is demonstrated.

7.4.1 Linearization of a Basic Transmitter

The first case of study is the basic transmitter modeled in [50], referred to as TUT-1.
The TUT-1 was arranged with the I/Q modulator integrated in the commercial generator
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Figure 7.8 Spectral densities for one realization of the experiment for the cases without
DPD and with DPD in the case of ot = 1.

SMU200A of Rohde & Schwarz, and a PA based on Cree’s board for the evaluation of the
power GaN HEMT CGH40010, operated at a carrier frequency of 3.6 GHz. Later on a
DPD linearizer for a more realistic transmitter (TUT-2) will be tested.

The probing signal was designed with an OFDM format and 15-MHz bandwidth,
according to the LTE-downlink standard. The input vector x containing over 300000
samples of the complex envelope was uploaded into the generator and transmitted with
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Figure 7.9 15-MHz bandwidth signal constellation for the original signal without DPD
and with DPD in the case of o = 1.

a peak power of about +30 dBm, corresponding to a measured output average level of
+19 dBm. Since the peak-to-average power ratio (PAPR) level is 11 dB, the upper limit
to the transmitter power is fixed by the maximum modulator peak level, about +15 dBm
(+6 dBm of average power). The samples of the output signal were gathered by averaging
300 acquisitions in the vector signal analyzer. Driven with this signal, the TUT-1 serves as
a first proof of concept of the proposed linearization approach. To demonstrate the DPD
capability to compensate the nonlinerities as well as the I/Q impairments, the settings of
the modulator were configured with a quadrature error of 1 deg. Whereas commercial
1/Q modulators show quadrature errors in the range of 1-3 deg [58]-[59], the choice
of 1 deg was intended to show to which extent a reduced error can have a significant
impact on the linearization capability of a DPD. The acquired baseband samples were
subsequently off-line postprocessed with Matlab and used in a conventional indirect
learning architecture to obtain the DPD coefficients at a maximum average output power
of +20.8 dBm (4-31.8 dBm of peak output power).

The model parameters were chosen to reduce the error between y(k) /G, the measured
output scaled with the target gain of the linearized TUT-1, and x(k). The underlying CVS
structure was configured with thirteenth order, a maximum delay Q = 3 for orders 1 to
5, and memoryless (ML) for the higher orders, comprising 1370 coefficients. The OMP
algorithm was executed to provide the ordering of 200 coefficients per segment. The
synthesized DPD was composed of 22 normalized coefficients above a selected —68 dB
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Figure 7.10 Adjacent channel power ratios of the output spectrum with (solid lines) and
without (dashed lines) DPD. First adjacent channel (4 marks) and second

adjacent channel (x marks). Basic transmitter TUT-1.

threshold. The results of the linearization produced by the DPD at the output power of
+20.8 dBm are plotted with filled circles in figure 7.10, where an ACPR of about —66 dB
in the first adjacent channel is satisfactorily compared to the value of —46 dB obtained
with the non-linearized transmitter. A reduction of about 10 dB in ACPR is also observed
in the second adjacent channel. Likewise, about 6 dB of NMSE reduction was achieved
with the TUT-1 driven at the maximum level, as it is shown with filled marks in figure 7.11.

The normalized coefficients of the DPD were extended at other power levels following
the explained procedure, and those below the threshold were discarded. A second series of
measurements was then performed with the new predistorted signals calculated according
to the model adjusted at the different output levels, yielding the ACPR displayed with
solid lines in figure 7.10. To have a reference of the DPD performance, the ACPRs of
the transmitter without DPD are also shown (dashed lines), demonstrating a reduction
over 21 dB in the first adjacent channel at P, = +20.8 dBm. The DPD performs in all
the dynamic range, demonstrating values of ACPR; and ACPR, better than —65 dB and
—70 dB, respectively, without any further adjustment of the coefficients. This capability
is also observed in the results of the NMSE displayed in figure 7.11 for the transmitter
without DPD, in dashed line, and with DPD, in solid line. NMSE levels of about —41 dB
in a wide range of operating powers demonstrate a flexible functioning of the linearizer.

