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Abstract: Sustainable smart buildings play an essential role in terms of more efficient energy.
However, these buildings as electric loads are affected by an important distortion in the current and
voltage waveforms caused by the increasing proliferation of nonlinear electronic devices. Overall,
buildings all around the world consume a significant amount of energy, which is about one-third of
the total primary energy resources. Optimization of the power transfer process of such amount of
energy is a crucial issue that needs specific tools to integrate energy-efficient behaviour throughout
the grid. When nonlinear loads are present, new capable ways of thinking are needed to consider
the effects of harmonics and related power components. In this manner, technology innovations are
necessary to update the power factor concept to a generalized total or a true one, where different
power components involved in it calculation, properly reflect each harmonic interaction. This work
addresses an innovative theory that applies the Poynting Vector philosophy via Geometric Algebra
to the electromagnetic energy transfer process providing a physical foundation. In this framework,
it is possible to analyse and detect the nature of disturbing loads in the exponential growth of
new globalized buildings and architectures in our era. This new insight is based on the concept
of geometric objects with different dimension: vector, bivector, trivector, multivector. Within this
paper, these objects are correlated with the electromagnetic quantities responsible for the energy flow
supplied to the most common loads in sustainable smart buildings. Besides, it must be considered
that these phenomena are characterized by a quality index multivector appropriate even for detecting
harmonic sources. A numerical example is used to illustrate the clear capabilities of the suggested
index when it applies to industrial loads for optimization of energy control systems and enhance
comfort management in smart sustainable buildings.

Keywords: smart building; harmonics; geometric algebra; Poynting Multivector

1. Introduction

1.1. Motivation

Nowadays, professional and academic experts have started to consider the term “Smart
Sustainable Cities” [1] so as to incorporate the different aspects of sustainability in the classical
“smart cities” new concept. In fact, literature tends to consider a sustainable city as a whole place
of sustainable smart buildings that have a strong environmental focus with a balance within the
buildings and the city between infrastructures, information and communications technology (ICT),
smart technologies, and urban metabolism, focusing mainly on consumption and energy saving [2].

Buildings all around the world consume a significant amount of energy, which is about one-third
of the total primary energy resources [3]. For this reason, building energy efficiency has turned out
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to be a multi-faceted problem and the majority of harmonic problems affecting sustainable smart
buildings are generated within new applications and grids of global architectures. This is due, in part,
to a proliferation of non-linear loads connected to the networks of the building. These technologies as
CCTV recognition systems, automatic smart air conditioning equipment, artificial intelligence (AI),
the latest generation of computers, all types of smart detectors and warning systems, and other power
electronic equipment are the main sources of such problems. The result of using such highly non-linear
load is that the current waveform is distorted. Thus, causing an excessive harmonic of current and
voltage. Besides the proximity of many of this new smart building category (industrial and residential
smart constructions) will contribute to the distortion of the electric power quality of the feeder, which
supplies these constructions and new architectures. These harmonics can cause serious problems
in power systems, excessive heat of appliances and machines, aging of electronic component and a
decreased capacity, failures of the safety devices and measures of protection, lower power factor and
consequently, a reducing power system efficiency due to increasing losses. All these effects are some
of the main results of harmonics in power distribution systems. Note, that Harmonic distortion can
cause significant costs in distribution networks. Harmonic cost consists of harmonic energy losses,
premature aging and de-rating of electrical equipment. The difference between the known generation
and the estimated consumption is considered as the energy loss.

Other causes of energy loss and, consequently, an increase in the cost of it, are due to the lack
of control of energy efficiency in the thermal performance of buildings and energy balance. Most of
the building heat losses occur through the building envelope. In recent years, an important number
of papers on quantification and optimization of energy efficiency in buildings has been published
referring to the standard for buildings. Many of these works have been developed in different areas of
application such energy losses in the building envelope as HVAC systems (heating, ventilation and air
conditioning), windows, etc. All these works have in common the aim of making efficient buildings
from an energy point of view to be sustainable. Particularly, in [4], an original approach for the U-value
evaluation (analogies with coeval buildings, the calculation method, the in-situ measurements and the
laboratory tests) is taken. In [5], measures of energy efficiency and optimization in the building sector
are also evaluated.

In this article, it is proposed an energy quality multivector index (EQI) based on the Generalized
Poynting Multivector (GPM) theory, that possesses clear advantages from the viewpoint of harmonic
sources detection and minimization in sustainable smart buildings.

1.2. Literature Review

Valuable contributions in electromagnetic field applied to the electric power theory analysis under
multi-sinusoidal conditions have been appeared so far in the literature. Despite they have different
interpretations, most of them share the common denominator of dealing with the suitability of the
Poynting Vector to explain the electromagnetic energy flow in electric systems [6].

