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In the present Chapter, we consider two prototypical Klein-Gordon models: the integrable sine-
Gordon equation and the non-integrable φ4 model. We focus, in particular, on two of their proto-
typical solutions, namely the kink-like heteroclinic connections and the time-periodic, exponentially
localized in space breather waveforms. Two limits of the discrete variants of these models are con-
trasted: on the one side, the analytically tractable original continuum limit, and on the opposite end,
the highly discrete, so-called anti-continuum limit of vanishing coupling. Numerical computations
are used to bridge these two limits, as regards the existence, stability and dynamical properties
of the waves. Finally, a recent variant of this theme is presented in the form of PT -symmetric
Klein-Gordon field theories and a number of relevant results are touched upon.

I. INTRODUCTION

The sine-Gordon (sG) equation of the form

utt = uxx − sin(u) , (1)

with x, t, u = u(x, t) ∈ R, is a prototypical mathematical model with a wide range of applications [1, 2]; here, the
subscripts t, x denote partial derivatives with respect to time and space, respectively.
One such example is the dynamics of magnetic flux propagation in Josephson junction (JJ) transmission lines which

are a promising way of transmitting, storing and processing information. The behavior of such elements of magnetic
flux (often referred to as fluxons) can be accurately modeled by the propagation of kink-like, heteroclinic solutions of
the sine-Gordon equation. In fact, even mechanical analogs based on systems of pendula of such fluxon propagation
on a long Josephson junction, including adjustable torques on the pendula (from air jets emulating the current of
typical JJ experiments) also exist [3]. In fact, the connection of the sG equation and the JJ setting merits its own
overview which will be given in another Chapter of this Volume.
Another intriguing application of such a model lies in the problem of charge density waves (CDWs) [4, 5]. Such

CDWs originate from the fact that in several quasi-1d conducting materials, it is favorable under a certain temperature
to undergo a phase transition to a state in which the electron density develops small periodic distortions which are
followed by a modulation of the ion equilibrium positions. As a result, a CDW condensate is formed which can be
subsequently pinned by impurities or interchain coupling. In this setting too, the phase of the fluctuations of the
collective wavefunction of the condensate may encounter a periodic potential and kink type solutions may thus be
suitable to model the behavior of a CDW condensate.
These are only some among the many examples where the sine-Gordon continuum model has been used as a

prototypical system. On the other hand, a discrete variant of the model (DsG)

ün = ǫ∆2(un−1, un, un+1)− sin(un) , (2)

with un = un(t) ∈ R, n ∈ Z, and where ∆2 is the central difference operator, is of particular interest in its own
right; here ǫ is the coupling between adjacent sites and the subscript indexes the lattice sites. In that light, the
DsG has been originally proposed as a model for the dynamics of dislocations in crystal-lattices, under the form of
the celebrated Frenkel-Kontorova model [6]; see also the comprehensive book of [7] and its discussion of some of the
historic origins of the model. The prototypical realization of such a discrete system via an array of coupled torsion
pendula was originally proposed in the contributions of [8]; see also [9]. This insightful connection has provided a
simple playground for a wide variety of research studies that remains very active to this day exploring e.g. the role of
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(KG) utt = uxx − f(u) , x, t, u = u(x, t) ∈ R

discrete (KG) ün = ǫ∆2(un−1, un, un+1)− f(un) , un = u(t) ∈ R, n ∈ Z

(AC) limit ün = −f(un)

TABLE I: The (KG) equation in its continuum, discrete and anti-continuum form. In this Chapter, we consider the sG variant
where f(u) = sin(u) and the φ4 variant where f(u) = −2(u− u3).

external driving and damping (including in the stability of different types of breathing solutions of the model) [10],
or that of longer-range interactions and how they modify the nearest neighbor ones [11].
The sine-Gordon equation constitutes one of the integrable nonlinear partial differential equations through the

inverse scattering transform [12], which makes it a model of particular interest in mathematical physics. However,
it is also relevant to compare/contrast such a model with variants that are not integrable, i.e., their exact analytical
solution cannot be prescribed on the basis of suitable initial data in the general case. Perhaps one of the most
well-known Klein-Gordon examples of this form is the so-called φ4 model [13] of the form:

utt = uxx + 2(u− u3) . (3)

This model has been physically argued as being of relevance in describing domain walls in cosmological settings [14],
but also structural phase transitions, uniaxial ferroelectrics, or even simple polymeric chains; see, e.g., [15] and
references therein. At this continuum limit, one of the particularly intriguing features that were discovered early on
was the existence of a fractal structure [14] in the collisions between the fundamental nonlinear waves, once again,
a kink and an antikink in this model. Notice here the fundamental contrast of such a fractal structure with the
completely inoccuous collisions arising in the sine-Gordon integrable model, whereby the integrability and presence
of an infinite number of conservation laws dictates a completely elastic collision outcome (and a mere phase-shifting
of the kink or even breather solitons). This topic of the complex collisional outcomes in the context of the φ4 model
was initiated by the numerical investigations of Refs. [15, 16] and was later studied in [13, 14] and is still under active
investigation see, e.g., the careful recent mathematical analysis of the relevant mechanism provided in Refs. [17, 18].
It should be added here that a discrete variant of the φ4 model

ün = ǫ∆2(un−1, un, un+1) + 2(un − u3
n) , (4)

is also a model of both mathematical and physical interest. For instance, discrete double well models arise in various
physical settings such as electronic excitations in conducting polymers [19], structural phase transitions in ferroic
materials [20] i.e., on crystal lattices in ferroelectrics, ferromagnets, and ferroelastics.

Since this Chapter considers a variety of equations, we summarize them in Table 1.
Our aim in the present Chapter is to present a view of the principal solutions – kinks, breathers and solutions akin

to them – of two different Klein-Gordon (KG) equations: the one-dimensional sine-Gordon equation, f(u) = sin(u),
and its non-integrable counterpart, namely the φ4 model, f(u) = αu + βu3, from the complementary perspectives
of the continuum and the highly-discrete model, the so-called anti-continuum (AC) limit. As alluded to, our goal is
to outline how the analytically more tractable continuum version and (AC) limit allows insight into the respective
discrete version and how the different scenarios compare. In that light, in section 2, we explore the continuum and
discrete kinks, while in section 3, we focus on the continuum and discrete breathers, in both cases displaying a
collection of numerical and analytical results concerning existence and (spectral) stability. Finally, in section 4, we
present a fairly timely alternative variant of the models in the form of PT -symmetric Klein-Gordon field theories.
These are models, which in the spirit of the original proposal of C. Bender and his collaborators for Schrödinger
models [21, 22] (see also the review [23]) are invariant under the joint action of the symmetries of parity (P) and time
reversal (T ), potentially bearing in this way a real spectrum even for an “open” (i.e., bearing gain and loss) system.
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II. THE KINK CASE

A. The Continuum Limit and its Spectral Properties

We start our considerations from the original continuum limit Eq. (1). This limit possesses standing wave solutions
that satisfy the ODE of the form uxx − sin(u) = 0. This ODE has homogeneous steady states which are u = 0
mod(2π) and unstable ones which are u = π mod(2π). The heteroclinic connections that connect 0 with 2π are
typically referred to as kinks and their explicit functional form is given by

u(x) = 4 arctan(ex−x0). (5)

The presence of an undetermined constant x0 reveals the effective translational invariance of the model, according to
which the kink can be centered equivalently at any point x0 along the one-dimensional line. In accordance with the
well established theory of Noether, this invariance (with respect to translations) is tantamount to the existence of a
conservation law for the field theory (which in this case is the conservation of the linear momentum P = −

∫
utuxdx).

