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Glomus cells are the major O2 -responsive elements in the

carotid body. These are excitable neurosecretory cells that

release transmitters in response to hypoxia to activate

afferent sensory nerve fibres conveying the information to

the respiratory centre (for recent review, see López-Barneo

et al. 2001). It has been demonstrated that glomus cells

sense O2 tension (PJ) through regulation of membrane

ion channels and several types of K+ channels whose

activity is inhibited by low PJ have been described (López-

Barneo et al. 1988; Delpiano & Hescheler, 1989; Peers,

1990; Stea & Nurse, 1991; Buckler, 1997). Reduction of K+

conductance by hypoxia causes cell depolarization and an

increase of action potential firing frequency (López-López

et al. 1989; Buckler & Vaughan-Jones, 1994; Wyatt &

Peers, 1995; Montoro et al. 1996; Pérez-García et al. 2000),

leading to extracellular Ca2+ influx through plasmalemmal

voltage-gated channels (López-Barneo et al. 1993; Buckler

& Vaughan-Jones, 1994; Ureña et al. 1994). Quantal

catecholamine release induced by hypoxia in single glomus

cells is absolutely dependent on extracellular Ca2+ influx

(Ureña et al. 1994; Carpenter et al. 2000) and is mimicked

by some K+-channel blockers (Pardal et al. 2000).

Despite the progress in the understanding of glomus cell

electrophysiology and responsiveness to hypoxia, the

molecular nature of the O2 sensor remains unknown.

Because modulation of some K+ channels by PJ is

maintained in excised patches (Ganfornina & López-Barneo,

1991; Riesco-Fagundo et al. 2001) it was postulated that O2

sensing in glomus cells depends on membrane-delimited

mechanisms (see López-Barneo, 1994; Lewis et al. 2002).

On the other hand, several investigators have traditionally

considered mitochondria as the site for glomus cell O2

sensing because, similarly to hypoxia, inhibitors of the

electron transport chain (ETC) or mitochondrial uncouplers

increase the afferent activity of the sinus nerve (see, for

instance, Mills & Jöbsis, 1972; Mulligan et al. 1981). It has

also been reported that cyanide and anoxia release Ca2+

from mitochondria in isolated rabbit glomus cells (Biscoe

& Duchen, 1990; Duchen & Biscoe, 1992) and that mito-

chondrial uncouplers raise cytosolic Ca2+ and reduce

background K+ permeability in rat carotid body cells

(Buckler & Vaughan-Jones, 1998). Besides in the carotid

body, mitochondria have also been postulated to participate

in O2 sensing in other acutely responding systems, such as

pulmonary vascular smooth muscle (Archer et al. 1993;

Leach et al. 2001; Waypa et al. 2001) or chromaffin cells

(Mojet et al. 1997; Inoue et al. 2002).

A major limitation for the study of the carotid body O2

sensors is the difficulty in obtaining a preparation with

reproducible sensitivity to hypoxia, as this is easily altered
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by dispersion of the cells (see López-Barneo et al. 1998).

We have recently developed the carotid body thin slice

preparation in which the response of glomus cells to

low PJ can be studied in almost optimal physiological

conditions (Pardal et al. 2000; Pardal & López-Barneo,

2002). Taking advantage of this technique we designed the

present research to investigate whether sensitivity of intact

glomus cells to hypoxia is altered by mitochondrial

dysfunction. We report here that, as occurs with hypoxia,

mitochondrial ETC inhibitors evoke an extracellular

Ca2+-dependent secretory response from glomus cells.

Sensitivity to lowering PJ is not altered by blockade of

mitochondrial electron flow, however responsiveness to

hypoxia is selectively abolished by rotenone and 1-methyl-

4-phenylpyridinium ion (MPP+). Thus the data suggest

that a rotenone (and MPP+)-binding protein is part of the

O2 sensor. A preliminary account of part of this work has

previously been published (Pardal & López-Barneo, 2000).

METHODS 
Preparation of carotid body thin slices
Wistar rats of ages between postnatal days 10 and 30 were deeply
anaesthetized by injection of 100 mg kg_1 pentobarbital. Carotid
bodies were dissected and placed on ice-cooled and O2-saturated
modified Tyrode solution (mM: 148 NaCl, 2 KCl, 3 MgCl2,
10 Hepes, 10 glucose, pH 7.4). Slices were taken after inclusion of
the carotid bodies in agarose as described in Pardal et al. (2000).
Slices 150 mm thick were placed on 35 mm Petri dishes with
culture medium and maintained at 37 °C in a 5 % CO2 incubator
for 24–96 h before use. All experiments were performed according
to the institutional animal care committee guidelines.

