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Abstract: Selecting the proper performance metric constitutes a key issue for most classification
problems in the field of machine learning. Although the specialized literature has addressed several
topics regarding these metrics, their symmetries have yet to be systematically studied. This research
focuses on ten metrics based on a binary confusion matrix and their symmetric behaviour is formally
defined under all types of transformations. Through simulated experiments, which cover the full
range of datasets and classification results, the symmetric behaviour of these metrics is explored by
exposing them to hundreds of simple or combined symmetric transformations. Cross-symmetries
among the metrics and statistical symmetries are also explored. The results obtained show that,
in all cases, three and only three types of symmetries arise: labelling inversion (between positive
and negative classes); scoring inversion (concerning good and bad classifiers); and the combination
of these two inversions. Additionally, certain metrics have been shown to be independent of the
imbalance in the dataset and two cross-symmetries have been identified. The results regarding
their symmetries reveal a deeper insight into the behaviour of various performance metrics and
offer an indicator to properly interpret their values and a guide for their selection for certain
specific applications.
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1. Introduction

Symmetry has played and continues playing, a highly significant role in the way of how humans
perceive the world [1]. In the scientific fields, symmetry plays a key role as it can be discovered in
nature [2,3], society [4] and mathematics [5]. Moreover, symmetry also provides an intuitive way to
attain faster and deeper insights into scientific problems.

In recent years, an increasing interest has arisen in detecting and taking advantage of symmetry
in various aspects of theoretical and applied computing [6]. Several studies involving symmetry have
been published in network technology [7], human interfaces [8], image processing [9], data hiding [10]
and many other applications [11].

On the other hand, pattern recognition and machine learning procedures are becoming key
aspects of modern science [12] and the hottest topics in the scientific literature on computing [13].
Furthermore, in this field, symmetry is playing an interesting role either as a subject of study, in the
form of machine learning algorithms to discover symmetries [14] or as a means to improve the results
obtained by automatic recognition systems [15]. Let us emphasize this point: not only can knowing
the symmetry of a certain computer algorithm be intrinsically rewarding since it sheds light on the
behaviour of the algorithm but it can also be very useful for its interpretation, its optimization or as a
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criterion for the selection among various competing algorithms. As an example, in recent research,
we have employed a symmetric criterion to select the best feature-extraction procedures (Discrete
Cosine Transform versus Discrete Fourier Transform) [16] in an application of the classification of
sounds [17,18] effectively deployed in a Wireless Sensor Network as shown in Figure 1. Another
examples of industrial applications using classification of sounds can be found in Refs. [19,20].
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In the broad field of machine learning, the study of how to measure the performance of various
classifiers has attracted continued attention [21–23]. Classification performance metrics play a key role
in the assessment of the overall classification process in the test phase, in the selection from among
various competing classifiers in the validation phase and are even sometimes used as the loss function
to be optimized in the process of model construction during the classification training phase.

However, to the best of our knowledge, no systematic study into the symmetry of these metrics
has yet been undertaken. By discovering their symmetries, we would reach a better understanding of
their meaning, we could obtain useful insights into when their use would be more appropriate and we
would also gain additional and meaningful indicators for the selection of the best performance metric.

Although several dozen performance metrics can be found in the literature, we will focus on those
which are probably the most commonly used: the metrics based on the confusion matrix [24]. Accuracy,
precision and recall (sensitivity) are undoubtedly some of the most popular metrics. On the other hand,
our research will be focused on the cases where there are only two classes (binary classifiers). Although
this is certainly a limitation, it does provide a solid ground base for further research. Moreover,
multiclass performance metrics are usually obtained by decomposing the multiclass problem into
several binary classification sub-problems [25].

2. Materials and Methods

2.1. Definitions

Let us first consider an original (baseline) experiment EB, defined by the duple EB =
(
CB, DB)

composed of a set of nB classifiers, CB =
{

cB
i
}

and a set of their corresponding nB datasets,
DB =

{
DB

i
}

, i = 1, · · · , nB. The elements in every dataset belong to either of two classes, G1 and
G2, which are called Positive (P) and Negative (N) classes, respectively. The i-th classifier cB

i operates
on the corresponding DB

i dataset, thereby obtaining a resulting classification which can be defined by

its binary confusion matrix cmB
i and hence DB

i
cB

i→ cmB
i . The set of confusion matrices are denominated
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CMB =
{

cmB
i
}

. The baseline experiment can therefore be defined as the set of classifiers operating on

the set of datasets to obtain a set of confusion matrices, EB : DB CB
→ CMB .

This paper will explore the behaviour of binary classification performance metrics when the
original experiment is subject to nE different types of transformations. Let us define the k-th
transformed experiment Ek =

(
Ck, Dk

)
composed of a set of nk classifiers, Ck =

{
ck

i

}
and a set of their

corresponding nk datasets, Dk =
{

Dk
i

}
, whose result is a set of confusion matrices CMk =

{
cmk

i

}
.

Hence, Ek : Dk Ck
→ CMk, where k =

{
B, 1, 2, · · · , nE}, indicates the type of transformation. In the

k-th experiment, when the i-th classifier ck
i operates on its corresponding Dk

i dataset, the result is
summarized in the binary confusion matrix defined as

cmk
i =

[
ak

i f k
i

gk
i bk

i

]
, (1)

where

• ak
i is the number of positive elements in Dk

i correctly classified as positive;
• bk

i is the number of negative elements in Dk
i correctly classified as negative;

• f k
i is the number of positive elements in Dk

i incorrectly classified as negative; and
• gk

i is the number of negative elements in Dk
i incorrectly classified as positive.

Let us call Pk
i , Nk

i and Mk
i the positive, negative and total number of elements in Dk

i . Therefore
Mk

i = Pk
i + Nk

i , ak
i + f k

i = Pk
i and gk

i + bk
i = Nk

i . The confusion matrix can then be described as

cmk
i =

[
ak

i Pk
i − ak

i

Nk − bk
i bk

i

]
. (2)

Let us now define αk
i as the ratio of positive elements in Dk

i correctly classified as positive; and βk
i

as the ratio of negative elements in Dk
i correctly classified as negative. That is,

αk
i ≡

ak
i

Pk
i

, βk
i ≡

bk
i

Nk
i

. (3)

The confusion matrix can therefore be rewritten as

cmk
i =

[
αk

i Pk
i Pk

i − αk
i Pk

i

Nk
i − βk

i Nk
i βk

i Nk
i

]
=

 αk
i Pk

i

(
1− αk

i

)
Pk

i(
1− βk

i

)
Nk

i βk
i Nk

i

. (4)

On the other hand, a dataset Dk
i is called imbalanced if it has a different number of positive

and negative elements, that is, Pk
i 6= Nk

i . Classification on the presence of imbalanced datasets is a
challenging task requiring specific considerations [26]. To quantify the imbalance, several indicators
have been proposed, such as the dominance [27,28], the proportion between positive and negative
instances (formalized as 1 : X) [29] and the imbalance ratio (IR) defined as Pk

i /Nk
i [30], which is also

called skew [31]. This value lies within the [0, ∞] range and has a value IR = 1 in the balanced case.
We prefer to use an indicator showing a value 0 in the balanced case, a value +1 when all the elements
in the dataset are positive and −1 if all the elements are negative. We define the imbalance coefficient
δk

i , which is an indicator that has these characteristics, as

δk
i ≡ 2

Pk
i

Mk
i
− 1. (5)
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The imbalance coefficient is graphically shown in Figure 2 (solid blue cline) as a function of the
proportion of positive elements in the dataset. For the sake of comparison, that figure also shows the
IR imbalance ratio (dashed green line).Symmetry 2018, 10, x FOR PEER REVIEW  4 of 31 
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Based on the imbalance coefficient, the number of positive and negative elements in the dataset
can be rewritten as

Pk
i =

1 + δk
i

2
Mk

i . (6)

Nk
i = Mk

i − Pk
i = Mk

i

(
1−

1 + δk
i

2

)
=

1− δk
i

2
Mk

i . (7)

By substituting these expressions into Equation (4), the confusion matrix becomes

cmk
i =

 αk
i

1+δk
i

2 Mk
i

(
1− αk

i

)
1+δk

i
2 Mk

i(
1− βk

i

)
1−δk

i
2 Mk

i βk
i

1−δk
i

2 Mk
i

 = λk
i Mk

i , (8)

where λk
i is the unitary confusion matrix defined as

λk
i ≡

 αk
i

1+δk
i

2

(
1− αk

i

)
1+δk

i
2(

1− βk
i

)
1−δk

i
2 βk

i
1−δk

i
2

. (9)

It can be seen that λk
i is a function of 3 variables: the ratio of positive

(
αk

i

)
and negative

(
βk

i

)
correctly classified elements and the imbalance coefficient

(
δk

i

)
, that is, λk

i = λk
i

(
αk

i , βk
i , δk

i

)
.

In order to measure the performance of the classification process, m metrics are used. In this
paper we focus on metrics that are based on the unitary confusion matrix and, for the sake of much
easier comparison, all these metrics are converted within the range [−1, 1]. Let us define jγk

i as the j-th
of such metrics for the ck

i classifier operating on the Dk
i dataset, where j = 1, . . . , m. Since it is based on

the unitary confusion matrix, jγk
i = jγk

i

(
λk

i

)
= jγk

i

(
αk

i , βk
i , δk

i

)
.

Let us now define µk
j as the set of the j-th metric values corresponding to the k-th experiment

Ek =
(

Ck, Dk
)

, that is, µk
j ≡

{
jγk

i

}
, i = 1, 2, · · · , nk. Additionally, the sets αk ≡

{
αk

i

}
,

βk ≡
{

βk
i

}
and δk ≡

{
δk

i

}
are also defined.
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2.2. Representation of Metrics

With these definitions, it is clear that the metric µk
j = µk

j

(
αk, βk, δk

)
and hence it is a 4-dimensional

function since µk
j (one dimension) depends on αk, βk and δk (three independent dimensions). To depict

their values, a first approach could involve a 3D representation space where each
(

αk
i , βk

i , δk
i

)
point is

color-coded according to the value jγk
i

(
αk

i , βk
i , δk

i

)
.