Another important conservation law among the infinitely many of the sG equation is the conservation of energy (which
corresponds to invariance under time shifts). In this context, the energy or Hamiltonian

H =

∫
1

2
u2
t +

1

2
u2
x + (1− cos(u)) dx, (6)

is a constant of motion. The D’Alembertian structure of the underlying linear differential operator leads to invariance
under the Lorentz transformations of the form:

x′ = γ(x− vt), t′ = γ(t− vx), (7)

where γ = 1/
√
1− v2. The equivalence of the wave operator in the original variables (x, t) vs. the new variables

(x′, t′) establishes that the transformation of any of the above standing kinks centered at x0 enables the formation of
a traveling variant of the same solution

u(x, t) = 4 arctan(eγ(x−x0−vt)), (8)

which propagates through the one dimensional line with speed v. Given the equivalence of this traveling kink of the
continuum problem (upon the transformation (7)) with the static kink, we will focus predominantly on the latter in
what follows.
One can linearize around static solutions of the sG to determine the fate of small perturbations to such solutions.

This can be achieved using the ansatz u(x, t) = u0(x) + ǫw(x, t), whereby w satisfies the linear PDE wtt = wxx −
cos(u0(x))w, which can be solved via separation of variables w(x, t) = eλtv(x), which leads to the eigenvalue problem

λ2v =
[
∂2
x − cos(u0)

]
v. (9)

This linearized equation yields the above professed stability of the u0 = 0 and instability of the u0 = π homogeneous
states, as the former leads to λ = ±i

√
1 + k2 where k is the wavenumber of a plane wave v(x) = eikx, while the latter

leads to λ = ±
√
1− k2. It is clear that the former state will bear a continuous spectrum along the imaginary axis of

the spectral plane (λr , λi) of the eigenvalues λ = λr + iλi, while the latter will feature a band of unstable eigenvalues
arising for wavenumbers |k| < 1.
Interestingly, the spectrum is explicitly available even in the case of the kink, as it leads to a Schrödinger problem

with a (special case of a) Rosen-Morse type potential which is well-known from quantum mechanics. The spectrum
features a pair of eigenmodes at λ = 0, which are directly associated with the translational invariance, since the
corresponding eigenfunction is v = u0,x = (1/

√
2)sech(x−x0) and arises directly from the differentiation of the steady

state equation u0,xx − sin(u0) = 0 (the derivative operator being the generator of the translation group). This mode
is the only localized mode of the point spectrum around the kink. The remainder of the spectrum consists of purely
continuous spectrum of non-decaying eigenfunctions whose explicit form is given by:

v(k) = eik(x−x0)
k + i tanh(x− x0)√

2π(k + i)
. (10)

The continuous spectrum of the linearization around the kink shares exactly the same eigenvalues λ = ±i
√
1 + k2 as

the ones of the spectrum around 0 or 2π i.e., the two homogeneous states that the kink heteroclinic orbit connects.
A typical example of the kink of the continuum sG equation and of its corresponding spectrum is shown in Fig. 1.
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FIG. 1: The left panel shows the profile u0 of the kink of the sG model as a function of x. The right panel shows the spectral
plane (λr, λi) of the linearization eigenvalues λ = λr + iλi; see the detailed discussion in the text.

In a sense, one may think of the spectrum of the kinks as consisting of two separate “ingredients”. On the one
hand, there is the point spectrum (which consists purely of the neutral mode at λ = 0) which pertains to the coherent
structure itself. On the other hand, there is the continuous spectrum which corresponds to the background on which
the waveform “lives”. The background for the kink is the 0 state on the left and the 2π on the right. For an anti-kink,
where the opposite sign exists in the exponent of the right hand side of Eq. (5) (and which connects 2π with 0), this
is reversed. We note that the parsing of the spectrum into localized and extended segments is of particular relevance
when considering e.g. the effect of collisions between kinks and anti-kinks and how these reflect the integrability of
the dynamics through the well-known notion of elasticity of soliton collisions [24].
Results for kinks and their spectrum in the case of the φ4 model are similar to the sG case. In particular, in the

case of Eq. (3), the kink assumes the well-known form of the heteroclinic solution to the Duffing oscillator

u0(x) = tanh(x − x0). (11)

Once again, the invariance with respect to translations, and associated conservation law are present (a general feature
of Klein-Gordon field theories of the form utt = uxx − V ′(u) for arbitrary field-dependent potentials V (u)). In this
case as well, the linearized problem can be written in the form of an eigenvalue problem,

λ2v =
[
∂2
x + 2(1− 3u2

0)
]
v. (12)

Here the homogeneous steady states are ±1 and 0, with the first two being stable with λ = ±i
√
4 + k2, while the

latter is unstable with λ = ±
√
2− k2.

The spectrum of the kink is also known in this case, although it is more complex than that of the sG problem. In
particular, the neutral mode with λ = 0 has an eigenfunction v(x) =

√
3/4sech2(x − x0). The continuous spectrum

pertains to the band λ = ±i
√
4 + k2 (again, similarly to the underlying homogeneous problem) with the eigenfunctions

v(k) = Nke
ikx
(
3 tanh2(x− x0)− 1− k2 − 3ik tanh(x− x0)

)
, (13)

where N−2
k = 4π(2(k2/2 + 1)2 + k2/2) [25]. However, the key difference of the spectrum of the φ4 kink from that of

the sG is the presence of a point spectrum mode, corresponding to a localized eigenfunction, in the gap between the
origin of the spectral plane and the continuous spectrum (see Fig. 2). This internal (often referred to also as shape)

mode of the kink has an eigenvalue λ = ±
√
3i and a corresponding eigenfunction,

v(x) =

√
3

2
tanh(x − x0)sech(x− x0). (14)

It is this localized “shape” mode that has been argued to be typically responsible for the very rich phenomenology
of collisions of φ4 kinks and anti-kinks as explored e.g. in [14–18], among other works.

