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Abstract 

This paper presents a novel methodology to calculate cationdiffusion coefficients and 

activation energies in cubic Y2O3–ZrO2 by Molecular Dynamics. The calculation is 

based upon modulating the interaction potential to promote cation mobility within the 

lattice. The technique was calibrated by measuring static properties and oxygen self-

diffusion characteristics, and then applied to cationdiffusion. The respective activation 

energies and diffusion coefficients agree well with experimental findings. Preliminary 

results about grain boundary cationdiffusion are presented for the first time as a proof 

of the potentiality of the procedure. 

 

Highlights 

► Novel method for Molecular Dynamics determination of diffusion coefficients. ► 

Cationdiffusion coefficients for cubic Y2O3–ZrO2 ceramics determined. ► Comparison 

with data and physical implications of the method discussed. 
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1. Introduction 

Cubic yttria–zirconia ceramics (YSZ) are probably the most remarkable high ionic 

conductivity materials [1] and [2]. They deserve considerable attention, not only from 

a basic point of view but also because of their applications in fuel cells and oxygen 

detectors [3]. In YSZ (which has the fluorite structure, with the cations at the sites of a 

fcc lattice and the anions at the tetrahedral interstices), Zr4+ substitute Y3+ within the 
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cation sublattice, which is accompanied by the formation of one oxygen vacancy for 

each pair of Y3+cations to keep the electrical neutrality of the system. This elevated 

number of oxygen vacancies is responsible for the high ionic conductivity exhibited by 

YSZ. 

Understanding the oxygen mobility in this system is then an essential issue. Many 

works have concentrated on the bulk oxygen self-diffusion in YSZ [[4], [5], [6], [7] and 

[8]]; although the diffusion mechanism is not fully understood yet [9], this 

phenomenon is already quite well characterised. A different picture concerns 

cationdiffusion in YSZ, which affects optical and mechanical properties. Several authors 

have reported values for cationdiffusion coefficients, measured either directly [[10], 

[11] and [12]] or from high-temperature creep or dislocation loops annealing [[13], 

[14], [15] and [16]] but cationdiffusion characteristics and mechanisms are far to be 

fully characterised and understood. 

Numerical simulation has recently become a powerful tool for diffusion studies. The 

essential challenge for the calculation of cation diffusivities in YSZ is due to the very 

low probability of cation jumps in this system. To our knowledge, the only work 

dealing with the numerical study of cationdiffusion in YSZ is due to Kilo et al.[17]. They 

performed Molecular Dynamics (MD) simulations at temperatures between 2500 and 

5000 K by artificially introducing Zr4+ vacancies in the equilibrium YSZ structure. Such a 

procedure indeed enhances cation migration, which allowed the authors to calculate 

diffusion coefficients and activation energies for yttrium and zirconium, but has the 

disadvantage to use unrealistically high number of zirconium vacancies; apart from 

making necessary an extrapolation to low temperatures, such a number may well alter 

the actual diffusion mechanism. 

In this work an alternative numerical procedure for cationdiffusion analysis, inspired in 

the “Hyperdynamics” idea proposed by Voter [18], is described. This method does not 

alter the mechanism for cation migration and does not need use abnormally high 

temperatures; in addition, it is quite efficient in terms of computing time. The 

procedure has been applied to cation bulk diffusion in 8YSZ as model system, which 

yielded good agreement with the experimental findings. In addition, consistent 

calculations of grain boundary cationdiffusion coefficients are performed by the first 

time. The results are relevant because the ability to control cationdiffusion 

characteristics may help in the application-specific design of YSZ-based materials. 

 

2. Numerical procedure 

2.1. Calculation setup 
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MD simulations have been performed on a 8 mol% YSZ model system by the LAMMPS 

code [19], using a simulation box of 5 × 5 × 5 YSZ unit cells and periodic boundary 

conditions. For 8YSZ, the exact number of zirconium cations were replaced by yttrium 

ones, and the proper number of oxygen vacancies were introduced to keep the 

electroneutrality of the system, giving 426 Zr4+, 74 Y3+ and 963 O2− ions; all the 

substitutions were randomly made. Since the diffusion features may be dependent on 

the particular positions of the dopant cations, five different random configurations 

were considered; the diffusion coefficients and activation energies reported here were 

taken as the average over this five samples population. For grain-boundary diffusion, a 

bicrystal model containing a Σ5 grain boundary was built following a previous work 

