
Segmentation of Bone Structures in 3D CT Images Based on
Continuous Max-flow Optimization
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ABSTRACT

In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images
has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and
surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones
usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the
composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover,
segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually,
this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and
thus providing bad results. In this paper gray information and 3D statistical information have been combined
to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different
coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values
above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has
been carried out and our results outperformed them in terms of accuracy.
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1. INTRODUCTION

Automatic and accurate segmentation of bones is of special interest for radiologists and surgeons in order to
analyze and locate many kinds of fractures, to diagnose some bone diseases (such as Osteoarthritis, Rheumatoid
Arthritis, Osteoporosis) and in plastic surgical planning. The segmentation of such structures is difficult because
the presence of some diseases usually provokes a reduction in bone density in different areas. Besides, the different
parts of the bones (mainly periosteum, compact (hard) bone, cancellous (spongy) bone and bone marrow) present
wide differences in densities and thus, different Hounsfield values.1 This implies an overlapping of these values
with other tissue types such as muscle, fat or some organs.

In Fig. 1 several bone structures can be seen. It can be seen in the figure that the presence of a wide
range of different Hounsfield values in these structures make the segmentation problem more coplicated (note
the different Hounsfiel values in cortical and cancellous bone).

A second difficulty in the segmentation of bone structures is their 3D essence. Thus, fast and automatic
algorithms are required in order to obtain the segmentation with reduced computational times.

Many algorithms have been published regarding to bone segmentation and, according to Wang et al.,2

they can be classified into four categories: intensity-based,3 edge-based,4 region-based,5 and model-based.4,6

In some works the segmentation technique is selected according to the number of bones or type of bone to
be segmented.7–9 This lack of generalization is a problem, as radiologists do not want to consider different
segmentation methods according to the regions to be analyzed. Thus, a more general method more suitable
for a wide number of bone structures would be desirable. When considering more general methods, level sets,
active contours and graph cuts implementations are preferred.10–12 However, level set methods can drive to
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J. A. Pérez-Carrasco: E-mail: jperez2@us.es, Telephone: +34 954 48 73 33
B. Acha: E-mail: bacha@us.es, Telephone: +34 954 48 73 33
C. Serrano: E-mail: cserrano@us.es, Telephone: +34 954 48 73 33

Medical Imaging 2015: Image Processing, edited by Sébastien Ourselin, Martin A. Styner, Proc. of SPIE Vol. 9413, 
94133Y · © 2015 SPIE · CCC code: 1605-7422/15/$18 · doi: 10.1117/12.2082139

Proc. of SPIE Vol. 9413  94133Y-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/18/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Compact Bone

Cancellous Bone

Figure 1. Zoomed abdominal section of a CT volume. Note differences in compact bone with cancellous bone in the
different bone structures.

local optima of the minimization energy function and suffer from high sensitivity to initialization. Graph cut
techniques have the advantage that they guarantee the global optima (if bipartition is implemented and a Potts
model is adopted) in nearly real time.

In the algorithm presented in this paper, a methodology based on continuous convex relaxation tech-
niques13,14 is followed. We combine gray level information, gradient values and statistical information computed
using histogram distances and provide this combined information as input to a convex relaxation algorithm in
order to get accurate and fast segmentation of bones in 3D volumes. Continuous convex relaxation techniques
share the advantages of both active curves and graph-cuts14 and they outperform graph cuts in regard to speed
and accuracy.14

2. METHOD

The methodology implemented in the work presented in this paper consists in three steps. The first step is
a bone enhancement operation. Hounsfield values in CT volumes are usually between -2000 and 3000. The
bones usually have values from 700 (cancellous bone) to 3000 (dense bone) approximately. In order to get a
higher contrast, a thresholding operation followed by a normalization operation has been applied to the different
images used throughout our experiments. The resulting normalized image is denoted as Inorm. The threshold,
maximum and minimum values used during the two operations are common in all the volumes that have been
used in order to not lose generalization.