B. Anti-Continuum Limit and its Spectral Properties

We now turn to the opposite end of the continuum limit to construct a complementary picture of the kink existence
and stability properties, so that we can connect the two in the next subsection. In particular, we focus now on Eqs. (2)
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FIG. 2: Same as Fig. 1, but now for the kink of the φ4 model. Notice on the right panel’s spectral plane the additional presence
of the point spectrum eigenvalue at λ = ±i

√
3.

and (4), which correspond to the discrete models. Here, one way to interpret ǫ (e.g. in applications such as coupled
torsion pendula) is that of the spring constant linearly connecting adjacent such pendula. A way of interpretation
closer to numerical analysis is that of adjacent nodes of a lattice, separated by a distance ∆x, such that ǫ = 1/∆x2.
This represents then a finite difference scheme for the spatial discretization of the corresponding continuum models
of Eqs. (1) and (3) and as such the continuum limit is approached when ∆x → 0 ⇒ ǫ → ∞.
However, what was pioneered by MacKay and Aubry about 20 years ago [26], was a technique that offered a

completely alternative viewpoint to the one approaching the continuum as above. In particular, they advocated using
the opposite limit, namely that of uncoupled oscillators at ǫ = 0. This was dubbed the anti-continuum (AC) limit.
There, our system consists of isolated oscillators of the form ün = − sin(un) for the sG and ün = 2(un − u3

n) for
φ4. The steady states now are solely 0 and π (mod(2π) as usual) and ±1 and 0 for the two models, respectively.
Hence one can think of ways to “initiate” a kink at this limit, which if ǫ starts becoming finite, upon continuation
(using a bifurcation theory analogy), the kink will start gradually picking more sites progressively of more nontrivial
ordinate. In this way, the kink will be progressively “fleshed out” (i.e., the spine of the heteroclinic connection will be
populated) and will start looking more like its continuum analog, which will be eventually traced as ǫ → ∞. This kind
of approach was used e.g. in [27] to construct a variety of kink and multi-kink solutions. Here, we will only explore
the example of states leading (as ǫ is increased) to the single kink, and persisting from the AC to the continuum limit.
Upon some toying with the relevant background states, one realizes that there are two prototypical possibilities for

creating such a kink. One of them concerns the so-called intersite-centered configuration, initiated at the AC limit
through a sequence (0, . . . , 0, 0, 2π, 2π, . . . , 2π) in the sG and similarly (−1, . . . ,−1,−1, 1, 1, . . . , 1) in the φ4. On the
other hand, there is the onsite-centered configuration, which incorporates a point of the unstable steady state in the
middle, namely (0, . . . , 0, 0, π, 2π, 2π, . . . , 2π) in the sG and similarly (−1, . . . ,−1,−1, 0, 1, 1, . . . , 1) in the φ4.
If we now examine such configurations in the AC limit, it will be straightforward to infer their stability since the

linearization operator under the discretization becomes an infinite dimensional matrix operator (or from a compu-
tational perspective it is restricted to a finite but large number of nodes domain). In this setting the linearization
Jacobian matrix will be tri-diagonal with the following diagonal and super/sub-diagonal elements:

Ji,i = −2ǫ− V ′(ui), Ji,i+1 = Ji,i−1 = ǫ. (15)

Here V ′(ui) = − cos((u0)i) for the sG and V ′(ui) = 2(1 − 3(u0)
2
i ) for the φ4. In the AC limit (ǫ = 0) the matrix

becomes diagonal and it is evident that the eigenvalues λ2 will be negative if the kink involves only the stable steady
states (0, 2π or ±1) and will have as many unstable eigenvalue pairs as many sites there are at the unstable fixed
points π for the sG and 0 for the φ4.
Now, the key question becomes what can we expect in terms of the kink stability as we depart from the AC

limit, i.e., for finite ǫ. To determine this, we resort to a well-known theorem for matrix eigenvalue problems, namely
Gerschgorin’s theorem [28]. In particular, if the order of the Jacobian matrix is N , the eigenvalues λ2 thereof belong
to the sets

Zi = {z ∈ C, |z − Ji,i| < ri, with ri =

N∑

j=1,j 6=i

|Ji,j |}. (16)

Applying this to our setting, we find that |λ2 + 2ǫ+ V ′(ui)| ≤ 2ǫ, which in turn implies

− V ′(ui)− 4ǫ ≤ λ2 ≤ −V ′(ui). (17)
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In the case of the stable fixed points (at 0, 2π or at ±1, respectively for the 2 models), this inequality properly outlines
the edges of the continuous spectrum. Hence, this indicates stability for N → ∞, at least for small ǫ of the inter-site
centered kink.
However a critical point is that it also establishes the instability of the site-centered kink that always bears one site

centered at π or 0 in the sG or, respectively, the φ4 case. For this eigenvalue, we have 1− 4ǫ ≤ λ2 ≤ 1 for sG, while
2 − 4ǫ ≤ λ2 ≤ 2. Hence, this approach guarantees the instability of the onsite-centered kink for ǫ ≤ 1/4 for the sG
problem and for ǫ ≤ 1/2 in the φ4 case.
We now turn to the merging of the two pictures in the subsection that follows.

C. Merging the two pictures

In the intermediate regime between the continuum limit of ∆x → 0 and ǫ → ∞ and the AC limit of ∆x → ∞ and
ǫ → 0, we anticipate the following. For the site centered kink, we expect that the unstable eigenvalue, while bounded
away from 0 along the real line, according to our above estimate, will start approaching the origin of the spectral plane
as the continuum limit is approached. While it is not guaranteed from our considerations herein that the eigenvalue
will have a monotonic behavior, we find that indeed it does, only arriving at the origin as the asymptotic limit of the
continuum regime is reached. The approach of this eigenvalue towards the spectral plane origin is shown in the left
panel of Fig. 3.
On the other hand, in a similar manner, for the stable inter-site centered kink, the approach towards the continuum

limit needs to involve an eigenvalue pair that approaches the origin as ∆x → 0 and the translational invariance is
restored. Since in this case all eigenvalues initially start at ±i (at ǫ → 0) what occurs is that an eigenvalue pair
bifurcates from the continuous spectrum and starts approaching the origin of the spectral plane. In this case too,
although not necessarily so, the approach to the origin is monotonic (and asymptotic) as ∆x is decreased. This case
is shown in the right panel of Fig. 3.
The eigenvalue associated to instability (resp. stability) of the site (resp. intersite) kinks is related to the trans-

lational invariance (TI) in the continuum limit. It is the breaking of the translational invariance once the system
becomes discrete that is “responsible” for the instability/stability of these two different kinks. The difference in the
energies associated to these two kinks is defined as the celebrated Peierls-Nabarro (PN) barrier, which is discussed at
considerable length in the physical literature [7] as the barrier needed to be overcome for a dislocation to move by a
lattice site.
One of the typical issues that arise in the calculation of the PN barrier is that it is not straightforward to perturb

off of the continuum limit in the direction of discreteness. This problem was bypassed in [29] by perturbing off of an
exceptional (translationally invariant) discretization of the sG model originally proposed by Speight and Ward in [30].
This was in the form:

ün = 2ǫ

(
sin(

un+1 − un

2
)− sin(

un − un−1

2
)

)
(18)

− 1

2

(
sin(

un+1 + un

2
) + sin(

un + un−1

2
)

)
.

