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Abstract: A feasibility study of an experimental setup for the irradiation of biological samples at
the cyclotron facility installed at the National Centre of Accelerators (Seville, Spain) is presented.
This cyclotron, which counts on an external beam line for interdisciplinary research purposes,
produces an 18 MeV proton beam, which is suitable for the irradiation of mono-layer cultures for the
measurement of proton cell damages and Relative Biological Effectiveness (RBE) at energies below the
beam nominal value. Measurements of this kind are of interest for proton therapy, since the variation
of proton RBE at the distal edge of the Bragg curve may have implications in clinical proton therapy
treatments. In the following, the characteristics of the beam line and the solutions implemented for
the irradiation of biological samples are described. When dealing with the irradiation of cell cultures,
low beam intensities and broad homogeneous irradiation fields are required, in order to assure
that all the cells receive the same dose with a suitable dose rate. At the cyclotron, these constraints
have been achieved by completely defocusing the beam, intercepting the beam path with tungsten
scattering foils and varying the exit-window-to-sample distance. The properties of the proton beam
thus obtained have been analysed and compared with Monte Carlo simulations. The results of this
comparison, as well as the experimental measurement of the lateral dose profiles expected at the
position of samples are presented. Meaningful dose rates of about 2-3 Gy /min have been obtained.
Homogeneous lateral dose profiles, with maximum deviations of 5%, have been measured at a
distance of approximately 50 cm in air from the exit window, placing a tungsten scattering foil of
200 pm in the beam path.

Keywords: proton beams; beam characterization; radiochromic films; radiobiology; dosimetry;
IBA cyclotron

1. Introduction

Among charged hadron therapy techniques, proton therapy has become the most largely used
thanks essentially to (1) its proved potential to better spare normal tissue if compared to conventional
radiotherapy with photons (i.e., higher spatial dose conformity) and (2) the reduction of costs related
to equipment acquisition and operation produced during the last decades, as compared to heavier ion
beams. In addition, the dose delivered downstream the Bragg peak by proton beams is much lower
than that delivered by heavier ion beams, due to the lower amount of nuclear fragments produced by
protons along the beam path.
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Currently, in clinical practice, it is assumed that proton beams are 10% more efficient than clinical
photon beams as for cell-killing effectiveness [1]; in other words, the Relative Biological Effectiveness
(RBE) of clinical protons is considered to have a constant value of 1.1. The use of a constant RBE within
every tissue and at each position of the spread-out Bragg peak of a proton beam is an approximation
justified by the fact that the available biological data are insufficient to support the implementation of
other proposed approaches in a clinical environment [2,3]. However, there are many works suggesting
that proton RBE depends on various factors, including tissue type, biological endpoint, dose and
radiation quality, and which varies towards the distal Bragg peak region, increasing with Linear
Energy Transfer (LET) [4-6]. Furthermore, it has been claimed that ignoring the variations in RBE
along the proton beam may have important clinical consequences [7], which make studies of RBE
highly relevant.

Thus, radiobiological experiments with protons at energies typically found at the Bragg peak
region of clinical beams (roughly below 40 MeV) are of interest. Ideally, such a work must be carried out
at a facility providing proton beams with nominal energy below the limit mentioned, so that straggling
due to passive degradation (widening the beam spectrum) is minimized. Frequently, these facilities
were not projected for these type of experiments, thus optimization work is often needed [8-11].

At the National Centre of Accelerators (CNA, Seville, Spain), beam lines of this kind are available
at the 3MV tandem (Pelletron 9SDH-2 model) and at the cyclotron (Cyclone 18/9 model) facilities,
which can be adapted to allow reliable measurements and irradiations of mono-layer cell cultures
at low proton energies, avoiding the inevitable uncertainties arising from the use of thick layers of
degrading material. A setup for mono-layer cell culture irradiation at the tandem has already been
proposed [12]. In this paper, the feasibility study of such a setup at the cyclotron is shown, focusing on
the procedures to obtain the best irradiation conditions for radiobiological measurements and on the
analysis of the beam characteristics by means of Monte Carlo simulations.

