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Abstract

In this work we present a study on the mesic nuclear quasi-bound states, par-
ticularly on those of the K̄ and η mesons. These states are formed when low
energetic mesons bind to the nucleus for a short period of time due to the strong
interaction.

In this scenario we test different theoretical meson-nucleus optical potentials
by computing the binging energies and widths of the nuclear states. For the
antikaons we employ in-medium amplitudes for a particular model while for the
η meson we test five different models in the free-space, and one of them also in
the nuclear medium.

Our results show an agreement with similar previous calculations, obtaining
larger widths than the binding energies for the K̄ nuclear quasi-bound states and
smaller widths than the binding energies in the case of η nuclear quasi-bound
states for two of the models studied.

Further, we devote a whole chapter to describe the numerical methods used
to solve the Klein-Gordon equation describing the problem of the nuclear bound
states, which constitutes the major part of this work. We explain step by step
the main features of our code and the important considerations to take into
account in order to obtain correct results.
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Chapter 1

Introduction

Nothing great in the world was
accomplished without passion.

— G. W. Hegel

1.1 Motivation
The study of exotic matter has been the target of many researches from the early
fifties. The first studies date back to late forties, when Fermi and Teller [1] and
Wheeler [2] postulated the existence of exotic atoms to explain the experimental
results of Conversi [3], who observed the capture of negative muons by the
nucleus. It is thought [4] that the first detection of negative pions was done by
Camac [5] when studying the stopping of these particles in carbon.

Exotic atoms are atomic systems where heavy particles can replace an elec-
tron. Such particles have negative charge and need to have long enough lifetimes
to form bound states with the nucleus before decay. For that reason, some of
the particles of interest for hadronic atoms are π−, K−, Σ− and p̄. Due to the
larger mass of these hadrons with respect to the electrons, the orbits that they
occupy are much closer to the nucleus that the ones of the electrons. Besides,
since only one hadron is captured by the nucleus, the Pauli principle does not
apply, leaving the whole set of atomic levels free for the hadron. Thus, as a
first approximation, one can focus in the hadron-nucleus system neglecting the
presence of the electrons, what simplifies the study to that of the hydrogen-like
atoms. However, hadrons interact strongly with the nucleus at low energies,
bringing about information on the strong interaction, the matter distribution
of the nucleus, precise values of the hadron masses and the magnetic moments
[4].

The hadronic atom is formed when, in a nuclear reaction, a negatively
charged hadron is stopped in the target and captured by the atoms that com-
pose it. The captured hadron will cascade down through its atomic levels until
arrive to a state with small principal quantum number where it will by absorbed
by the nucleus due to the strong interaction. While falling towards the nucleus,
it emits Auger electron and, in the last stages, its characteristics X-rays.
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Since these hadrons have longer lifetimes than typical atomic scales well-
defined atomic states can be formed, and the effects of the strong interaction
can be studied. Further, due to the fact that the hadrons are much closer to the
nucleus than the electrons, the tail of its atomic wave functions lies within the
nuclear medium, hence providing information about the density dependence of
the strong interaction [6].

However, the lower levels of the hadronic atoms can penetrate enough the
nucleus such that the strong interaction with the nucleus produces wider level
widths than those of the purely electromagnetic level. In this scenario, the
emitted X-rays are highly suppressed in comparison with the nucleus absorption,
hampering its detection by standard techniques as X-ray spectroscopy.

As it is shown in this work, the study of the strong interaction through
hadron atomic levels is limited by the capacity of resolving these states with
such large widths. Therefore, in order to obtain more information about the
strong interaction one can study exotic nuclear states.

Exotic nuclei are nuclear systems that contain an additional exotic particle to
the usual nucleons within the nucleus. In contrast to the exotic atomic levels,
exotic nuclear states are produced when the strong interaction between the
exotic particles and the nucleus is dominant with respect the electromagnetic
interaction. Actually, non-charged particles are of great interest in these studies
since they only interact strongly with the nucleus.

The experiments studying hadronic nuclear states have used different types
of beams such as photons, pions, protons and light and heavy ions, with en-
ergies ranging from low to ultra-relativistic energies. Nonetheless, the energies
of interest to study nuclear bound states are of the order of the production
threshold or slightly above. This is because only slow enough hadrons would be
captured by the nucleus, as long as there is sufficient attraction.