The fact that this model is TI implies that it possesses kinks which can be located arbitrarily, as is in fact evidenced
by the exact solutions un = 4 arctan(ea(n−ξ)) where a = log((2 + ∆x)/(2 − ∆x)) and ξ is a free parameter. It also
suggests that the relevant TI eigenvalue pair is at λ2 = 0, yet because of its inherent discrete nature, the model
is amenable to being perturbed to be reshaped in the form of Eq. (3). Following this path, [29] predicted that the
relevant eigenvalue should be given by

λr ≈ ± 13.96

∆x1/2
e−

π
2

∆x , λi ≈ ±i
13.96

∆x1/2
e−

π
2

∆x . (19)

The first of these expressions applies to the real eigenvalue of the onsite-centered kink, while the second to the
imaginary one of the intersite-centered kink. Both are applicable when approaching the continuum limit. Yet, it was
recognized in [29] that while the functional form of the dependence should be suitable, the prefactor may sustain
additional contributions from higher order terms which should appear in the same order of eigenvalue dependence.
It is for this reason that the dashed lines describing this theoretical dependence of Eq. (19) capture the appropriate
functional dependence as the limit is approached, but clearly the prefactor is smaller than it should be.
Entirely similar features also arise for the φ4 case, which is thus not examined further here. Instead, we now turn

to the corresponding examination of the breather waveform.
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FIG. 3: The left panel shows the real eigenvalue pertaining to the breaking of TI for the onsite centered kink. The blue symbols
denote the numerical computation of this eigenvalue and the red dashed line provides the corresponding theoretical prediction
of Eq. (19). The right panel shows the imaginary eigenvalue similarly associated to the breaking of TI for the stable intersite
centered kink (the symbols/lines have the same designation as for the left panel).

III. THE BREATHER CASE

The other fundamental solution of the sG model is a state which is also exponentially localized in space (similarly
to the kink) but periodically varying in time. This is the so-called breather state whose exact profile is given by

u(x, t) = 4 arctan

(√
1− ω2

ω
sin(ω(t− t0))sech(

√
1− ω2(x − x0))

)
. (20)

Aside from translations with respect to space and time (discussed in the previous section), this solution has a free
parameter ω, associated with the frequency of its “breathing” satisfying 0 < ω < 1. Interestingly, the breather seems
like the result of the merger of a kink and an antikink, however although the energy of the kink and antikink is 8 such
that the sum of their energies is E = 16, the energy of their bound state, i.e. the breather, is always less than that
i.e., E = 16

√
1− ω2.

A. Continuum limit: Genuine breathers and modulating pulses

For the sG equation, which is an infinite dimensional completely integrable Hamiltonian system, breather solutions
can be obtained through its auto-Bäcklund transformation (BT). This procedure is, of course, limited to integrable
systems and does not help in the quest for breathers in general (KG) equations

utt = uxx − u+ f(u) , (21)

with x, t, u = u(x, t) ∈ R, and some nonlinearity f(u). To this end, various techniques have been employed and
developed during the past decades to elucidate the existence of breathers or solutions akin to it. Roughly speaking,
one can distinguish between three approaches. The first approach is the analysis via series expansion techniques
(see [31, 32]) and the study of perturbed sG equations (see [33–35]), whose findings indicated the non-persistence of
breather families and the continuation of breathers as solutions which lack the spatial localization property. Out of
these results emerged the more general second approach of constructing for (21) so-called modulating pulses, which
are moving breathers that are not necessarily spatially localized, but feature oscillating tails; see e.g. [36, 37]. Yet
a different, third approach exploits the wave packet structure of breathers. In their small-amplitude limit they can
be thought of as wave packets whose envelope is described by a Nonlinear Schrödinger (NLS) equation (see [38] for a
rigorous approximation result). While perturbation arguments in the first approach rely heavily on integrable systems
techniques and/or the explicit solution formula known for breathers, the second approach follows the realm of infinite
dimensional dynamical systems and inspires an extension of center manifold theory beyond the classical case. The
methodology of the third approach belongs to the theory of reduction to amplitude/modulation equations and plays
an important role far beyond the setting discussed here.
Before we review each approach in more detail, let us briefly summarize the sG-breather construction. As alluded to,

the sG equation admits an auto-Bäcklund transformation, which is, loosely speaking, a means of obtaining solutions
to the sG equation by a procedure that is in some sense easier than solving a PDE (i.e. it might involve solving ODEs
or algebraic equations). To be more precise, the BT maps “solutions to solutions”, i.e., it is a mapping B with

B(u1; a) = u2 , u1, u2 solutions of (sG)
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FIG. 4: Scheme of commutativity of the BT: B(B(u, a1), a2) = B(B(u, a2), a1)

where a is some parameter. One can, for instance, use the trivial solution as a seed to grow non-trivial solutions like
kinks or anti-kinks

B(0, 1) = 4 arctan(ex) , B(0,−1) = 4 arctan(e−x) . (22)

It is even possible to derive a surprisingly simple relation between four different solutions u, U, u1, u2 of the (sG)
equation by using the commutativity theorem schematically depicted in Figure 4 (cf., for instance, [39]).
Using this scheme, one can derive a formula for (a family of) standing breathers (see Figure 5)

u∗(x, t;ω) = 4 arctan

(
m

ω

sin(ωt)

cosh(mx)

)
, m2 + ω2 = 1 , (23)

with u = 0, u1/2 = arctan
(
emx±iωt

)
and U = u∗. Note that choosing ω = iω̃ ∈ iR turns u∗ into

u∗(x, t; iω̃) = 4 arctan

(
m

iω̃

sin(iω̃t)

cosh(mx)

)
= 4 arctan

(
m

ω̃

sinh(ω̃t)

cosh(mx)

)
, (24)

which describes a kink/anti-kink solution (see Figure 5). Iterating this procedure results in more complicated solutions
given by complexes of kinks and/or breathers.

