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Dynamic Kinetic Resolution of Heterobiaryl Ketones via Zn-
catalyzed Asymmetric Hydrosilylation 
Valentín Hornillos,*[a] José Alberto Carmona,[a] Abel Ros,[a,b] Javier Iglesias-Sigüenza,[b] Joaquín López-
Serrano,[c] Rosario Fernández,*[b] and José M. Lassaletta*[a] 

Dedicated to Prof. A. Ulises Acuña on the occasion of his retirement 

Abstract: A diastereo and highly enantioselective dynamic kinetic 
resolution (DKR) of configurationally labile heterobiaryl ketones is 
described. The DKR proceeds by zinc-catalyzed hydrosilylation of 
the carbonyl group, leading to secondary alcohols bearing axial and 
central chirality. The strategy relies on the labilization of the 
stereogenic axis that takes place thanks to a Lewis acid-base 
interaction between a nitrogen atom in the heterocycle and the 
ketone carbonyl. The synthetic utility of the methodology is 
demonstrated through stereospecific transformations into N,N-
ligands or appealing axially chiral, bifunctional thiourea 
organocatalysts. 

Axially chiral biaryl compounds are important molecular 
scaffolds present in many natural products and bioactive 
substances.[1] Furthermore, they are among the most important 
class of structures with extensive utility in asymmetric catalysis, 
particularly as ligands for metals but also as organocatalysts.[2] 
The asymmetric coupling of two arene derivatives by cross-
coupling or oxidative dimerization is the most straightforward 
approach for their synthesis,[3] but these methods lack generality 
and fail in cases such as the heterobiaryl synthesis. Transition 
metal-catalyzed dynamic kinetic resolutions (DKR),[4] the novo 
construction of aromatic rings,[5] and a growing number of 
organocatalytic approaches[6] have also been reported for 
specific applications in this field. An appealing DKR strategy 
consists on the asymmetric ring-opening of biaryl lactones 
developed by Bringmann (Scheme 1A),[7] particularly in catalytic 
variants reported by the groups of Yamada[8] and Wang.[9] 
Closely related DKR strategies are based on racemization via 
ring-opening/ring-closing events. The Akiyama group realized 
that biaryl hemiaminals (Scheme 1B) are suitable intermediates 
for DKR, since they can be easily formed and opened in situ.[10]  

 

Scheme 1. Strategies for the labilization of stereogenic axis in biaryls 

The imine group in the open form can be then reduced by 
asymmetric transfer hydrogenation reaction. Conversely, this 
racemization strategy has been recently combined with 
borrowing hydrogen catalysis for a redox-neutral amination of 
biaryl compounds.[11] Clayden and Turner have also reported a 
biocatalytic DKR of atropoisomeric biaryl N-oxide-aldehydes 
triggered by a ketoreductase enzyme (Scheme 1C).[12] This is an 
appealing strategy to access new heterobiaryl scaffolds, but the 
dynamic racemization via six-membered transition states can 
only be performed in systems with reduced steric strain and the 
method is limited to N-oxides. We have also developed dynamic 
kinetic Pd-catalyzed C–C, C–P and C–N bond-forming reactions 
(dynamic kinetic asymmetric transformations, DYKAT) which 
rely in the labilization of the stereogenic axis as a consequence 
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of the widening of angles ϕ1 and ϕ2 in five membered cyclic, 
oxidative addition intermediates (Scheme 1D).[13] This is also a 
versatile methodology for the synthesis of axially chiral 
heterobiaryls, but there is still the need of expensive and toxic 
Pd-based catalysts.  Stimulated by this observation, though, 
we envisioned that related Lewis acid-base interactions in five-
membered cyclic intermediates could be exploited for the DKR 
of heterobiaryl derivatives. In other words, we speculated 
whether a Lewis acidic functional group could play the role of the 
metal center in the DYKAT approach. In spite of its modest 
Lewis acidity, acyl groups are appealing candidates considering 
the many possible transformations (quaternizations) that would 
eliminate its Lewis acid character, therefore stabilizing the 
stereogenic axis. On the basis of this idea, we now wish to 
report on the dynamic kinetic resolution of heterobiaryl ketones 
via Zn-catalyzed asymmetric hydrosilylation (Scheme 1E). As a 
working hypothesis, we anticipated that a relatively fast 
racemization, associated again with a widening of ϕ1 and ϕ2, 
could take place either via five-membered zwitterionic 
intermediates I or through transition states II with a partially 
developed N–C(carbonyl) covalent bond and an incipient 
pyramidalization of the carbonyl carbon. 