2. Materials and Methods

The cyclotron installed at the CNA in Seville is a Cyclone 18/9 from the IBA company (Ion Beam
Applications, Louvain-La-Neuve, Belgium), which accelerates protons and deuterons up to 18 and
9MeV, respectively. This cyclotron, mainly used for the production of short half-life radioisotopes for
Positron Emission Tomography (PET), is equipped with an external beam line for interdisciplinary
research. In the following, we provide comprehensive information about the proton beam achieved
for the purpose of radiobiological measurements, following the characteristics of the experimental
beam line and the solutions implemented to define a diagnostics scheme for the irradiation of
biological samples.

2.1. Beam Line

The 18 MeV proton beam, produced by the cyclotron, proceeds horizontally to the experimental
room via the beam transport system, consisting of a variable graphite slit, an XY magnetic steerer,
a quadrupole doublet and a quadrupole singlet. A two meter thick concrete wall, through which a
stainless steel vacuum pipe transports the beam, separates the cyclotron bunker from the experimental
room, where the beam is finally extracted in air. This section of the beam line can be isolated by
means of a pneumatic valve and contains the following elements: a circular water-cooled Aluminium
fixed collimator of 15 mm diameter, a pumping station and a retractable graphite Faraday cup for the
measurement of current, covered with a phosphor scintillator (ZnS-Ag) to observe the beam shape
and size by means of a video camera. Mounted on the exit flange, there is a 15 mm diameter graphite
collimator, separated by one meter from the fixed collimator, to which a thin Mylar window is attached.
A schematic representation of the beam line is shown in Figure 1.
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Figure 1. Layout of the external beam line.

Given the spatial configuration of the CNA cyclotron experimental beam line and the proton
nominal energy, irradiation of cells should be performed with mono-layer cultures placed with vertical
orientation in Petri dishes, as the range in water of the nominal proton beam is lower than 4 mm.
Different solutions can be implemented for the preparation and irradiation of the samples. On the one
side, a system similar to the one described in [13] could be developed, with the seeded Petri dishes
vertically inserted in a magazine filled with medium and extracted only for the time of irradiation.
On the other side, customized Petri dishes, as those described in [14] or commercial ones, with an
ultra-thin base for the cells to be attached, could be used, filling them with medium and irradiating
them from behind. Following the characteristics of the cyclotron beam line, there are some major
requirements to be taken into account when it comes to the irradiation of biological samples:

1. beam intensity of the order of tens of pA impinging on the sample, to control properly the fluence
within suitable irradiation time scales;

2. broad irradiation field, of the order of few square centimetres to cover the whole sample area;

3. homogeneous beam profile over the sample surface, in both energy and spatial distributions.

To reach beam currents of the order of tens of pA on the sample, the beam intensity produced
by the cyclotron has to be decreased. Therefore, the decision of using a completely defocused beam
was made, turning off all the magnets for beam optics and lowering as much as possible the extracted
beam current. With this arrangement, the beam current measured in the Faraday cup is of the order
of hundreds of pA, too high to meet the constraints for the irradiation of biological samples. Thus,
the beam needs to be further scattered downstream the exit window. This, and the broadening of the
irradiation field, is achieved by (1) placing tungsten foils of different thickness immediately after the
exit window and (2) changing the amount of air between the window and the sample position.

Beam Characteristics and Monte Carlo Simulations

The cyclotron external beam line counts only on Faraday cups for beam diagnostics and, given
the limited space available in the experimental room (approximately two meters from the exit window
to the wall), the insertion of new elements for diagnostics extending the length of the beam line
would not be easy. Furthermore, the necessity to turn off all the magnets, makes it difficult to control
the beam optics and to determine the position of the maximum of the beam intensity. Therefore,
information about the beam characteristics must be derived from measurements of beam profiles in air
and compared with Monte Carlo simulations.