K+K0

π−

K− K̄0

π+π0η0

η′

Figure 1.1. Representation of the pseu-
doscalar meson nonet of SU(3) group.

The study of mesic nuclear bound
states is a suitable way of obtaining in-
formation on the strong interaction and
serves as an appropriate testing sce-
nario to understand the Quantum Chro-
modynamics theory (QCD) in the non-
perturbative regime, as it is explained in
the next section. The QCD theory con-
templates mesons as excitations of its vac-
uum due to quark condensates, which are
expected to change in the strongly inter-
acting nuclear medium, thus modifying
the mass spectrum of the mesons.

In this work we concentrate in the
S = −1 sector of the pseudoscalar nonet
of mesons, see Fig. 1.1, namely the an-
tikaons K̄ = (K−, K̄0), as well as in the η meson. These particles are of interest
due to the resonances that arise in their meson-nucleon interactions. In the case
of the antikaons the Λ(1405) resonance is produced below the K̄N threshold
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Meson V0 (MeV) W0 (MeV) σunel (mb) Reaction Collaboration Ref.

K+ ' 25 – – p+ A KaoS [8]
K+ 15–20 – – Ru+Ru, Ni+Ni FOPI [9]
K+ 20± 3 – – p+ A ANKE [10]
K+ ' 30 – – Ni+Ni – [11]
K+ 20± 5 – – Ni+Ni FOPI [12]
K0 20± 5 – – π− + A FOPI [13]
K0 ' 49 – – Ar + KCl HADES [14]
K0 40± 5 – – p + Nb HADES [15]
K− ' −80 – – p+ A KaoS [8]
K− −(45− 50) – – Ni+Ni FOPI [12]
K− −60+50

−31 – – p+ A ANKE [16]
K− −160...− 190 ' −60 – 12C, 16O(K−, N) KEK E548 [17]
η −(10–30) 30± 6 γ + A A2 [18]
η −(54± 6) −(20± 2) – p+ d ANKE, COSY11 [19]
η′ – −(10± 2.5) 10.3± 1.4 γ + A CBELSA/TAPS [20]
η′ – −(13± 3± 3)∗ 13± 3 γ + C, Nb CBELSA/TAPS [21]
η′ −(37± 10± 10) – – γ + C CBELSA/TAPS [22]
η′ −(41± 10± 15) – – γ + Nb CBELSA/TAPS [23]
ω – −(35–50) ' 40 γ + A CBELSA/TAPS [24]
ω – −(48± 12± 9) – γ + C, Nb CBELSA/TAPS [21]
ω −(29± 19± 20) – – γ + C, Nb A2 [25]
ω −(15± 35± 20) – – γ + C CBELSA/TAPS [26]
ω ' −75 0 – p+ A KEK E325 [27]
ω – ≤ −100 – γ + A CLAS [31]
φ – −(20–30) – p+ A ANKE [29]
φ – −(10–30) 14–25 p+ A ANKE [30]
φ – −(23–100) 16–70 γ + A CLAS [31]
φ – – 35+17

−11 γ + A LEPS [32]
φ ' −35 −7.5 – p+ A KEK E325 [33]

Table 1.1. Experimentally deduced real (V0) and imaginary (W0) meson-nucleon
potentials at normal nuclear matter density. The asterisk on the potential values
stands for the extrapolated values to meson momentum zero, otherwise the values
have been determined as an average over a momentum range, mainly 0 � p ≤
m. When giving separately in the original literature the first error refers to the
statistical error and the second to the systematic error. (Table from Ref. [7])

—around 30 MeV below the K̄ production threshold— and into πΣ. On the
other hand, the ηN interaction is dominated by the N∗(1535) baryon resonance
which is located around 50 MeV above the production threshold.

The interest of the search for mesic nuclear states can be found in both
nuclear and hadronic physics. In the case of nuclear physics these states are
exotic configurations of nuclei since they correspond to states with excitation
energies of several hundred MeV up to GeV. On the other hand, for hadron
physics these states provide essential information to investigate meson proper-
ties and their modification at finite nuclear densities [7]. Considering an optical
potential governing the meson-nucleon interaction, i.e.