To show the different types of representations, let us define an arbitrary metric function

µk
j

(
αk, βk, δk

)
=

sin
(

2παkδk
)
+ sin

(
2πβk

)
2

. (10)

This function is only used as an example, corresponds to no specific classification metric and has
been selected for its aesthetic results. Figure 3 depicts the 3D representation for said example function.
The nE = 1000 pairs of classifiers and datasets used in the experiment Ek =

(
Ck, Dk

)
are selected in

such a way that the space
(

αk, βk, δk
)

is covered with equally spaced points. The above figure may

cause confusion, mainly when the number of points (nE) increases. An alternative is to slice the 3D
graphic by a plane corresponding to a certain value of the imbalance coefficient. Figure 4a depicts such
a slice in the 3D graphic for an arbitrary value δ = 0.75 and Figure 4b shows the slice on a 2D plane.
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In the previous figure, the slice contains 100 values of the metric. However, to obtain a clearer
understanding of the metric behaviour, a much larger number of points is recommended. For this
purpose, the experiment is designed by selecting a set of virtual pairs of classifiers and datasets
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(
Ck, Dk

)
in such a way that the plane

(
αk, βk

)
is fully covered. The result, as shown in Figure 5,

appears as a heat map for a certain value of the imbalance coefficient (δ = 0.75 in the example).
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Figure 5. Heat map of a metric value µk
j

(
αk, βk

)
for δ = 0.75.

In order to analyse the behaviour of the metric for different values of the imbalance coefficient,
a panel of heat maps can be used, as depicted in Figure 6.
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Figure 6. Panel of heat maps representing the metric µk
j

(
αk, βk, δk

)
.

2.3. Transformations

The original baseline experiment EB =
(
CB, DB) is subject to various types of transformations.

As a result of the k-th transformation, the metrics related to the baseline experiment µB
j
(
αB, βB, δB)

are transformed into µk
j

(
αk, βk, δk

)
, which can be written either as µk

j

(
αk, βk, δk

)
= Tk[µB

j
(
αB, βB, δB)]

or as
µB

j

(
αB, βB, δB

)
Tk
→ µk

j

(
αk, βk, δk

)
. (11)

It is said that the metric µj is symmetric under the transformation Tk if µk
j = µB

j . Conversely,

µj is called antisymmetric under Tk (or symmetric under the complementary transformation Tk)
if µk

j = −µB
j . Analogously, it is said that the metrics µu and µv are cross-symmetric under the
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transformation Tk if µk
u = µB

v . Conversely, µu and µv are called anti-cross-symmetric under Tk

(or cross-symmetric under the complementary transformation Tk) if µk
u = −µB

v .

2.3.1. One-Dimensional Transformations

One-dimensional transformations is the name given to those mirror reflections with respect to a
single (one and only one) dimension of the 4-dimensional performance metric. Type α transformation
implies that the i-th transformed classifier

(
cα

i
)

shows a ratio of correctly classified positive elements(
αα

i
)

which has the symmetric value of the ratio
(
αB

i
)

obtained by the baseline classifier
(
cB

i
)
. Since the

values of such ratios lie within the range [0, 1], the symmetry exists with respect to the hyperplane
α = 0.5 and can be stated as αα

i = 1− αB
i . An example of this transformation is depicted in Figure 7.
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Analogously, type β transformation implies that the i-th transformed classifier (cβ
i ) shows a ratio

of correctly classified negative elements (β
β
i ), which has the symmetric value of the ratio

(
βB

i
)

obtained
by the baseline classifier

(
cB

i
)
. Since the value of such ratios also lie within the range [0, 1], the symmetry

exists with respect to the hyperplane β = 0.5 and can be stated as β
β
i = 1− βB

i . An example of this
transformation is depicted in Figure 8.
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Conversely, type δ transformation, which, instead of operating on classifiers, operates on datasets,
implies that the i-th transformed dataset

(
Dδ

i
)

has an imbalance ratio
(
δδ

i
)
, which has the symmetric

value of the imbalanced ratio
(
δB

i
)

in the baseline corresponding to dataset
(
δB

i
)
. Since the value of

such imbalance ratios lie within the range [−1, 1], the symmetry exists with respect to the hyperplane
δ = 0 and can be stated as δδ

i = −δB
i . An example of this transformation is depicted in Figure 9.
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to the hyperplane δ = 0.

Finally, type µ transformation jointly operates on classifiers and datasets in such a way that the
j-th of performance metrics jγ

µ
i for the cµ

i classifier operating on the Dµ
i dataset has the symmetric

value of the performance metric in the baseline experiment (jγB
i ). Since the value of such metrics lie

within the range [−1, 1], the symmetry exists with respect to the hyperplane µ = 0 and can be stated
as jγ

µ
i = −jγB

i . An example of this transformation is depicted in Figure 10 where it should be noted
that the µ dimension is shown by the colour code of each point. Therefore, an inversion in µ is shown
as a colour inversion.
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2.3.2. Multidimensional Transformations

Let us now consider transformations that exchange two or more dimensions of the 4-dimensional
performance metric. Firstly, let us define type σ transformation as that which exchanges α and β

dimensions. This implies that the i-th transformed classifier/dataset pair
(
cσ

i , Dσ
i
)

shows a ratio of
correctly classified positive elements

(
ασ

i
)

which has the same value as the ratio of correctly classified
negative elements

(
βB

i
)

obtained by the baseline classifier/dataset pair
(
cB

i , DB
i
)
. This exchange can be

seen as the symmetry with respect to the hyperplane α = β (main diagonal of the α, β plane) and can
be stated as ασ

i = βB
i ; βσ

i = αB
i . An example of this transformation is depicted in Figure 11.
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Although the four axes in these plots remain dimensionless, not all of them have the same
meaning. So, α and β are both ratios of correctly classified elements. It would be nonsensical,
for instance, to rescale α without also rescaling β. However, δ has a completely different meaning
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and its scale can and in fact does, differ from α and β. The same reasons can be applied to the axes µ.
Therefore, all the exchanges of multidimensional axes are meaningless, except the interchange of α and
β. All the other remaining exchanges are dismissed in our study.

The one- and two-dimensional transformations described above are called basic transformations
and are summarized in Table 1.

Table 1. Summary of basic transformations.

Transformation αk βk δk µk

α 1− αB βB δB µB

β αB 1− βB δB µB

δ αB βB −δB µB

µ αB βB δB −µB

σ βB αB δB µB

2.3.3. Combined Transformations.

More complex transformations can be obtained by concatenating basic transformations.
For instance, applying basic transformation α (Tα) and then basic transformation β (Tβ) produces a
new combined transformation Tαβ = Tα·Tβ featured by ααβ = 1− αB; βαβ = 1− βB. As each of the
one-dimensional transformations operates on an independent axis, they have the commutative and
associative properties, that is, given 3 one-dimensional transformations, TU , TV and TW , it is true that
TU ·TV = TV ·TU and that that

(
TU ·TV)·TW = TU ·

(
TV ·TW).

However, bi-dimensional type σ transformation Tσ operates on the same axis as Tα and Tβ. In this
case, the order of transformation matters, as they do not have the commutative property. For instance,
Tασ[µB

j ] = Tσ{Tα[µB
j (α

B, βB, δB)]} = Tσ{µB
j (1− αB, βB, δB)} = µB

j (βB, 1− αB, δB). On the other hand,

Tσα[µB
j ] = Tα{Tσ[µB

j (α
B, βB, δB)]} = Tα{µB

j (βB, αB, δB)} = µB
j (1βB, αB, δB). Therefore, it is clear that

Tασ 6= Tσα.
Having 5 basic transformations and not initially considering their order, any combined

transformation can be binary coded in terms of the presence/absence of each basic component.
Therefore 25 = 32 combinations are possible; only 31 if the identity transformation (coded 00000)
is dismissed. In order to code a combined transformation, the order µ, σ, δ, β, α is used where
transformation µ indicates the Most Significant Bit (MSB) and the transformation α specifies the
Least Significant Bit (LSB). An example of this code is shown in Table 2. With this selection, codes
greater than 15 contain a transformation type µ, that is, they are useful in exploring antisymmetric
behaviour. In the cases where the order of transformations matters, σ = 1 and (α = 1 or β = 1), then
their corresponding codes refer to various different combined transformations.

Table 2. Example of the coding of combined transformations.

Transformation
Code µ σ δ β α

28 1 1 1 0 0

A first example of combined transformations is that of the inverse labelling of classes. As stated
above, the elements in every dataset belong to either of two classes, G1 and G2, which are called
Positive (P) and Negative (N) classes, respectively. The inverse labelling transformation (TL) explores
the classification metric behaviour when the labelling of the classes is inverted, that is, when G2 is
called the Positive class and G1 the Negative class. Let us consider the i-th classifier cL

i operating
on its corresponding DL

i dataset. In the baseline experiment, the ratio of correctly classified positive
elements (αB

i ) refers to class G1 and conversely (βB
i ) refers to class G2. In the TL transformed experiment,

the ratio of correctly classified positive elements (αL
i ) refers to class G2 and conversely (βL

i ) refers to
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class G1, which means that αL
i = βB

i and βL
i = αB

i . That is, the first step of this transformation implies
interchanging the axes α and β, which is equivalent to reflection symmetry with respect to the main
diagonal, formerly defined as the basic transformation of type σ (Figure 12b).