Firstly, the shape of the beam has been measured directly after the exit window, using Gafchromic
EBTS3 type films. As shown in Figure 2, the beam spot is approximately elliptical, with main axes of
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15 and 12 mm respectively, and the beam profile is asymmetric. These features are related to the inner
characteristics of the beam coming from the cyclotron, since, without focusing elements, the beam
presents some deviations with respect to the beam line axis. Measurements, however, are not affected
by this initial non-uniformity because multiple Coulomb scattering happening both in air and in
tungsten scattering foils blurs its effect at the sample position, approximately placed at a distance of
50 cm from the exit window.
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Figure 2. (a) EBT3 film mounted for the measurement of beam shape directly after the exit window;
(b) EBT3 film showing beam shape; (c) profile of the beam taken along the “a” axis: the colour value of
each pixel is plotted versus its position along the profile chosen. The lateral dimension of the beam at
FWHM (Full Width at Half Maximum) is approximately equal to 15 mm, which corresponds to the
dimension of the graphite collimator.

Taking into account the shape of the beam shown in Figure 2 and considering the dimensions of
the two collimators mounted inside the beam line and their distance, it is possible to infer the initial
characteristics of the beam, to be implemented in Monte Carlo simulations and lately matched with
experimental data [11]. Simulations have been performed with the SRIM (The Stopping and Range
of Ions in Matter) code [15], using the SRIM Supporting Software Module [16] to produce a realistic
proton beam. The energy of the beam has been set equal to the nominal one, 18 MeV, with a standard
deviation of 1% from the mean value and Gaussian distribution. For the lateral shape of the beam and
angular spread of the beam, uncorrelated Gaussian distributions with standard deviations of 5 mm
and 6 mrad, respectively, have been considered.

2.2. Experimental Setup

The setup for the irradiation of biological samples, depicted in Figure 3, is similar to the one
described in [12]. An external holder is placed at a distance of approximately 50 cm from the exit
window, housing an ionization chamber (IC) to measure the charge produced by the proton beam.
This chamber, fabricated at the GSI laboratory, is made of three thin parallel kapton electrodes, 7.5 pm
thick, with two air gaps of 6.75mm thickness in between, operates at 400 V and is connected to a
PTW electrometer for charge readout. The holder is made of two Polymethylmethacrylate (PMMA)
supports, having each a circular collimator with a diameter of 35mm and a thickness of 1cm; the
ionization chamber is placed between them. The dimensions of these collimators have been chosen to
fit the actual dimension of standard Petri dishes for cell culture, which can be mounted on the rear of
the second PMMA support. This position is also used to measure beam profiles and make dosimetric
studies by means of Gafchromic EBT3 type films. Finally, the whole setup is mounted on a moving
table with millimetric precision, which can be moved remotely from the control room. To summarize,
Table 1 collects a list of all the materials traversed by the proton beam and their thickness.
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Figure 3. Picture of the experimental setup. An ionization chamber is placed between two PMMA
supports on a moving table. A piece of Gafchromic EBT3 film is attached to the rear of the second PMMA
support, after a circular collimator. The beam, coming from the front, traverses a tungsten scattering
foil of variable thickness and approximately 50 cm of air, before reaching the ionization chamber.

Table 1. Material and thickness of the experimental setup components traversed by the proton beam.
The column “order” indicates the sequence in which the layers of material are placed.