Experimental setup and measurement of secretion from
single cells
For the experiments, a slice was transferred to the chamber
(~0.2 ml volume) placed on the stage of an upright microscope
(Axioscope, Zeiss, Göttingen, Germany) and continuously perfused
by gravity (flow 1–2 ml min_1) with a solution containing (mM):
117 NaCl, 4.5 KCl, 23 NaHCO3, 1 MgCl2, 2.5 CaCl2, 5 glucose
and 5 sucrose. The ‘normoxic’ solution was bubbled with a gas
mixture of 5 % CO2, 20 % O2 and 75 % N2 (PJ ∆ 150 mmHg). The
‘hypoxic’ solution was bubbled with 5 % CO2 and 95 % N2 to reach
a PJ in the chamber of ~20 mmHg. To attain lower PJ values in
the chamber, the use of oxygen scavengers is required. As these
agents interfere with the amperometric measurements they were
not used in our study. Equilibration of solutions in the chamber,
determined with an O2 electrode, required ~40 s. In the high K+

solutions, KCl replaced NaCl equimolarly. When external solution
with 5 mM sodium succinate or methylsuccinate was used, the
required amount of NaCl was removed. The pharmacological
agents used were dissolved in distilled water, DMSO or ethanol as
required. From these stock solutions they were added to the
external solution at the desired concentration. At the concentrations
used (lower than 1/1000 dilution), the vehicles (DMSO or
ethanol) did not have any effect on glomus cell catecholamine
secretion. Osmolality of solutions was ~300 mosmol kg_1 and pH
was 7.4. All the experiments were carried out at a temperature in
the chamber of ~36 °C. Secretory events were recorded with a
10 mm carbon-fibre electrode positioned near a cell under visual

control (Ureña et al. 1994; Pardal et al. 2000). Amperometric
currents were recorded with an EPC-8 patch-clamp amplifier
(HEKA Electronics, Lambrecht/Pfaltz, Germany), filtered at
100 Hz and digitized at 250 Hz before storage on computer. Data
acquisition and analysis were done with an ITC-16 interface
(Instrutech Corporation, NY, USA) and PULSE/PULSEFIT
software (HEKA Electronics). Samples were statistically compared
with a Student’s t test and their differences were considered to be
significant if P < 0.05. Unless otherwise noted, the data are
expressed as means ± S.E.M.

RESULTS
Electron transport chain inhibitors induce external
Ca2+-dependent secretion from glomus cells
The secretory response to hypoxia (PJ∆ 20 mmHg) of

glomus cells in carotid body slices is shown in Fig. 1A. As

described before (Pardal et al. 2000; Pardal & López-

Barneo, 2002), low PJ induced spike-like quantal events

corresponding to catecholamine release from individual

vesicles. The cumulative secretion signal (lower trace in

Fig. 1A) is a value of electric charge obtained by the sum of

the time integral of successive amperometric events, which

is proportional to the number of catecholamine molecules

oxidized. To estimate the magnitude of the cell secretory

responses to hypoxia or any other stimulus, we used the

secretion rate (femtocoulombs (fC) min_1) calculated as

the amount of charge transferred to the recording electrode

during the 60 s after the solutions were equilibrated in the

recording chamber. In our initial set of experiments we

investigated if, as occurs with hypoxia, blockade of

mitochondrial ETC also induced secretion from glomus

cells. We studied the effect of inhibition at complex I with

rotenone, at complex II with thenoyltrifluoroacetone

(TTFA), at complex III with myxothiazol or antimycin A

(respectively proximal and distal inhibitors of this

complex) and at complex IV with cyanide. These agents

were used in a broad range of concentrations, however as

our experimental protocol required the application of

saturating concentrations of the drugs, the lowest

concentrations used were at least 5 to 10 times the reported

K50 values (see Degli Esposti, 1998; Vaux et al. 2001). All

the ETC inhibitors induced an exocytotic response from

glomus cells in 1–3 min (Fig. 1B–F; see also Fig. 3). The

difference in the secretagogue potency of applied ETC

inhibitors was not very marked as they were used at

concentrations above saturation. The fact that mito-

chondrial inhibition did not induce rapid cellular

degranulation and preserved the responses to hypoxia or

high potassium, indicates that ETC inhibitors did not

produce major non-specific pharmacological alterations

of the cells. The mean areas of individual quantal events

(in fC, mean ± S.D.) triggered by the ETC inhibitors

(rotenone: 40 ± 18, n = 245 spikes in 5 cells; myxothiazol:

42 ± 30, n = 102 spikes in 7 cells; antimycin A: 40 ± 22,

n = 132 spikes in 5 cells; cyanide: 48 ± 33, n = 116 spikes in

P. Ortega-Sáenz and others790 J Physiol 548.3
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7 cells) were not significantly different (P > 0.1) from the

average values estimated with events evoked by hypoxia

(43 ± 26, n = 576 spikes in 14 cells). Therefore, hypoxia

and the ETC inhibitors appeared to induce the release of a

common type of catecholaminergic vesicle. Secretion evoked

by all the ETC inhibitors was completely abolished by

blockade of membrane Ca2+ channels with Cd2+ (Fig. 1B–F).

Only the secretory response induced by concentrations of

cyanide in the millimolar range was partially maintained in

the presence of 0.3 mM extracellular Cd2+, thus suggesting

Ca2+ release from intracellular stores. These data indicate

that, as described in cells exposed to hypoxia (Ureña et al.
1994; Pardal et al. 2000; Carpenter et al. 2000), activation

of carotid body glomus cells by mitochondrial ETC

inhibitors largely depends on extracellular Ca2+ influx

through channels of the plasma membrane.

Responsiveness of glomus cells to hypoxia is
occluded by rotenone but unaffected by other
electron transport chain inhibitors
The interaction between hypoxia and the mitochondrial

electron flow was studied in cells exposed to low PJ before

and during application of ETC inhibitors acting at either

proximal or distal mitochondrial complexes. The rationale

behind these experiments was that if hypoxia exerts its

effect through alteration of the mitochondrial electron

flow, preincubation with saturating concentrations of

Rotenone blocks responsiveness to acute hypoxiaJ Physiol 548.3 791

Figure 1. Secretory responses of glomus cells to hypoxia and to the inhibition of the
mitochondrial electron transport
A, top, amperometric signal showing catecholamine release from a glomus cell exposed to low PJ
(∆ 20 mmHg). Each spike represents an exocytotic event; bottom, cumulative secretion signal (in
femtocoulombs, fC) resulting from the time integral of the amperometric recording. B–F, catecholamine
release induced by exposure to several electron transport inhibitors. The concentrations were: rotenone
(5 mM), TTFA (0.3 mM), myxothiazol (1 mg ml_1), antimycin A (1 mg ml_1) and cyanide (100 mM). In all cases
secretion was reversibly abolished by external application of 0.3 mM Cd2+.
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Figure 2. Secretory responses of glomus cells exposed concomitantly to hypoxia
(PJ ∆ 20 mmHg) and to blockade of mitochondrial electron transport
A–E, left panels, amperometric recordings. The concentration of drugs used in each experiment was: cyanide
(A, 100 mM), antimycin A (B, 1 mg ml_1), myxothiazol (C, 1 mg ml_1), TTFA (D, 0.1 mM) and rotenone
(E, 5 mM). A–E, right panels, cumulative secretion signals before, during and after exposure to hypoxia in the
presence of the ETC inhibitors. The exposures to hypoxia are marked with an asterisk in the left panels. The
straight lines represent the slopes (secretion rates) of the cumulative secretion signals immediately before
exposure to hypoxia.
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ETC blockers would prevent any further effect of low PJ.

In contrast, the effects of hypoxia and ETC inhibition

would be additive, at least partially, if they were acting

through separate pathways. Fig. 2A–D illustrates that when

O2-responsive cells were treated with cyanide, antimycin A,

myxothiazol or TTFA, the concomitant exposure to low PJ
elicited further increase in the secretory activity. In each case

the amperometric recordings are shown on the left panel of

the figure. The right panels show on an expanded time

base, the cumulative secretion signals recorded during

exposures to hypoxia (marked with an asterisk in the left

panels) in the presence of the different ETC inhibitors.