Vopt(r) = V (r) + iW (r), (1.1)

the detection of mesic nuclear quasi-bound states will be enhanced if the depth
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Figure 1.2. Graphical representation of the experimental data for
the real part of the meson-nucleus potential depths of Table 1.1
for the K+, K0, K−, η, η′, ω and φ mesons.

of the real part of the optical potential is larger than the imaginary part of the
optical potential, that is

|V | � |W |, (1.2)

and if the energy of the quasi-bound state is larger than the energy width of
the state.

The typical experimental procedures for the search of nuclear bound states
is to look for structures similar to the resonances in the excitation energy range
of the residual nucleus, where the meson-nucleus configuration is expected to
take place. Then, the states can be detected by studying the meson decay or
by missing-mass spectrometry. Another common procedure is to measure the
production of the meson near the production threshold [7].

In Table 1.1 we present a compilation of the available experimental data of
the meson-nucleon interaction. For completeness we also show the data for K+,
η′, ω and φ mesons, although they are not discussed in this work. Figure 1.2
shows the plot of experimental the real part of the optical potential for the K+,
K0, K−, η, η′, ω and φ mesons. The first thing one notices is that the K+ and
K0 potential depths show a repulsive behaviour while for the other mesons this
depth is attractive, although with different strength for the different mesons.

In the case of the antikaon, K−, the experimental data for the strength of the
real part of the potential lie in a wide range of values, from a minimum around
−190 MeV to a maximum of about −20 MeV, including the uncertainties, while
for the η meson the range is smaller and the value is around −50 MeV.

Figure 1.3 plots the experimental data for the imaginary part of the meson-
nucleus optical potential for the K−, η, η′, ω and φ mesons. All of them are
negative, what highlights the meson absorption in the nuclear medium.

The important feature for the formation of the meson nuclear quasi-bound
states is the relative strength of the real and imaginary part of the optical
potential as expressed in Eq. (1.2). In the case of the K−, the widths are larger
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Figure 1.3. Graphical representation of the experimental data for
the imaginary part of the meson-nucleus potential depths of Table
1.1 for the K−, η, η′, ω and φ mesons.

than the depths, which indicates that the absorption of the meson by the nucleus
is more probable that the formation of a quasi-bound state. On the other hand,
the experimental data for the η-nucleus optical potential seem to fulfil Eq. (1.2)
enhancing the observation of η nuclear bound states.

1.2 Chiral effective meson-baryon interaction
The strong interaction is the force that governs the interaction between the fun-
damental constituents of the hadrons. It is explained by the quantum chromo-
dynamics (QCD) theory, which is a SU(3) gauge theory where the fundamental
fields are the quarks and the gauge fields are the gluons. The quark fields are
formed by the three lightest quarks —u, d and s— which are treated as massless
particles in this theory. In this framework, the lowest order QCD Lagrangian
can be written as

L0
QCD =− 1

2
tr[(∂µAν − ∂νAµ − ig [Aµ, Aν ]) (∂νAµ − ∂µAν − ig [Aµ, Aν ])]

+ q̄iγµ (∂µ − igAµ) q, (1.3)

where q represents the quark field and

Aµ =
∑
a

T aAaµ, (1.4)

where Aaµ are the gluon fields for a = 1, . . . , 8 and T a = λa/2 are the generators
of the colour group SU(3) with λa Gell-Mann matrices, and g is the gluon gauge
coupling constant.

The projection operators, P L,R = (1∓ γ5)/2, can be applied over the quark
fields to define chiral eigenstates qL = P Lq and qR = PRq, for massless particles.
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Since the projection operators fulfil completeness, PL +PR = I, are idempotent,
P 2
L = PL and P 2

R = PR, and orthonormal, PLPR = PRPL = 0, one can rewrite
the lowest order QCD Lagrangian of Eq. (1.3) as

L0
QCD =− 1

2
tr[(∂µAν − ∂νAµ − ig [Aµ, Aν ]) (∂νAµ − ∂µAν − ig [Aµ, Aν ])]

+ q̄Liγµ (∂µ − igAµ) qL + q̄Riγµ (∂µ − igAµ) qR. (1.5)

This expression shows that qL and qR define two independent terms of the
lowest order QCD Lagrangian. This property defines a global SUL(3)× SUR(3)
symmetry, also know as chiral symmetry of QCD.