Additionally, in the baseline experiment, the number of positive elements (PB
i ) refers to class G1,

while in the TL transformed experiment, the number of positive elements (PL
i ) refers to class G2, which

means that PL
i = NB

i and NL
i = PB

i , while the total number of elements remains unaltered: ML
i = MB

i .
Therefore, by recalling Equation (5),

δL
i ≡ 2

PL
i

ML
i
− 1 = 2

NB
i

MB
i
− 1 = 2

MB
i − PB

i
MB

i
− 1 = −

(
2

PB
i

MB
i
− 1

)
= −δB

i . (12)

Hence, the second step of this transformation also implies reflection symmetry with respect to the
hyperplane δ = 0, previously defined as the basic transformation of type δ (Figure 12c).

Finally, the complementary transformation TL involves a third and final step of inverting the
sign of the metric, which is equivalent to reflection symmetry with respect to the hyperplane µ = 0,
formerly defined as the basic transformation of type µ (Figure 12d).
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Therefore, the inverse labelling transformation can be defined as TL = Tσδ = Tσ·Tδ and its
complementary as TL

= Tσδµ = Tσ·Tδ·Tµ, where

TL : µL
j

(
αL, βL, δL

)
= µB

j

(
βB, αB,−δB

)
. (13)

A second example of combined transformations is given by the inverse-scoring transformation
(TS) which explores classification metric behaviour when the scoring of the classification results are
inverted. In the baseline experiment, let us consider the i-th classifier cB

i operating on its corresponding
DB

i dataset, thereby obtaining a ratio αB
i of correctly classified positive elements and a ratio βB

i in
the negative case. The j-th metric assigns a score of jγB

i
(
αB

i , βB
i , δB

i
)

to this result . High values of
the score jγB

i usually correspond to high ratios αB
i , βB

i . In the inverted score transformation (TS),
the i-th classifier cS

i operating on its corresponding DS
i dataset obtains a ratio αS

i of correctly classified
positive elements which is equal to the ratio of positive elements incorrectly classified in the baseline
experiment, that is, αS

i = 1− αB
i , which implies a type α transformation. Analogously, for the negative

class, βS
i = 1− βB

i , which implies a type β transformation. If αB
i , βB

i have high values, then αS
i , βS

i
will have low values and, to be consistent, the result should be marked with a low score. For that
reason, the inverse scoring transform also implies a transformation type µ, that is, it uses the symmetric
value of the metric jγS

i = −jγB
i . Therefore, the inverse labelling transformation can be defined as

TS = Tαβµ = Tα·Tβ·Tµ where

TS : µS
j

(
αS, βS, δS

)
= µB

j

(
1− αB, 1− βB, δB

)
. (14)

The results are depicted in Figure 13.
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Figure 13. Transformation by inverse scoring (TS). (a) Baseline metric; (b) Reflection symmetry
with respect to the plane α = 0 (Tα); (c) Reflection symmetry with respect to the plane β = 0 (Tβ);
(d) Reflection symmetry with respect to the plane µ = 0 (colour inversion, Tµ).

A third example is that of the full inversion (TF), which explores the classification metric behaviour
when both the labelling (TL) and the scores (TS) are inverted. This transformation can be featured by
the concatenation of their two components, which can be written as

TF = TL·TS = Tσδ·Tαβµ = Tσδαβµ = Tαβδσµ. (15)

TF : µF
j

(
αF, βF, δF

)
= −µB

j

(
1− βB, 1− αB,−δB

)
. (16)

The results are depicted in Figure 14.
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Figure 14. Transformation by full inversion scoring (TF). (a) Baseline metric; (b) Reflection symmetry
with respect to the plane α = 0 (Tα); (c) Reflection symmetry with respect to the plane β = 0 (Tβ).
(c) Reflection symmetry with respect to the main diagonal (Tσ); (d) Reflection symmetry with respect
to the plane δ = 0 (Tδ). (e) Reflection symmetry with respect to the plane µ = 0 (colour inversion, Tµ).

Finally let us consider the Tασβ transformation

Tασβ
[

µB
j
(
αB, βB, δB)] = Tσβ

[
µB

j
(
1− αB, βB, δB)] = Tβ

[
µB

j
(

βB, 1− αB, δB)]
= µB

j
(

βB, αB, δB), (17)

that is, Tασβ = Tσ. Analogously, it can be shown that Tβσα = Tσ.

2.4. Performance Metrics

Based on the binary confusion matrix, numerous performance metrics have been proposed [32–36].
For our study, the focus is placed on 10 of these metrics, which are summarized in Table 3. The terms
used in that table are taken from the elements of a generic confusion matrix which can be stated as

cm =

[
a f
g b

]
, (18)
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Table 3. Definition of classification performance metrics.

Symbol Metric Scoring

SNS Sensitivity a
a+ f

SPC Specificity b
b+g

PRC Precision a
a+g

NPV Negative Predictive Value b
b+ f

ACC Accuracy a+b
a+ f+b+g

F1 F1 score 2 PRC·SNS
PRC+SNS

GM Geometric Mean
√

SNS·SPC

MCC Matthews Correlation Coefficient a·b−g· f√
(a+g)(a+ f )(b+g)(b+ f )

BM Bookmaker Informedness SNS + SPC− 1

MK Markedness PPV + NPV − 1

The last three metrics (MCC, BM and MK) take values within the [−1, 1] range, while the ranges
for the first seven lie within the [0, 1] interval. For comparison purposes, these metrics are used herein
in their normalized version ([−1, 1] interval). By naming a metric defined within the [0, 1] interval as µ,
it can be normalized within the [−1, 1] range by the expression

µn ≡ 2µ− 1. (19)

It can easily be shown that all these metrics can be expressed as a function µ = µ(α, β, δ).
Although only performance metrics based on the confusion matrix are considered, a marginal

approach to Receiver Operating Characteristics (ROC) analysis [37] can also be carried out. In this
analysis, the Area Under Curve (AUC) is commonly used as a performance metric. However,
for classifiers offering only a label (and not a set of scores for each label) or when a single threshold is
used on scores, the value of AUCn and BM are the same [38]. Therefore, in the forthcoming sections,
whenever BM is mentioned it could also be understood as AUCn.

2.5. Exploring Symmetries

In order to determine the existence of any symmetric or cross-symmetric behaviour on the
10 classification performance metrics described in the previous section, we should explore whether,
for each metric (or pair of metrics), its baseline and any of the 31 combinations of transformations
obtain the same result as that of the baseline of the same metric (symmetry) or any other metric
(cross-symmetry). Moreover, many of these combined transformations must take the order into account.
Therefore, several thousands of different analyses have to be undertaken. Although performing this
task using analytical derivations is not an impossible assignment (preferably using some kind of
symbolic computation), it is certainly arduous.

An alternative approach is to identify the distance of two metrics. More formally, for the U-th
transformation, let us consider the i-th combination of classifier cU

i operating on the DU
i dataset.

The classification result is measured using the r-th metric, rγU
i . Similarly, for the V-th transform and

the i-th combination of classifier cV
i operating on the DV

i dataset, let us measure its performance using
the s-th metric, sγV

i . The distance between these measures is defined as dist
(rγU

i , sγV
i
)
≡
∣∣rγU

i −
sγV

i

∣∣.
The distance between the r-th metric µU

r =
{rγU

i
}

and the s-th metric µV
s =

{sγV
i
}

can then be
defined as

dist
(

µU
r , µV

s

)
≡ 1

n

n

∑
i=1

dist
(

rγU
i , sγV

i

)
=

1
n

n

∑
i=1

∣∣∣rγU
i , sγV

i

∣∣∣. (20)

Therefore, symmetric or cross-symmetric behaviour can be identified by a distance equal to zero.
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It should be noted that if the r-th metric is symmetric under the U-th transformation, that is,
µU

r = TU(µB
r
)
= µB

r and also under the V-th transformations, µV
r = TV(µB

r
)
= µB

r , it will also be
symmetric under the concatenation of the two transformations. In effect,

µUV
r = TV

[
TU
(

µB
r

)]
= TV

(
µB

r

)
= µB

r . (21)

Conversely, this is not true for cross-symmetries. If the r-th and s-th metric are cross-symmetric
under the U-th transformation, that is, µU

r = TU(µB
r
)
= µB

s and also under the V-th transformations,
µV

r = TV(µB
r
)
= µB

s , they are not necessarily cross-symmetric under the concatenation of the two
transformations. In effect,

µUV
r = TV

[
TU
(

µB
r

)]
= TV

(
µB

s

)
= µB

r 6= µB
s . (22)

2.6. Statistical Symmetries

The symmetries of the performance metrics can also be explored from a statistical point of view.
Let us recall that Dk

i is the i-th dataset in the k-th experiment with an imbalance described by its
imbalance coefficient δk

i . The elements in Dk
i are processed by the ck

i classifier in order to obtain a ratio
of correctly classified positive αk

i and negative βk
i elements. The j-th metric jγk

i is based on these values

and hence jγk
i = jγk

i

(
αk

i , βk
i , δk

i

)
. Let us also recall that the set of all these values for i = 1, · · · , nk, are

denoted µk
j =

{
jγk

i

}
, αk =

{
αk

i

}
, βk =

{
βk

i

}
and δk =

{
δk

i

}
and therefore µk

j = µk
j

(
αk, βk, δk

)
.

Let us now suppose that the elements ck
i , Dk

i in the experiments are randomly selected in such a
way that αk, βk and δk are uniformly distributed within their respective ranges. Therefore, µk

j becomes
a random variable, which can be statistically described.

First of all, the probability density function (pdf) of µk
j : pd f (µk

j ) is obtained and its symmetry
(or lack thereof) is ascertained. A more precise assessment of the statistical symmetry can be obtained
by computing the skewness, which is defined as

ξk
j ≡ skew

(
µk

j

)
= E


 µk

j − µk
j√

var
(

µk
j

)


3 , (23)

where µk
j is the mean of µk

j and var
(

µk
j

)
is its variance.