[20] (cf. Fig. 1); this grain boundary was chosen because it has been extensively studied 

in the past. In this case, the size of the simulation cell was 6.424 nm × 2.409 nm × 

2.032 nm, with the longer dimension perpendicular to the plane of the grain boundary; 

these dimensions were chosen so as to be 8 times the Σ5 coincidence site lattice (CSL) 

unit cell length in the plane perpendicular to the grain boundary and 3 times this CSL 

length and 4 times the fluorite unit cell length along the axes parallel to the grain 

boundary. Each grain contained 398 Zr4+, 70 Y3+ and 901 O2− ions. Again, five 

different configurations were considered for statistical significance. 

The interaction between atoms i and j was modelled by a Buckingham potential 

coupled with a long-range Coulombic term: 

 

(1)where rij is the distance between atoms i and J, qi holds for the charge of atom i and 

ε0 is the dielectric constant. Parameters Aij, ρ and Cij were taken from the literature 

[21] and listed in Table 1. 

Each initial configuration was optimised by energy minimization followed by a short 

run (10 ps) of MD under NVE conditions at T = 0 K. After this, a temperature in the 

range 1500 K–3000 K was set; this is the usual range in diffusion experiments in YSZ 

and is low enough for the concentrations of complex defects and cation vacancies to 

be negligible. After raising the temperature and stabilising the system, MD runs were 

made for 200 ps in the NPT ensemble, with the pressure of the system at each 

temperature taken as: 

 

(2)where N is the number of atoms of the system, kB Boltzmann's constant and p0 and 

V0 the pressure and volume of each minimised supercell. 
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The mean square displacement (msd) < r2 > of each ion species was then computed as 

a function of the simulation time t, from which the diffusion coefficient was calculated 

according to the Nernst–Einstein formula [22]: 

 

For bulk diffusion, all the ions of the same species within the simulation cells were 

taken in the calculation of the msd. For grain-boundary diffusion only ions within 6 nm 

at each side of the grain boundary were considered for the calculation of the msd. 

 

2.2. Description of the method 

Without additional hypotheses, the potential given by Eq. (1) gives rise to negligible 

msd for cations, and therefore diffusivities virtually equal to zero. To overcome this 

difficulty, we multiplied the whole interaction potential by a factor a < 1. The 

deliberate weakening of the atomic bonds was expected to increase the jump 

probability for cations, which is the key point of the alternative method presented 

here. In our case, only values α ≤ 0.2 were actually used, since no cation movement 

was apparent for higher values of α. 

The cation diffusion coefficient then results to depend on α as follows [22]: 

 

where a(α) is a typical jump length (which may be taken in first approximation as the 

lattice parameter), ω(α) is the attempt frequency (of the order of the Debye 

frequency) and Q(α) holds for the activation energy for cationdiffusion. Test 

simulations showed the lattice parameter of the system to vary as a ∝ α− p, with p ≈ 

0.03. On the other hand, a calculation within the harmonic approximation shows that 

the normal frequencies of the system must be proportional to α1/2. Eq. (4) then 

reduces to: 

 

where D0 is independent on α. Eq. (5) constitutes the basis for the calculations within 

this work. Indeed, the activation energy at given α0 may be calculated from diffusion 

coefficients taken at different temperatures from an Arrhenius plot; the slope of the 

best-fit straight line is proportional to Q(α0), and extrapolation to α = 1 gives the actual 

activation energy Q. On the other hand, the diffusion coefficient at a given 

temperature may be calculated by taking α = 1 in Eq. (5), which yields: 
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where D(α0, T) is the diffusion coefficient calculated from Eq. (5) at a reference α0 

value. 

 

3. Results 

The reliability of the proposed methodology was primarily checked out by recovering 

some static properties of 8YSZ. For instance, the energy per atom of the system ε was 

found to vary linearly with α; the actual energy was ε(a = 1) = − 35.655 ± 0.009 eV, 

which correlates fairly well with data reported elsewhere [23] and [24]. In addition, we 

focused on the lattice parameter. As was pointed out before, calculations performed 

varying α at given temperatures should give rise to the function a(α), whose 

extrapolation to α = 1 yields the actual lattice parameter of the system. Fig. 2 depicts 

the lattice parameters obtained from our simulations, which are again in good 

agreement with MD calculations [25] and experimental data [26]. 