−50

0

50 0

5

10

15

20

−1

−0.5

0

0.5

1

−50 0 50

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−50

0

50 −20

−10

0

10

20

−10

−5

0

5

10

−50 0 50

−6

−4

−2

0

2

4

6

FIG. 5: Top panel: Standing breather with ω = 0.99 in (23). Bottom panel: Kink/anti-kink interaction with ω = i0.99 in (24).

As alluded to, one can derive kink solutions by a completely different viewpoint, namely, by making a traveling
wave ansatz u(x, t) = y (x− ct) , 0 ≤ c < 1 , and examining the traveling wave ODE whose heteroclinics are given by
y(ξ) = 4 arctan(e±ξ) , ξ = γ(x − ct) , γ = (1 − c2)−1/2. For c = 0 we recover (22), while the traveling kink can be
viewed also as a consequence of the Lorentz transformation (7), as discussed above. Note, however, that breathers
(or, more generally, any multikink solution) cannot be obtained from the traveling wave ODE since they are not
stationary in any fixed co-moving frame. Hence, breathers can be viewed as genuinely infinite dimensional structures.
While the explicit expressions (23) or (24) rely heavily on PDE tools for integrable systems, the general non-integrable
case calls for different PDE techniques. Breather existence could, for instance, be explored via the construction of
small-amplitude wave packets, which can be approximately performed for a large class of Klein-Gordon equations
(21) via reduction to amplitude/modulation equations. Despite their widespread use, rigorous justifications of such
procedures are more sparse, with an early example being [38], where it was demonstrated that there are solutions u
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to the (sG) equation for which

sup
t∈[0,T0

ε2
]
||u(·, t)− ua(·, t)||Cr

b
≤ Cε3/2,

with 0 < ε ≪ 1 being a small perturbation parameter and where ua is a small-amplitude wave packet

ua(x, t) = εA(ε(x− ω′(k0)t), ε
2t) eik0x−iω(k0)t + c.c.+ h.o.t. , (25)

with ω(k) =
√
k2 + 1; the envelope A = A(X,T ) ∈ C is obtained by solving the Nonlinear Schrödinger (NLS) equation

2iω(k0)∂TA = (ω′(k0)
2 − 1)∂2

XA− 3|A|2A . (26)

This result is also valid for general KG equations of the form given in (21) since small-amplitude solutions do not
feel to leading order the exact structure of the nonlinearity. Note that, if we choose the NLS soliton as an envelope,
the wave packet ansatz ua resembles the traveling sG breather in the small-amplitude limit 0 < m = ε ≪ 1. Note
that, although the approximation result treats a large class of solutions – namely, those whose envelopes are given
by solutions of the NLS – of which the breather is just a special case, the limited time-validity of the construction
(namely, t ∈

[
0, T0

ε2

]
) does not give the optimal result (that is, global existence in time) in the breather case. Such an

improvement of the perturbation procedure has so far not been reported in the literature and would be a particularly
interesting direction for future work.
The analogy between breathers and general wave packets becomes even more remarkable when one considers

interaction. Using the BT, one can construct, for instance, a 2-breather describing the elastic collision of two
individual breathers. Such an interaction for small amplitude wave packets in the general KG setting (21) has
striking similarities to the breather interaction: to leading order, the shape of the wave packets remains unchanged
after collision, the only interaction effects being a shift of envelope and carrier waves (see [40] for KG with constant
coefficients and [41] for KG with spatially periodic coefficients). In the case of large amplitudes, however, the situation
is far more complex, as is attested also by the complexity of interactions of simpler structures such as kinks in
non-integrable KG models [13–18]. Since a large class of KG equations support (approximate) small-amplitude wave
packets which seem akin to the sG breather, it had been long speculated that exact breathers may exist for other
KG equations as well. This belief has been proven wrong in numerous case examples from several different viewpoints.

The work of [31] contrasted the sG setting with the φ4 model. By employing the Fourier representation

u(x, t) =
∑

n∈Z

ûn(x) e
inω∗t, (27)

for time-periodic solutions with some temporal frequency ω∗/2π, they derive an infinite-dimensional system of equa-
tions for the Fourier coefficients ûn and conclude that only the sG equation allows spatially localized solutions
ûn(x) → 0, x → ±∞, which in turn give rise to breathers, while the φ4 model only supports approximate breathers
that slowly radiate their energy to ±∞.
The work of [32] considered a more general KG setting with a force term f(u) in (21) and presented a detailed

convergence analysis of different breather series expansions relating the corresponding expansion coefficients to the
coefficients fn in f(u) =

∑∞
n=1 fn u

n. The main result singles out the cases f(u) = Cu,C sinh(au), C sin(au) which
are the only choices yielding analyticity of the solution, while (again) only f(u) = C sin(au) gives breathers. In the
early 90’s, the works of [33] and [34, 35] studied perturbed sG equations

utt − uxx + sin(u) = εP (u; ε) , 0 < ε ≪ 1 , (28)

and concluded that breathers can persist (in families) if and only if the perturbation is equivalent to a rescaling of
the sG equation. Consequently, the non-persistence results indicated that breathers perturb into solutions that are
similar in nature, but not localized. This intuition was confirmed in [36] (and later also in [37]) by using spatial
dynamics and a blend of invariant manifold, partial normal form and bifurcation theory for KG equations (21). They
study so-called modulating pulse solutions, that is,

u(x, t) = v(x − (1/cph)t;x−
(
cph + γ1ε

2
)
t) = v(ξ, y),

where v is periodic in y with period 2π/k0 for some k0 > 0. Note that the sG-breathers fall into this class with
the additional property of being localized in ξ, a feature that seems rather exceptional in the following way. The
infinite dimensional system for (v, vx) on the phase space χ = {(v, w) ∈ Hs+1

per × Hs
per}, s ≥ 0, (where now x is the
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dynamic variable, hence, the name spatial dynamics and Hs
per are L

2-based Sobolev spaces of periodic functions) has
a Hamiltonian structure whose linearization features infinitely many eigenvalues on the imaginary axis and exactly
two real eigenvalues λ1,2 = ±ερ. The leading order analysis of the full nonlinear system restricted to the subspace
associated with λ1,2 reveals a homoclinic which is, however, unlikely to persist for the full system. So, in general,
one expects that resonances related to the infinitely many eigenvalues on the imaginary axis generate oscillatory
tails, hence, preventing the existence of truly localized breathers for the full PDE. The special structure of the sG-
nonlinearity seems to remedy this spectral picture, allowing the homoclinic to persist. Nevertheless, other mechanisms
to avoid such resonances are possible in KG equations with e.g. periodic coefficients [42].