3. Results

3.1. Identifying Symmetries

The symmetric behaviour of the 10 metrics is first determined by means of computing the distance
between the baseline and each of the 31 possible transformations, in accordance with Equation (20).
The results are depicted in Figure 15. Each row shows the symmetries of a metric. In the columns
are the 31 different transformations. Any given metric-transformation pair (small rectangles in the
graphic) is shown in yellow if it has zero-distance with the metric baseline. The right-hand-side of the
plot (whose code is greater than or equal to 16) corresponds to a combined transformation where the µ

axis has been inverted, that is, where the transformation type µ is present. This is therefore the area for
antisymmetric behaviour.



Symmetry 2019, 11, 47 14 of 31
Symmetry 2018, 10, x FOR PEER REVIEW  14 of 31 

 

 
Figure 15. Symmetric behaviour of performance metrics for any combined transformation. 

Let us first analyse each metric in terms of the accuracy (𝐴𝐶𝐶𝑛), the Matthews correlation 
coefficient (𝑀𝐶𝐶) and the markedness (𝑀𝐾). These three metrics present a symmetric behaviour for 
the combined transformations shown in Table 4. For instance, the first row indicates that the three 
metrics are symmetric for a combination of the transformations 𝛿 and 𝜎 taken in any order (𝛿𝜎 or 𝜎𝛿), which corresponds to the code 12 (01100) for a coding scheme (𝜇, 𝜎, 𝛿, 𝛽, 𝛼) where 𝜇 represents 
the Most Significant Bit and 𝛼 represents the Least Significant Bit. 

Table 4. Symmetric transformations of 𝐴𝐶𝐶𝑛, 𝑀𝐶𝐶 and 𝑀𝐾. 

Code 𝝁 𝝈 𝜹 𝜷 𝜶 Specific Order Any Order 
12 0 1 1 0 0  𝛿𝜎 

15 0 1 1 1 1 𝛼𝜎𝛽 = 𝜎) 𝛽𝜎𝛼 = 𝜎) 𝛿 

19 1 0 0 1 1  𝛼𝛽𝜇 

31 1 1 1 1 1 

𝛼𝛽𝜎 𝛽𝛼𝜎 𝜎𝛼𝛽 𝜎𝛽𝛼 

𝛿𝜇 

The first case (code 12) corresponds to the transformation 𝑇 , or, in other words, to the 
inverse labelling transformation 𝑇 = 𝑇  which can be formulated for accuracy as 𝜇 𝛼, 𝛽, 𝛿) = 𝜇 𝛽, 𝛼, −𝛿). (24)

The results are depicted in Figure 16. 

 
Figure 16. Symmetry of accuracy with respect to inverse labelling (𝑇 ). (a) Baseline metric; (b) Reflection 

symmetry with respect to the main diagonal (𝑇 ); (c) Reflection symmetry with respect to the plane 𝛿 = 0 (𝑇 ). 

Combined transformation (code)

Symmetric Antisymmetric

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

SNSn

SPCn

PRCn

NPVn

ACCn

F1n

GMn

MCC

BM

MK

Figure 15. Symmetric behaviour of performance metrics for any combined transformation.

Let us first analyse each metric in terms of the accuracy (ACCn), the Matthews correlation
coefficient (MCC) and the markedness (MK). These three metrics present a symmetric behaviour for
the combined transformations shown in Table 4. For instance, the first row indicates that the three
metrics are symmetric for a combination of the transformations δ and σ taken in any order (δσ or σδ),
which corresponds to the code 12 (01100) for a coding scheme (µ, σ, δ, β, α) where µ represents the Most
Significant Bit and α represents the Least Significant Bit.

Table 4. Symmetric transformations of ACCn, MCC and MK.

Code µ σ δ β α Specific Order Any Order

12 0 1 1 0 0 δσ

15 0 1 1 1 1
ασβ (= σ)
βσα (= σ)

δ

19 1 0 0 1 1 αβµ

31 1 1 1 1 1

αβσ
βασ
σαβ
σβα

δµ

The first case (code 12) corresponds to the transformation Tσδ, or, in other words, to the inverse
labelling transformation TL = Tσδ which can be formulated for accuracy as

µACCn(α, β, δ) = µACCn(β, α,−δ). (24)

The results are depicted in Figure 16.
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Figure 16. Symmetry of accuracy with respect to inverse labelling (TL). (a) Baseline metric;
(b) Reflection symmetry with respect to the main diagonal (Tσ); (c) Reflection symmetry with respect
to the plane δ = 0 (Tδ).



Symmetry 2019, 11, 47 15 of 31

The second case (code 15) corresponds to 4 transformations ordered in two different ways. In the
first ordering, we have Tασβδ = Tασβ·Tδ. Recalling Equation (17), Tασβ = Tσ. It can therefore be
written that Tασβδ = Tσ·Tδ = Tσδ = TL, that is, it is equivalent to the inverse labelling transformation.
The same result is obtained for Tβσαδ. Hence, code 15 is the same case as code 12.

The third case (code 19) corresponds to the transformation Tαβµ, or, in other words, to the inverse
scoring transformation TS = Tαβµ, which can be formulated for accuracy as

µACCn(α, β, δ) = −µACCn(1− α, 1− β, δ). (25)

The results are depicted in Figure 17.
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Let us now focus on precision (𝑃𝑅𝐶𝑛) and the negative prediction value (𝑁𝑃𝑉𝑛). These two 
metrics present a symmetric behaviour for the combined transformations shown in Table 5. 
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Figure 17. Symmetry of accuracy with respect to the inverse scoring (TS). (a) Baseline metric;
(b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with respect to
the plane β = 0 (Tβ); (d) Reflection symmetry with respect to the plane µ = 0 (colour inversion, Tµ).

Finally, code 31 corresponds to 5 transformations ordered in 4 different ways. In the first ordering
we have Tαβσδµ but, by considering that the order of Tδ and Tµ are not relevant, it can also be written
as Tαβσδµ = Tαβδσµ = Tαβδ·Tσµ = TL·TS = TF, that is, it is equivalent to the full transformation.
The same result is obtained for the 3 remaining orderings which can be formulated for accuracy as

µACCn(α, β, δ) = −µACCn(1− β, 1− α,−δ). (26)

The results are depicted in Figure 18.
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Let us now focus on precision (𝑃𝑅𝐶𝑛) and the negative prediction value (𝑁𝑃𝑉𝑛). These two 
metrics present a symmetric behaviour for the combined transformations shown in Table 5. 

Table 5. Symmetric transformations of 𝑃𝑅𝐶𝑛 and 𝑁𝑃𝑉𝑛. 
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Figure 18. Symmetry of accuracy with respect to the full inversion (TF). (a) Baseline metric;
(b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with respect to
the plane β = 0 (Tβ); (d) Reflection symmetry with respect to the main diagonal (Tσ); (e) Reflection
symmetry with respect to the plane δ = 0 (Tδ); (f) Reflection symmetry with respect to the plane µ = 0
(colour inversion, Tµ).

Let us now focus on precision (PRCn) and the negative prediction value (NPVn). These two
metrics present a symmetric behaviour for the combined transformations shown in Table 5.

Table 5. Symmetric transformations of PRCn and NPVn.

Code µ σ δ β α Specific Order Any Order

31 1 1 1 1 1

αβσ
βασ
σαβ
σβα

δµ
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These two metrics present symmetric behaviour for only the combined transformations code 31
(11111) which, in any of its ordering, is equivalent to the full inversion TF = TL·TS = Tαβδσµ and can
be formulated for precision as

µPRCn(α, β, δ) = −µPRCn(1− β, 1− α,−δ). (27)

In other words, precision is symmetric with respect to the concatenation of inverse labelling and
the inverse scoring transformations. The results are depicted in Figure 19.
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Let us now analyse the geometric mean (𝐺𝑀𝑛), which presents symmetric behaviour for the 
combined transformations shown in Table 6. 

  

Figure 19. Symmetry of precision with respect to the full inversion (TF). (a) Baseline metric;
(b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with respect to
the plane β = 0 (Tβ); (d) Reflection symmetry with respect to the main diagonal (Tσ); (e) Reflection
symmetry with respect to the plane δ = 0 (Tδ); (f) Reflection symmetry with respect to the plane µ = 0
(colour inversion, Tµ).

Let us now analyse the geometric mean (GMn), which presents symmetric behaviour for the
combined transformations shown in Table 6.

Table 6. Symmetric transformations of GMn.

Code µ σ δ β α Specific Order Any Order

4 0 0 1 0 0 δ

8 0 1 0 0 0 σ

11 0 1 0 1 1
ασβ (= σ)
βσα (= σ)

12 0 1 1 0 0 δσ

15 0 1 1 1 1
ασβ (= σ)
βσα (= σ)

δ

In first place, code 4 corresponds to Tδ. In fact, this metric is not only symmetric with respect to δ

but also independent of δ, as it can be seen in Table 3. Secondly, combined transformations coded as 8
and 11 are equivalent to the Tσ transformation, that is, GMn is symmetric with respect to the diagonal
in the α, β plane. This can be formulated as

µGMn(α, β) = µGMn(β, α). (28)

Finally, codes 12 and 15 imply concatenating Tδ to Tσ but as the metric is independent of δ, it is
again equivalent to Tσ, that is, Tσδ = Tσ·Tδ = Tσ. These results are depicted in Figure 20.
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Figure 20. Symmetry of geometric mean with respect to Tσ. (a) Baseline metric; (b) Reflection symmetry
with respect to the main diagonal (Tσ).
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In the case of bookmaker informedness (BM), the symmetric behaviour is obtained for the
combined transformations shown in Table 7.

Table 7. Symmetric transformations of BM.