The second stage of our algorithm is the computation of Histogram Distance Images (HDI ). 10% of the
volumes used throughout our experiments have been used to obtain a model histogram of bone structures. The
rest 90% of the volumes were used to test our algorithm and for comparison purposes. In this dataset, for each
voxel (i, j, k), a local histogram is computed. Different 3D sizes of this local neighborhood were tested and a
local neighborhood of 7x7x3 provided the best results. Subsequently, for each local histogram, a distance17 to
the histogram model is calculated and this distance is assigned to voxel (i, j, k) in a new Histogram Distance
Image (HDI ). HDI will have values close to 0 in regions where bone tissue appears and close to 1 when no
bones are encountered. Finally, in order to combine this 3D statistic information with the gray level information
Inorm, we create a cost image term to be minimized (CIT ) as:

CIT = ((1− Inorm) +HDI)/2 (1)

Eq. 1 is the cost to be minimized using the continuous max-flow algorithm described in the next subsection.
The first term of the right expression in Eq. 1 uses intensity information. Pixels corresponding to bone (mainly
cortical bone) will have values close to ‘1’. Thus, we use 1− Inorm instead of Inorm directly because we want
low values in bone structures. Something similar occurs with the second term in the right expression in Eq. 1.
The distance to the model histogram in pixels corresponding to bones should be close to 0 whereas it should
be close to 1 in pixels belonging to other kind of tissues. In Fig. 2 these computed images are shown for a CT
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Figure 2. Computed images used by the algorithm. The first image (a) is the initial image without thresholding. The
second image (b) corresponds to the thresholded and normalized image. The third image (c) corresponds to the distance
image HDI. Finally, the last image (d) shows the new computed image CIT.

slice. The first image (a) is the initial image without thresholding. The second image (b) corresponds to the
thresholded and normalized image. The third image (c) corresponds to the distance image HDI. Finally, the
last image (d) corresponds to CIT image which will be the input to the continuous max-flow algorithm. It can
be seen that bone structures are darker in CIT image, which means that gray level information and distance
between histograms information have been properly combined.

Finally, in the last and third stage, we use the CIT image above computed, as input to the continuous
max-flow optimization algorithm proposed by J. Yuan et al.13 In the work by Yuan et al., citeYuan20102217,
Yuan et al. proved that the max-flow problem, which is formulated by maximizing the total flow from the
source, is equivalent to a continuous s-t min-cut problem as follows:

min
u(x)ε[0,1]

∫
Ω

(u)Csdx+

∫
Ω

(1− u)Ctdx+

∫
Ω

C(x)|∇u|dx (2)

u(x) is the labeling function and indicates if point x belongs to the region to be segmented. If the minimization
problem is well defined, the cost function Cs should take low values inside the bones and high values outside
them. Similarly, Ct should take low values outside the bones and high values inside them. The most right term
of Eq. (2) is the regularization term and C(x) is a penalty function. |∇u| is the absolute gradient of the labeling
function u(x), thus indicating the boundary of the segmented region. Cs and Ct are called regional terms. In
the algorithm proposed here, the regional term Cs, provided as input to the continuous max-flow algorithm, is
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the CIT image computed through Eq. (1). Thus, in the algorithm proposed, the terms Cs and Ct (Eq. 2) are
computed as follows:

Cs = CIT (3)

Ct = 1− CIT (4)

Note that with Eq. (4) we force Ct to be low outside the bones and high inside them, as required by the
minimization in (2). In addition, the algorithm penalizes an excessive area of the surface limiting the segmented
volume. This penalization term is the most right term in Eq. (2). This penalization is modeled by a function
C(x) depending on the gradient of the CIT image along the surface, so that if the gradient is high along the
surface, a large area of the surface is not penalized. The penalization function is computed as follows:

C(x) =
b

1 + a|∇CIT (x)|
(5)

where parameters a and b control the importance of the gradient in the penalization function. In our imple-
mentation a and b values have been obtained empirically and their values are 10 and 0.2, respectively. Note
that at the surface, |∇u| will have high values whereas C(x) will have low values if the gradient of CIT (x) is
high. Thus, the most right term in Eq. 2 will not penalize a large area if a high border is encountered.