However, the expectation value of the q̄q operator over the vacuum, 〈0 |q̄q| 0〉,
is nonzero. This creates a finite quark condensate that breaks the chiral symme-
try spontaneously. By Nambu-Goldstone theorem [34, 35, 36] bosonic massless
particles appear for each broken symmetry. In three-flavour (uds) QCD the
lightest pseudoscalar mesons arise, that is π, K and η mesons.

To approach a more realistic description, nonzero masses should be added
to the fermionic fields, q. By imposing this condition the chiral symmetry is
broken explicitly generating masses for the Nambu-Golstone (NG) bosons.

Some of the the K̄N amplitudes used for the calculations in this work [37]
have been computed using a chiral non-perturbative scheme, including the whole
set of 0− pseudoscalar mesons and the octet of 1/2+ baryons. The lowest
order chiral Lagrangian that couples the octet of 1/2+ baryons and the octet of
pseudoscalar mesons is given by

LB1 = tr
[
B̄(iγµ∇µB −MB)B

]
+
D

2
tr
(
B̄γµγ5 {uµ, B}

)
+
F

2
tr
(
B̄γµγ5 [uµ, B]

)
,

(1.6)
where

∇µB = ∂µB + [Γµ, B] , (1.7)
Γµ = 1

2

(
u†∂µu+ u∂µu

†) , (1.8)

U = u2 = exp
(

i
√

2Φ/f
)

(1.9)

uµ = iu†∂µUu
†. (1.10)

In chiral perturbation theory, the NG boson field adopts the SU(3) matrix
representation

Φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (1.11)
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(a) (b) (c) (d)

Figure 1.4. Feynman diagrams of chiral perturbation theory of the meson-baryon
interaction. (a) Contact term of Weinberg-Tomozawa interaction, (b) Born term
for the s-channel, contact term of the NLO interaction.

while the baryon field is

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (1.12)

The schematic diagrams of the meson-baryon interaction are drawn in Fig.
1.4. To the lowest momentum order the corresponding interaction is given by
the Weinberg-Tomozawa (WT) term. In this order the interaction Lagrangian
adopts the form

LB1 =
1

4f 2
tr
(
B̄iγµ [Φ∂µΦ− (∂µΦ)Φ, B]

)
, (1.13)

whose corresponding diagram is shown in Fig. 1.4a. This Lagrangian will be
used to obtain the K̄N scattering amplitude TK̄N from which the K̄-nucleus
optical potential will be built, as we will show in Chapter 3.

1.3 Scattering theory
As has already been mentioned, the experimental study of the strong interaction
is usually done through nuclear reactions. Experimentally, in these processes
beams of different sort of particles —as leptons, bosons, hadrons or mesons—
are made to collide with a target. In the experiments of our interest these
targets are usually nuclei and, depending on the energy of the particles within
the beam, the experiments can reveal different information of the structure of
the particles involved.

At high energies, about the order of GeV, the particles of the beam are
energetic enough to cross the nuclear barrier created by the target nucleus
and penetrate it until collide with the nucleons. At these energies, the quark
structure of the hadrons —as protons and neutrons— can be studied, since the
energies involved are higher than the mass of the nucleons, ∼ 939 MeV.

At lower energies, of the order of MeV, the particles of the beam cannot over-
come the whole nuclear barrier. In this scenario, the particles with lower energy
will interact only electromagnetically with the target nuclei suffering Coulomb
scattering. On the other hand, the more energetic particles can overcome the
nuclear barrier and get inside the range where the nuclear force is present. It is
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in this scenario where the strong interaction can be analysed and where nuclear
bound states of exotic particles can be formed.

The theoretical framework that treats this phenomena is called scattering
theory and is introduced below.