Element Material Order Thickness
Exit window Mylar 1 125 um
Scattering Foil Tungsten 2 50-250 pm
Window-sample distance Air 3 50cm
IC-Electrode Kapton 4,6,8 7.5 um
IC-Active volumes Air 5,7 6.75 mm
EBTS3 film substrate Polystyrene 9,11 125 um
EBTS3 film active layer Lucite 10 28 um

2.3. Gafchromic EBT3 Films

Radiochromic films, such as Gafchromic EBT3, are widely used for quality assurance measurements
in radiation therapy, thanks to their high spatial resolution and their quasi water equivalence [17]. These
films are mainly used for photon dosimetry because their response is independent on the energy of the
incident clinical photons. This is not true in the case of proton irradiation, where an energy dependence
emerges if the highly ionizing region of the Bragg peak falls inside the active layer of the film [18-20].
However, several studies have been done to evaluate the importance of this effect, and the use of
Gafchromic films in proton dosimetry is well documented [21,22]. EBT3 type films are made of a single
28 um thick active layer, mounted between two 125 um thick polyester substrates. Under exposure
to ionizing radiation, a polymerization reaction occurs within the active layer of the film, developing
a blue colour dye. The subsequent change in optical density (OD) is correlated to the dose, and can
be determined by a flatbed scanner. EBT3 films are self-developing films, and do not require post
exposure processing. The full colour development of EBT3 films is usually very rapid, occurring in a
few milliseconds. However, some chemical processes require more time, minutes and even hours, after
irradiation, to reach completion. Therefore, a time window of 24 h between irradiation and scanning is
usually recommended [23]. The film scanning must be performed in transmission mode, always in the
same direction.

In this work, an Epson Perfection V700 photo scanner (Suwa, Nagano, Japan) has been used.
Films have been loaded in 48-bit colour mode, without any image correction, and scan resolution of
75 dpi. Digitized films have been saved using uncompressed tagged image file format (tiff) to be lately
analysed with Image]J (Image processing and analysis in Java), a public domain software for image
processing.

The response of radiochromic films to irradiation is commonly expressed in terms of the net
optical density (netOD), obtained for each RGB colour channel (Red, Green and Blue) as:
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I
netOD = —log,, I’ 1

where [ is the colour value of an irradiated pixel and Iy corresponds to a non-irradiated one. Among
the three channels, the red colour channel presents the highest dose sensitivity.

2.3.1. Calibration

In order to relate the optical density to the dose deposited in the active layer of the EBT3 film,
a calibration curve can be constructed. The dose deposited in the active layer (Dar) of the film, can
be evaluated from the proton fluence ¢ measured with the ionization chamber, by means of the
following formula:

dE [MeV 1 [cm?
= _7 - —_— . _2 . —_ —

Dat [Gy] = 1.6 x 10 dx[cm] <p[cm } p[mg}, )
where dE/dx is the mean stopping power in the active layer material (Lucite), and p is its density
(1.2g/cm?). The proton fluence through the ionization chamber can be obtained from the charge
output of the ionization chamber as follows:

9 1 _»] Q[nC|-WleV
ol =5 o) SRR ®
where A is the area of the PMMA collimator placed upstream the ionization chamber, Q is the charge
collected by the ionization chamber and read with the electrometer, W = 34 eV is the ionization
potential of the gas contained in the active layers of the ionization chamber, Egep, is the mean energy
deposited by individual protons in the ionization chamber and e is the elementary charge in nC.
The computation of the dose is done under the assumption that the proton fluence does not vary in the
area of the sample, for which the achievement of a homogeneous and uniform beam profile is essential.
To compute Egep, in the ionization chamber and dE/dx in the active layer of the film, the SRIM Monte
Carlo code can be used, implementing the geometry of the experimental setup and setting the origin
of the true beam immediately before the exit window.

3. Results

Following the method described in Section 2.3.1, a calibration curve has been built in the range
1-20 Gy. To this end, rectangular pieces of EBT3 film, cut from the same sheet and positioned with the
same orientation with respect to the beam direction, were attached to the rear of the second PMMA
support, immediately after the ionization chamber and the 35 mm diameter collimator (see Figure 3)
and irradiated with different doses. Measurements were done at a distance of approximately 50 cm
from the exit window with two different tungsten scattering foils: one of 150 um thickness, resulting
in a mean kinetic energy of the proton beam at the sample position of 10.7 MeV, and the other of
200 um thickness, resulting in an mean kinetic energy at the sample position of 8.8 MeV. With the
200 um thickness scattering foil, only the range from 1 to 5 Gy was covered. Irradiations took from
10 s to 6 min, with a dose rate of about 2-3 Gy/min.