Code µ σ δ β α Specific Order Any Order

4 0 0 1 0 0 δ

8 0 1 0 0 0 σ

11 0 1 0 1 1
ασβ (= σ)
βσα (= σ)

12 0 1 1 0 0 δσ

15 0 1 1 1 1
ασβ (= σ)
βσα (= σ)

δ

19 1 0 0 1 1 αβµ

23 1 0 1 1 1 αβδµ

27 1 1 0 1 1

αβσ
βασ
σαβ
σβα

µ

31 1 1 1 1 1

αβσ
βασ
σαβ
σβα

δµ

Again code 4 corresponds to Tδ as a consequence that this metric is independent of δ (see Table 3).
Secondly, combined transformations coded as 8 and 11 are equivalent to the Tσ transformation, that is,
BM is symmetric with respect to the diagonal in the α, β plane. This can be formulated as

µBM(α, β) = µBM(β, α). (29)

Additionally, codes 12 and 15 imply concatenating Tδ to Tσ but since the metric is independent of
δ, it is again equivalent to Tσ, that is, Tσδ = Tσ·Tδ = Tσ. These results are depicted in Figure 21.
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Figure 21. Symmetry of bookmaker informedness with respect to Tσ. (a) Baseline metric; (b) Reflection
symmetry with respect to the main diagonal (Tσ).

Code 19 and also code 23 since the metric does not depend on δ, correspond to the transformation
Tαβµ or, in other words, to the inverse scoring transformation TS = Tαβµ, which can be formulated for
bookmaker informedness as

µBM(α, β) = −µBM(1− α, 1− β) = −µBM(1− β, 1− α). (30)

The results are depicted in Figure 22.
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concatenations of these two transforms, which occurs in codes 27 and 31 (recall that the latter is 
independent of 𝛿 ) corresponding to the full inversion 𝑇 = 𝑇 + 𝑇 = 𝑇 ,  which can be 
formulated as 𝜇 𝛼, 𝛽) = −𝜇 1 − 𝛽, 1 − 𝛼). (31)

The results are depicted in Figure 23. 

Figure 22. Symmetry of bookmaker informedness with respect to the inverse scoring (TS). (a) Baseline
metric; (b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with
respect to the plane β = 0 (Tβ); (d) Reflection symmetry with respect to the plane µ = 0 (colour
inversion, Tµ).

In other words, the bookmaker informedness is symmetric with respect to the inverse labelling
and to the inverse scoring transformations. This implies that it is also symmetric with respect to
the concatenations of these two transforms, which occurs in codes 27 and 31 (recall that the latter
is independent of δ) corresponding to the full inversion TF = TL + TS = Tαβδσµ, which can be
formulated as

µBM(α, β) = −µBM(1− β, 1− α). (31)

The results are depicted in Figure 23.Symmetry 2018, 10, x FOR PEER REVIEW  19 of 31 
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On considering the specificity (𝑆𝑃𝐶𝑛), its symmetric behaviour is shown in Table 9. 

  

Figure 23. Symmetry of bookmaker informedness with respect to the full inversion (TF). (a) Baseline
metric; (b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with
respect to the plane β = 0 (Tβ); (c) Reflection symmetry with respect to the main diagonal (Tσ);
(d) Reflection symmetry with respect to the plane δ = 0 (Tδ); (e) Reflection symmetry with respect to
the plane µ = 0 (colour inversion, Tµ).

In the case of sensitivity (SNSn), the symmetric behaviour is found for the combined
transformations shown in Table 8.

Table 8. Symmetric transformations of sensitivity.

Code µ σ δ β α Specific Order Any Order

2 0 0 0 1 0 β

4 0 0 1 0 0 δ

6 0 0 1 1 0 βδ

17 1 0 0 0 1 αµ

19 1 0 0 1 1 αβµ

21 1 0 1 0 1 αδµ

23 1 0 1 1 1 αβδµ

Codes 2 and 4 correspond to Tβ and Tδ as a consequence of this metric being independent of β

and δ (see Table 3). Code 19 (and also codes 17, 21 and 23 since the metric does not depend on β nor
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δ) corresponds to the transformation Tαβµ, or, in other words, to the inverse scoring transformation
TS = Tαβµ, which can be formulated as

µSNSn(α) = −µSNSn(1− α). (32)

This result is depicted in Figure 24.
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Figure 24. Symmetry of sensitivity with respect to the combined transformation (Tαµ). (a) Baseline
metric; (b) Reflection symmetry with respect to the plane α = 0 (Tα); (c) Reflection symmetry with
respect to the plane µ = 0 (colour inversion, Tµ).

On considering the specificity (SPCn), its symmetric behaviour is shown in Table 9.

Table 9. Symmetric transformations of specificity.

Code µ σ δ β α Specific Order Any Order

1 0 0 0 0 1 α

4 0 0 1 0 0 δ

5 0 0 1 0 1 αδ

18 1 0 0 1 0 βµ

19 1 0 0 1 1 αβµ

22 1 0 1 1 0 βδµ

23 1 0 1 1 1 αβδµ

Codes 1 and 4 corresponds to Tα and Tδ as a consequence of this metric being independent of α

and δ (see Table 3). Code 19 (and also codes 18, 22 and 23 as the metric depends neither on α nor on
δ) corresponds to the transformation Tαβµ, that is, to the inverse scoring transformation TS = Tαβµ,
which can be formulated as

µSPCn(β) = −µSPCn(1− β). (33)

This result is depicted in Figure 25.
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Finally, it can be observed that the F1n score metric is not symmetric under any transformation.
The results for each metric are summarized in Table 10.

Table 10. Summary of symmetries.

Metric Independent of Symmetry (under Inversion of)

α β δ Labelling Scoring Full

SNSn 3 3 3

SPCn 3 3 3

PRCn 3

NPVn 3

ACCn 3 3 3

F1n

GMn 3 3

MCC 3 3 3

BM 3 3 3 3

MK 3 3 3

3.2. Identifying Cross-Symmetries

In order to explore whether any cross-symmetry can be identified among the 10 metrics, we have
computed the distance (using Equation (20)) of the baseline of each metric (and its 31 possible
transformations), to the remaining baseline metrics. The results are depicted in Figure 26. Each
row corresponds to the baseline of a metric and each column to the baseline and its 31 transformations
of the other metric. Any given metric-metric pair (small squares in the graphic) is shown in yellow if it
has zero-distance for any possible transformation.
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Figure 26. Cross-symmetric behaviour of performance metrics for any combined transformation.

The diagonal presents a summary of the results explored in the previous section, that is, every
metric, except for the F1n score, presents some kind of symmetry under some transformation.
The cases of cross-symmetries appear in the elements off diagonal. Two cross-symmetries arise:
the SNSn− SPCn and the PRCn− NPVn.

In order to attain a deeper insight into these cross-symmetries, let us consider, for each of the two
pairs, the distances between the baseline of the first metric in the pair and the full set of transformations
(including the baseline) of the second metric. The results are depicted in Figure 27. Each row shows the
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cross-symmetries of a pair of metrics. In the columns are the 32 different transformations (including
the baseline) of the second metric in the pair. Any given (second-metric transformation) pair (small
squares in the graphic) is shown in yellow if it has zero-distance with the first metric baseline. As in
Figure 15, the right-hand-side of the plot (with code greater than or equal to 16) corresponds to
combined transformation where the µ axis has been inverted, that is, where the transformation type µ

is present. This is therefore the area for antisymmetric behaviour.
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Let us first analyse each pair of metrics in terms of the PRCn− NPVn or PRCn− NPVn pair,
which present cross-symmetric behaviour for the combined transformations shown in Table 11.

Table 11. Cross-symmetric transformations of the PRCn− NPVn pair.

Code µ σ δ β α Specific Order Any Order

12 0 1 1 0 0 δσ

15 0 1 1 1 1
ασβ (= σ)
βσα (= σ)

δ

19 1 0 0 1 1 αβµ

Codes 12 and 15 correspond to the transformation Tσδ or, in other words, to the inverse labelling
transformation TL = Tσδ, which can be formulated as

µPRCn(α, β, δ) = µNPVn(β, α,−δ). (34)

The results are depicted in Figure 28.
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Figure 28. Cross-symmetry of the PRCn − NPVn pair with respect to the inverse labelling (TL).
(a) Baseline PRCn metric; (b) Baseline NPVn metric; (c) Reflection symmetry of NPVn with respect to
the main diagonal (Tσ); (d) Reflection symmetry of NPVn with respect to the plane δ = 0 (Tδ).

Code 19 corresponds to the transformation Tαβµ or, in other words, to the inverse scoring
transformation TS = Tαβµ, which can be formulated as

µPRCn(α, β, δ) = −µNPVn(1− α, 1− β, δ). (35)

The results are depicted in Figure 29.



Symmetry 2019, 11, 47 22 of 31

Symmetry 2018, 10, x FOR PEER REVIEW  22 of 31 

 

15 0 1 1 1 1 𝛼𝜎𝛽 = 𝜎) 𝛽𝜎𝛼 = 𝜎) 𝛿 

19 1 0 0 1 1  𝛼𝛽𝜇 

Codes 12 and 15 correspond to the transformation 𝑇  or, in other words, to the inverse 
labelling transformation 𝑇 = 𝑇 , which can be formulated as 𝜇 𝛼, 𝛽, 𝛿) = 𝜇 𝛽, 𝛼, −𝛿). (34)

The results are depicted in Figure 28.  

 
Figure 28. Cross-symmetry of the 𝑃𝑅𝐶𝑛 − 𝑁𝑃𝑉𝑛 pair with respect to the inverse labelling (𝑇 ). (a) 
Baseline 𝑃𝑅𝐶𝑛 metric; (b) Baseline 𝑁𝑃𝑉𝑛 metric; (c) Reflection symmetry of 𝑁𝑃𝑉𝑛 with respect to 
the main diagonal (𝑇 ); (d) Reflection symmetry of 𝑁𝑃𝑉𝑛 with respect to the plane 𝛿 = 0 (𝑇 ). 