In sinusoidal systems, Complex Algebra provides an appropriate framework to analyse the
relationship between the Complex Poynting Vector and the energy flow [7].

In one-ports under periodic multi-sinusoidal linear/non-linear operation this issue has still some
fundamental unsolved aspects. Nevertheless, some progress has unquestionably been made from
numerous valuable contributions in the literature [8–21], each one of them trying to clarify different
aspects of the problem by applying the classic Poynting vector (PV) concept. Among them [8,9,14,15]
masterfully explain the power factor concept and the physical mechanism of energy propagation in
electric power systems; Ferrero et al. in [17] reconsiders the physical meaning assigned to the non-active
components of the Park instantaneous power; Balci et al. in [20] describes the transition between PV
and instantaneous active and reactive powers; and Faria et al. in [11] computes the instantaneous
power directly from Maxwell’s equations together with the evaluation of the PV flux. On the other
hand, several applications are given by means of PV: Lundin et al. in [10] analyses synchronous
generators using field simulations; De León et al. in [12] identifies terms in nonlinear-switched circuits;
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Cheng et al. in [13] calculates the reactive power of iced transmission line; Todeschini et al. in [16]
detects and explains the process of compensation and restoration of symmetry in an unbalanced
system and Stahlhut et al. in [21] examines critically the PV possibilities in the area of instrumentation
of losses. However, critics of PV calculations [18,19] argue that electromagnetic theory is useless for
practical applications of electric power theory. Nevertheless, the large number of papers published on
the physical and/or mathematical nature of electromagnetic energy transfer suggest that the work has
not been finished.

The multidimensionality of power equation and energy quality indexes in the multi-sinusoidal
case is the underlying obstacle that considerably complicates the issue at hand. Instead, reference [13]
is a pioneering contribution to the role of a Poynting Multivector to the interpretation of the energy
flows based on an original Clifford Vector space. Accordingly, this work adds a new representation of
electromagnetic power theory deduced from a Generalized Poynting Multivector [22].

1.3. Contribution

An introduction to “geometric objects” in Geometric Algebra (GA) and the associated phenomena
within the electrical systems is developed. In addition, these entities permit a unified treatment of
the energy flow concept. By means of the GA framework, the classic explanations of the energy flow
process based on interactions between electric and magnetic fields of like-frequency is overcome.
The proposed generalization adds the cross-fields interactions in a natural manner, as well.

By this way, this paper is concerned to the application of the Generalized Poynting Multivector
(GPM) concept [22] to provide both of them, a physical foundation to the non-active electromagnetic
geometric objects as well as a new multivector index to assess the efficiency of the complete energy
process in sustainable and smart building loads supplied from a transmission line.

2. Geometric Objects

Geometric Algebra [23–26] is based on the concept of objects with different geometrical dimension
that result from the geometric product of distinct graded basis elements, e.g., scalars, vectors, 2-vectors
and so on. Thus, starting from vectors within an n-dimensional linear space over the real numbers Vn,
the geometric product of vectors ab if a, b ∈ Vn is formed by a symmetric inner product

a·b =
1
2
(ab + ba) (1)

and an antisymmetric outer product

a ∧ b =
1
2
(ab− ba) (2)

Therefore, ab has the canonical decomposition

M̃ = ab = a·b + a ∧ b (3)

The resulting multivector M̃ is the sum of a scalar (a·b) and a bivector or 2-vector (a ∧ b) object.
Despite this sum of two distinct objects might seem strange at first sight and it is against the common
rule that only same objects should be added, this Clifford´s brilliant idea [23] allows to generalize
easily the product to arbitrary higher dimensions and incorporates geometric interpretations of objects
and operators.

Thus, a bivector can be viewed as directed plane segment, in much the same way as a vector
represents a directed line segment, Figure 1. The bivector a ∧ b has a magnitude |a ∧ b| equal to
the usual scalar area of the circle in Figure 1, with the direction of the plane in which the circle lies,
and with sense, which can be assigned to the circle in the plane. Then, just as a vector a represents
(or is represented by) a directed line segment and a bivector a ∧ b represents a directed plane segment,
the trivector (3-vector) a ∧ b ∧ c is a grade-3 object that represents a volume (the sphere).
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In G3, the geometric algebra of three-dimensional space, a general multivector can be written as

M̃ = α + λ + B + µJ (4)

where a is a vector, B is a bivector, I is a trivector (pseudoscalar) and λ and µ are both scalars. The three
orthogonal basis vectors {σ1, σ2, σ3}, the three bivectors {σ1σ2, σ2σ3, σ3σ1}, the unit scalar, and the
trivector σ1σ2σ3 define a graded linear space of total dimension 8=23 and are shown in Figure 1.