Subsequently, the validity of our treatment was investigated by applying it to oxygen 

bulk diffusion. Fig. 3 and Fig. 4 display the activation energy vs. α and diffusion 

coefficient vs. T− 1 for oxygen bulk self-diffusion, respectively. The activation energy 

fits reasonably to a lineal function of α; extrapolation to α = 1 yielded Qb(oxygen) = 

0.89 ± 0.07 eV, which correlates with experiments, simulation data and first-principles 

calculations reported elsewhere for similar temperature conditions [ [9], [11], [23], 

[25], [27], [28], [29], [30], [31], [32] and [33]]; Table 2 contains a summary of the 

published data. Analogously the diffusion coefficients shown in Fig. 4 are in good 

agreement with experimental data to within one order of magnitude, which is typical 

in the measurement of diffusion coefficients in oxide solids (cf. Fig. 5). All these tests 

were satisfactory proofs of the validity of our proposed methodology. 

Fig. 3 shows the Q(α) functions for bulk diffusion of zirconium and yttrium as well. 

Calculations could be performed up to α ≈ 0.18 before the mean square displacements 

fell to be undetectable. In both cases the data could be reasonably fitted to straight 

lines. Extrapolation to α = 1 yielded virtually the same activation energy for both cation 

species: Qb(cations) = 2.6 ± 0.1 eV. The zirconium and yttrium diffusion coefficients are 

included in Fig. 4. It must be remarked that, in all cases, the characteristics of yttrium 

diffusion (energies and diffusion coefficients) were less accurately calculated than 

those for zirconium; essentially, this is due to the fact that the number of yttrium 

cations is much lower than that of zirconium ones, which results in less defined 

averages. That is probably the reason why we do not get yttrium diffusion coefficients 

which are higher than those for zirconium. We postpone the comparison of the 

calculated data with experimental ones to the discussion section below. 

Our methodology was finally applied to the study of grain-boundary diffusion in a 

bicrystal model comprising the Σ5 grain boundary drafted in Fig. 1. Fig. 6 shows the 
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activation energies vs. α functions for grain boundary diffusion of oxygen (a), zirconium 

(b) and yttrium (c); in Fig. 7 the corresponding diffusion coefficients are plotted vs. T1. 

Oxygen grain boundary self-diffusion characteristics have been rarely reported in the 

literature; however, experimental and simulation studies have revealed that it ranges 

from 1.08 to around 1.20 eV [ [34], [35], [36], [37] and [38]], in close agreement with 

the data reported here. Regarding the values for cationdiffusion, these are actually the 

first reported ones calculated by Molecular Dynamics in the YSZ system, to the 

authors' best knowledge. 

 

4. Discussion 

The numerical study of cationdiffusion in YSZ is handicapped because of the extremely 

low jump probability exhibited by Zr4+ and Y3+cations which, in turn, may be ascribed 

to the high formation enthalpy of cation vacancies (which is estimated to be around 

2.8 eV [39]); this means that the fraction of cation vacancies in our system at 2000 K is 

of the order of 10−7, that is, virtually zero. In a recent paper, Kilo et al. [17] have 

overcome this handicap by conveniently handling the model system. First, they have 

artificially introduced well-defined concentrations of cation vacancies higher than 

those expectable by the formation enthalpies; secondly, they have used high 

temperatures (between 2700 K and 5000 K, approximately). In those conditions, the 

jump probability for cations greatly increases, and diffusion parameters (activation 

energy and diffusion coefficient) may be calculated; extrapolation to the actual 

concentration of vacancies and temperatures gives activation energies and diffusivities 

which agree well with experimental data. We are presenting here an alternative 

methodology to calculate cationdiffusion coefficients and activation energies by MD 

which does not require using artificial vacancies concentrations or extremely high 

temperatures. In addition, it is fully consistent with the well-studied oxygen diffusion 

and does not seem to show any physical incongruence. Another point favouring our 

methodology is its relative cheapness in computing time. 

Despite its success, some points remain unclear in Kilo and co-worker's procedure. One 

of them is the role played by the unrealistic concentration of cation vacancies 

employed. Indeed, the authors admit that their diffusion coefficients are much higher 

than the experimental ones extrapolated to high vacancies concentrations; in addition, 

they find that these coefficients are barely dependent on the content of yttrium, in 

contradiction with the experimental findings [12]. In our opinion, these trends arise 

because the diffusion mechanism is altered by the high concentration of cation 

vacancies; this induces a strong correlation between successive cation jumps which 

affects diffusion[9]. On the other hand, Kilo et al.'s calculations yielded apparent 

activation energy close to 4.4 eV for 8YSZ. This value made them justify an 
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exceptionally low value for the formation enthalpy of cation vacancies, contrary to the 

experimental evidence. 