In the quantum theory of a scattering process the wave function of the in-
cident particle is expected to feel a perturbation just when is close enough to
the target to interact through a potential V . That means that in the asymp-
totic limit, i.e. r → ±∞ or t → ±∞, the wave function of a particle can be
approximated by a plane wave. Then, the wave function, which is solution of
the Schrödinger equation, can be split into two terms,

ψ(r) −−−−→
r→±∞

ψinc(r) + ψscatt(r), (1.14)

where ψinc is the incoming plane wave of a particle of momentum p located at
r, i.e. eip·r, and ψscatt is the scattered wave function solution of the correspond-
ing wave equation. Before solving the wave equation one can guess that the
scattered wave function has a spherical form, then Eq. (1.14) might take the
form of

ψ±(r) −−−−→
r→±∞

eip·r + f±(pr,p)
e±i pr

r
, (1.15)

where f±(pr,p) is the so-called “scattering amplitude” of the process, which
weights the forward direction of the scattering wave function. The sign + refers
to an “incoming” wave function and − to and “outgoing” one.

Then, the Hamiltonian H is decomposed in two parts H = H0 + V , where
H0 is the free hamiltonian and V is the potential responsible of the scattering.
For non-relativistic spinless particles H0 = p/2m (Schrödinger), for relativistic
spin-1/2 particles H0 = α · p + βm (Dirac) and for relativistic spin-0 particles
H2

0 = p2 +m2 (Klein-Gordon) —as the mesons we are studying—.
In Hilbert space the wave equation reads

(H0 + V )
∣∣ψ±a 〉 = Ea

∣∣ψ±a 〉 , (1.16)

where Ea are the energy eigenvalues of the |ψ±a 〉 eigenfunctions. If V is to be
considered a perturbation the easier problem V = 0 can be solved and add
V as a perturbation latter on. In this scenario the eigenvalue problem can be
expressed as

(Ea −H0)
∣∣ψ±a 〉 = V

∣∣ψ±a 〉 , (1.17)
(Ea −H0) |φa〉 = 0, (1.18)

where |ψ±a 〉 → |φa〉 whenever V = 0. Solving for |ψ±a 〉 one obtains∣∣ψ±a 〉 = |φa〉+
1

Ea −H0

V
∣∣ψ±a 〉 , (1.19)

an equation known as Fredholm integral equation of second kind [38] which
provides the scattered wave function of the scattering problem.
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The fractional term in Eq. (1.19), i.e. (Ea − H0)−1, is known as the free
Green’s function, denoted as G0(Ea), and is usually interpreted as a term that
brings the unperturbed initial state |φa〉 to the final perturbed state |ψ±a 〉 prop-
agating it through the interaction V . Actually, it represents the loop that sums
over all possible interaction between the particles. In coordinate space Eq.
(1.19) reads

〈
r
∣∣ψ±a 〉 = 〈r|φa〉+

∫
d3r′ 〈r |G0(Ea)| r′〉V (r′)

〈
r′
∣∣ψ±a 〉 , (1.20)

where it is assumed that the potential is local, i.e. 〈r′ |V | r〉 = V (r′)δ(3)(r′− r).
This expression is related to the wave function decomposition that was done in
Eq. (1.14), where the term under integral sign represents the scattered wave
function ψscatt. Further, the term G0(r, r′, Ea) ≡ 〈r |G0(Ea)| r′〉 is the expression
of the Green function in coordinate space. In order to avoid divergences in
Green’s function the so-called “ iε” description is used, therefore

G±0 (Ea) = (Ea −H0 ± iε), (1.21)

or for the total Hamiltonian

G±(Ea) = (Ea −H ± iε). (1.22)

In the particular non-relativistic case, H0 = p2/2m, in the momentums space
|φa〉 = |p〉, the operator H0 is diagonal and thus G0(Ea) is also diagonal. By
computing Green’s function in coordinate space, 〈r |G0(Ea)| r′〉, and introducing
Eq. (1.15) in Eq. (1.20) one can solve for the scattering amplitude to get

f±(p′,p) = −2m

4π

∫
d3r′e∓ip′·r′V (r′)ψ±a (r′) (1.23)

=
〈
p′ |V |p±

〉
, (1.24)

where 〈r|p±〉 = ψ±a . At this point a redefinition is made to relate the scattering
amplitude with the unperturbed states, that is