The rates of secretion immediately before hypoxia are

illustrated diagrammatically by the slopes of the cumulative

secretion signals (straight lines). The amperometric

recordings show that responsiveness to hypoxia was

preserved in cells treated with ETC inhibitors, even when a

marked exocytotic activity was maintained after removal

of the drugs. Similarly, the cumulative secretion traces

clearly illustrate that in the presence of ETC inhibitors,

hypoxia induced a reversible increase in the slope of the

signals. An exception among the mitochondrial inhibitors

tested in this set of experiments was rotenone, a flavo-

protein inhibitor that blocks mitochondrial complex I.

Figure 2E shows that, like other ETC inhibitors, rotenone

elicited secretion from the cells; however, previous

exposure to rotenone abolished any further increase of

secretion by hypoxia. Therefore, rotenone occluded the

response to hypoxia without mimicking it. In some cases,

as in the example of Fig. 2E, the application of hypoxia in

the presence of rotenone even reduced the secretory

activity of the cells. In cells treated with rotenone the

secretory response to depolarization with high potassium

was unaltered (Fig. 2E).

Average secretion rates measured in several cells exposed

to hypoxia and the ETC inhibitors are given in the

summary plot of Fig. 3. Inhibition at various sites along the

ETC with saturating concentrations of mitochondrial

inhibitors induced a secretory activity in glomus cells of

a magnitude comparable to that evoked by low PJ
(~20 mmHg). With the exception of rotenone, the effects

of hypoxia and ETC inhibitors were additive, thus

suggesting that they might act through separate signalling

pathways. Selective occlusion of hypoxia sensitivity by

rotenone was observed in all the cells studied (n = 28) with

concentrations of the drug between 0.1 and 5 mM. The

lowest concentration used in these experiments (0.1 mM)

can produce full blockade of complex I (Degli Esposti,

1998; Vaux et al. 2001) or saturation of rotenone-binding

sites (Higgins & Greenamyre, 1996).

Rotenone-induced secretion and sensitivity of
glomus cells to hypoxia
The effects of rotenone on the sensitivity to hypoxia in

glomus cells were analysed in greater detail following the

same experimental protocol as in Fig. 2E but using lower

concentrations of the drug. Figure 4A–C illustrates that the

potency of rotenone to evoke secretion decreased

progressively at concentrations below 100 nM. Rotenone is

a poorly reversible drug and washout from the cells was

Rotenone blocks responsiveness to acute hypoxiaJ Physiol 548.3 793

Figure 3. Average secretion rate measured in cells in various experimental conditions
Secretion rate on the ordinate is expressed in fC min_1 (mean ± S.E.M.). Experimental conditions from left to
right in the figure: control (cont; PJ ∆ 150 mmHg; 75 ± 15 fC min_1; n = 17 cells) and hypoxia
(PJ ∆ 20 mmHg; 1710 ± 65 fC min_1; n = 17 cells); cyanide (CN; 100 mM; 1771 ± 842 fC min_1; n = 4 cells)
and cyanide plus hypoxia (CN + hyp; 3932 ± 1339 fC min_1; n = 4 cells); antimycin A (ant A; 0.1–1 mg ml_1;
1910 ± 151 fC min_1; n = 13 cells) and antimycin A plus hypoxia (ant + hyp; 4201 ± 421 fC min_1; n = 7
cells); myxothiazol (myxo; 0.1–1 mg ml_1; 2167 ± 199 fC min_1; n = 6 cells) and myxothiazol plus hypoxia
(myxo + hyp; 3188 ± 240 fC min_1; n = 6 cells); TTFA (0.1–0.3 mM; 2093 ± 488 fC min_1; n = 5 cells)
andTTFA plus hypoxia (TTFA + hyp; 4134 ± 587 fC min_1; n = 5 cells); rotenone (rot; 0.1–5 mM;
2058 ± 550 fC min_1; n = 14 cells) and rotenone plus hypoxia (rot + hyp; 1915 ± 552 fC min_1; n = 12 cells).
Asterisks indicate a statistically significant difference (P < 0.05) between each pair of samples.



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

very slow in most experiments. The decrease of rotenone-

evoked secretion was inversely related with its efficacy in

occluding the responsiveness to hypoxia. This changed

from full blockade of the cellular response to hypoxia at

100 nM (Fig. 4A) to lack of effect when the concentration

of rotenone was reduced to 20 nM (Fig. 4C). With inter-

mediate concentrations of rotenone (50 nM), blockade of

responsiveness to hypoxia was only partial (Fig. 4B).