Let us consider this point with a greater detail. From a microscopic point of view, 

diffusion arises as a consequence of the individual movement of diffusing species 

through discrete jumps at available lattice sites. In a general sense, the diffusion 

coefficient may be written as 

D=ϕΓa2 

where Γ is the average number of atomic jumps per unit time, a is the jump length (of 

the order of the atomic parameter) and ϕ is a geometric factor which depends on the 

particular crystal structure. The number of jumps Γ may be written as 

Γ=ξγ 

where ξ depends on the number of sites available for the diffusing species to jump and 

γ is the jumping frequency. For diffusion mediated by vacancies, ξ is proportional to 

the concentration of vacancies, which depends on the temperature through an 

Arrhenius-type law: 

 

with Δgf holding for the free enthalpy per atom for vacancies formation. The atomic 

jumping process is also thermally activated, so that the frequency γ may be written as: 

 

being Δgm the free enthalpy per atom for migration of the diffusing species. The 

overall dependence of the diffusion coefficient on the temperature is then described 

by the effective activation energy: 

Q=Δgf+Δgm. 

A third term may appear if the concentration of defects is high enough that they 

associate to form complex defects; given the small concentrations appearing in our 

system, we will neglect such a possibility in what follows. 

 

Eq. (11) indicates that, if the number of available sites for atomic jumps is an 

exponentially growing function of temperature, then both migration and formation 

free enthalpies must be taken into account when one calculates the activation energy. 

This is the situation in experimental measurements of diffusion, which yield apparent 

activation energies of the form (11). The situation in MD simulations is not the same; 

these are performed at given number of particles, so that the formation term Δgf is 
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not calculated. In other words, MD only estimates the free enthalpy for migration, but 

not the total activation energy for diffusion. 

With this in mind, let us consider then the MD simulation of oxygen diffusion, where 

the number of oxygen vacancies is strictly constant at all the temperatures. 

Simulations then mimics reality, since in YSZ the concentration of oxygen vacancies is 

univocally determined by the amount of dopant cations added during sintering, much 

higher than the thermally activated concentration. Therefore, the activation energy for 

oxygen diffusion is completely determined by oxygen migration, and no formation 

contribution has to be added; simulations and experiments may be directly compared 

in this case. One finds something different for MD simulation of cationdiffusion 

however. Now the number of cation vacancies is zero. According to the previous 

statement, MD simulations entail only atom migration, and it is the migration energy 

for cationdiffusion what one calculates; in order to get the actual activation energy 

(and therefore to compare with experiments), one must add the corresponding 

formation enthalpy. 

The activation (migration) energy for diffusion calculated here depends linearly on the 

modulation parameter α. This behaviour can be understood by considering that: 

Δgm=Δhm−TΔsm 

where Δhm and Δsm denote enthalpy and entropy of migration per atom, respectively. 

The Δhm term is linear in α, which can be understood from the way in which we have 

handled the interaction potential. The Δsm term is much more difficult to estimate 

however. According to Vineyard [40], the migration entropy arises from the change in 

lattice vibration frequencies associated to the displacement of the jumping atom from 

its equilibrium configuration. Within the harmonic approximation, it is given by: 

 

where {ω(0)} and {ω(s)} are respectively the normal frequencies of the system when 

the diffusing atom locates close the energy minimum (i.e., close to its equilibrium 

position) and at the saddle point between two equilibrium positions; ω0 is the 

frequency of vibration of the diffusing atom along the diffusion path. From Eq. (13) it is 

clear that the migration entropy should not show any dependence on α, since the 

dependences cancel exactly in the numerator and the denominator of the term within 

brackets. The trends shown by our data seem then to be reasonable from the physical 

point of view. 

We are now in conditions to compare our simulation data with experiments. 

Experimental values for the activation energies for cationdiffusion range between 4.4 

eV and 5.3 eV [10], [12], [15], [16] and [41]. As described above, all the experimental 
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activation energies contain the term for the enthalpy of formation of cation vacancies. 