As emerges from Figure 4a, the colour level of the irradiated area is not perfectly uniform, showing
deviations from homogeneity that can be up to 10% in the worst cases. This factor has been taken into
account in the calibration, where the largest uncertainty in the optical density of single data points
derives from the inhomogeneity of the proton beam profile. To compute the optical density for each
irradiated EBT3 piece, the mean color value inside a circular area (the same for every piece) of the
irradiated region has been taken, and related to the colour value in the same area for a non-irradiated
piece of the EBT3 film sheet, as shown in Figure 4b,c.
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Figure 4. (a) colour level profile and (b) irradiated area of a piece of EBT3 film irradiated during
approximately six minutes. The optical density associated with this piece of film is computed using
Equation (1), where I is the mean color value inside the yellow circular region in (b) and Ij is the mean
color value inside the same region in (c), which is a piece of non-irradiated film from the same sheet.
A maximum deviation from the mean value of 4% is observed in the yellow region in (b).

The dose has been computed as stated in Section 2.3.1, using the SRIM Monte Carlo code to obtain
the values of Eqep and dE/dx to be used in Equations (3) and (2). The distributions of Egep, and the
track-averaged distribution of dE/pdx, for the two energies considered, are shown in Figure 5, while
their mean values are listed in Table 2.
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Figure 5. (a) distribution of energy deposited per individual proton track (E4ep) in the ionization
chamber and (b) track-averaged spectrum of dE/pdx in the active layer of the film for the 10.7 MeV
proton beam; (c,d) are the same to (a,b) for the 8.8 MeV proton beam. The red curves are the Gaussian
fits of the simulation results (black markers). Mean values and uncertainties of the Gaussian fits are
reported in Table 2. The referred proton beams were obtained after degradation in air and tungsten
foils (see main text for details).
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Table 2. Mean values and associated errors obtained from a Gaussian fit of the distributions shown in
Figure 5. Energy refers to the mean energy impinging on the active layer of the film, after degradation in
tungsten foils and air. Egep, and dE/pdx are, respectively, the mean energy deposited in the ionization
chamber and the mean value of the track-averaged stopping power in the active layer of the film.

Energy of Protons Energy Deposited in Track-Averaged Stopping Power
Impinging on the Active the Ionization Chamber  in the Active Layer of the Film
Layer of the Film (Egep [keV]) (dE/pdx [MeVem?/mg))
10.7 MeV 58.18 £0.08 (4.332 £0.002) x 1072
8.8 MeV 67.1+£0.1 (5.105 £ 0.003) x 102

The calibration curves for the three colour channels, plotting the dose against netOD, are shown
in Figure 6. These curves have been fitted according to Equation (4), as suggested in literature [24],

D = a-netOD + b - netOD¢, 4)

where 4, b, and c are the fitting parameters; the second term accounts for the nonlinear nonlinearity
of the dose response at high doses, and values of the parameter ¢ vary between 1 and 3 (see Table 3).
As emerges from Figure 6, the response of the blue channel does not show a strong dose dependence,
while responses in the red and green channel are highly dose dependent. In the following, only the red
channel will be considered, as it presents the largest sensitivity against dose.
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Figure 6. EBT3 calibration curves for two incident proton energies. The lines represent a fit to the two

data sets, for each one of the colour channels.

Table 3. Results obtained for the parameters of Equation (4) from the fit of the data in Figure 6 for the
three colour channels. For the blue channel, parameter a has been fixed equal to zero.

