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FINITE MONODROMY OF SOME FAMILIES OF EXPONENTIAL

SUMS

ANTONIO ROJAS-LEÓN

Abstract. Given a prime p and an integer d > 1, we give a numerical criterion
to decide whether the ℓ-adic sheaf associated to the one-parameter exponential
sums t 7→

∑
x ψ(x

d + tx) over Fp has finite monodromy or not, and work out
some explicit cases where this is computable.

1. Introduction

Consider the affine line A1
k over a finite field k of characteristic p > 0. Let ℓ 6= p

be a prime, and F al ℓ-adic sheaf on A1
k of rank n, which can be regarded as a

continuous representation

ρ : π1(A
1
k, η̄) → GL(n, Q̄ℓ)

where η̄ is a geometric generic point of A1
k. The arithmetic and geometric mon-

odromy groups Garith and Ggeom of F are defined to be the Zariski closures of the
images of ρ (resp. of its subgroup π1(A

1
k̄
, η̄)). According to [Del80] (see [Kat88,

Chapter 3] for a more explicit statement), under certain conditions (which are usu-
ally fulfilled after taking a Tate twist of F), these groups govern the distribution
of the Frobenius traces of the sheaf F : more precisely, if Ggeom = Garith, the
Frobenius traces are equidistributed as the traces of random elements of a maximal
compact subgroup of Ggeom as #k grows.

These groups also determine the asymptotic values of the higher moments asso-
ciated to the trace function of F , which are related to the dimension of the invariant
subspaces of certain tensor powers of the given representation of Ggeom via ρ. See
[Kat05] for a detailed exposition of the topic.

In this article we will be concerned with a special class of sheaves, which are
a subset of the class of so-called Airy sheaves, smooth sheaves on A1

k of rank n
with a single slope n+1

n at infinity, which can also be characterized as the Fourier
transform of smooth sheaves of rank 1 with slope > 1 at infinity. The monodromy
of these sheaves was extensively studied by O. Šuch in [Šuc00], who gave a full
classification of their possible non-finite monodromy groups [Šuc00, Propositions
11.6, 11.7].

Let d ≥ 2 be a prime to p integer. Let k = Fq and let ψ : k → C be the additive
character given by ψ(t) = exp(2πit/p). Let [d] : A1

k → A1
k be the d-th power map,

and Lψ(td) = [d]∗Lψ the pull-back of the Artin-Schreier sheaf Lψ on A1
k associated

to ψ. It is a smooth sheaf on A1
k of rank 1, with slope d at infinity. Its Fourier

transform Fd is then a smooth Airy sheaf on A1
k of rank d − 1 with a single slope
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2 ANTONIO ROJAS-LEÓN

d
d−1 at infinity. The Frobenius trace of Fd at a point t ∈ k is given (up to sign) by

∑

x∈k

ψ(xd + tx).

The main goal of this article is giving a numerical criterion to determine whether
the geometric monodromy (and therefore the arithmetic one after a suitable Tate
twist) of Fd is finite. This is done in Proposition 1, and some specific cases are
worked out explicitly in section 4. Moreover we show that, in the case where the
monodromy is not finite, the given representation of the monodromy group is Lie
irreducible, which allows to completely determine the arithmetic and geometric
monodromy groups via the results in [Šuc00].

The most important case for applications is p = 2. In that case, we show that the
monodromy of Fd is finite for d of the form 2a+1 or 2a+1

2b+1
, and we conjecture that

these are the only cases where the monodromy is finite. This case is important for
its relation with almost perfect nonlinear functions. If the monodromy is not finite,
then both Ggeom andGarith are the full symplectic group Sp(d−1,C). In particular,
the (arithmetic) fourth moment of the trace function of Fd is 3. But this fourth
moment can be computed explicitly, and it is equal to the number of (absolute)
irreducible components of the polynomial xd + yd + zd + (x + y + z)d ∈ k[x, y, z]
minus one. So, if Fd does not have finite monodromy, the polynomial

xd + yd + zd + (x + y + z)d

(x+ y)(x+ z)(y + z)

is absolutely irreducible. By [AMR10] this implies that the function f(x) = xd is
not almost perfect nonlinear on F2n for any sufficiently large n. This gives a new
algebro-geometric approach to the study of such problems.