The asymmetric hydrosilylation of ketones is a well 
established method to obtain secondary alcohols under mild 
conditions.[14] Given the number of catalytic systems available, 
many of them based in nonprecious metals,[15] this reaction was 
chosen as the first option to explore our hypothesis. The model 
substrate 2a was easily synthesized by Pd-catalyzed Heck 
reaction of the known triflate rac-1a with butyl vinyl ether and 
subsequent hydrolysis of the resulting coupling product (Scheme 
2). X-Ray diffraction analysis of 2a[16] showed the presence of 
both atropoisomers in the solid state, but the analysis by chiral 
HPLC pointed to their configurational lability in solution: a single 

 

Scheme 2. Synthesis of heterobiaryl ketone 2a, X-ray structure (one of the 
enantiomers shown, H atoms omitted for clarity) and a control experiment 
supporting its configurationally instability. 

Table 1. Screening of Reaction Conditions and Ligands.[a] 

 

Entry[a] L T (°C) time 
(h) 

conv. 
(%)[b] dr[b] ee (%)[c] 

major/minor 

1 L1 20 24 >99 2:1 40/54 

2 L1 0 24 85 2:1 59/44 

3 L2 20 48 6 n.d. n.d./n.d. 

4 L2 65 36 >99 5:1 83/52 

5 L3 66 36 >99 4:1 72/31 

6 L4 66 36 >99 5:1 85/53 

7 L5 66 36 >99 4:1 91/72 

8 L6 66 36 >99 5:1 98/89 

9[d] L6 66 36 >99 5:1 98/90 

10[e] L6 66 36 <5 n.d. n.d. 

11[f] L6 66 36 <5 n.d. n.d. 

[a] Reactions at 0.1 mmol scale. [b] Determined by 1H NMR spectroscopy. [c] 
Determined by HPLC. [d] Zn(OAc)2 (5 mol%)/L6 (6 mol %). [e] PMHS was 
used instead of (EtO)2MeSiH. [f] PhMe2SiH was used instead of (EtO)2MeSiH  

narrow peak was regularly observed using a large variety of 
chiral stationary phases and elution conditions. Reduction of 2a 
with NaBH4 afforded a 1:1 mixture of diastereomeric alcohols 3a; 
HPLC analysis of this mixture revealed four distinct peaks 
corresponding to all possible stereoisomers. This behavior, in 
contrast to that observed for 2a, confirms the configurational 
stability of 3a. An additional proof for the configurational lability 
of 2a was obtained after hydrolysis of the enantioenriched (92% 
ee) vinyl ether 4.[17] Interestingly, this reaction requires a slow 
addition of the substrate over an excess of aq. HCl (conditions 
a). Otherwise (conditions b), unexpected isoquinolinium salt 5 is 
obtained as the major product. This product closely resembles 
the zwitterionic intermediate I that, likewise, has lost the chiral 
information of the stereogenic axis. Additionally, reduction of the 
ketone 2a obtained from 4 afforded again the mixture of racemic 
diastereomers 3a. Control experiments showed that alcohols 3 
do not epimerize/racemize under these reductive conditions. 
Consequently, it can be deduced that ketone 2a quickly 
racemizes after hydrolysis of the parent vinyl ether 4. Further 
experiments and a DFT analysis for the atropoisomerization of 
2c were also conducted, and the results (see the supporting 
information for details) are fully consistent with the starting 
hypothesis: according to this study, the racemization takes place 
via a ‘quasi zwitterionic’ transition state (type II) with a relatively 
low barrier of 22.1 kcal mol–1.[18] 
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With this key information in hand we started the screening of 
conditions for the asymmetric hydrosilylation of the model 
substrate 2a (Table 1). A first interesting result was observed by 
using inexpensive and environmentally benign Zn(OAc)2