Parameter Red Channel Green Channel Blue Channel

a [Gy] 12+2 18+7 0
b [Gy] 60 £ 20 40£10 100 =20
c 27+£05 1.9+0.8 1.3+0.1
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The calibration curve shown in Figure 6 can be used to scale colour profiles, measured in different

conditions, to dose. This has been done to check the validity of the Monte Carlo simulation, using the
following experimental configurations to irradiate full EBT3 films:

1.

48 cm of air between the exit window and the film, corresponding to a mean energy at the active
volume of 15.6 MeV;

63 cm of air between the exit window and the film, corresponding to a mean energy of 15.1 MeV;
50 um thick tungsten foil attached to the exit window and 48 cm of air between the window and
the film, corresponding to a mean energy of 14.2 MeV;

50 um thick tungsten foil attached to the exit window and 63 cm of air between the window and
the film, corresponding to a mean energy of 13.7 MeV;

The result of the comparison between the Monte Carlo simulation and the measured lateral dose

profiles is shown in Figure 7. When no tungsten foil intercepts the beam path, the widths of Monte
Carlo profiles are 5% larger than measured ones. On the other hand, when the tungsten foils intercept
the beam, Monte Carlo profiles appear to underestimate the width of the experimental ones, being
around 12% smaller. As shown in Figure 8, no variation of the kinetic energy profile of the incident
protons is expected off-axis, meaning that the dE/pdx distribution can be considered to be the same
for all the points in the same transverse plane.

100

—SRIM 1001—sRim A
DATA DATA
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Figure 7. Lateral dose profiles measured (green) and simulated (blue) at different irradiation conditions;
the energy value stands for the mean energy at the active volume of the EBT3 film. (a) 15.6 MeV:
FWHMSRIM = 16.3mm and FWHMDATA = 15.5mm. (b) 15.1 MeV: FWHMSRIM = 19.3mm and
FWHMpara = 183mm. (c) 14.2MeV: FWHMgrimy = 42.6mm and FWHMpara = 48.5mm.
(d) 13.7MeV: FWHMSRIM = 54.6 mm and FWHMDATA = 629 mm.
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Figure 8. Example of simulated kinetic energy profile off-axis as a function of the radial distance,

integrated over all directions contained in the scoring plane. The kinetic energy of the protons

impinging on the active layer of the film is plotted against the distance of their interaction point

from the beam axis in the transverse plane. Both plots represented here have been obtained for a

distance between the exit window and the film of 63 cm, without (a) and with (b) a 50 um tungsten

scattering foil.

Finally, full lateral dose profiles have been measured at the position of the samples (approximately
50 cm from the exit window) with the 150 pm and 200 pm thick tungsten scattering foils, in order to
obtain an evaluation of the deviations from dose homogeneity expectable during cell irradiations.
An example of this profiles is shown in Figure 9a. Since cell samples are meant to be placed in Petri
dishes of 35 mm diameter just after the PMMA collimator, a zoom of the profiles in the central 35 mm
is plotted in Figure 9b. Maximum deviations from the central dose of 8% and 5% have been measured
for the 150 pm and 200 um thick tungsten scattering foils, respectively.

100|4-10.7 MeV
8.8 MeV

distance (mm)

@)

P
50

dose (%
8

+-10.7 MeV
8.8 MeV

distance (mm)

(b)

Figure 9. (a) comparison of full dose profiles obtained with a 150 um thick tungsten foil (red squares),

corresponding to a mean energy of 10.7 MeV at the film active volume, and with a 200 um thick

foil (yellow dots), corresponding to a mean energy of 8.8 MeV; (b) zoom of the same profiles in the

region where samples are meant to be placed, after the PMMA circular collimator of 35 mm diameter.

Deviations from the maximum dose of 8% and 5% are observed for the 10.7 MeV and 8.8 MeV incident

beams, respectively.