Finally, in order to smooth out the resulting segmented image, and to get a more accurate segmentation, a
morphological operation of opening is performed.

It is important to note that the proposed algorithm uses the gradient information that is very high in
the boundaries of cortical bone structures and histogram distance information, which is very useful mainly to
segment cancellous bone structures, which present lower gray values and overlap with other tissue types such
as muscle, fat or some organs.

3. EXPERIMENTAL RESULTS

To assess the algorithm proposed, twenty images corresponding to ten different patients have been used. Manual
segmentations of all the slices were provided by an expert. Three different methods have been compared using
the same set of images. Table 1 shows the performance parameters provided by each of the techniques. These
parameters are the Jaccard, Dice, Sensitivity (S ) and Positive Predictive Value (PPV ) parameters. Both Jaccard
and DICE coefficients measure the set agreement in terms of false positive, false negative, true negative and
true positive counts.

Table 1. Comparison between the three different algorithms.

METHOD Computational Time PPV Sensitivity Specificity Dice Jaccard
THRESHOLDING 0,017 s 0,8 0,802 0,993 0,7857 0,656

DRLSE 3402 s 0,54 0,938 0,889 0,6031 0,511
thresholded HDI 255 s 0.872 0.9570 0.9946 0.9106 0.8397

The first method was a technique based on thresholding. A common threshold was computed for all the
images and the threshold providing the best results was 1200. As it has been stated before, the low results
provided by this method are because bone structures do not have a pixel-wise constant object distribution,
which means that they are composed by different structures with different Hounsfield values.

The second method employed has been the Distance Regularized Level Set Evolution (DRLSE ) published in
Ref. 18. In the experiments shown in Ref. 18, low computational times were obtained when small images with
a reduced number of regions were employed. However, when bigger images are considered and many different
bone structures are considered, performance values were considerably low and excessively high computational
times were required. In all these cases the algorithm used to have convergence problems. Table 1 shows the
results when using Inorm image as input and using parameters λ = 20 , timestep ∆t = 5, ε = 1.5 and α = 1 .
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Figure 3. Results obtained for four different images using our algorithm. Upper row shows the original images. Lower row
shows the corresponding groundtruth images. Results obtained with the DRLSE algorithm are shown in red. Results
provided by our algorithm are shown in blue.

The third method corresponds to our algorithm and it has been labeled as thresholded HDI. Only pixels
above a threshold value were considered to compute the HDI image. Using this thresholding operation a
reduction of 80% in the computational time was obtained when compared with the same technique without
thresholding.

Fig. 3 shows the results obtained for four different images using our algorithm and DRLSE. Note how the
DRLSE algorithm has problems when some bone structures have inner regions that do not correspond to bones.

The segmentation step corresponding to the continuous max-flow algorithm offered an average computational
cost of 0.5s per 512x512 slice, which is much smaller than values provided by other minimization strategies.
The creation of the HDI image was the most time consuming task (see Table 1). Matlab 7.12 was used in all
the experiments.

4. CONCLUSIONS

The segmentation of bone structures is a complicated task because they present intensities overlapping with
those of surrounding tissues. In this paper an automatic algorithm, which combines gray level information and
statistical information extracted from local histograms in a 3D neighborhood of the voxels under consideration,
is computed for segmentation of bone structures. The gray information and the statistical information are
combined and used as input to a continuous max-flow optimization algorithm. Several coefficients have been
computed to measure the algorithm performance. Results obtained are over 0.9, which indicates neither the
FP rate nor the FN rate are high. High sensitivity values above 0.97 were obtained. A further validation,
with a higher number cases would be desirable. Note that the segmentation stage using a continuous max-flow
implementation is faster than the majority of algorithms in the literature. Future implementations will speed
up the creation of the input image CIT, which is the main bottleneck in our implementation.

The authors declare that the work is not being, or not has been, submitted for publication or presentation
elsewhere.
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