B. Spectral Properties of the Breather: From the Anti-Continuum to Finite Coupling

In a chain of N oscillators described by e.g. Eq. (2) or (4), discrete breathers in the AC limit consist of p (excited)
oscillators describing periodic orbits of frequency ω 6= ω0 and N − p oscillators at rest. Here, ω0 is the frequency of
the oscillations at the linear limit around the equilibrium position ũ, with ũ = 0 in the sine-Gordon and ũ = ±1 in
the φ4 case. Breathers with p > 1 are usually dubbed multibreathers; in the special case when p = N , they constitute
an anharmonic phonon and are also known as phonobreathers. The MacKay–Aubry theorem [26] establishes that if
nω 6= ω0 with n being an integer, a time-reversible breather or multibreather can be continued to a nonzero coupling
(i.e. ǫ 6= 0). The time-reversible multibreather can be expressed as a Fourier series:

un(t) =
∞∑

k=0

zk,n cos(kωt). (29)

In the case of the sine-Gordon equation, due to the spatial symmetry of the potential, all the even coefficients are
zero and the resonance condition mentioned above restricts to only odd multiples of ω.
Among all the localized multibreathers supported by the lattice, there are only two that can be continued up to

ǫ → ∞: (1) the single-site breather, i.e. the breather with p = 1 (also known as the site-centered breather or Sievers–
Takeno mode [43]), and (2) the two-site breather, i.e. multibreather with p = 2, whose excited sites are adjacent and
oscillate in phase, which is also dubbed as the bond-centered breather or Page mode [44].
Very recently, it was proven that non-time-reversible multibreathers cannot exist in Hamiltonian lattices if the num-

ber of neighbors of each oscillator is equal to two and the boundary conditions are not periodic [45]. This proof does
not forbid, however, the existence of non-time-reversible multibreathers in two-dimensional lattices where discrete vor-
tices or percolating clusters [46–49] have been found in the past. In addition, non-time-reversible multibreathers have
also been demonstrated in one-dimensional chains with periodic boundary conditions [50] or long-range interactions
[51].
In order to obtain periodic orbits of the lattice equations (2) or (4), a fixed-point method (such as the Newton-

Raphson method) can be implemented either in real or in Fourier space. In the real space case (see e.g. [48]), orbits
are found as roots of the map ({un(T )}, {u̇n(T )}) − ({un(0)}, {u̇n(0)}) with T = 2π/ω. The Jacobian of this map
is M− I where M is the monodromy matrix (see e.g. (33)) and I is the identity. Fourier space methods consist of
introducing the Galerkin truncation to index km of the Fourier series expansion (29) into the lattice equations so that
they can be cast as a set of algebraic equations of the form [50]:

− k2z2k,n = ǫ∆2zk,n −Fk,n, (30)

with Fk,n being the discrete cosine Fourier transform,

Fk,n =
1

N

km∑

n=−km

V ′




km∑

p=−km

zp,n cos

[
2πpn

N

]

 cos

[
2πkn

N

]
, (31)

with N = 2km +1 and V ′(u) = sin(u) for the sine-Gordon model and V ′(u) = u3 − u for the φ4 equation[74]. Fourier
space methods have the advantage of providing with an analytical expression for the Jacobian, whereas it must be
numerically generated by means of numerical integrators (as Runge-Kutta) in real space methods. On the contrary,
the dimension of the Jacobian in Fourier space [(km + 1)N, (km + 1)N ] is larger than in the real space (N,N) which
makes the inversion intractable for large lattices.
Spectral stability of periodic orbits can be determined by means of Floquet analysis. This consists firstly of

introducing a perturbation ξn to a given solution un,0 of the lattice equations (2), (4). Then, the equation for the
perturbation reads:
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ξ̈n = ǫ∆2ξn − V ′′(un,0)ξn, (32)

with V ′′(un) = cosun and V ′′(un) = 3u2
n−1 for, respectively, the sine-Gordon and φ4 models. The stability properties

are given by the spectrum of the Floquet operator M (whose matrix representation is called monodromy) defined as:
(

{ξn(T )}
{ξ̇n(T )}

)
= M

(
{ξn(0)}
{ξ̇n(0)}

)
. (33)

The 2N monodromy eigenvalues Λ = exp(iθ) are dubbed as Floquet multipliers and θ are denoted as Floquet

exponents. Due to the symplectic nature of the Floquet operator for our Hamiltonian systems of interest, if Λ is a
multiplier, so is Λ−1, and due to its real character if Λ is a multiplier, so is Λ∗. Consequently, Floquet multipliers
always come in complex quadruplets (Λ, 1/Λ,Λ∗, 1/Λ∗) if |Λ| 6= 1 and is not real, or in pairs (Λ, 1/Λ) if Λ is real, or
(Λ,Λ∗) if |Λ| = 1 and is not real. In addition, due to the time translation invariance of the system there is always a
pair of multipliers at +1. Therefore, for a breather to be stable, all the multipliers must lie on the unit circle.
In the AC limit, Floquet multipliers lie in three bundles. The two conjugated ones, corresponding to the oscillators

at rest, lie at θ = ±2πω0/ω, while the third one lies at +1 and consists of p multiplier pairs corresponding to the
excited oscillators. For ǫ 6= 0, the bundle corresponding to the oscillators at rest split and their multipliers move to
form the phonon band, while the multipliers corresponding to the excited oscillators can move along, either in the
unit circle (stability), or along the real axis (instability). However, as mentioned above, a pair of multipliers remains
at +1 corresponding to the, so-called, phase and growth modes of the whole system. This implies that single-site
breathers are stable for low coupling [53].
Whereas the stability at low coupling of single-site breathers is trivial, the situation for multibreathers is less clear.
The theorems developed in [54, 55] provide insight regarding this question. One can derive an expression of the

Floquet multipliers corresponding to the excited oscillators of multibreathers close to the AC limit. In the case of
Page modes, the relevant Floquet exponent is given by:

θ = ±2π

ω

√
2ǫ

J

ω

∂ω

∂J
, (34)

with

J =
1

2π

∫ T

0

[u̇(t)]2dt =
ω

2

∑

k≥1

k2z2k, (35)

being the action of an isolated oscillator. Applying a rotating wave approximation (RWA) u(t) ≈ z0 + z1 cos(ωt) we
obtain the following Fourier coefficients for the sG model [56]:

z0 = 0, z1 = 12− 4
√
3[3− 4(1− ω2)], (36)

whereas the following coefficients are found for the φ4 model:

z0 = 1− 3

5
(2− ω2), z1 =

2

5
(2 − ω2). (37)

Using the values from (34), the relevant Floquet exponent at low coupling for the sG model can now be approximated
by:

θ = ±2π

ω
i

√

2ǫ
ω2
√
3(4ω2 − 1)− (2ω2 − 1)(4ω2 − 1)