The unit right-handed pseudoscalar for the space J squares to −1, J2 = −1. The pseudoscalar,
as well as bivectors, change sign under reversion, but vectors do not. This reversion operation reverses
the order of vectors in any product and the convention. So, the reverse of multivector M̃ derived only
from vectors

M̃† = ba = a·b− a ∧ b (5)

or in the general form resulting from all the possible basis product in G3

M̃† = α + λ− B− µJ (6)

For all the formulae presented below the followed notation uses the tilde ~ for multivectors,
Euclidean vectors are written in bold font, the dagger symbol † denotes the reverse operation and
the upper asterisk * represents the complex conjugate operation. For a complete understanding of
notation, a list of symbols is summarized in the glossary.
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3. The System Model

An “electrical system” is shown in Figure 2 and it can be considered as a space confined by a
closed surface to/from which electric power is supplied/received by conductors carrying an electric
current. The total instantaneous power transmitted is

s(t) = ∑
k

ukik (7)

Two main electric power processes occur in the system:

- Electric power (energy) is dissipated.
- Electric power (energy) in the system derives from an electric field and magnetic field interactions.

In a general form, the electromagnetic phenomena occurring in the system under study can be
roughly modelled by electric circuits.

Despite the application of GA to circuit analysis and power theory has a very short history some
relevant advances have been made in this area from different perspectives [27–35].
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4. Generalized Poynting Multivector

In this work, space coordinates and time (frequency) coordinates have a differentiated treatment.
Space domain remains represented by the classical Euclidean approach, the harmonic field in both,
time and frequency domains, are characterized by complex geometric algebra, CGn. The complete
space-time framework results in the hybrid CGt

n −R3 structure named Generalized Euclidean Space
(CGn −R3 for space-frequency domain) [22].

In this CGn −R3 algebraic approach, the Generalized Poynting Multivector (GPM) is defined as

Π̃ = ∑
p,q

(
Ẽp � H̃

∗
q

)
(8)

where Ẽp and H̃q vectors are called ‘spatial geometric phasors’ of the electric and magnetic harmonic
fields, H̃

∗
q vector is the conjugate of the q-th harmonic spatial geometric phasor H̃q and ‘�’ is the

generalized geometric product (GGP) [27].
From this multivectorial field theory, the flux of the GPM quantity for a volume υ enclosed by a

surface ς, (GPM theorem), can be expanded into two terms.
x

ς

n·Π̃ dς =
x

ς
∑

p

n·P̃p dς+
x

ς
∑
p 6=q

n·D̃pq dς = S̃ (9)

where n is the unitary vector orthogonal to the infinitesimal surface dς, P̃ is the Poynting
Multivector (PM) and D̃ is the Complementary Poynting Multivector (CPM) and S̃ = Ũ � Ĩ∗ is
the Power Multivector.

In Equation (10) are present three “electromagnetic geometric objects”: the complex vectors Ẽp

and H̃q, the complex scalar

P̃ = ∑
p

Ẽp � H̃
∗
p (10)

and the complex bivector

D̃ = ∑
p<q

(
Ẽp � H̃

∗
q + Ẽq � H̃

∗
p

)
(11)

From CGn structure, Equation (10) explains the total power energy flow because contains the
component P̃ related with the power contribution due to frequency-like products and the component
D̃ associated to the mutual influence of the harmonic components of the fields. Observe that in classical
approach this last term vanishes due to the orthogonality of harmonics basis. Nevertheless, a null
average value of power without any net energy transferred must be also considered to understand the
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real power flux processes and to fully evaluate the energetic efficiency of electric systems in presence
of harmonics.

The above mentioned electromagnetic geometric objects are shown in Figure 3 and must be
considered to explain the main aspects of energy transfer quality.
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5. Formulation of Electromagnetic Energy Quality Index

5.1. Energy Flow on Electrical Systems

Consider the case of an electrical system in the form of a circuit, Figure 4, where the load is
a linear/nonlinear system. The supply system voltage is periodic but multi-sinusoidal and can be
represented by

u(t) =
√

2Im∑
p

Upej(ωpt+αp) (12)

where p is the harmonic order of u(t). The instantaneous supply current responsible of the generation
of the magnetic-field is given by

i(t) =
√

2Im∑
q

Iqej(ωqt+βq) (13)

where q is the harmonic order of i(t). It is assumed that a group of voltage harmonics N exist that have
corresponding current harmonics of the same frequencies, and that components M of current exist
without corresponding voltages. In linear operation, βq = αq − ϕq, ϕq is the impedance phase angle of
the consumer electrical system.
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From Equation (10), the energy balance can be expressed as a multivector S̃ in {CGn}, generated
by the geometric product “�” of the voltage and conjugate current geometric phasors [14] given by
the following set