The author would like to thank Daqing Wan for bringing this problem to his
attention.

2. A numerical criterion for the finiteness of the monodromy of Fd
Let k = Fp and Fd be as in the introduction, with d ≥ 3 prime to p. We want

to determine the values of (p, d) such that Fd has finite geometric monodromy.

Lemma 1. The determinant of the Tate-twisted sheaf Fd(1) is geometrically trivial

and arithmetically of finite order.

Proof. The determinant detFd(1) is a smooth rank one sheaf on A1
k, which is

geometrically trivial by [Kat87, Theorem 17]. So it is of the form αdeg for some
ℓ-adic unit α. Then detFd(1) will be arithmetically of finite order over A1

k if and
only if α is a root of unity. In order to prove this, we will explicitely evaluate the
action of Frobenius on detFd(1) at t = 0, which is equal to α. By replacing k with
a finite extension if necessary, we may assume that d|q − 1, where q = #k.

Let r ≥ 1, and let kr be the extension of k of degree r inside a fixed algebraic
closure k̄. The trace of the action of Frobenius on Fd(1) at t = 0 ∈ kr is given by

1

qr/2

∑

x∈kr

ψr(x
d)

where ψr(x) = ψ(Trkr/Fp
(x)). We have

Sr :=
∑

x∈kr

ψr(x
d) =

∑

u∈kr

ψr(u) ·#{xd = u} =
∑

u∈kr

ψr(u)
∑

χd=1

χ(u)

where the inner sum is taken over the set of multiplicative characters of kr with
trivial d-th power. Since d|q − 1, every such character is obtained, by composition
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with the norm map, from one such multiplicative character of k. Then we have
∑

u∈kr

ψr(u)
∑

χd=1

χ(u) =
∑

χd=1

∑

u∈kr

ψr(u)χ(u) = −
∑

χ6=1;χd=1

G(ψr , χ)

where

G(ψr , χ) = −
∑

u∈k′r

ψr(u)χ(u)

is the Gauss sum associated to χ. Using the Hasse-Davenport relation G(ψr , χ) =
G(ψ1, χ)

r, we deduce

exp
∑

r≥1

Sr
T r

r
= exp


−

∑

r≥1

∑

χ6=1;χd=1

(G(ψ1, χ)T )
r

r


 =

=
∏

χ6=1;χd=1

exp


−

∑

r≥1

(G(ψ1, χ)T )
r

r


 =

∏

χ6=1;χd=1

(1−G(ψ1, χ)T )

So the Frobenius eigenvalues at t = 0 ∈ k are G(ψ1, χ) for the d− 1 non-trivial
multiplicative characters χ of k such that χd = 1. The determinant is then the
product of these Gauss sums. Using the well-known relation G(ψ1, χ)G(ψ1, χ

−1) =
χ(−1)q we see that this product is ±q(d−1)/2 if d is odd, or ±q(d−2)/2G(ψ1, ρ) if d
is even, where in the latter case ρ denotes the unique order 2 multiplicative char-
acter. Since G(ψ1, ρ)

2 = G(ψ1, ρ)G(ψ1, ρ
−1) = ρ(−1)q, in both cases the product

is q(d−1)/2 times a root of unity. So Frobenius acts on detFd(1) = (detFd)(d − 1)
by multiplication by a root of unity. �

The following corollary is simply a restatement of [Kat90, Theorem 8.14.4]:

Corollary 1. The sheaf Fd(1) has finite arithmetic monodromy if and only if it

has finite geometric monodromy, if and only if for every finite extension kr of k
and every t ∈ kr, the trace of the action of Frobenius on Fd(1) at t is an algebraic

integer.