Another observation suggesting a relationship between

rotenone and hypoxia sensitivity was that cells insensitive

to hypoxia were either unaffected or showed a minor

response to rotenone (at concentrations between 0.1 and

5 mM; n = 8 cells), although they were healthy since they

responded with a powerful burst of secretion to high [K+]

(Fig. 5A). In contrast, O2- and rotenone-insensitive cells

appeared to respond normally to myxothiazol, antimycin A

or cyanide (Fig. 5B). It has been noticed before that glomus

cells, either dispersed or in slices, can lose hypoxia

responsiveness while maintaining normal ionic currents

and secretory responses to other agents (López-Barneo et
al. 1998; Pardal et al. 2000; see Discussion).

To further investigate the relationships between hypoxia,

occlusion of hypoxia responsiveness by rotenone and

mitochondrial electron flow we tested to see if the effect of

rotenone was prevented by the presence of succinate

(5 mM), a substrate for complex II (see Leach et al. 2001).

Similar experiments were also performed with methyl-

succinate, a derivative with higher membrane permeability

than succinate. Figure 6A shows that in O2-responsive cells,

succinate did not prevent the abolition of responsiveness to

hypoxia by rotenone (n = 3 cells). Similarly, in the presence

of methylsuccinate both sensitivity to hypoxia (n = 7 cells,

Fig. 6B) and its occlusion by rotenone (n = 6 cells, Fig. 6C)

were observed. The amperometric trace in Fig. 6C (left)

P. Ortega-Sáenz and others794 J Physiol 548.3

Figure 4. Dose-dependent occlusion of the responsiveness to hypoxia by rotenone
A–C, left panels, amperometric recordings illustrating the decrease in the potency of rotenone in blocking
sensitivity to hypoxia as the concentration of the drug decreases from 100 to 20 nM. A–C, right panels, average
secretion rates in the various experimental conditions were: A, rotenone 100 nM; 2300 ± 484 fC min_1;
rotenone plus hypoxia, 2491 ± 566 fC min_1; n = 5 cells. P = 0.8. B, rotenone 50 nM; 264 ± 54 fC min_1;
rotenone plus hypoxia, 772 ± 179 fC min_1; n = 3 cells. P = 0.05. C, rotenone 20 nM; 111 ± 50 fC min_1;
rotenone plus hypoxia, 2130 ± 462 fC min_1; n = 3 cells. P < 0.05. Statistically significant difference (P < 0.05)
indicated by an asterisk.
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illustrates a full representative experiment in a cell with a

clear response to hypoxia that was maintained in the

presence of methylsuccinate but abolished by the addition

of rotenone. The cumulative secretion signal is shown in

the figure to facilitate its comparison with the results

presented in Fig. 2. Therefore, occlusion of glomus cells’

responsiveness to hypoxia by rotenone is not prevented by

feeding electrons to the mitochondrial ETC through

complex II.

Effects of other complex I inhibitors
The action of rotenone appeared to depend on its

interaction with specific targets rather than on general

inhibition of electron flow in complex I because the effect

of this agent was not mimicked by myxothiazol (Figs 2 and

3), which also inhibits complex I (Degli Esposti, 1998). We

also tested the effects of three other complex I inhibitors:

diphenyleneiodonium (DPI), a flavoprotein inhibitor that

acts on a site at complex I separated from the rotenone

binding site; rhein, a competitive inhibitor of NADH; and

1-methyl-4-phenylpyridinium ion (MPP+), an agent that

binds to the same site as rotenone (Higgins & Greenamyre,

1996; Degli Esposti, 1998). DPI used in a broad range of

concentrations (0.2–5 mM, n = 5 cells) induced glomus cell

secretion but, as other ETC inhibitors, did not prevent

the stimulatory effect of hypoxia (Fig. 7A). A similar effect

was observed for rhein when used at intermediate

concentrations (10–25 mM, n = 7 cells; Fig. 7B). At higher

concentrations, rhein produced inhibition of spontaneous

and potassium-evoked secretion, thus suggesting that, as

shown before for DPI in patch-clamped glomus cells (see

Wyatt et al. 1994) this agent blocks extracellular Ca2+ entry

through membrane channels. Therefore, responsiveness to

hypoxia in the presence of fully saturating concentrations of

rhein could not be studied in detail. Sensitivity of glomus

cells to hypoxia was, however, occluded in the presence of

MPP+ (50– 150 mM, n = 7 cells).