S̃ = Ũ � Ĩ∗ = Ũ· Ĩ∗ + Ũ ∧ Ĩ∗ (14)

where Ũ is the voltage geometric phasor and Ĩ∗ is the conjugated current geometric phasor.
The electromagnetic object P̃ can be separated into active and non-active components
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P̃ = ∑
p

P̃pact
+∑

p

P̃pnon−act
= Re

∑
p

P̃p

︸ ︷︷ ︸
P̃act

+ jIm

∑
p

P̃p

︸ ︷︷ ︸
P̃non−act

(15)

where the set P̃act transfers the harmonic active power and the set P̃non−act transport the scalar
non-active power (classical reactive power). The only component of P̃ that transfer useful energy is
P̃act, Figure 4.

Hence, by virtue of (10), it is obtains

x

ς
∑

p

→
1 Z · P̃p dς =

x

ς
∑

p

→
1 Z · Ẽp � H̃

∗
p dς =∑

P

Up Ipejφp σ0 (16)

The PM (P̃) is associated to the energy density at a point on the surface given in terms of the
harmonic spatial geometric phasor of electric and magnetic fields at that point. Observe that the PM
coincides with the classic Complex Poynting Vector only in pure sinusoidal case.

The real part of P̃ in (16), P = Re

{
s

ς
∑
p

→
1 Z · P̃p dς

}
, permits a direct interpretation in terms of

average energy flow, (i.e. active power P).

The imaginary part of P̃ in (16), Q = Im

{
s

ς
∑
p

→
1 Z · P̃p dς

}
, is the scalar non-active power.

In general, it can be verified that PM P̃ considers direction and sense, not only of active power
components P̃pact

but also of scalar non-active components P̃pnon−act
Thus, the possible reverse

sense of any harmonic P̃pact
is very important for a correct identification of harmonic source

locations and for determining the responsibility of the utility electrical system and the associated
load. Thus, if P̃pact

≥ 0
(
Pp ≥ 0

)
the energy flow is unidirectional toward the load. On the other way,

if P̃pact
≤ 0

(
Pp ≤ 0

)
the flow is generated in the nonlinearity of the load.

A more detailed develop of the CPM (D̃) is

D̃ = ∑
p<q

Ẽp � H̃
∗
q + Ẽq � H̃

∗
p = ∑

p < q
p, q ∈ N

D̃pq + ∑
p∈N,q∈M

D̃pq

= Re


∑

p < q
p, q ∈ N

D̃pq + ∑
p∈N,q∈M

D̃pq

︸ ︷︷ ︸
D̃act

+ jIm


∑

p < q
p, q∈N

D̃pq + ∑
p∈N,q∈M

D̃pq

︸ ︷︷ ︸
D̃non−act

(17)

Moreover, the flux of the Complementary Poynting Multivector is given by

x

ς
∑
p<q

→
1 Z · D̃pq dς = D̃ (18)

where D̃ can be associated to the polluting nature components, D̃act and D̃non−act, that do not help in
transferring useful energy and

D̃ = ∑
p < q
linear

{
(

Up Iq ejϕq −Uq Ipejϕp
)

ej(αp−αq)
)}

σpq + ∑
p<q

non−linear

Up Iq ej(αp−βq)σpq (19)
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is the non-active power bivector called distortion power.
Through (9), (16) and (18), it can be observed that the energy flow that it is originated from the

surface of the source in the electrical system equals the flow that enters in the load surface.

5.2. Electromagnetic Quality Index (EQI)

The aim of this paper is to propose a multivectorial index ξ̃, based on electromagnetic geometric
objects, capable to characterize the performance of the power transfer or the efficiency of the
transmission equipment in single-phase circuits with multi-harmonic signals. This figure of merit
can be an important piece of information for the interpretation of the electromagnetic energy flow
in presence of disturbing loads. On the contrary, the classic THD index (Total Harmonic Distortion)
for the measurement of the harmonic distortion level is not able to give any information about the
disturbance nature.