The last condition is equivalent to the trace of the action of Frobenius on Fd
being a multiple of

√
q as an algebraic integer. Let us spell out what this means

explicitely:

Corollary 2. The sheaf Fd has finite geometric monodromy if and only if for every

r ≥ 1 and every t ∈ kr,
∑

x∈kr
ψr(x

d+tx) is divisible by pr/2 as an algebraic integer.

For our purposes we will need the following equivalent statement:

Proposition 1. The sheaf Fd has finite geometric monodromy if and only if for ev-

ery r ≥ 1 the sum
∑

x∈kr
ψr(x

d) is divisible by pr/2 as an algebraic integer and, for

every non-trivial multiplicative character χ : k×r → C×, Gr(χ) ·
∑

x∈k×r
ψr(x

d)χ̄(x)

is divisible by pr/2 as an algebraic integer. It is sufficient that the condition holds

for every r which is a multiple of a certain r0 ≥ 1.

Proof. This is an explicit version of [Kat90, Theorem 8.14.6]. Suppose that for
every r ≥ 1 and every t ∈ kr,

∑
x∈kr

ψr(x
d + tx) is divisible by pr/2 as an algebraic

integer. Then, in particular,
∑
x∈kr

ψr(x
d) is divisible by pr/2. Furthermore, for

every non-trivial multiplicative character χ : k×r → C×, the sum
∑

t∈k×r

χ(t)
∑

x∈kr

ψr(x
d+tx) =

∑

x∈kr

ψr(x
d)

∑

t∈k×r

χ(t)ψr(tx) = −Gr(χ)·
∑

x∈k×r

ψr(x
d)χ̄(x)

is also divisible by pr/2.
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Conversely, if
∑

x∈k×r
ψr(x

d) is divisible by pr/2, so is
∑

t∈k×

∑

x∈k×r

ψr(x
d + tx) =

∑

t∈k

∑

x∈k×r

ψr(x
d + tx) −

∑

x∈k×r

ψr(x
d) = pr −

∑

x∈k×r

ψr(x
d)

Since
∑
t∈k×r

χ(t)
∑

x∈kr
ψr(x

d+ tx) is also divisible by pr/2 for every non-trivial

χ : k×r → C×, by Fourier inversion
∑
x∈kr

ψr(x
d + tx) is divisible by pr/2 for every

t ∈ k×r .
The last statement is a consequence of the fact that having finite geometric

monodromy is invariant under extension of scalars to a finite extension of the base
field. �

Lemma 2. Let z ∈ k×r and χ : k×r → C× be a multiplicative character. Then
∑

x|xd=z

χ(x) =
∑

η|ηd=χ

η(z).

Proof. Let z0 and χ0 be generators of the multiplicative cyclic groups k× and k̂×

respectively. Let z = za0 and χ = χb0 with 0 ≤ a, b ≤ pr−2, and let s = gcd(d, pr−1).
Then the equation xd = z (respectively ηd = χ) has solutions if and only if s|a
(resp. s|b), in which case it has exactly s solutions, given by x0z

(pr−1)i/s
0 (resp.

η0χ
(pr−1)i/s
0 ) for i = 0, 1, . . . , s− 1, where x0 (resp. η0) is a particular solution.
If s 6 |a and s 6 |b then both sides of the equation are zero. Suppose that s|a and

s 6 |b. Then
∑

x|xd=z

χ(x) =

s−1∑

i=0

χ(x0z
(pr−1)i/s
0 ) = χ(x0)

s−1∑

i=0

(
χ0(z0)

(pr−1)b/s
)i

Since χ0(z0) is a primitive (pr − 1)-th root of unity and s does not divide b,
χ0(z0)

(pr−1)b/s 6= 1, so

χ(x0)

s−1∑

i=0

(
χ0(z0)

(pr−1)b/s
)i

= χ(x0)
χ0(z0)