The results of the DPD performance for the TUT-1 were encouraging and led to apply
the procedure to a new transmitter where the power capability of the output device was
exploited thoroughly.
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Figure 7.11 NMSE of the output signal without DPD (dashed line) and with DPD (solid
line). Basic transmitter TUT-1.

7.4.2 Linearization of a Realistic Transmitter

The objective of this subsection is the joint compensation and linearization of a transmitter
operating near its maximum level of +40 dBm. In this transmitter, referred to as TUT-2, a
ZHL42W preamplifier of MiniCircuits is connected at the input of the Cree’s evaluation
board to drive it to a higher nonlinear operating point and delivering a maximum average
output power of 426 dBm (4-37 dBm of peak power), with a small-signal chain gain of
about 46.7 dB. Again, 1 deg of quadrature error was considered for the I/Q modulator.
The AM/AM and AM/PM characteristics are plotted in figure 7.12, revealing a gain
compression of about 1.6 dB. The output spectrum is shown in figure 7.13, where we
observe an important spectral regrowth that fails to comply with the standard ACPR of
—45 dB. Let us also remark that not only the PA is contributing to the nonlinear distortion,
but the I/Q modulator is also driving the preamplifier beyond its linear operation level.
Again, a thirteenth-order CVS structure with 1370 coefficients was pruned. After repeating
the procedure described in section 7.4.1, the corresponding DPD was designed. The
linearization capability is also shown in the same figure, demonstrating a spectral regrowth
reduction of about 20 dB in the first adjacent channel. Although a second iteration will
usually provide better results, this initial design is adequate enough for the objectives of
the present experiment.

The normalized magnitudes of the 23 most relevant coefficients at P, = 426 dBm
(P, = —20 dBm) are plotted with large marks in figure 7.14 and, in agreement with our

previous discussion, the values adapted to other levels are displayed with straight lines.

Notice that all the values are referred to the ML linear coefficient and that the number
of parameters can be reduced as the PA is operated at lower levels. Since the precision
requirements allow neglecting the normalized coefficients below a —50 dB threshold, the
model at a PA input of P, = —20 dBm is composed of only 14 coeflicients, a value that
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Figure 7.12 Compression curves of the TUT-2 transmitter for average output levels of
+26 dBm (blue), +23.4 dBm (red), 20.6 dBm (orange), and +17.8 dBm
(magenta). Gain compression (a) and AM/PM (b) characteristics.
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Figure 7.13 Normalized output spectrum and spectrum of the error for an average output
level of P, = +26 dBm (437 dBm, peak), with and without DPD. Realistic
transmitter TUT-2.

is reduced to 8 coefficients at P, = —30 dBm. Next, a set of predistorted signals were
calculated according to the extended parameters.

In order to evaluate the performance of the DPD, the ACPR of the linearized signals
are displayed in figure 7.15 with 4 and x marks for the first and second adjacent channels,
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Figure 7.14 Measured normalized coefficients at P, = +26 dBm (large marks) and com-
puted by using (6.15) (straight lines). (a) Odd-order and (b) even-order co-
efficients. The PA input power is represented in the abscissas axis. Realistic
transmitter TUT-2.

respectively. The ACPRs of the transmitter without DPD are also shown, demonstrating a
reduction of 17 dB in the first adjacent channel at P, = +26 dBm. The DPD linearization
makes the ACPR; better than —55 dB and the ACPR, better than —60 dB, keeping
the flexibility of compensating the linear and nonlinear impairments in the range from
P, = +16 dBm to +26 dBm without any further modification of the coefficients. This
additional capability is also observed in the results of the NMSE displayed in figure 7.16
for the transmitter without DPD (dashed line) and with DPD (solid line). NMSE levels of
about —50 dB in a wide range of operating powers demonstrate a maintained performance
of the linearizer. Lastly, the normalized output spectra of the linearized transmitter are
represented in figure 7.17 for average power levels ranging from +17.8 dBm to +26.6 dBm
(+28.8 dBm to 4-37.6 dBm of peak power) in 3 dB steps.