To this end, a new index that integrally reflects the nature of the different energy quality situations
is defined. This is expressed as

ξ̃ =

s

ς

→
1 ZΠ̃dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} = 1 + j

Im

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

}

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} +

s

ς
∑

p 6=q

→
1 Z · D̃pq dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} (20)

or also,

ξ̃ =

Re

{
s

ς
∑

p=1

→
1 Z · P̃1 dς

}
+jIm

{
s

ς
∑

p=1

→
1 Z · P̃1 dς

}

Re

{
s

ς
∑
p

→
1 Z · P̃p dς

} +

+

Re

{
s

ς
∑

p 6=1

→
1 Z · P̃p dς

}
+jIm

{
s

ς
∑

p 6=1

→
1 Z · P̃p dς

}

Re

{
s

ς
∑
p

→
1 Z · P̃p dς

} +

+

s

ς
∑

p 6=q

→
1 Z · D̃pq dς

Re

{
s

ς
∑
p

→
1 Z · P̃p dς

}

(21)

The power factor PF can be written as

PF =
1∣∣∣∣∣∣ξ̃∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣Re

{
s

s
∑
p

→
1 Z · P̃p ds

}∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣s

s

→
1 Z · Π̃ ds

∣∣∣∣∣∣∣∣ (22)

It is noteworthy that the power factor is not an exhaustive index for energy quality. In fact,
combining (20) and (22) the power factor could be brought to unity, but the electrical systems would
still operate in multi-sinusoidal mode.

Equations (21), (22) and (23) show that the index ξ̃ contains terms that keep direction and sense,
allowing harmonic source detection. This property is very important to achieve an appropriated
compromise between the energy quality index and the power factor. Moreover, the dominant
harmonic source should be based on an evaluation of non-active scalar and bivector electromagnetic
geometric object components of the Generalized Poynting Multivector. This subject is discussed in the
next subsection.
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5.3. Illustrative Comparison between Different Non-Active Electromagnetic Geometric Objects

It is seen from (12) and (17) that Ũ1 and Ĩ1 are the sinusoidal voltage and current geometric phasor
and Ũp and Ĩq are the harmonic voltage and current geometric phasor when p 6= 1, q 6= 1 respectively.
Obviously, the voltage geometric phasor Ũ1 produces the sinusoidal electric field spatial geometric
phasor Ẽ1 and the harmonic voltage Ũp generates the harmonic field Ẽp. Similarly the sinusoidal
current Ĩ1 geometric phasor produces the sinusoidal magnetic field spatial geometric phasor H̃1 and
the harmonic current Ĩq generates the harmonic field H̃q. The interaction among these fields produces
the cited characteristic electromagnetic geometric objects Π̃, P̃ and D̃. The objects P̃ and D̃ are
separated into an active and a non-active component as in Equations (15) and (17). In these equations,
the different non-active scalar and bivector electromagnetic objects assume different expressions
depending on the electrical system nature.

Starting from these considerations, a new philosophy is proposed for the detection of the dominant
harmonic source that is based on the comparison of these non-active components to explain the power
quality concept. For more detail, the following situations are considered:

• Sinusoidal case: p = q = 1⇒ N = {1}

Π̃sin = P̃1 = Re
{
P̃1

}
︸ ︷︷ ︸

P̃1act

+ j Im
{
P̃1

}
︸ ︷︷ ︸
P̃1non−act

(23)

and

ξ̃sin = 1 + j

Im

{
s

ς
∑
p∈1

→
1 Z · P̃1 dς

}

Re

{
s

ς
∑
p∈1

→
1 Z · P̃1 dς

} (24)

In this case, the quantity Im{P̃1} = P̃1non−act can be considered as minimum reference value to
improve the energy quality, since it is the only non-active electromagnetic geometric object. It is the
well established fundamental reactive power (Q) that can be reduced to zero by shunts capacitors∣∣∣∣∣∣

∣∣∣∣∣∣Im
x

ς
∑
p∈1

→
1 Z · P̃1 dς


∣∣∣∣∣∣
∣∣∣∣∣∣ = 0 (25)

and consequently, ∣∣∣∣∣∣ξ̃sin
∣∣∣∣∣∣ = 1⇒ PF1 = 1 (26)

where PF1 is the fundamental power factor, also known as the displacement power factor

PF1 = cos(ϕ1) (27)

The quantity Re
{
P̃1

}
= P̃1act transfers the fundamental active power (useful energy) and is

associated to the instantaneous active power.