(pr−1)b − 1

χ0(z0)(p
r−1)b/s − 1

= 0

and the equality is true in this case. Dually, it is also true if s|a and s 6 |b.
Suppose now that s|a and s|b. Then the left hand side of the equation is

∑

x|xd=z

χ(x) = χ(x0)

s−1∑

i=0

(
χ0(z0)

(pr−1)b/s
)i

= s · χ(x0)

and the right hand side is

∑

η|ηd=χ

η(z) =

s−1∑

i=0

η0(z)χ
(pr−1)i/s
0 (z) = η0(z)

s−1∑

i=0

(
χ0(z0)

(pr−1)a/s
)i

= s · η0(z)

We conclude by noticing that

χ(x0) = ηd0(x0) = η0(x
d
0) = η0(z).

�

Using this lemma, we get
∑

x∈k×r

ψr(x
d)χ̄(x) =

∑

z∈k×r

ψr(z)
∑

xd=z

χ̄(x) =
∑

z∈k×r

ψr(z)
∑

ηd=χ

η̄(z) = −
∑

ηd=χ

Gr(η̄)

and ∑

x∈kr

ψr(x
d) = 1 +

∑

z∈k×r

ψr(z)#{x|xd = z} = 1 +
∑

z∈k×r

ψr(z)
∑

ηd=1

η(z) =
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= 1 +
∑

ηd=1

∑

z∈k×r

ψr(z)η(z) = −
∑

η 6=1,ηd=1

Gr(η)

This allows to give yet another criterion for finite monodromy:

Proposition 2. The sheaf Fd has finite geometric monodromy if and only if for

every r ≥ 1 and every non-trivial multiplicative character η : k×r → C×, the Gauss

sum Gr(η) is divisible by pr/2 if ηd is trivial, and the product Gr(η)Gr(η̄
d) is divis-

ible by pr/2 is ηd is non-trivial. It is sufficient that the condition holds for every r
which is a multiple of a certain r0 ≥ 1.

Proof. By proposition 1 and the previous remark, if these products of Gauss sums
are divisible by pr/2 then Fd has finite monodromy. Conversely, suppose that Fd
has finite monodromy. Then for every r ≥ 1 and every non-trivial χ : k×r → C×,
the sums Ar =

∑
η 6=1,ηd=1

Gr(η) and Br(χ) =
∑
ηd=χGr(χ)Gr(η̄) are divisible

by pr/2 as algebraic integers. We need to show that the individual summands are
also divisible by pr/2. By the Hasse-Davenport relation, by passing to a finite
extension of kr we may assume that d|pr − 1. Then for every m ≥ 1 there are
either 0 (in which case there is nothing to prove) or d characters η of k×rm such
that ηd = χ, which are obtained from those of k×r by composition with the norm
map. By the Hasse-Davenport relation we have that Ars = ±∑

η 6=1,ηd=1
Gr(η)

s

and Brs(χ) =
∑

ηd=χGr(χ)
sGr(η̄)

s are divisible by prs/2 as algebraic integers. The
result is then a consequence of the following lemma. �

Lemma 3. Let α1, . . . , αd be algebraic integers such that αs1 + · · ·+ αsd is divisible

by ps/2 for every s ≥ 1. Then αi is divisible by p1/2 for every i = 1, . . . , d.

Proof. This is a well known result, see eg. [Ax64]. Let K be the completion of
Q(α1, . . . , αd) on a prime over p. Since αs1 + · · ·+αsd is divisible by ps/2, the power
series

g(T ) :=

∞∑

s=0

(αs1 + · · ·+ αsd)T
s

converges for |T |p < p1/2, so all its poles x must have |x|p ≥ p1/2, that is, (p1/2x)−1

are p-adic integers. But the poles are α−1
1 , . . . , α−1

d , since

g(T ) =
1

1− α1T
+ · · ·+ 1

1− αdT
.