[19] in 
combination with (S,S)-N,N´-dimethyl 1,2-diphenylethylene-
diamine ligand L1: a 2:1 diastereomeric mixture of products 3a 
with a 40% ee for the major isomer was observed using 2 
equivalents of (EtO)2MeSiH in THF at 20 °C (entry 1). At lower 
temperature (0 °C, entry 2) the conversion dropped and no 
significant improvement was observed (entry 2). The easy 
synthesis and structural modularity of this type of N,N ligands, 
however, facilitated further optimization.[20] A surprising lack of 
reactivity at rt was observed by introducing benzyl groups in the 
chiral scaffold (L2, entry 3). Nevertheless, full conversion with 
5:1 diastereoselectivity and a promising 83% ee for the major 
isomer were achieved by simply heating the reaction to reflux 
(entry 4). Ligand L3 with additional tert-butyl groups at the para 
positions of the benzyl units afforded a slightly lower selectivity 
(entry 5) while ligand L4 bearing four meta methoxy groups 
afforded a similar result (entry 6). A significant improvement was 
observed for ligands L5 with ortho methyl groups (91% ee, entry 
7). Finally, use of ligand L6, bearing four bulky tert-butyl groups 
in the meta positions, yielded 3a with excellent conversion and 
high diastereo- and enantioselectivity (entry 8). Moreover, the 
catalyst loading could be reduced to 5 mol% to obtain a similar 
result (Entry 9). Noteworthy, alternative silanes such as 
polymethylhydrosiloxane (PMHS) and PhMe2SiH were 
unreactive in this transformation (entries 10,11). 

Under optimized conditions, the scope of the process was 
explored for different heterobiaryl scaffolds and acyl groups 
(Table 2). Ketone 2b bearing a methyl group at position 4 of the 
naphthalene ring performed very similar to the model ketone 2a, 
affording alcohol 3b in 80% yield, 4.5:1 dr, and a 97% ee for the 
major diastereomer (entries 1 and 2). Alcohols 3c and 3d, 
derived from 1-(1-naphthyl)picoline and 1-(o-tolyl)isoquinoline 
derivatives, respectively, could also be obtained in high yields 
and enantioselectivities (entries 3 and 4). Remarkably, 1-(1-
naphthyl)quinazoline derivative 2e afforded the corresponding 
alcohol with a higher 8.5:1 diastereoselectivity. Due to its high 
polarity, the crude alcohol 3e was acetylated (Ac2O/DMAP) 
before purification, yielding a mixture of the expected O-acetyl 
derivative 3'e and product 3''e, formally resulting from N-
acylation and intramolecular 1,2 addition of the hydroxyl group. 
Heterobiaryl methyl ketone 2f bearing a phenyl group in position 
3 was also well tolerated, although a slightly lower 
diastereoselectivity was observed (entry 6). More sterically 
demanding methyl 1-(1-pyrenyl)-isoquinoline ketone 2g also 
underwent hydrosilylation of the carbonyl affording 3g in high 
yield and enantioselectivity, (entry 7). Moreover, ketones 2h-j 
bearing different aliphatic substituents also provided the desired 
products in high yields and enantiomeric ratios (entries 8-10). 
Interestingly, a 20:1 dr was observed for the more sterically 
demanding neopentyl ketone 2i although with decreased 
enantioselectivity (80% ee). It is worth to stress that in all cases, 
without exception, the two diastereomers were readily isolated in 
pure form after a simple column chromatography. Importantly, 
the hydrosilylation of 2a was also performed on a bigger scale (1 
mmol) affording 3a in better yield (95%, 77% of isolated major 
isomer), and diastereoselectivity (5.3:1) without compromising  