• Multi-sinusoidal linear case: p ∈ N, q ∈ N
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If the electrical system is linear, the current requested by the loads and voltage supplied by the
mains share the same harmonic order and the equation (8) yields the linear GPM Π̃lin

Π̃lin = ∑
p=q

P̃p + ∑
p 6=q

D̃pq =

= ∑
p=q

P̃pact︸ ︷︷ ︸
P̃act

+ P̃1non−act + ∑
p,q∈N>1

P̃pnon−act︸ ︷︷ ︸
jP̃non−act

+ ∑
p,q∈N

D̃pq︸ ︷︷ ︸
D̃lin

(28)

The linear EQM is given by

ξ̃lin = 1 + j

Im

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

}

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} +

s

ς
∑

p,q∈N

→
1 Z · D̃pq dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} (29)

The quantities Im

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

}
and Im

{
s

ς
∑

p,q∈N

→
1 Z · D̃pq dς

}
in (29) should be minimized

by shunt capacitors or reduced to zero by shunt reactance one-ports. In these conditions

ξ̃lin = 1 +

Re
s

ς
∑

p,q∈N

→
1 Z · D̃pq dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} ⇒ ∣∣∣∣∣∣ξ̃lin
∣∣∣∣∣∣ >1⇒ PF < 1 (30)

From (30), it results that for linear electrical systems under multi-sinusoidal conditions,
the criterion

Im

x

ς
∑
p∈N

→
1 Z · P̃p dς

 = 0 (31)

Im

x

ς
∑

p,q∈N

→
1 Z · D̃pq dς

 = 0 (32)

does not represent the conditions of highest power factor.

• Multi-sinusoidal non-linear case: p ∈ N, q ∈ N ∪M

In this case, the presence of the nonlinear loads causes some current components (q ∈ M) which
harmonic orders are not present in the voltage supplied to the electrical system. It is well known that
when a non-linear o time-varying electrical system is present, it injects disturbances even if the supply
voltage is sinusoidal. In view of (8), the non-linear GPM can be written as follows,

Π̃non−lin = ∑
p=q

P̃p + ∑
p 6=q

D̃pq =

= ∑
p=q

P̃pact︸ ︷︷ ︸
P̃act

+ jP̃1non−act + ∑
p,q∈N>1

P̃pnon−act︸ ︷︷ ︸
jP̃non−act

+ ∑
p,q∈N

D̃pq︸ ︷︷ ︸
D̃lin

+ ∑
p ∈ N,
q ∈ M

D̃pq

︸ ︷︷ ︸
D̃non−lin

(33)
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The EQI is given by

ξ̃non−lin = 1 + j

Im

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

}

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} +

s

ς
∑

p ∈ N, q ∈ N
p ∈ N, q ∈ M

→
1 Z · D̃pq dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} (34)

If the equalities (31) and (32) are fulfilled, the Eq. (34) is now given by,

ξ̃non−lin = 1 +

Re
s

ς
∑

p,q∈N

→
1 Z · D̃pq dς +

s

ς
∑

p∈N,q∈M

→
1 Z · D̃pq dς

Re

{
s

ς
∑

p∈N

→
1 Z · P̃p dς

} (35)

And ∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ > 1⇒ PF < 1 (36)

Comparing the multivectors expressed in (26), (30) and (36), it can be observed that ξ̃non−lin

multivector contains all possible non-active components after passive compensation. Consequently,
in the same operation conditions, it can be written that∣∣∣∣∣∣ξ̃sin

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̃lin
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̃non−lin

∣∣∣∣∣∣ (37)

In sinusoidal operation (ideal situation), the three indexes are equal. In the presence of harmonic
distortion, the differences among the values of the indexes depend of the supply and of the load
characteristics. Then, the possible ξ̃ multivectors and their magnitudes depend on the electrical system
conditions. Each situation is strictly related to the distortion state of power system and therefore, to the
harmonic presence and energy quality, thus, the higher harmonic interaction, the greater non-active
energy flow. Observe that the multivectors P̃non−act and D̃ do not help in transferring useful energy
and only are associated to the oscillations that produce both, energy lost and stored energy by the
loads. Both quantities are related with the non-active power.

As a result of these considerations, an evaluation and comparison of both indexes, ξ̃ and PF, in the
same working conditions, shows that ξ̃ give two pieces of extra information about the energy quality
and the disturbing loads nature.

In conclusion, the suggested EQI possesses clear advantages from the viewpoint of non-active
energy flow minimization. The main advantage is that it is decomposed into a complex-scalar and
complex-bivectors with direction and sense. These components provide detailed information for
a possible minimization of each electromagnetic object term by means of new devices, strategies,
and algorithms. The accomplishment of such compensating methods and devices is a problem that
warrants further research.