DISCUSSION
The major observations in this study are: (1) inhibitors of

proximal and distal complexes of the mitochondrial ETC

elicit, as does hypoxia, a powerful external Ca2+-dependent

secretory response in intact rat carotid body glomus

cells; (2) cellular sensitivity to hypoxia is maintained after

blockade of the mitochondrial ETC; and (3) rotenone and

MPP+ selectively suppress responsiveness to hypoxia. These

findings strongly suggest that mitochondrial electron flow is

not directly involved in acute O2 sensing by glomus cells.

However, a rotenone (and MPP+)-inhibitable molecule

participates critically in this process.

The observations at the cellular level reported in this study

explain the well-known stimulatory action of mitochondrial

poisons on the carotid body chemoreceptors (Mills & Jöbsis,

1972; Mulligan et al. 1981). It had been reported before

that cyanide increases cytosolic [Ca2+] in rabbit glomus

cells due to release of the cation from mitochondria

(Biscoe & Duchen, 1990); our results indicate that at

moderate doses, cyanide-induced secretion is totally

dependent on extracellular Ca2+. Similar dependence of

external Ca2+ has been described for the effects of mito-

chondrial inhibitors on cytosolic [Ca2+] in rat glomus cells

(Buckler & Vaughan-Jones, 1998) or the secretory activity

in PC12 cells (Taylor et al. 2000). Taken together, these

results could indicate that mitochondria can signal the cell

membrane to regulate transmembrane Ca2+ influx. In

support of this idea it has been reported that metabolic

uncouplers reduce resting K+ permeability in rat glomus

cells (Buckler & Vaughan-Jones, 1998) and that large

concentrations of rotenone, antimycin A or DPI decrease

the amplitude of voltage-dependent K+ currents in

Rotenone blocks responsiveness to acute hypoxiaJ Physiol 548.3 795

Figure 5. Cells insensitive to hypoxia respond weakly to
rotenone
A, representative recording from a cell that did not respond to
hypoxia (PJ ∆ 20 mmHg) or rotenone (5 mM) but was stimulated
to secrete by membrane depolarization with 40 mM potassium.
B, top, representative recordings from another cell that did not
respond to either hypoxia (PJ ∆ 20 mmHg) or rotenone (5 mM)
but produced a potent burst of secretory activity by membrane
depolarization with 40 mM potassium. Bottom, in the same cell,
secretion was induced by exposure to cyanide (0.1 mM) and
antimycin A (1 mg ml_1).
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pulmonary arterial smooth muscle (Archer et al. 1993) and

the carotid body (Wyatt et al. 1994; our own unpublished

results) or model airway chemoreceptor (Searle et al. 2002)

cells. Mitochondrial signalling could depend on either the

production by these organelles of reactive oxygen species

that modify the redox state of membrane channels (Archer

et al. 1993; Chandel & Schumacker, 2000), or the level of

cytosolic ATP concentration (Inoue et al. 2002). However,

the effects of ETC inhibitors on membrane ionic

conductances must be interpreted cautiously since at the

concentrations used in most studies (several orders of

magnitude higher than that required to inhibit mito-

chondrial ETC) some of them may behave as non-specific

inhibitors of ion channels in glomus cells (Wyatt et al.
1994; our own unpublished results). An alternative

explanation for the secretory response induced by mito-

chondrial inhibition is the existence in resting glomus cells

of a maintained Ca2+ influx, which is normally counter-

balanced by Ca2+ uptake in mitochondria located adjacent

to the cell membrane. As described by Montero et al.
(2000) in chromaffin cells, inhibition of submembranous

mitochondria and the loss of their Ca2+-buffering capacity,

would then raise cytosolic Ca2+ levels and trigger catechol-

amine release.