Code 19 corresponds to the transformation 𝑇  or, in other words, to the inverse scoring 
transformation 𝑇 = 𝑇 , which can be formulated as 𝜇 𝛼, 𝛽, 𝛿) = −𝜇 1 − 𝛼, 1 − 𝛽, 𝛿). (35)

The results are depicted in Figure 29. 

 
Figure 29. Cross-symmetry of the 𝑃𝑅𝐶𝑛 − 𝑁𝑃𝑉𝑛 pair with respect to the inverse scoring (𝑇 ). (a) 
Baseline 𝑃𝑅𝐶𝑛 metric; (b) Baseline 𝑁𝑃𝑉𝑛 metric. (c) Reflection symmetry of 𝑁𝑃𝑉𝑛 with respect to 
the plane 𝛼 = 0 (𝑇 ); (d) Reflection symmetry of 𝑁𝑃𝑉𝑛 with respect to the plane 𝛽 = 0 (𝑇 ); (e) 
Reflection symmetry of 𝑁𝑃𝑉𝑛 with respect to the plane 𝜇 = 0 (colour inversion, 𝑇 ). 

Although the 𝑃𝑅𝐶𝑛 − 𝑁𝑃𝑉𝑛 pair is cross-symmetric with respect to the inverse labelling and to 
the inverse scoring transformations, this does not imply that it is also cross-symmetric with respect 
to the concatenations of these two transforms (see equation 22). This is the reason why code 31 
(corresponding to the full inversion 𝑇 = 𝑇 + 𝑇 = 𝑇  is not present in Table 11.  

The results for the pair 𝑁𝑃𝑉𝑛 − 𝑃𝑅𝐶𝑛 are exactly the same. Therefore,  𝜇 𝛼, 𝛽, 𝛿) = 𝜇 𝛽, 𝛼, −𝛿) = −𝜇 1 − 𝛼, 1 − 𝛽, 𝛿). (36)

Let us now consider the pair of metrics 𝑆𝑁𝑆𝑛 − 𝑆𝑃𝐶𝑛 and its cross-symmetric behaviour, 
which is found for the combined transformations shown in Table 12. 

  

Figure 29. Cross-symmetry of the PRCn − NPVn pair with respect to the inverse scoring (TS).
(a) Baseline PRCn metric; (b) Baseline NPVn metric. (c) Reflection symmetry of NPVn with respect
to the plane α = 0 (Tα); (d) Reflection symmetry of NPVn with respect to the plane β = 0 (Tβ);
(e) Reflection symmetry of NPVn with respect to the plane µ = 0 (colour inversion, Tµ).

Although the PRCn− NPVn pair is cross-symmetric with respect to the inverse labelling and to
the inverse scoring transformations, this does not imply that it is also cross-symmetric with respect
to the concatenations of these two transforms (see Equation (22)). This is the reason why code 31
(corresponding to the full inversion TF = TL + TS = Tαβδσµ is not present in Table 11.

The results for the pair NPVn− PRCn are exactly the same. Therefore,

µNPVn(α, β, δ) = µPRCn(β, α,−δ) = −µPRCn(1− α, 1− β, δ). (36)

Let us now consider the pair of metrics SNSn− SPCn and its cross-symmetric behaviour, which
is found for the combined transformations shown in Table 12.

Table 12. Cross-symmetric transformations of the SNSn− SPCn pair.

Code µ σ δ β α Specific Order Any Order

8 0 1 0 0 0 σ

9 0 1 0 0 1 ασ

10 0 1 0 1 0 σβ

11 0 1 0 1 1
ασβ (= σ)
σβα (= σ)

12 0 1 1 0 0 σδ

13 0 1 1 0 1 ασ δ

14 0 1 1 1 0 σβ δ

15 0 1 1 1 1
ασβ (= σ)
σβα (= σ)

δ

25 1 1 0 0 1 σα µ

26 1 1 0 1 0 βσ µ

27 1 1 0 1 1

αβσ
βασ
σαβ
σβα

µ

29 1 1 1 0 1 σα δµ

30 1 1 1 1 0 βσ δµ

31 1 1 1 1 1

αβσ
βασ
σαβ
σβα

δµ
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Since specificity remains independent from δ (see Table 3), codes 25, 11, 12 and 15 correspond to
Tσδ, that is, to the inverse labelling which can be formulated as

µSNSn(α, β) = µSPCn(β, α). (37)

Additionally, since specificity is also independent of α, then codes 9 (Tασ) and 13 (Tασδ) are
equivalent to Tσδ. Moreover, after a Tσ transformation, the resulting metric has no dependence on β

(due to the axis inversion) and hence codes 10 (Tσβ) and 14 (Tσβδ) are also equivalent to Tσδ. These
results are depicted in Figure 30.
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Moreover, after a 𝑇  transformation, the resulting metric does not depend on 𝛽 (due to the axis 

Figure 30. Cross-symmetry of the SNSn − SPCn pair with respect to the inverse labelling (TL).
(a) Baseline SNSn metric; (b) Baseline SPCn metric; (c) Reflection symmetry of SPCn with respect to
the main diagonal (Tσ); (d) Reflection symmetry of SPCn with respect to the plane δ = 0 (Tδ).

On the other hand, code 31 corresponds to full inversion transformation TF = Tσδαβµ, which can
be formulated as

µSNSn(α, β) = −µSPCn(1− β, 1− α). (38)

It can be shown that the remaining codes (25, 26, 27, 29 and 30) are also equivalent to TF. Moreover,
after a Tσ transformation, the resulting metric does not depend on β (due to the axis inversion) and
hence codes 10 (Tσβ) and 14 (Tσβδ) are also equivalent to Tσδ. These results are depicted in Figure 31.
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Figure 31. Cross-symmetry of the SNSn− SPCn pair with respect to the full inversion (TF). (a) Baseline
SNSn metric. (b) Baseline SPCn metric. (c) Reflection symmetry of SPCn with respect to the main
diagonal (Tσ). (d) Reflection symmetry of SPCn with respect to the plane δ = 0 (Tδ). (e) Reflection
symmetry with respect to the plane α = 0 (Tα). (f) Reflection symmetry with respect to the plane β = 0
(Tβ). (g) Reflection symmetry with respect to the plane µ = 0 (colour inversion, Tµ).

The results for the pair SPCn− SNSn are exactly the same, so

µSPCn(α, β) = µSNSn(β, α) = −µSNSn(1− β, 1− α). (39)

The results for every pair of cross-symmetric metrics are summarized in Table 13.
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Table 13. Summary of cross-symmetries.

Metric Cross-Symmetry (under Inversion of)

Labelling Scoring Full

SNSn SPCn (SNSn) SPCn
SPCn SNSn (SPCn) SNSn
PRCn NPVn NPVn (PRCn)
NPVn PRCn PRCn (NPVn)

3.3. Skewness of the Statistical Descriptions of the Metrics

In order to explore the symmetric behaviour of the statistical descriptions of the metrics, let us
recall that, for the baseline experiment, µB

j = µB
j
(
αB, βB, δB) can be considered a statistical variable.

First of all, let us select a subset of the µB
j corresponding to a certain value δ0 of the imbalance coefficient,

that is, µB
j
(
αB, βB, δ0

)
and obtain its probability density function (pdf) which will be called local pdf

(since it is obtained solely for a value of δB). The results pd f (µk
j , δ0) for every metric with δB = 0.5 are

shown in Figure 32.
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This result can be generalized for various values of the imbalance coefficient δB by obtaining the
pd f (µk

j , δB) depicted in Figure 33 as a set of heatmap plots. In every plot, the horizontal axis represents
the imbalance coefficient while the value of the metric is drawn in the vertical axis. The value of the
pd f is colour-coded.
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In Figures 32 and 33, the symmetry of the statistical descriptions of the metrics can easily be
observed. However, in order to achieve a more precise insight, the local skewness ξB

j of every pd f is

obtained in accordance with Equation (23) and its value ξB
j
(
δB) is shown in Figure 34 for every metric.

It can be observed that 6 metrics (SNSn, SPCn, ACCn, MCC, BM and MK) have a symmetric pd f ;
one metric (GMn) has a pd f slightly asymmetric but its asymmetry does not depend on δB; 2 metrics
(PRCn and NPVn) have a clearly asymmetric pd f but their skewness is symmetric with respect to the
origin; and finally, the F1n metric has a pd f and a skewness that are both asymmetric.
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Let us now examine the µB
j for all the values of the imbalance coefficient δB, that is, µB
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and obtain its probability density function (pdf) which will be called global pdf (as it is obtained for
every δB). The resulting pd f (µk
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It can be observed that all the metrics show a symmetric pd f except for GMn and F1n. The global
pdf for GMn maintains the slight asymmetry of local pdf (global skewness of 0.18) since GMn does
not depend on δ. In the cases of PRCn and NPVn, the symmetry of the local skewness compensates
for their values and hence they show a symmetric global pdf. Finally, the positive values of F1n local
skewness partially compensate for its negative values (see Figure 34), which results in an almost
uniform global pdf except for their extreme values (global skewness of 0.14). These results are
summarized in Table 14.
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Table 14. Summary of statistical symmetry.

Metric
Statistical Symmetry

Local Global
(Skewness)

SNSn 3 3

SPCn 3 3

PRCn 3

NPVn 3

ACCn 3 3

F1n (0.14)
GMn (0.18)
MCC 3 3

BM 3 3

MK 3 3

4. Discussion

From the previous results, summarized in Tables 10, 13 and 14, it can be seen that although several
thousands of combined transformations have been tested, the performance metrics only present three
types of symmetries: under labelling inversion; under scoring inversion; and under full inversion
(the sequence of labelling and scoring inversion).