Although the proposed theory is limited to linear and non-linear distorted single-phase power
systems, it is worth mentioning that this work does not have in any way the pretension to put an
end to the topic, quite the contrary, in fact. Thus, the application of this methodology to polyphase
systems deserves in-depth investigations in the near future. This proposed approximation has to face
different unsolved problematic aspects. In particular, while the definition of apparent power and
related components in balanced three-phase systems with sinusoidal waveforms is well established,
the definitions of unbalance conditions are still in an open debate. Moreover, the study of the most
general case, the three-phase systems with non-sinusoidal and unbalanced conditions, even needs to
improve precedent theories that in many cases are mutually contradictory.
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It is remarkable that the structure of geometric algebra gives a new insight to phase domain and
constitutes a powerful tool for the treatment of periodic distorted signals. In this framework, power
definition deals with the key concept of geometric phasors, i.e. algebraic time-averaged quantities
that are far from being instantaneous ones. In this regard, depending on the considered application,
this can be a major restriction. Thus, applications such as instantaneous active filters or fast response
compensation devices, are out of the scope of this study, as well. For the same reason, electric
signals disturbed with non-stationary events such as transients, sag, swells, etc. are not considered in
this work.

6. Numerical Example

In order to validate the use and relevance of the Poynting Multivector suggested in this paper,
sustainable and smart building loads supplied from a transmission line are analysed in the CGn −R3

framework. In a simplistic manner, the conductors are considered as rectangular and parallel
superconductors meant to facilitate the propagation of energy from source to load, Figure 5. Units of
physical quantities are the standard units of the MKSA system and thus are omitted.
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Two parallel plane conductors in linear media are considered. Both conductors, of thickness λ and
width γ, are separated by a dielectric material of thickness ρ. We suppose that γ� λ, ρ. By ignoring
eddy currents, line impedance, fringing effects, three cases are analysed:

6.1. Linear Load Supplied by A Sinusoidal Voltage Source

Voltage and a hypothetic resulting current are respectively

u(t) =
√

2(200 sin ω1t)

i(t) =
√

2[10 sin(ω1t− 36.87◦)]

Then, from [13], the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be
expressed as

Ẽ =
1
d

(
200ej0σ1

)→
1 X ; H̃

∗
=

1
h

(
10ej36.87σ1

)→
1 Y
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and the electromagnetic geometric objects and associated power are

x

ς
∑
p=1

→
1 Z · P̃ dς =

1600︸︷︷︸
P1

+j1200︸︷︷︸
Q1

σ0

x

ς
∑
p 6=q

→
1 Z · D̃ dς = 0; D̃ = 0

ξ̃sin = 1 + j
1200
1600

σ0 ⇒
∣∣∣∣∣∣ξ̃sin

∣∣∣∣∣∣ = 1.25 ; PF = 0.8

6.2. Linear Load Supplied by A Non-Sinusoidal Sinusoidal Voltage Source

Voltage and hypothetic resulting current are

u(t) =
√

2(200 sin ω1t + 50 sin ω2t)

i(t) =
√

2[10 sin(ω1t− 36.87◦) + 5 sin(ω2t + 53.13◦)]

and the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be expressed as

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X

H̃
∗
=

1
h

(
10ej36.87σ1 + 5e−j53.13σ2

)→
1 Y

x

ς
∑

p

→
1 Z · P̃ dς =

1750︸︷︷︸
P

+j1000︸︷︷︸
Q

σ0

x

ς
∑
p 6=q

→
1 Z · D̃ dς = D̃ = [200− j1100]︸ ︷︷ ︸

D̃12

σ12

ξ̃non−lin = 1 + j
1000
1750

σ0 +
[200− j1100]σ12

1750σ0∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ = 1.32

PF = 0.76

6.3. Non-Linear Load Supplied by A Non-Sinusoidal Sinusoidal Voltage Source

Voltage and hypothetic resulting current are

u(t) =
√

2(200 sin ω1t + 50 sin ω2t)

i(t) =
√

2[10 sin(ω1t− 36.87◦) + 5 sin(ω2t + 53.13◦) + 5 sin(ω3t + 45◦)]

and the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be expressed as

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X
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x

ς
∑

p

→
1 Z · P̃ dς = [(1600 + 1200) + j(150− 200)]σ0 =

1750︸︷︷︸
P

+j1000︸︷︷︸
Q

σ0

x

ς
∑
p 6=q

→
1 Z · D̃ dς = D̃ = [200− j1100]︸ ︷︷ ︸

D̃12

σ12 +
[
125
√

2− j125
√

2
]

︸ ︷︷ ︸
D̃23

σ13 +
[
500
√

2− j500
√

2
]