Table 2. Substrate scope.[a] 

 

entry[a] SM dr[b] yield[c] prod eemajor 
(%)[d] 

eeminor 
(%)[d] 

1 2a 5:1 77(67) 3a 97 90 

2 2b 4.5:1 80(64) 3b 97 89 

3 2c 4:1 93(78) 3c 96 82 

4 2d 3.2:1 80(61) 3d 90 88 

5 2e 8.5:1 66 3’e/3’’e[e] 98/97 - 

6 2f 2:1 91(59) 3f 95 95 

7 2g 3.2:1 88(70) 3g 97 86 

8 2h 4:1 86(70) 3h 94 94 

9 2i >20:1 52 3i 80 - 

10 2j 2.5:1 86(63) 3j 91 88 

11 2a 5.3:1 95(77) 3a 97 90 

[a] All reactions reached full conversion as determined by TLC and 1H NMR 
spectroscopy. [b] Determined by 1H NMR in the crude reaction mixtures. [c] 
Isolated overall yields after chromatography. In parenthesis, yield of pure 
major isomer [d] Determined by HPLC. [e] 3'e and 3''e were isolated in 41% 
and 25% yield, respectively. 

the excellent enantioselectivities (entry 11). The absolute 
configuration of (Ra,R)-3a and (R,R)-3’’e were determined by X-
ray diffraction analysis,[16] while that of the minor isomer (Sa,R)-
3a was assigned by chemical correlation.[21] The absolute 
configurations of other products 3 were assigned by analogy. 
The newly synthesized heterobiaryl alcohols with both central 
and axial chirality offer many possibilities for further 
functionalization and are highly useful synthons for the synthesis 
of various chiral heterobiaryls that are otherwise difficult to 
access. Representative transformations from (Ra,R)-3a are 
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shown in Scheme 3. Displacement of the secondary alcohol 
using diphenylphosphoryl azide (DPPA) and DBU was carried 
out to obtain azide (Ra,S)-7[16] with inversion of the configuration 
at the stereocenter. A unique class of chiral N,N-ligand (Ra,S)-8 
was prepared via Cu(I)-catalyzed cycloaddition reaction of 
(Ra,S)-7 with phenylacetylene in good yield under mild 
conditions. Moreover, Staudinger reduction of (Ra,S)-7 furnished 
amine (Ra,S)-9, an appealing homologue of the ligand IAN,[13d,22] 
but incorporating an additional stereocenter. Finally, a novel 
class of bifunctional thiourea catalysts (Ra,S)-10 was easily 

 

Scheme 3. Representative transformations from (Ra,R)-3a. 

obtained by condensation of (Ra,S)-9 and 1-isothiocyanato-3,5- 
bis(trifluoromethyl)benzene. Importantly, the enantiomeric purity 
in these products was completely preserved during these 
reaction sequences. 

In conclusion, a weak Lewis acid-base interaction is the 
key for the atroposelective Zn-catalyzed hydrosilylation of 
heterobiaryl ketones via dynamic kinetic resolution. The resulting 
heterobiaryl carbinols containing both central and axial 
stereogenic elements are also direct precursors for the synthesis 
of chiral bidentate ligands and bifunctional thiourea-based 
organocatalysts. The development of related catalytic reactions 
based on this racemization strategy is currently under 
investigation in our laboratories. 
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The dynamic duo: A nitrogen atom and the carbonyl group in heterobiaryl ketones 
form a Lewis pair responsible for the labilization of the stereogenic axis, which 
constitutes the key strategy to develop a Zn-catalyzed asymmetric hydrosilylation 
via dynamic kinetic resolution. This process simultaneously installs a stereogenic 
axis and a stereocenter for the highly enantioselective synthesis of heterobiaryl 
carbinols. 
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