For a certain performance metric to be symmetric under labelling inversion means that it pays
attention to or focuses on, positive and negative classes with the same intensity and therefore classes can
be exchanged without affecting the value of the metric. These metrics should be used in applications
where the cost of misclassification is the same for each class. This is the case for 5 out of the 10 metrics
tested: ACCn, MCC, BM, MK and GMn.

Other metrics, however, are more focused on the classification results obtained for the positive
class. This is the case of 3 metrics: SNSn, which only depends on α; PRCn, which measures the ratio
of success on the elements classified as positive; and the F1 score, which is a combination of SNSn and
PRCn. These metrics found their main applications when the cost of misclassifying the positive class
is higher than the cost of misclassifying the negative class, for instance, in the case of disease detection
in medical diagnostics. Finally, other metrics are more focused on the classification results obtained
for the negative class. This is the case of 2 metrics: SPCn, which only depends on β; and NPVn,
which measures the ratio of success on the elements classified as negative. These 2 metrics are mainly
applied if the most important issue is the misclassification of negative classes, for instance, in the case
of identification of non-reliable clients in granting loans.

On the other hand, if a metric shows symmetric behaviour under scoring inversion it means that
the good classifiers are positively scored to the same extent as bad classifiers are negatively scored.
For instance, let us consider a first classifier which correctly classifies 80% of positive elements and
also 70% of negative elements. Additionally, a second classifier obtains a ratio of 20% for positive
and 30% for negative elements. A scoring-inversion symmetric-performance metric would have
a value of, for example, +0.5 for the first classifier and a value of −0.5 for the second classifier.
Therefore, the scoring symmetry indicates the relative importance assigned by the metric to the good
and bad classifiers. This is the case for 6 out of the 10 metrics tested: ACCn, MCC, BM, MK, GMn,
SNSn and SPCn. Conversely, GMn is more demanding as regards scoring good results than scoring
bad results. This feature can be useful if the objective of the classification is focused on obtaining
excellent results (and not just good results). Finally, on 3 of the metrics tested (PRCn, NPVn and F1n),
awarding good results differs from scoring bad results in that it depends on the relative values of the
parameters (α, β and δ).

Additionally, it can be seen that metrics showing both labelling and scoring symmetries also
show symmetry for the full inversion (concatenation of the two symmetries). This is the case for 4
out of the 10 metrics tested: ACCn, MCC, BM and MK. An interesting result is that for PRCn and
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NPVn, although they have no labelling nor scoring symmetry, they do have full inversion symmetry.
This fact means that swapping the positive and negative class labels also inverts how the good and
bad classifiers are scored. An example of all these symmetries can be found in Table 15.

Table 15. Examples of symmetric behaviour of metrics under several transformations (for balanced
classes). Numbers in bold represent cases of asymmetric behaviour.

Metric Baseline
α:0.8 ; β:0.7

Labelling
Inversion
α:0.7; β:0.8

Scoring
Inversion

α:0.2 ; β:0.3

Full
Inversion

α:0.3 ; β:0.2

ACCn 0.500 0.500 −0.500 −0.500
MCC 0.503 0.503 −0.503 −0.503
BM 0.500 0.500 −0.500 −0.500
MK 0.505 0.505 −0.505 −0.505

GMn 0.497 0.497 −0.510 −0.510
SNSn 0.600 0.400 −0.600 −0.400
SPCn 0.400 0.600 −0.400 −0.600
PRCn 0.455 0.556 −0.556 −0.455
NPVn 0.556 0.455 −0.455 −0.566

F1n 0.524 0.474 −0.579 −0.429

A particular degenerate case of symmetry arises when a metric depends on none of the variables.
For example, from the results obtained in this research, several metrics have shown themselves to be
independent of the imbalance coefficient δ. This is the case for 4 out of the 10 metrics tested: SNSn,
SPCn, GMn and BM. This is a particularly interesting result, since these metrics have no kind of bias
if the classes are imbalanced. Conversely, the interpretation of classification metrics which do depend
on δ should be carefully considered since they can be misleading as to what a good classifier is.

Additionally, some other metrics appear to be independent from the classification success ratios:
SNSn, which only depends on α; and SPCn, which only depends on β. This can be interpreted as a
sort of one-dimensionality of these metrics, that is, SNSn is only focused on the positive class, while
SPCn is only concerned about the negative class.

On the other hand, the two pairs of cross-symmetries found can be straightforwardly interpreted:
when the labelling of classes are inverted, SNSn becomes SPCn and PRCn becomes NPVn. Moreover,
by exchanging the scoring procedure of good and bad classifiers, PRCn becomes NPVn.

Let us now focus on the interpretation of the results of statistical symmetries. Statistical local
symmetry means that, for a certain dataset, that is, for a certain value of the imbalance coefficient,
the probability that a random classifier obtains a good score is the same as the probability that it
obtains a bad score. This is the case for 6 out of the 10 metrics tested: ACCn, MCC, BM, MK, GMn,
SNSn and SPCn. They coincide with the metrics in that they have scoring symmetry, which shows
that both concepts are closely related. Conversely, GMn has a greater probability of having a bad result
than a good result, which is consistent with the fact that it is more demanding on obtaining excellent
results (and not just good results). Additionally, PRCn obtains good results with a higher probability
(lower probability in the case of NPVn) if the positive class is the majority class and vice versa if it is
the minority class. Awarding good results differs from scoring bad ones in a way that depends on the
relative values of the parameters (α, β and δ). Finally, in the case of balanced classes, the probability of
obtaining good F1n scores is greater than obtaining bad scores for, which shows some sort of indulgent
judgment. However, the detailed behaviour of F1n scores for different values of δ is more complex.

On the other hand, statistical global symmetry means that the probability that a random classifier
operating on a random dataset obtains a good score is the same as obtaining a bad score. This is
the case for 8 out of the 10 metrics tested: ACCn, MCC, BM, MK, GMn, SNSn, SPCn, PRCn and
NPVn. Conversely, GMn and F1n are more likely to have a bad result than a good result, which can be
interpreted as meaning that they are slightly tough judges.
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On considering all these results and their meanings, the ten metrics can be organized into 5
clusters that show the features described in Table 16.

Table 16. Summary of symmetric behaviour.

Cluster Metric
Independent of Symmetry (under Inversion of) Statistical Symmetry

α β δ Labelling Scoring Full Local Global
(Skewness)

I
a

ACCn 3 3 3 3 3

MCC 3 3 3 3 3

MK 3 3 3 3 3

b BM 3 3 3 3 3 3

II
SNSn 3 3 SPCn 3 SPCn 3 3

SPCn 3 3 SNSn 3 SNSn 3 3

III
PRCn NPVn NPVn 3 3

NPVn PRCn PRCn 3 3

IV GMn 3 3 (0.18)

V F1n (0.14)

In Table 16, the identification of clusters has been carried out by means of informal reasoning.
To formalize these analyses, every metric has been described with a set of features corresponding
to the columns in Table 16. Most of the columns are binary valued (yes or no), while others admit
several values. For instance, labelling symmetry value can be yes, no, SNSn− SPCn cross-symmetry
or PRCn− NPVn cross-symmetry. In these cases, a one-hot coding mechanism (also called 1-of-K
scheme) is employed [39]. The result is that each metric is defined using a set of 14 features. Although
regular or advanced clustering techniques can be used [40–43], the reduced number of elements in the
dataset (10 performance metrics) invites to address the problem using more intuitive methods. Using
Principal Component Analysis (PCA) [44], the problem can be reduced to a bi-dimensional plane and
its result is depicted in Figure 36. The 5 clusters mentioned in this section clearly appear therein.
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Another way to represent how performance metrics are grouped according to their symmetries
is by drawing a dendrogram [45]. To this end, the 14 features are employed to characterize each
performance metric. The distances between the metrics are then computed in the space of the R14

features. These distances are employed to gauge how much the metrics are separated, as shown in
Figure 37. Once again, this result is consistent with the 5 previously identified clusters.
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5. Conclusions

Based on the results obtained in our analysis, it can be stated that the majority of the most
commonly used classification performance metrics present some type of symmetry. We have identified
3 and only 3 types of symmetric behaviour: labelling inversion, scoring inversion and the combination
of the two inversions. Additionally, several metrics have been revealed as being robust under
imbalanced datasets, while others do not show this important feature. Finally two metrics has
been identified as one-dimensional, in that they focus exclusively on the positive (sensitivity) or on the
negative class (specificity). The metrics have been grouped into 5 clusters according to their symmetries.

Selecting one performance metric or another is mainly a matter of its application, depending on
issues such as whether the dataset is balanced, misclassification has the same cost in either class and
whether good scores should only be reserved for very good classification ratios. None of the studied
metrics can be universally applied. However, according to their symmetries, two of these metrics
appear especially worthy in general-purpose applications: the Bookmaker Informedness (BM) and
the Geometric Mean (GM). Both of these metrics are robust under imbalanced datasets and treat both
classes in the same way (labelling symmetry). The former metric (BM) also has scoring symmetry
while the latter (GM) is slightly more demanding in terms of scoring good results over bad results.

In future research, the methodology for the analysis of symmetry developed in this paper can be
extended to other classification performance metrics, such as those derived from multiclass confusion
matrix or some ranking metrics (i.e. Receiver Operating Characteristic curve).

Author Contributions: A.L. conceived and designed the experiments; A.L., A.C., A.M. and J.R.L. performed the
experiments, analysed the data and wrote the paper.

Funding: This research was funded by the Telefónica Chair “Intelligence in Networks” of the University of Seville.

Conflicts of Interest: The authors declare there to be no conflict of interest. The founding sponsors played no role:
in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript;
and in the decision to publish the results.