V
∣∣p+
〉
≡ T |p〉 (1.25)

which in Hilbert space reads

V
∣∣ψ+

a

〉
= T |φa〉 , (1.26)

where T is the so called T -matrix, which is of great importance in the calcula-
tions of the meson-nucleon optical potentials that are used in the present work.
In turn, this redefinition let us write

f+(p′,p) = −m
2π
〈p′ |T |p〉 , (1.27)

which relates the scattering amplitude of the process with the T -matrix.
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Equation (1.19) already was a sort of integral Lippmann-Schwinger equation.
It is most common to express it in terms of the T -matrix by using the definition
in Eq. (1.25) and multiplying Eq. (1.19) by V from the left. Then, one obtains
[39]

T (E) = V + V G+
0 (E)T (E). (1.28)

Here E is a parameter that does not needed to be equal the energy of the plane-
wave state. If the energies of the initial and final state are equal, i.e. p2 = p′2,
it is said that the T -matrix is on the energy shell, otherwise is “off shell”.

An interpretation of Eq. (1.28) can be obtained by substituting the T (E)
on the right side by the T (E) of the left side to get a definition of T (E) as an
infinite series, that is

T (E) = V + V G+
0 (E)V + V G+

0 (E)V G+
0 (E)V + · · · (1.29)

In this expression we can see how the T -matrix takes account of all the possible
interactions between particles —resummation— in a non-perturbative way.

The solution of Eq. (1.28) requires a self-consistent scheme to be solved, and
is one of the main features of the different models discussed in this work, as we
will see in the Chapter 3.
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Chapter 2

Mesic Nuclear Bound States
Formalism

A good decision is based on
knowledge and not in numbers.

— Plato

Most of the part of this work has been the development of a code to compute
nuclear quasi-bound states of different mesons —as K−, K̄0 and η mesons— for
different nuclei along the periodic table. In this chapter we explain the steps
followed to solve our initial problem of the nuclear bound states.

The reader is kindly addressed to Ref. [40] —where the code is uploaded—
to see the implementation of the algorithm.

2.1 The meson-nucleon formalism
The energy of a relativistic hadron, E, in the presence of a Coulomb, VC, and
a nuclear, UN, fields is written as

E =
√

p2
h +mh + VC + UN, (2.1)

where mh is the hadron mass. Since VC has scalar character [41] this equation
is usually written as

(E − VC)2 =

(√
p2

h +mh + UN

)2

= p2
h +m2

h + U2
N + 2

√
p2

h +mh UN. (2.2)

We are interested in the limit of small momenta, |p| � mh, and taking into
account that quadratic terms in UN are negligible we are left with

(E − VC)2 − p2
h −m2

h − 2mhUN = 0, (2.3)

which is the Klein-Gordon equation dispersion relation of the problem.
In order to take account of the absorption of the meson in the nuclear

medium UN needs to be complex. In this approach the potential adopts the
name of optical potential Vopt. The real part of the optical potential gives
information of the attractiveness of repulsiveness of the interaction while the



14 Chapter 2. Mesic Nuclear Bound States Formalism

imaginary part encodes information about the absorption part of the potential.
Thus, the eigenvalue E ≡ ωh is also a complex value, which decompose as

ωh = mh − B̃h, (2.4)

where B̃h = Bh + iΓh/2 being Bh is the binding of the energy of the hadron and
Γh the width of the state.

The optical potential can be related with the self-energy (SE) of the hadron
in the nuclear medium. As a first order approximations this relation is

2 Re(ωh)Vopt = Π(ωh,p, ρ(r)), (2.5)

where ρ(r) = ρp(r)+ρn(r) being ρp(r) the proton density and ρn(r) the neutron
density profile, and qµ is the quadrimomentum of the hadron.

Finally, remembering that the quantum operator of the momentum is −i∇
we can write the Klein-Gordon equation as

[∇2 + (mh − B̃h − VC)2 −m2
h − Π(ωh,p, ρ(r))]ψ = 0, (2.6)

which describes the problem of hadron states under the presence of a Coulomb,
VC, and nuclear, UN, fields.

2.2 Numerical solution of Klein-Gordon equation
To solve Eq. (2.6) first we have separated the wave function ψ in its radial and
angular part, i.e.