From dislocation annealing, Chien and Heuer estimated the enthalpy of formation of 

different types of cluster of vacancies to be around 2.8 eV [15]. Accepting that the 

enthalpy of formation is similar for cation vacancies, experimental data indicate that 

the enthalpy of migration for cationdiffusion should range between 1.6 eV and 2.5 eV. 

In rigour, these energies account for migration mediated by vacancies. However, since 

the concentration of these defects is extremely low at the high temperatures 

considered, it can be accepted that the migration energies are not affected much by 

their presence; in such a case the previous estimations can be then directly compared 

to our experimental results. Fig. 8 shows a comparison between the values obtained 

within this work (properly corrected by the formation free enthalpy term) and 

experimental and calculated data reported elsewhere. The agreement is acceptable to 

within one order of magnitude. 

Of course, several questions remain unconsidered. For instance, it is not clear to us yet 

if our method can account for the diffusion mechanism in YSZ. In addition, future 

research should include the study of the surface effects, which is a key fact for the 

comprehension of plasticity at the nanoscale [42] and [43]. 
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Figure captions 

 

Figure 1. Model bicrystal with a Σ5 grain boundary (from Ref. [20]). Some relevant 

crystallographic directions are included for clarity. Black, white and grey balls 

represent yttrium, zirconium and oxygen, respectively. 

Figure 2. Variation of the calculated lattice parameter of 8YSZ with temperature. Data 

taken from the literature are included for comparison. 

Figure 3. Q(α) functions calculated for oxygen, zirconium and yttrium bulk diffusion in 

8YSZ. The activation energies reported are those extrapolated to α = 1 from the best-

fit straight lines. 

Figure 4. Arrhenius plot for oxygen, zirconium and yttrium bulk diffusion coefficients 

calculated from Eq. (6) 

Figure 5. Comparison of the oxygen bulk self-diffusion coefficients calculated within 

this work with experimental and simulation data taken from the literature. 

Figure 6. Q(α) functions calculated for oxygen (a), zirconium (b) and yttrium (c) bulk 

and Σ5 grain boundary diffusion. The reported activation energies are the 

extrapolations to α = 1 made from the best-fit straight lines (shown). 

Figure 7. Diffusion coefficients for oxygen, zirconium and yttrium diffusion along the Σ5 

grain boundary, calculated from Eq. (6). 

Figure 8. Comparison of the cation bulk diffusion coefficients in YSZ calculated within 

this work with experimental and simulation data reported elsewhere. The calculated 

coefficients have been corrected by the proper free enthalpy of cation vacancy 

formation.  
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Table 1 

 

Table 1. Potential parameters for YSZ used in this study 

Ion pair Aij (eV) ρij (Å) 
Cij 

(eV Å6) 

O2−–O2− 9547.96 0.2192 32.0 

Zr4+–O2− 1502.11 0.3477 5.1 

Y3+–O2− 1766.40 0.33849 19.43 

 

From Ref. [21].
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Table 2 

 

Table 2. Summary of experimental and calculated data for the activation energy of 

oxygen bulk diffusion. 

 

Composition Methoda Model Potential 
Temperatur

e range (K) 

Activation 

energy 

(eV) 

Referenc

e 

8YSZ MD 

3 × 3 × 3 unit 

cells 

NPT 

Brinkman et 

al. [45] 
1000–2000 0.80 [31] 

8YSZ MD 

5 × 5 × 5 unit 

cells 

NPT, 0.1 MPa 

Dwivedi and 

Cormack 

[44] 

300–1500 0.79 [33] 

8YSZ KMC 
50 × 50 × 50 unit 

cells 
– 1000–2200 0.60 [9] 

8.3YSZ KMC 
5 × 5 × 5 unit 

cells 
– 600–1500 0.70 [28] 

9.5YSZ 

OTD 
18O/16O isotope 

exchange 
– 

723–923 0.91 

[5] 
923–1373 0.82 

IS 
10 Hz–13 MHz 

50 mV 
523–1073 1.10 

9.5YSZ OTD 
18O/16O isotope 

exchange 
– 573–1273 0.88–1.10 [11] 

 

a    MD — Molecular Dynamics; KMC — Kinetic Monte Carlo; OTD — oxygen tracer 

diffusion; IS — AC impedance spectroscopy; SIMS — secondary ion mass spectrometry.  
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Figure 3 
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Figure 6 

 



23 
 

Figure 7 
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Figure 8 

 

 