16ω4 − 7ω2 + 1
, (38)

whereas for the φ4 equation we have

θ = ±2π

ω
i

√
2ǫ

ω2 − 2

2− 3ω2
. (39)

Figure 6 compares the Floquet exponents of the Page mode found by integrating the perturbation equation (33) with
those of the analytical approximation (34) and the subsequent, fully analytical RWA (38)-(39) for low coupling. Good
agreement is found in the case of small values of the coupling constant ǫ.
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FIG. 7: Left: Hamiltonian energy (H) of breathers of the discrete sG equation as the coupling parameter ǫ is increased
for ω = 0.7. The labels correspond to breathers which have the following excited nodes in the AC limit: (a) (. . . , •, •, •, ↑
, •, •, •, . . .) (b) (. . . , •, •, •, ↑, ↑, •, •, . . .) (c) (. . . , •, •, ↑, •, ↑, •, •, . . .) (d) (. . . , •, •, ↑, ↑, ↑, •, •, . . .) (e) (. . . , •, •, ↑, •, •, ↑, •, •, . . .)
and (f) (. . . , •, •, ↑, ↑, ↑, ↑, •, •, . . .). Here, arrows correspond to the excited sites, which oscillates with frequency ω, whereas
the oscillators at rest are represented by dots. Only the site-centered (a) and bond-centered (b) solutions survive for ǫ → ∞,
both of which approach the exact breather solution of the continuous sG equation, see Eq. (20). Right: Examples of discrete
sG breathers for ǫ = 0.065. The multibreathers in the two bottom panels collide in a fold bifurcation at ǫ ≈ 0.152. The labels
correspond to those in the left panel.

C. Continuation in the Coupling: Going towards the Continuum

When the coupling constant is increased to finite values of ǫ > 0, stable multibreathers that are close to the AC
limit destabilize generally by means of Hamiltonian Hopf bifurcations (also referred to as Krein crunches); in addition,
every multibreather ceases to exist for a finite value of the coupling constant by means of Hopf or fold bifurcations.
As discussed above, the two exceptions to these facts are given by the Sievers-Takeno (site-centered breathers) and
Page modes (bond-centered breathers) which can be continued up to the continuum limit (ǫ → ∞). During this
continuation, however, both modes experience important changes both in their shape and in their spectral properties,
as we will see below.
The site-centered and bond-centered modes can be continued until resonance with the linear phonon band occurs.

For periodic boundary conditions and assuming that the lattice has an even number of particles N , the phonon band
is given by:

ω2
ph(ǫ) = ω2

0 + 4ǫ sin2
q

2
, with q =

(
1− 2n

N

)
π, n = 0, 1, 2 . . .N/2 (40)

where the modes are sorted by frequency and those from n = 1 to n = N/2−1 are doubly degenerate; ω2
0 = 1 (ω2

0 = 2)
in the sG (φ4) model. Therefore, the first resonance, upon variation of ǫ for fixed ω, must occur when n = 0, i.e.
with the q = π linear mode. In the case of φ4 potential, resonances occur when the second harmonic of the breather
frequency coincides with a phonon frequency (mω = ωph, m = 2), i.e. the first resonance occurs at ǫπ = ω2 − 1/2.
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However, in the sine-Gordon potential, the Fourier coefficients corresponding to even harmonics are zero, so that the
resonance is caused by the third harmonic (mω = ωph, m = 3) and the first resonance is observed at ǫπ = (9ω2−1)/4.
Thus, if a smooth continuation is performed, the site- (or bond-) centered solution continuously transforms into

a phonobreather (i.e., resonates with the linear modes) once the coupling reaches the value ǫπ. The central site(s)
will oscillate with frequency ω whereas the tail will oscillate with frequency mω. Nevertheless, if the step in the
continuation method is large enough, the system is able to “jump” to a localized solution whose frequency lies in
the gaps of the phonon band. Those solutions are the result of a hybridization of a breather with a phonon and
are dubbed as phantom breathers [57] [75]. Phantom breathers are in fact the discrete version of the nanopterons
observed in the continuum φ4 equation [52]. However, unlike the continuum models, they typically arise for on-site
potentials (including e.g. the discrete sine-Gordon) as long as the coupling is finite and higher than ǫπ. Similarly to
nanopterons and the phonobreathers found by smooth continuation, phantom breathers are composed of a localized
breather oscillating with frequency ω plus a low-amplitude background of frequency mω.
Let us mention that the bifurcation diagram for phantom breathers (see [57] for an extensive study of such solutions)

resembles the Wannier–Stark ladders observed in a model of non-homogenous waveguide arrays [58] [see Fig. 8 (left)];
this implies the existence of three nonlinear modes for the same value of the coupling constant. Of course, the width
of gaps in the phonon band decreases with the number of system particles N , and the gaps eventually vanish for
N → ∞. In other words, the hybridization of the breather with the background phonons is a finite-size artifact that
disappears in the infinite lattice limit.
Similar to the kink situation described in Sec. II C, there are important details regarding the spectral properties of

discrete breathers in the φ4 and sine-Gordon lattices. In both models, the site- and bond-centered modes interchange
their stability at a finite value of the coupling constant, which we denote as ǫM . This exchange-of-stability bifurcation
(which is mediated by an intermediate breather) is closely related to the existence of moving breathers [59, 60]. This
bifurcation is caused by a spatially anti-symmetric internal mode called pinning mode. For the site-centered breather
mode, this internal mode detaches from the phonon band and becomes localized when ǫ is increased, colliding at
θ = 0 when the exchange of stability takes place. In addition, moving breathers not only exist close to the parameter
values at which stability exchange takes place but also when the Floquet multiplier corresponding to the pinning
mode is close to 1. In this case, the movement is possible because the height of the Peierls–Nabarro barrier is related
to the distance of the unstable multiplier to 1. Figure 8 (right) shows the dependence of ǫM with respect to ω. In
general, when ǫ becomes larger than ǫM the growth rate (distance of the unstable Floquet multiplier to 1) of the
Sievers-Takeno mode grows up to a maximum value; beyond that point, there are many windows where stability
exchanges again. Those windows correspond to the jumps into the phonon band and are difficult to control in the
numerics. Nevertheless, as we approach ǫ → ∞, i.e., at the continuum limit, the relevant translational eigenvalue
returns to the point (1, 0) of the unit circle, signaling the restoration of the translational invariance in that limit.