So (p1/2α−1
i )−1 = p−1/2αi is an algebraic integer for all i = 1, . . . , d, that is, αi is

divisible by p1/2. �

Finally we can make this more explicit thanks to Stickelberger’s theorem. Fix
r ≥ 1. For every integer 1 ≤ x ≤ pr − 1 let [x]p,r be the sum of the p-adic digits
of x. It is an integer between 1 and r(p − 1): for instance, [1]p,r = [p]p,r = 1, and
[pr − 1]p,r = r(p − 1). If x is an arbitrary integer, we define [x]p,r := [y]p,r, where
1 ≤ y ≤ pr − 1 is the unique integer such that x ≡ y (mod pr − 1).

It is easy to see from this definition that [px]p,r = [x]p,r and [−x]p,r = r(p −
1)− [x]p,r for every x ∈ Z which is not a multiple of pr − 1. If x is not a multiple
of pr − 1 we have the following well-known explicit formula for [x]p,r , where {x}
denotes the fractional part of a real number x:

[x]p,r = (p− 1)

r−1∑

i=0

{
pix

pr − 1

}
.
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Theorem 1. The sheaf Fd has finite geometric monodromy if and only if for every

r ≥ 1 and every integer 1 ≤ x ≤ pr − 2, we have

[dx]p,r ≤ [x]p,r +
r(p− 1)

2
.

It is sufficient that the condition holds for every r which is a multiple of a certain

r0 ≥ 1.

Proof. Fix r ≥ 1. The Gauss sums on k×r take values on the finite extension of Q
generated by the p(pr − 1)-th roots of unity. By the Stickelberger theorem, if ω
denotes the Teichmüller character of k×r (which generates the character group), the
p-adic valuation of the Gauss sum associated to ωj for 1 ≤ j ≤ pr − 2 is given by
1
p−1 [j]p,r.

Applying this to the criterion of Proposition 2, we get that Fd has finite mon-

odromy if and only if for every 1 ≤ j ≤ pr − 2 we have [j]p,r ≥ r(p−1)
2 if dj is

divisible by pr − 1, and [j]p,r + [−dj]p,r ≥ r(p−1)
2 otherwise.

If dj is divisible by pr − 1 this can be rewritten as

[dj]p,r = r(p− 1) ≤ [j]p,r +
r(p− 1)

2
and, if dj is not a multiple of p− 1, it is equivalent to

[dj]p,r = r(p − 1)− [−dj]p,r ≤ r(p− 1) + [j]p,r −
r(p− 1)

2
= [j]p,r +

r(p− 1)

2
.

�

For computational purposes, it is convenient to have a sufficient condition for
the monodromy of Fd to be finite. We have the following criterion, which is a
generalization of [Kat07, Lemma 13.5].

Proposition 3. For r ≥ 1 an integer, let fr : [0, 1] → R be the piecewise linear

function defined by

fr(x) =
r−1∑

i=0

{pix} +
r−1∑

i=0

{−dpix}.

Suppose that for some integer r0 ≥ 1 we have

(1) fr0(
a
d ) ≥

r0
2 for a = 1, . . . , d− 1

(2) limx→ a

pr0−1d

− fr0(x) ≥ r0
2 for a = 1, . . . , pr0−1d

Then the monodromy of Fd is finite.

Proof. Since the function fr is piecewise linear with constant negative slope and
its points of discontinuity are a

2r−1d for a = 1, . . . , pr−1d, the two conditions imply
that fr0(x) ≥ r0

2 for every x ∈ Z(p) ∩ (0, 1).
Let r be a multiple of r0, and 1 ≤ x ≤ pr − 1 an integer. Then

fr

(
x

pr − 1

)
= fr0

(
x

pr − 1

)
+ fr0

(
pr0x

pr − 1

)
+ · · ·+ fr0

(
p(r/r0−1)r0x

pr − 1

)
≥

≥ r

r0

r0
2

=
r

2
.