4. Discussion

An experimental setup for the irradiation of mono-layer cell samples at the 18 MeV cyclotron

facility installed at the CNA has been presented. The main advantage of using an 18 MeV beam relies in
the possibility of achieving proton energies corresponding to the Bragg peak region of a clinical proton
beam with much lower energy spread. However, the range of applicability of such a beam is mostly
limited to experiments with mono-layer cell cultures, for which the energy and the stopping power of
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protons reaching the cells can be calculated accurately. For floating cell cultures, one would have to
take into account the beam energy degradation along the cell culture itself, introducing uncertainties
due to the high variability of the stopping power in depth within the sample. Moreover, an additional
source of uncertainty would arise from the imprecise knowledge of the position of the floating cells in
the aqueous medium, which is important for an accurate calculation of the beam energy degradation.

The beam intensity has been decreased by lowering as much as possible the extraction current
and by turning off all the magnets for beam optics. A further decrease in the beam intensity, as well
as a broadening of the beam profile, has been achieved by intercepting the beam path with tungsten
scattering foils of different thickness. An ionization chamber has been used to measure beam currents
of the order of tens of pA in the position of cell sample (at a distance of approximately 50 cm from the
exit window), corresponding to dose rates of about 2-3 Gy /min. Dose rates of this kind are clinically
meaningful and highly recommended for radiobiological experiments [10].

The characteristics of the beam profile have been studied with Gafchromic EBT3 films in different
irradiation conditions. As a first step, pieces of EBT3 film from the same sheet have been irradiated
to various absorbed dose values and with different irradiation setups, one using a 150 pm tungsten
degrader, with which the proton beam irradiates the EBT3 active volume with a mean energy of
10.7 MeV, and another using a 200 um tungsten degrader, producing a mean energy of 8.8 MeV at the
same position. A calibration curve for EBT3 films, plotting the dose against the net optical density,
has been constructed under the assumption of proton fluence homogeneity in the irradiated area.
Deviations from homogeneity of the incident proton fluence have been accounted for in the horizontal
error bars of the calibration curve (see Figure 6).

The calibration curve has been used to compare experimental profiles with simulated ones, in order to
validate the Monte Carlo simulation and check the goodness of the initial beam parameters. Furthermore,
a simulation has been done to assure that no variation of the beam energy profile, and therefore of the
radiation quality, occurs at increasing distances from the beam axis. The simulation reproduces quite
well experimental lateral dose profiles obtained without tungsten scattering foils intercepting the beam
path, with differences around 5% in the width of the lateral dose distributions. However, for lower beam
energies, when tungsten foils are inserted in the beam path, differences between Monte Carlo simulations
and experimental results increase, the simulated widths 12% being smaller than the experimental ones.
An explanation of this behaviour may be found in the error associated with the thickness of tungsten
foils, which is around 10% as stated by the manufacturer. A study of the influence of this uncertainty in
Monte Carlo simulations is currently ongoing. On the other hand, a systematic optimization of the initial
beam parameters, as suggested in [11], could help improve Monte Carlo results. Finally, the source of
the differences between Monte Carlo simulations and the experimental results may also arise from the
physical models implemented in SRIM to reproduce lateral straggling. Therefore, Monte Carlo simulations
with the Geant4 Monte Carlo toolkit [25-27] will be conducted, in order to compare the resulting outputs.

Full lateral dose profiles have been measured to evaluate the expected dose homogeneity with
the proposed cell irradiation experimental conditions, which corresponds to a beam degraded with
tungsten scattering foils of thickness equal or greater than 150 pym and to a distance in air from the
exit window of approximately 50 cm. These conditions are necessary to ensure an irradiation field
broad enough to cover the whole sample having a circular area of 35 mm diameter, and could be
improved by inserting scattering foils inside the vacuum pipe, at a greater distance from the samples.
However, maximum deviations of the order of 8% have already been achieved for the worst case
(150 um thickness), a result which is comparable with the ones obtained for the same purpose at similar
facilities [8,9,11,12].
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