7.4.3 Power Adaptability of ACC and CVS Linearizers
For TUT-2, we also implemented the DPD for joint mitigation of the modulator and the

PA using the ACC model for SISO transmitters (6.16). The corresponding DPD was
designed with equivalent settings (i.e, thirteenth order and Q = 3 for orders 1-5), yielding



66  Chapter 7. Results

-35
40 F §
45 | §

o-50 1

el

o

5

Q550 1

ACPR, w/o DPD Y

60 ACPR, with DPD ..+~ 1

.| — ¥ ¥ ACPR, wio DPD X |
o 4 ACPR, With DPD ¢

Kool Xoooo % R Folx %
§ X . LR X
70 ‘ | ‘ ‘
16 18 20 24 26 28

22
Ouput Level (dBm)

Figure 7.15 Adjacent channel power ratios of the output spectrum with and without DPD.
First adjacent channel (solid lines) and second adjacent channel (dotted lines).
Realistic transmitter TUT-2.

-25 T T T T T

-30 - A §

,35,&77&—&‘"6" 4

40+ §

—4— w/o DPD
—A—with DPD

NMSE (dB)

45 |

-50 F

6 18 20 24 26 28

22
Ouput Level (dBm)

Figure 7.16 NMSE of the output signal without DPD (dashed line) and with DPD (solid
line). Realistic transmitter TUT-2.

32 coeflicients that were estimated following the conventional LS algorithm. For the PA
delivering P, = 426 dBm, the attained ACPR; shown with filled circles in figure 7.18 a)
has improved from —38.6 dB without DPD (see figure 7.15) to —55 dB. This value is very
similar to that obtained with the present proposal, represented again here for comparison
(triangles). These results indicate a good optimization of the performance at the operational
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Figure 7.17 Normalized spectral density of the linearized output for power levels ranging
from +17.8 dBm to +26.6 dBm. As a reference, the trace of the output
spectrum without DPD is also shown. Realistic transmitter TUT-2.

point where both models were estimated (filled marks). In terms of model-order reduction,
notice that the CVS DPD needs 14 coefficients, which compares favourably with the
32 coeflicients necessary for a similar performance of the ACC DPD. When the ACC
DPD is extended to other drive levels, its ACPR, deteriorates despite the PA is entering
into a weakly nonlinear regime. On the contrary, the ACPR, of the CVS DPD shows a
progressive reduction with a maximum improvement of about 9 dB with respect to the
ACC DPD, demonstrating a better adaptability to output power variations. The NMSE
results plotted in figure 7.18 b) repeat the performance deterioration of the ACC DPD and
the adaptability of the CVS DPD under power level variations.

The ACPR, and NMSE behavior displayed in the figure is an example of overfitting
in the case of the ACC DPD. The local character of the optimization is originated by
the a priori assumption of the DPD structure. Therefore, the values estimated by the
LS algorithm for the unneeded coefficients are ‘coupled’ to the indispensable ones and a
variation of operational conditions disturbs the well functioning of the DPD at P, = +26
dBm. The flexible performance exhibited by the CVS DPD is understood recalling that the
method presented here relies on a complete set of non-orthogonal regressors, and on the
OMP, a recursive algorithm to compute representations of the system output with respect
to these non-orthogonal regressors. After a selection of the coefficients that surpass a
given threshold, the resultant CVS DPD structure retains only the indispensable regressors.
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8 Conclusions and future work

8.1 Conclusions

In this section we summarize the principal results that were reached along these last years
of research in the nonlinear mitigation of current wireless communications systems, being
the main contributions of this Thesis.