References

1. Speiser, A. Symmetry in science and art. Daedalus 1960, 89, 191–198.
2. Wigner, E. The Unreasonable Effectiveness of Mathematics. In Natural Sciences–Communications in Pure and

Applied Mathematics; Interscience Publishers Inc.: New York, NY, USA, 1960; Volume 13, p. 1.
3. Islami, A. A match not made in heaven: On the applicability of mathematics in physics. Synthese 2017, 194,

4839–4861. [CrossRef]
4. Siegrist, J. Symmetry in social exchange and health. Eur. Rev. 2005, 13, 145–155. [CrossRef]
5. Varadarajan, V.S. Symmetry in mathematics. Comput. Math. Appl. 1992, 24, 37–44. [CrossRef]
6. Garrido, A. Symmetry and Asymmetry Level Measures. Symmetry 2010, 2, 707–721. [CrossRef]
7. Xiao, Y.H.; Wu, W.T.; Wang, H.; Xiong, M.; Wang, W. Symmetry-based structure entropy of complex networks.

Phys. A Stat. Mech. Appl. 2008, 387, 2611–2619. [CrossRef]

http://dx.doi.org/10.1007/s11229-016-1171-4
http://dx.doi.org/10.1017/S1062798705000724
http://dx.doi.org/10.1016/0898-1221(92)90212-Z
http://dx.doi.org/10.3390/sym2020707
http://dx.doi.org/10.1016/j.physa.2008.01.027


Symmetry 2019, 11, 47 30 of 31

8. Magee, J.J.; Betke, M.; Gips, J.; Scott, M.R.; Waber, B.N. A human–computer interface using symmetry
between eyes to detect gaze direction. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2008, 38, 1248–1261.
[CrossRef]

9. Liu, Y.; Hel-Or, H.; Kaplan, C.S.; Van Gool, L. Computational symmetry in computer vision and computer
graphics. Found. Trends Comput. Gr. Vis. 2010, 5, 1–195. [CrossRef]

10. Tai, W.L.; Chang, Y.F. Separable Reversible Data Hiding in Encrypted Signals with Public Key Cryptography.
Symmetry 2018, 10, 23. [CrossRef]

11. Graham, J.H.; Whitesell, M.J.; II, M.F.; Hel-Or, H.; Nevo, E.; Raz, S. Fluctuating asymmetry of plant leaves:
Batch processing with LAMINA and continuous symmetry measures. Symmetry 2015, 7, 255–268. [CrossRef]

12. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: New York,
NY, USA, 2006.

13. Top 10 Technology Trends for 2018: IEEE Computer Society Predicts the Future of Tech. Available online:
https://www.computer.org/web/pressroom/top-technology-trends-2018 (accessed on 18 October 2018).

14. Brachmann, A.; Redies, C. Using convolutional neural network filters to measure left-right mirror symmetry
in images. Symmetry 2016, 8, 144. [CrossRef]

15. Zhang, P.; Shen, H.; Zhai, H. Machine learning topological invariants with neural networks. Phys. Rev. Lett.
2018, 120, 066401. [CrossRef] [PubMed]

16. Luque, A.; Gómez-Bellido, J.; Carrasco, A.; Barbancho, J. Optimal Representation of Anuran Call Spectrum
in Environmental Monitoring Systems Using Wireless Sensor Networks. Sensors 2018, 18, 1803. [CrossRef]

17. Romero, J.; Luque, A.; Carrasco, A. Anuran sound classification using MPEG-7 frame descriptors.
In Proceedings of the XVII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA),
Granada, Spain, 23–26 October 2016.

18. Luque, A.; Romero-Lemos, J.; Carrasco, A.; Barbancho, J. Non-sequential automatic classification of anuran
sounds for the estimation of climate-change indicators. Exp. Syst. Appl. 2018, 95, 248–260. [CrossRef]

19. Glowacz, A. Fault diagnosis of single-phase induction motor based on acoustic signals. Mech. Syst.
Signal Process. 2019, 117, 65–80. [CrossRef]

20. Glowacz, A. Acoustic-Based Fault Diagnosis of Commutator Motor. Electronics 2018, 7, 299. [CrossRef]
21. Caruana, R.; Niculescu-Mizil, A. Data mining in metric space: An empirical analysis of supervised learning

performance criteria. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004.

22. Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for
classification. Pattern Recognit. Lett. 2009, 30, 27–38. [CrossRef]

23. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data
Min. Knowl. Manag. Process 2015, 5, 1.

24. Ting, K.M. Confusion matrix. In Encyclopedia of Machine Learning and Data Mining; Springer: Boston, MA,
USA, 2017; p. 260.

25. Aly, M. Survey on multiclass classification methods. Neural Netw. 2005, 19, 1–9.
26. Tsai, M.F.; Yu, S.S. Distance metric based oversampling method for bioinformatics and performance

evaluation. J. Med. Syst. 2016, 40, 159. [CrossRef]
27. García, V.; Mollineda, R.A.; Sánchez, J.S. Index of balanced accuracy: A performance measure for skewed

class distributions. In Iberian Conference on Pattern Recognition and Image Analysis; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 441–448.

28. López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced
data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141.
[CrossRef]

29. Daskalaki, S.; Kopanas, I.; Avouris, N. Evaluation of classifiers for an uneven class distribution problem.
Appl. Artif. Intell. 2006, 20, 381–417. [CrossRef]

30. Amin, A.; Anwar, S.; Adnan, A.; Nawaz, M.; Howard, N.; Qadir, J.; Hussain, A. Comparing oversampling
techniques to handle the class imbalance problem: A customer churn prediction case study. IEEE Access
2016, 4, 7940–7957. [CrossRef]

31. Jeni, L.A.; Cohn, J.F.; De La Torre, F. Facing imbalanced data–recommendations for the use of performance
metrics. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent
Interaction, Geneva, Switzerland, 2–5 September 2013.

http://dx.doi.org/10.1109/TSMCA.2008.2003466
http://dx.doi.org/10.1561/0600000008
http://dx.doi.org/10.3390/sym10010023
http://dx.doi.org/10.3390/sym7010255
https://www.computer.org/web/pressroom/top-technology-trends-2018
http://dx.doi.org/10.3390/sym8120144
http://dx.doi.org/10.1103/PhysRevLett.120.066401
http://www.ncbi.nlm.nih.gov/pubmed/29481246
http://dx.doi.org/10.3390/s18061803
http://dx.doi.org/10.1016/j.eswa.2017.11.016
http://dx.doi.org/10.1016/j.ymssp.2018.07.044
http://dx.doi.org/10.3390/electronics7110299
http://dx.doi.org/10.1016/j.patrec.2008.08.010
http://dx.doi.org/10.1007/s10916-016-0516-3
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/10.1080/08839510500313653
http://dx.doi.org/10.1109/ACCESS.2016.2619719


Symmetry 2019, 11, 47 31 of 31

32. Powers, D.M. Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation;
Technical Report SIE-07-001; School of Informatics and Engineering, Flinders University: Adelaide,
Australia, 2011.

33. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process.
Manag. 2009, 45, 427–437. [CrossRef]

34. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochim. Biophys. Acta Protein Struct. 1975, 405, 442–451. [CrossRef]

35. Jurman, G.; Riccadonna, S.; Furlanello, C. A comparison of MCC and CEN error measures in multi-class
prediction. PLoS ONE 2012, 7, e41882. [CrossRef] [PubMed]

36. Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol.
Chem. 2004, 28, 367–374. [CrossRef] [PubMed]

37. Flach, P.A. The geometry of ROC space: Understanding machine learning metrics through ROC isometrics.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA,
21–24 August 2003.

38. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant
measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 1015–1021.

39. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
40. Chakraborty, S.; Das, S. k—Means clustering with a new divergence-based distance metric: Convergence

and performance analysis. Pattern Recognit. Lett. 2017, 100, 67–73. [CrossRef]
41. Wang, Y.; Lin, X.; Wu, L.; Zhang, W.; Zhang, Q.; Huang, X. Robust subspace clustering for multi-view data

by exploiting correlation consensus. IEEE Trans. Image Process. 2015, 24, 3939–3949. [CrossRef]
42. Wang, Y.; Zhang, W.; Wu, L.; Lin, X.; Zhao, X. Unsupervised metric fusion over multiview data by graph

random walk-based cross-view diffusion. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 57–70. [CrossRef]
43. Wu, L.; Wang, Y.; Shao, L. Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval. IEEE Trans.

Image Process. 2019, 28, 1602–1612. [CrossRef] [PubMed]
44. Jolliffe, I. Principal component analysis. In International Encyclopedia of Statistical Science; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 1094–1096.
45. Earle, D.; Hurley, C.B. Advances in dendrogram seriation for application to visualization. J. Comput. Gr. Stat.

2015, 24, 1–25. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1371/journal.pone.0041882
http://www.ncbi.nlm.nih.gov/pubmed/22905111
http://dx.doi.org/10.1016/j.compbiolchem.2004.09.006
http://www.ncbi.nlm.nih.gov/pubmed/15556477
http://dx.doi.org/10.1016/j.patrec.2017.09.025
http://dx.doi.org/10.1109/TIP.2015.2457339
http://dx.doi.org/10.1109/TNNLS.2015.2498149
http://dx.doi.org/10.1109/TIP.2018.2878970
http://www.ncbi.nlm.nih.gov/pubmed/30387732
http://dx.doi.org/10.1080/10618600.2013.874295
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Definitions 
	Representation of Metrics 
	Transformations 
	One-Dimensional Transformations 
	Multidimensional Transformations 
	Combined Transformations. 

	Performance Metrics 
	Exploring Symmetries 
	Statistical Symmetries 

	Results 
	Identifying Symmetries 
	Identifying Cross-Symmetries 
	Skewness of the Statistical Descriptions of the Metrics 

	Discussion 
	Conclusions 
	References