Then, if dx is a multiple of pr − 1,

[x]p,r = (p− 1)

r−1∑

i=0

{
pix

pr − 1

}
= (p− 1)fr

(
x

pr − 1

)
≥ (p− 1)

r

2
.

and otherwise,

[x]p,r + [−dx]p,r = (p− 1)fr

(
x

pr − 1

)
≥ (p− 1)

r

2
.
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so Fd has finite monodromy by Theorem 1. �

For instance, for p = 2, d = 5 satisfies the condition for r = 4, as one can easily
check.

3. Explicit results

In this section we will use Theorem 1 to give some explicit results. First of all,
we can recover the known fact [Kat87, Proposition 5] that, if p > 2d− 1 ≥ 5, then
the monodromy is not finite.

Corollary 3. Suppose that p ≥ 2d + 1 ≥ 7. Then Fd does not have finite mon-

odromy.

Proof. Let p = qd+r with q ≥ 2 and 1 ≤ r ≤ d. We claim that [dq]p,1 > [q]p,1+
p−1
2 ,

so Fd can not have finite monodromy by Theorem 1.
Since q < dq ≤ p− 1, [dq]p,1 = dq and [q]p,1 = q. So the inequality is equivalent

to 2(d− 1)q > p− 1 = qd+ r − 1 or, equivalently, q(d− 2) > r − 1. Now

q(d− 2) ≥ 2(d− 2) = d+ d− 4 ≥ d− 1 ≥ r − 1

with equality if and only if d = r = 3, q = 2, in which case p = 9 is not prime. �

Lemma 4. For every r ≥ 1 and x, y ∈ Z we have [x+ y]p,r ≤ [x]p,r + [y]p,r.

Proof. It suffices to prove it for 1 ≤ x, y ≤ pr − 1. First of all, it is clear that, if an
integer z ≥ 1 can be written as a sum of m powers of p, then [z]p,r ≤ m for every
r ≥ 1. Conversely, if 1 ≤ z ≤ pr−1, then z can be written as a sum of [z]p,r powers
of p.

So x (resp. y) can be written as a sum of [x]p,r (resp. [y]p,r powers of p), and
therefore x+ y can be written as a sum of [x]p,r + [y]p,r powers of p. We conclude
that [x+ y]p,r ≤ [x]p,r + [y]p,r. �

Corollary 4. Let d = pa + 1 for some integer a ≥ 1. Then Fd has finite mon-

odromy.

Proof. We need to show that [dx]p,r ≤ [x]p,r +
r(p−1)

2 for every r ≥ 1 and every

1 ≤ x ≤ pr − 2. If [x]p,r ≥ r(p−1)
2 this is obvious, since [dx]p,r ≤ r(p − 1). Suppose

that [x]p,r ≤ r(p−1)
2 . Then

[dx]p,r = [(pa + 1)x]p,r ≤ [pax]p,r + [x]p,r = 2[x]p,r ≤ [x]p,r +
r(p− 1)

2

for every 1 ≤ x ≤ pr − 2. �

Corollary 5. Let d = pa+1
pb+1

, with a > b ≥ 1. Then Fd has finite monodromy.

Proof. By lemma 4, [(pb + 1)z]p,r ≤ 2[z]p,r for every z ∈ Z. Taking z = −dx and
using that [−x]p,r = r(p− 1)− [x]p,r, we get

r(p− 1)− [(pa + 1)x]p,r = r(p− 1)− [(pb + 1)dx]p,r = [−(pb − 1)dx]p,r ≤

≤ 2[−dx]p,r = 2r(p− 1)− 2[dx]p,r ⇒

⇒ [dx]p,r ≤
r(p − 1)

2
+

1

2
[(pa + 1)x]p,r ≤ [x]p,r +

r(p − 1)

2
.