P. Ortega-Sáenz and others796 J Physiol 548.3

Figure 6. Hypoxia and mitochondrial electron flow
A, occlusion of responsiveness to hypoxia (PJ ∆ 20 mmHg) by rotenone (0.1 mM) in the presence of 5 mM

sodium succinate in the external solution. Similar qualitative results were obtained in two other cells tested.
B, left, amperometric recording showing that methylsuccinate does not alter sensitivity to hypoxia; right,
average secretion rates (fC min_1) in cells (n = 7) exposed to 5 mM methylsuccinate (230 ± 115) and
methylsuccinate plus hypoxia (816 ± 229), P < 0.05. C, left, occlusion of responsiveness to hypoxia
(PJ ∆ 20 mmHg) by rotenone (1 mM) in the presence of 5 mM methylsuccinate in the external solution. The
vertical dotted lines in the lower panel indicate the resetting of the integrator used to calculate the cumulative
secretion signal; right, average secretion rates (fC min_1) in cells treated with 5 mM methylsuccinate
(230 ± 115, n = 7 cells); methylsuccinate plus rotenone (0.1 to 1 mM) (1400 ± 648, n = 6 cells) and
methylsuccinate plus rotenone plus hypoxia (1000 ± 309, n = 6). Statistical comparison between the two last
pair of samples, P = 0.47.
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Although hypoxia and mitochondrial ETC inhibitors induce

similar external Ca2+-dependent secretory responses from

glomus cells in carotid body slices, our results indicate that

activation of these cells by low PJ is not directly dependent

on mitochondrial electron flow. Mitochondria have been

classically postulated to participate in carotid body O2

sensing due to the similarity of the stimulatory effects of

hypoxia and mitochondrial poisoning (Mulligan et al.
1981). They have also been ascribed a role in acute O2

sensing in chromaffin cells (Mojet et al. 1997; Inoue et al.
2002) and pulmonary arterial smooth muscle (Archer et
al. 1993). Using this last preparation it has recently been

hypothesized that O2 tension regulates superoxide

production at the semiubiquinone site of mitochondrial

complex III and that an increase of radical production

during exposure to low PJ is the signal that mediates

the acute phase of hypoxic pulmonary vasoconstriction

(HPV) (Leach et al. 2001; Waypa et al. 2001). A major

argument in favour of this model is the differential effect of

blockers of the ETC acting upstream and downstream of

the semiubiquinone site. Antimycin A, a downstream

blocker that leaves complex III reduced, does not alter

HPV whereas this response is blocked by upstream ETC

inhibitors, such as rotenone and myxothyazol, that

maintain complex III permanently oxidized. In addition,

occlusion of HPV by rotenone is reversed by stimulation of

electron transport via complex II with succinate (Leach et

al. 2001). In contrast with these data, we observe in carotid

body cells that several blockers acting upstream of the

semiubiquinone site at complexes I (DPI, rhein and

myxothiazol), II (TTFA) and III (myxothiazol) are able to

trigger a powerful secretory response but they do not

prevent further increase of secretion by hypoxia.

Moreover, the occlusion of hypoxia responsiveness by

rotenone is unaltered after incubation of the cells with

succinate, which feeds electrons to the ETC through

complex II. The effect of rotenone is mimicked by MPP+, a

drug that binds to the same site as rotenone (Higgins &

Greenamyre, 1996). In parallel with the present study

focused on intact glomus cells in carotid body slices, we

have observed in preliminary experiments that at sub-

micromolar concentrations rotenone, but not antimycin A,

reduces the amplitude of the macroscopic K+ current and

blocks the inhibition of this same current by hypoxia.

Altogether, these observations strongly suggest that although

a rotenone-sensitive molecule appears to be necessary,

mitochondrial electron transport per se is not directly

involved in acute O2 sensing by carotid body glomus cells.

This conclusion, however, is compatible with the data

reported for pulmonary smooth muscle (Leach et al. 2001;

Waypa et al. 2001) as it is generally agreed that distinct cell

types may use different strategies to sense O2. For example,

knocking out the NADPH oxidase gene abolishes O2

sensitivity in neuroepithelial cells of the lung but leaves

Rotenone blocks responsiveness to acute hypoxiaJ Physiol 548.3 797

Figure 7. Responsiveness to hypoxia and
complex I inhibitors
A, left, response to hypoxia in a cell treated with DPI
(0.2 mM); right, increase in the secretory activity
(fC min_1) induced by DPI (0.2–5 mM; 918 ± 389; n = 5
cells; P < 0.05) and by DPI plus hypoxia (2195 ± 1259;
n = 5 cells). B, left, response to hypoxia in a cell treated
with rhein (25 mM); right, increase in secretory activity
(fC min_1) induced by rhein (10–25 mM; 228 ± 64; n = 5
cells) and by rhein plus hypoxia (957 ± 179; n = 5 cells;
P < 0.05). C, left, abolition of the responsiveness to
hypoxia by 1-methyl-4-phenylpyridinium ion (MPP+,
50 mM); right, secretory activity (fC min_1) induced by
MPP+ (50–150 mM; 831 ± 198; n = 7 cells) and by hypoxia
plus MPP+ (489 ± 150; n = 7 cells; P = 0.3). Statistically
significant difference (P < 0.05) indicated by an asterisk.
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unaltered the responses to hypoxia in pulmonary smooth