︸ ︷︷ ︸
D̃13

σ23

ξ̃non−lin = 1 + j
1000
1750

σ0 +
[200− j1100]σ12 +

[
125
√

2− j125
√

2
]
σ13 +

[
500
√

2− j500
√

2
]
σ23

1750σ0∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ = 1.44

PF = 0.69

As in (37), it should be noticed in this example that{∣∣∣∣∣∣ξ̃sin
∣∣∣∣∣∣ = 1.25

}
<
{∣∣∣∣∣∣ξ̃lin

∣∣∣∣∣∣ = 1.32
}
<
{∣∣∣∣∣∣ξ̃non−lin

∣∣∣∣∣∣ = 1.44
}

Comparing the multivectors ξ̃ of the above three cases, it can be observed that they contain all
possible non-active components. In this way, the possible reverse sense of any harmonic of active,
reactive and distortion powers is very important for a correct identification of harmonic source
locations, and for determining the responsibility of the utility side (generator) and the consumer side
(load) [20,21]. Thus, the suggested index ξ̃ possesses clear advantages from the viewpoint of non-active
power flow minimization.

7. Conclusions

The analysis of sustainable smart buildings is key to new future buildings, new complex
architectures, and its usefulness extends to smart cities. Analyses of quality of the construction typically
focus on applying methodologies that evaluate quality objectives at environmental, construction and
building levels. Research has shown that a multivector quality index can be useful for detection of
harmonic sources of new sustainable smart buildings.

Along this line this paper presents a reformulation of Poynting Vector in terms of the Geometric
Algebra framework when inefficiencies caused by harmonics are considered. In this environment,
each geometric object represents a different kind of energy flux. Thus, the distinct and well-known
power terms in electric power systems, i.e. Active, Reactive, Distortion and Apparent powers acquire
a new interpretation and dimension by means of multivectors. This novel approach is applicable
to smart architectural single-phase power systems with linear/non-linear loads under sinusoidal or
non-sinusoidal conditions. By this means, the behaviour of the energy flux is summarized by the
proposed electromagnetic energy index EQI. In addition, the meaning of this original index is deeply
analysed and discussed, concluding that its capability to deal with geometric properties, namely
magnitude, direction and sense, makes it perfectly appropriate for detection and minimization of
harmonic sources.

Furthermore, it is an excellent tool to interpret the cited power flow distribution. Thus, the
introduction of this figure of merit supposes not only a generalization of the traditional power factor
in electric power networks but also the key to the electromagnetic energy transfer between mains
and loads. The global efficiency of a system is truth evaluated by this index because it includes all
possible interactions.

It is remarkable that traditional Poynting Vector is a particular case of the proposed
generalized Poynting Multivector when no cross interactions are present between different harmonics.
This correlation is now precisely understood as the outer product between geometric phasors of
different energy levels. Thus, this fact is crucial for future research proposals on the design of passive
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and/or active architectures for selective compensation, optimization algorithms and measurement
techniques for harmonic pollution monitoring.

The electromagnetic nature of the power components could be the key that opens a broad range
of new interesting research lines in electrical engineering and all energy efficiency related matters.

Author Contributions: All authors contributed equally to this work. All authors wrote, reviewed and commented
on the manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary of Symbols

R real numbers
C complex vector space
Gn Geometric Algebra in n-dimensional real space
CGn Complex Geometric Algebra
CGt

n −R3 time generalized geometric euclidean space
CGn −R3 frequency generalized geometric euclidean space
→
1 X ,

→
1 Y ,

→
1 Z Euclidean canonical basis

σ1...k canonical basis of Gn

σp basis vector of Gn

σpσq = σpq basis bivectors of Gn

σ1σ2σ3 trivector or pseudoscalar of Gn

λ, µ scalars or 0-grade geometric object
a, b vectors or 1-grade geometric object
B bivector or 2-grade geometric object
J pseudoscalar or n-grade geometric object
M̃ generic multivector
Π̃ generalized Poynting multivector (GPM)
P̃ Poynting multivector (PM)
D̃ Complementary Poynting multivector (CPM)
Ẽ electric field geometric phasor
H̃ magnetic field geometric phasor
� generalized geometric product
· inner product
∧ outer product
j imaginary unit
∗ conjugated operation
† reverse operation
~ multivector characterization
Up p-th harmonic voltage rms value
Iq q-th harmonic current rms value
P active power or real part of 0-grade power multivector
Q reactive power or imaginary part of 0-grade power multivector
D distortion power or 2-grade power
S̃ power multivector∣∣∣∣∣∣S̃∣∣∣∣∣∣, S apparent power multivector

ωp p-th harmonic frequency
αp phase angle of p-th voltage geometric phasor
βq phase angle of q-th current geometric phasor
φq q-th impedance phase angle
ξ̃ electromagnetic quality index multivector (EQI)
PF power factor
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