�
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Remark 1. In the situation of the previous corollary, a must be of the form bc
with c odd. Indeed, let a = bc + r with 0 ≤ r < b. Since pa + 1 is a multiple of

pb + 1, we have

0 ≡ pa + 1 = pbcpr + 1 ≡ (−1)cpr + 1(mod pb + 1).

Since |(−1)cpr + 1| < |pb +1|, we conclude that (−1)cpr = −1, that is, r = 0 and c
is odd.

In the case p = 2 we conjecture that the only cases where the monodromy is
finite are the ones covered in the previous corollaries. This has been checked to be
true computationally for d up to 10000.

Conjecture 1. Let p = 2. Then Fd has finite monodromy if and only if d has the

form 2a + 1 for some a ≥ 1 or 2a+1
2b+1

for some b ≥ 1 and a = bc with odd c ≥ 3.

4. The monodromy in the non-finite case

In this section we will completely determine the geometric monodromy group of
Fd in the case where it is infinite. By [Šuc00, Proposition 11.1], if the monodromy
is not finite, then Fd is either Lie-irreducible or Artin-Schreier induced. We will
see that the latter case is not possible.

Proposition 4. Suppose that the monodromy of Fd is not finite. Then Fd is

Lie-irreducible.

Proof. Suppose that Fd were Artin-Schreier induced. Then the proof of [Šuc00,

Proposition 11.1] shows that Fd ⊗ F̂d contains an Artin-Schreier subsheaf Lψ(at)
for some a ∈ k̄∗. That is,

Hom(Fd ⊗ F̂d,Lψ(at)) 6= 0

for some a ∈ k̄∗ or, equivalently,

H0(A1
k̄,Fd ⊗ F̂d ⊗ Lψ(at)) 6= 0

for some a ∈ k̄∗. By Poincaré duality, this is equivalent to

H2
c(A

1
k̄,Fd ⊗ F̂d ⊗ Lψ(at)) 6= 0

for some a ∈ k̄∗, since the dual of Lψ(at) is Lψ(−at).
Given that Fd = R1π!Lψ(xd+tx) and Riπ!Lψ(xd+tx) = 0 for i 6= 1, where π :

A2
k̄
→ A1

k̄
is the projection (x, t) 7→ t, the Künneth formula gives

Fd ⊗ F̂d ∼= R2σ!(Lψ(xd+tx) ⊗ Lψ(−yd−ty)) ∼= R2σ!(Lψ(xd−yd+t(x−y)))

and

Riσ!(Lψ(xd+tx) ⊗ Lψ(−yd−ty)) = 0 for i 6= 2

where σ : A2
k̄
×A1

k̄
A2
k̄
∼= A3

k̄
→ A1

k̄
is the projection (x, y, t) 7→ t. Therefore

H2
c(A

1
k̄,Fd ⊗ F̂d ⊗ Lψ(at)) ∼= H2

c(A
1
k̄,R

2σ!(Lψ(xd−yd+t(x−y)))⊗ Lψ(at)) ∼=
∼= H4

c(A
3
k̄,Lψ(xd−yd+t(x−y+a)))

by the projection formula and the Leray spectral sequence. If τ : A3
k̄
→ A2

k̄
denotes

the projection (x, y, t) 7→ (x, y), the sheaf Riτ!Lψ(t(x−y+a)) is supported on the line
y = x + a, on which it is constant of rank 1 for i = 2 and vanishes for i 6= 2, by
looking a the fibers. So

Riτ!Lψ(xd−yd+t(x−y+a))) ∼= Lψ(xd−yd) ⊗ Riτ!Lψ(t(x−y+a))
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is isomorphic to Lψ(xd−yd) on the line y = x + a for i = 2, and zero otherwise. So
we get

H4
c(A

3
k̄,Lψ(xd−yd+t(x−y+a))) ∼= H2

c(A
2
k̄,Lψ(xd−yd) ⊗ Riτ!Lψ(t(x−y+a))) ∼=

∼= H2
c({y = x+ a},Lψ(xd−yd)) ∼= H2

c(A
1
k̄,Lψ(xd−(x+a)d))

via the isomorphism {y = x+a} → A1
k̄
given by the projection on the x-coordinate.