muscle or carotid body cells (for review and discussion, see

López-Barneo et al. 2001). In addition, sensitivity of

macroscopic outward currents to hypoxia in model airway

chemoreceptor cells is maintained in the presence of high

concentrations of rotenone and antimycin A (Searle et al.
2002). Cross et al. (1990), have reported the abolition of

the hypoxia-induced increase in carotid body sinus nerve

chemoreceptor discharge by DPI (that inhibits both

mitochondrial complex I and NADPH oxidase). These

results can, however, be explained by the non-specific

blocking effect of this agent on Ca2+ channels at the glomus

cell-afferent fibre synapse (Wyatt et al. 1994).

Besides the effects of rotenone and MPP+ on the fast

response of glomus cells to acute hypoxia described here,

there are several reports suggesting that rotenone-binding

proteins might be involved in chronic cellular responses to

low PJ. Erythropoietin gene induction by hypoxia, although

unaffected by downstream mitochondrial inhibitors like

azide or cyanide, is blocked by rotenone (Necas & Thorling,

1972; Goldberg et al. 1988; Pugh et al. 1991). Similarly,

activation and cell accumulation of hypoxia-inducible

factor 1 a in low PJ is prevented by rotenone (Chandel et
al. 1998; Semenza, 1999) and MPP+ (Agani et al. 2000).

These effects of rotenone are, however, unclear because

they are only observed at concentrations higher than that

required to inhibit oxygen consumption by the cells (Vaux

et al. 2001).

The nature and location of the rotenone (and MPP+)-

inhibitable molecule involved in glomus cell O2 sensing is

unknown. It could be a membrane K+ channel subunit

with a flavoprotein modified by rotenoids that changes

its conformation in response to lowering PJ. This

hypothesis, although speculative, is in accord with the

existence of cytosolic aggregates of pre-assembled complex I

proteins of unknown function (Schulte, 2001), which in

glomus cells could be associated with membrane ion

channels. However, we cannot discount a more elaborate

arrangement constituted by mitochondria with complex I

proteins regulated by changes of O2 tension in close

contact with membrane K+ channels. As described in other

systems (Kennedy et al. 1999; Montero et al. 2000),

peripheral mitochondria may form functional units with

membrane proteins to delimit submembraneous cytosolic

microdomains. These ideas are compatible with previous

observations describing the modulation of membrane K+

channels by O2 tension in excised membrane patches

(Ganfornina & López-Barneo, 1991; Riesco-Fagundo et al.
2001; Lewis et al. 2002) as these are known to contain

mitochondria and other intracellular organelles (Sather et
al. 1992; Rustenbeck et al. 1999). The existence of a

separate sensor that confers O2 sensitivity to the K+

channels helps to explain why in some conditions, in

which the sensor is possibly detached from the channels,

glomus cells lose the responsiveness to hypoxia while

maintaining normal electrophysiological properties (López-

Barneo et al. 1998). This scheme of glomus cell O2 sensing

could also account for the existence of O2-insensitive cells

with low responsiveness to rotenone. Detachment of

mitochondria from the cell membrane would render cells

O2-insensitive and make mitochondrial signalling to the

membrane more difficult. These cells would then require

complete blockade of the ETC (with cyanide or antimycin A)

to induce significant secretion.

In conclusion, we report that, as with hypoxia, mito-

chondrial inhibitors activate external Ca2+-dependent

catecholamine secretion from carotid body glomus cells.

However, our results indicate that mitochondrial electron

flow is not linked in a simple way to acute regulation of

glomus cell activity by changes of O2 tension. Hypoxia and

mitochondrial inhibitors, acting through separate pathways,

converge to raise cytosolic [Ca2+], which triggers secretion.

We have identified rotenone (and MPP+) as highly

selective and specific inhibitors of the responsiveness to

hypoxia. Therefore, these drugs and their derivatives could

be used as tools to pursue investigation of the molecular

characterization and location of the O2 sensing mechanism

in glomus cells.
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