First, chapter 3 addresses the doubly symmetric Parafac decomposition of Volterra
kernels. Two novel DPDs that take advantage of block processing and a frequency domain
representation to operate under a reduced complexity have been shown. Starting with a
general VP structure, a block-oriented version of the CLMS adaptive algorithm in the
frequency domain has been derived for this model to proceed with parameter identification,
yielding a DPD that we have referred to as the B-VP. This structure has been modified to
make it specially suitable for OFDM signals, taking advantage of the natural representation
of M-QAM symbols in the frequency domain in an OFDM signal. In this case, a significant
part of the OFDM modulator can be embedded into the DPD architecture, which has
been denoted as FD-VP. While the B-VP DPD is intended to operate with time-domain
to time-domain input and output waveform block samples, the FD-VP delivers time-
domain output block samples from frequency-domain input symbols, with a block length
corresponding to the number of subcarriers of the OFDM signal. Expressions for the
running complexity of both approaches have been derived, allowing an analysis of the
impact of the model parameters (e.g, order, rank and block length) in the complexity. Both
DPD approaches have been tested experimentally with a commercial PA, and compared
with a high-performance time-domain DPD. The PA was driven with a 15-MHz LTE-
downlink signal operating in a working condition that violates the limit of unwanted
emissions for the LTE standard when no predistorsion is implemented. Measurement
results show that the linearization metrics obtained with the proposed methods are as
good as those of the reference DPD, both in terms of spectral regrowth reduction and
in-band linearization. Additionally, this performance is accomplished with a significantly
lower running complexity, what makes the proposed methods suitable for a real-time
implementation.
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Next, in chapter 4, a formal deduction of a Volterra model for complex-valued non-
linear systems has been analyzed. It has also been demonstrated that the input-output
relationships derived ad-hoc for several communication systems —a power amplifier, a
beamformer, an I/Q modulator— are particular cases of the CVS model. To manage the
increment of the parameters, the kernel sparsity in this approach has been exploited and the
structure complexity with the proposed WNL-CS model has been reduced. Through exper-
imental validation, it has been also shown that this model is able to accurately represent a
diverse range of distortion sources in communication subsystems, including impairments
at the I/Q modulator combined with the nonlinear distortion associated to PAs. Although
conventional behavioral models are accurate for the description of nonlinearities in PAs,
they show a degraded performance when the input signal is impaired by a quadrature
modulator. On the contrary, the richness of its regressors makes the proposed model a
robust representation of a general transmitter-receiver architecture.

In chapter 5, an improved method for the sparse recovery of Volterra series models has
been presented. It adds structural information of the PA model in the selection process
to achieve a reduction in the optimum number of coefficients while maintaining the
fidelity. The benefits of the introduction of the span parameter has been experimentally
demonstrated. This method is susceptible to be applied to any kind of Volterra series
behavioral model. Predistortion with models given by the algorithm have been performed
showing a high reduction of the complexity of the model with the same level of performance
that the ones given by the complete model before pruning.

Finally, in chapter 6, a reliable procedure to identify the model coefficients of a power-
scalable DPD for the joint compensation of wireless communications transmitters has been
reported. It has been applied to a DPD based on the CVS model and has been approvingly
compared with other recent DPD proposals that have been advanced to overcome the
limitations of conventional models under the presence of I/Q modulator impairments.
The proposed DPD design uses a regressor search algorithm and a threshold to limit
the number of parameters, allowing a significant reduction guaranteed by discarding
negligible coefficients. Several causes are behind the model-order reduction: irrelevant
kernel types, truncated nonlinear order, truncated memory depth, sparse memory delays,
etc. The coefficients were identified at a power level where the PA is near saturation, and
the invariance of the denormalized kernels in the measured dynamic range was exploited
to estimate the values at other operating conditions without the need of interpolation or
a new series of measurements. Tailoring of the number of parameters at other levels is
performed with a simple rejection of regressors with normalized coefficients below the
predetermined threshold. In consequence, the number of coefficients is further reduced
as the transmitter enters into the less nonlinear operating range. In terms of model-order
reduction and precision, a better performance with respect to other alternative approaches
has been demonstrated in a wide range of measured power levels below the DPD upper
operating point.
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8.2 Future Work

The work presented in this Thesis provides solutions to some of the practical problems
in PA and transmitter modeling and linearization under sparsity hypothesis and can be
extended in any of the following ways.

The use of iterative signal processing techniques for the sparse regression of Volterra
models has a natural continuity with the use of machine learning and deep learning tech-
niques. Although it has been proved that compressive-sensing techniques allow to recover
a sparse regression that works with the same level of performance than those attained by
the LS regression, the use of artificial intelligence techniques as those afore-mentioned
are promising in this field. The adaptation of multi-layered recognition algorithms to the
unsupervised recovering of DPDs is an interesting field still to be discovered.
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