IV. A RECENT VARIANT: SINE-GORDON EQUATIONS WITH PT SYMMETRY

One of the interesting recent extensions that have emerged in the context of Klein-Gordon field theories is that
of PT -symmetric variants of these models. The analysis of Hamiltonians respecting the concurrent application of
parity (x → −x) and time-reversal (t → −t) operations was initially proposed in a series of publications by Bender
and collaborators [21–23]. While originally intended for Schrödinger Hamiltonians as a modification/extension of
quantum mechanics, its purview has gradually become substantially wider. This stemmed to a considerable degree
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from the realization that other areas such as optics might be ideally suited not only for the theoretical study of this
theme [61–63], but also for its experimental realization [64–66]. Recently, both at the mechanical level [67] and at the
electrical one [68, 69] realizations of PT symmetry and its breaking have arisen, while a Klein-Gordon setting has
also been explored theoretically for so-called PT symmetric nonlinear metamaterials and the formation of gain-driven
discrete breathers therein [70].
These efforts have, in turn, prompted a number of works both at the discrete level [71, 72], as well as at the

continuum one [72, 73] to identify prototypical settings of application of PT -symmetry in nonlinear KG field theories.
The model used in [72, 73] is of the form:

utt − uxx + ǫγ(x)ut + f(u) = 0. (41)

Here, in order to preserve the PT symmetry, γ(x), should be an antisymmetric function satisfying γ(−x) = −γ(x).
Physically, this implies that while this is an “open” system with gain and loss, the gain balances the loss, in preserving
the symmetry.
Interestingly, for this class of models, the stationary states u0, such as the kinks, are unaffected by the presence of

the PT symmetry (since the relevant term involves ut). On the other hand, the linearization problem becomes

λ2v + ǫλγv +Hv = 0. (42)

where H is the Hamiltonian linearization operator of e.g. Eqs. (9) or (12). Equivalently, the spectral problem can be
written as:

λ

(
v1
v2

)
=

(
0 1

−H −ǫγ(x)

)(
v1
v2

)
. (43)

Now, the key question becomes what will be the fate of the eigenstates associated with the linearization around the
continuum kink, in the presence of the perturbation imposed by the PT -symmetric gain/loss term. What has been
argued in [72, 73] is that in both the continuum and the infinite lattice discrete problem, the continuous spectrum
will not be altered. Hence, the question is what becomes of the point spectrum in the presence of this perturbation.
To determine what happens to the mode associated with translation, we project Eq. (42) to the eigenfunction of

vanishing eigenvalue (in the unperturbed limit v = u0,x), and observe that the last term in Eq. (42) disappears.
Assuming a perturbative expansion of v in ǫ, which to leading order (when ǫ = 0) has v = ux, leads immediately to
the leading order approximation

λ = 0 or λ = −ǫ

∫
γ(x)u2

0,xdx∫
u2
0,xdx

. (44)

This explicit expression should yield a fairly accurate prediction of the fate of the former double 0 eigenvalue pair.
Interpreting this result, we find that one of the two eigenvalues of the pair should remain at 0 (a result that persists to
all orders in perturbation theory due to the remaining invariance of the location of the solution under translations).
On the other hand, the fate of the second eigenvalue will depend on the relative position of the kink centered at x0

with respect to the origin. In particular, for both the sine-Gordon and the φ4, we find that if the kink is centered at
the lossy side (say, x0 < 0), then the numerator of the expression in Eq. (44) is negative, leading the second eigenvalue
to the left hand plane. Reversing the sign of x0 leads effectively to a reversal of the time flow (due to the nature of
the system) and results into the corresponding eigenvalue moving by an equal amount to the right half of the spectral
plane i.e., yielding instability. On the other hand, for the special case in which x0 = 0, the parity of the relevant
integral makes it vanish and the eigenvalue does not shift. A typical example showcasing the quality of the agreement
of the theoretical prediction with full numerical results is shown in Fig. 9.
However, in the case of the φ4 model, it is not sufficient to consider only the fate of the eigenvalue potentially

bifurcating from the origin of the spectral plane. Recall that there is an eigenvalue at λ2 = −3. One can consider a
perturbative expansion of such an eigenvalue in the problem, according to λ = λ0+ ǫλ1+ . . . , while v = v0+ ǫv1+ . . . .
Applying a solvability condition at the leading order of the perturbation theory then immediately yields the eigenvalue
leading order correction as:

λ1 = −1

2

∫
γ(x)v20dx∫
v20dx

. (45)

The interpretation of this result is that this isolated point spectrum eigenvalue (pair) will also move to the left half
plane, for the case of the kink centered at the lossy side, while it will move (as a complex pair) to the right half plane
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FIG. 9: A typical example of the comparison of the motion of the translational eigenvalue under a PT -symmetric perturbation
between numerics (points) and analytics of Eq. (44). The left is for sG and the right for φ4, the top for a kink centered at the
lossy side, while the bottom for a kink centered at the gain side.
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FIG. 10: Two canonical examples of the evolution of an unstable kink on the gain side of a discrete PT -symmetrically perturbed
sG model. The left panel shows the kink as settling into an intersite-centered structure on the lossy side, while the right forces
it to propagate on the gain side, but without bearing a stable fixed point for the kink state. Color bar represents |un − π|.

when the kink is centered at the gain side. I.e., overall stability of the kink’s point spectrum is ensured when centered
at the lossy region and instability when centered at the gain region. When the kink is at the interface, it should
already be clear from the above considerations that all real contributions to the eigenvalue will vanish, allowing only
imaginary ones that could shift the point spectrum along the imaginary axis, as proved earlier in the text. Again,
very good agreement between this prediction and the full numerical result was found in [73].
In the discrete case, the same methods as explored above yield equally accurate predictions. Arguably, the only

significant modification arising here is in the case of the intersite centered stable kink. For the onsite one, the
perturbation shifts the eigenvalue along the real axis (weakly, for small perturbation strength), not changing the fate
of the kink’s (in)stability. However, in the marginal case of the intersite centered kink, once again, the lossy side leads
to stability kicking the former translational (now imaginary in the discrete problem) eigenvalues to the left half-plane.
Placing the kink on the gain side has the opposite effect with eigenvalues bifurcating on the right half plane (as a
complex pair) and hence leading to instability. It is for that reason that the fate of the unstable discrete kink of the
dynamical example of Fig. 10 leads to a static intersite centered structure on the lossy (left) side for the left panel of
the figure. If, however, the perturbation pushes (intentionally) the kink toward the right hand (gain) side, it cannot
find a stable equilibrium point and instead it continues to propagate as is shown in the right panel of the figure.
In the case of breathers, we can add that also based on the discussion given earlier for different variants of the

sG equation and KG equations more generally, breathers are unlikely to exist under PT-symmetric perturbations.
However, we do find that in the case example potentials that we considered, stationary breather solutions can only be
found to exist at the delicate interface between gain and loss. Breathers seeded on the lossy side are found to become
mobile. Perhaps more interestingly, such structures on the gain side appear to gain energy and transform themselves
into a kink-antikink pair.
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