We conclude that
Hom(Fd ⊗ F̂d,Lψ(at)) 6= 0

for some a ∈ k̄∗ if and only if

H2
c(A

1
k̄,Lψ(xd−(x+a)d)) 6= 0

for some a ∈ k̄∗. But given a polynomial f(x) ∈ k̄[x], H2
c(A

1
k̄
,Lψ(f(x))) 6= 0 if and

only if the sheaf Lψ(f(x)) is constant, which happens only when f(x) is Artin-Schrier

equivalent to a constant, that is f(x) = g(x)p − g(x) for some g(x) ∈ k̄[x].

Since xd− (x+ a)d = −∑d
i=1

(
d
i

)
aixd−i has degree ≤ d− 1, such a polynomial g

would have degree ≤ d−1
p . In particular, every monomial with non-zero coefficient

in f of degree > d−1
p would have degree a multiple of p. In other words, for every

i < d− d−1
p such that d− i is not a multiple of p, the binomial coefficient

(
d
i

)
would

be a multiple of p.
We already know that for d of the form pr +1 the monodromy of Fd is finite, so

the result is then a consequence of the following lemma �

Lemma 5. Suppose that d is not of the form pr + 1 for some r ≥ 1. Then there

exists some positive integer l < d − d−1
p such that d − l is not a multiple of p and(

d
l

)
is not a multiple of p.

Proof. Let r = ordp(d − 1). We will see that l = pr satisfies the stated conditions.
Since d− 1 is not a power of p, we have d− 1 ≥ 2pr = 2l, so

l ≤ d− 1

2
= d− d+ 1

2
< d− d− 1

2
≤ d− d− 1

p
.

Also, d− l is not a multiple of p: if r = 0 then d− l = d− 1 is not a multiple of p
by definition of r. If r > 0 then d− l = (d − 1)− l + 1 with d − 1 and l multiples

of p, so d is not a multiple of p. It remains to check that
(
d
l

)
is not a multiple of p.

That is, that ordp(d(d− 1) · · · (d− l+ 1)) = ordp((d− 1) · · · (d− l+ 1)) = ordp(l!).
In fact, we will check that ordp(d−1−j) = ordp(l−j) for every j = 0, 1, . . . , l−2.

For j = 0 it is clear by definition of l. For j ≥ 1, since j < l = pr, we have
ordp(j) < r, so ordp(l − j) = ordp(j) = ordp(d− 1− j). �

Using the results of Katz and Such, this allows to completely determine the
geometric monodromy groups in the non-finite case

Corollary 6. Let G be the geometric monodromy group of Fd. If G is not finite,

then

(1) If p = 2, then G = Spd−1.

(2) If p 6= 2 and d is odd, then G = Spd−1.

(3) If p 6= 2 and d is even, then G = SLd−1.

Proof. By Proposition 4, G is Lie-irreducible in its given representation. If p = 2,
then Fd is self-dual (as it has real Frobenius traces), so by [Šuc00, Proposition
11.7], the Lie algebra of G is either spd−1 in its standard representation or e7 in

its 56-dimensional representation. But for d = 57 = 29+1
23+1 the monodromy of Fd is

finite by Corollary 4, so we must be in the former case. So the identity component
G0 of G must be Spd−1, and therefore G = Spd−1 by self-duality of Fd.
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Suppose now that p 6= 2. By [Šuc00, Proposition 11.6], G0 is then either Spd−1

or SLd−1 in their standard representations. If d is even the former case is not
possible, so G0 = SLd−1 and G = det−1(det(G)). But by [Kat87, Theorem 17],
the determinant of Fd is geometrically trivial, so G = SLd−1. If d is odd, then Fd
is again self-dual (as it has real Frobenius traces), so by the previous argument G
must be Spd−1. �
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