ψ(r) =
un`(r)

r
Y`m(θ, φ). (2.7)

and introducing it in Eq. (2.6) one gets the radial KG equation,

d2un`(r)

dr2
= −

[
(mh − B̃h − VC(r))2 −m2

h − Π(ωh,p, ρ(r))− `(`+ 1)

r2

]
un`(r).

(2.8)
It is important to stress that labels n, ` and m only refer to atomic states. In
the case of the nuclear states these labels are dropped, as well as the centrifugal
term −`(`+ 1)/r2.

2.2.1 Numerov’s method

Equation (2.8) is a second order differential equation which has no analytical
solution. Thus, it should be solved numerically. For this purpose we have
used Numerov’s method [42], which considers a generic second order differential
equation as

d2u(x)

dx2
= −g(x)u(x) + s(x), (2.9)

where x is the spatial mesh where the integration is performed, and g and s are
continuous functions within the mesh.
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The first step in Numerov’s method is to expand the solution function of
Eq. (2.9) around a point xn within the mesh in power series, that is

un−1 = un−u′n∆x+1
2
y′′n(∆x)2−1

6
u′′′n (∆x)3+ 1

24
u(iv)
n (∆x)4− 1

120
u(v)
n (∆x)5+O[(∆x)6]

(2.10)

un+1 = un+u′n∆x+1
2
y′′n(∆x)2+1

6
u′′′n (∆x)3+ 1

24
u(iv)
n (∆x)4+ 1

120
u(v)
n (∆x)5+O[(∆x)6]

(2.11)
Summing both expressions (2.10) and (2.11) one gets rid of the terms with odd
order derivatives to obtain

un+1 + un−1 = 2un + u′′n(∆x)2 + 1
12
u(iv)
n (∆x)4 +O[(∆x)6]. (2.12)

Further, if we express Eq. (2.9) in its discrete form, i.e.

u′′n = −gnun + sn ≡ hn, (2.13)

then, by analogy with Eq. (2.12), we can write

hn+1 + hn−1 = 2hn + h′′n(∆x)2 +O[(∆x)4]. (2.14)

Undoing the change of variable one gets that the fourth derivative of un is

h′′n = u(iv)
n =

hn+1 − 2hn + hn−1

(∆x)2
. (2.15)

Replacing this result in Eq. (2.12) we get

un+1 = 2un − un−1 + (−gnun + sn)(∆x)2

+ 1
12

(−gn+1un+1 + sn+1 − 2(−gnun + sn)− gn−1un−1 + sn−1)(∆x)2

+O[(∆x)6], (2.16)

and rearranging terms one finally gets

un+1

[
1 + gn+1

(∆x)2

12

]
= 2un

[
1− 5gn

(∆x)2

12

]
− un−1

[
1 + gn−1

(∆x)2

12

]
+ (sn+1 + 10sn + sn−1) (∆x)2

12
+O[(∆x)6]. (2.17)

This Eq. (2.17) is know as Numerov’s formula [42]. It solves Eq. (2.9) in the
nodes of a mesh by giving the first two points un and un−1. The error of the
approximation is of sixth order in ∆x.

At this point we particularize Eq. (2.17) for our problem. The matching of
Eq. (2.8) with Eq. (2.9) reveals that s(x) = 0 and

g(x) = (mh − B̃h − VC(x))2 −m2
h − Π(ωh,p, ρ(x))− `(`+ 1)

x2
. (2.18)
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To make Eq. (2.17) more tractable is common to define

fn ≡ 1 + gn
(∆x)2

12
, (2.19)

which allows to write

un+1 =
(12− 10fn)un − fn−1un−1

fn+1

, (2.20)

that eases the coding procedure. Hence, by giving the starting points u−1 and
u0 one can obtain un+1 along the whole mesh by iteration.

2.2.2 Numerical integration

Equation (2.8) is an eigenvalue problem in the complex plane in which the so-
lution u(r) exits —with its continuous requirements— for just a certain eigen-
value B̃h. A typical way of solving these equations its by the so-called shooting
method. This methods consists in trying a first guess eigenvalue B̃h, then inte-
grate the differential equation and check if the solution u(r) fulfils the required
continuity and the boundary conditions. If some of the conditions are not ful-
filled the program tries another value until arriving to the one that solves the
equation.

Continuity of the wave function

To solve the differential equation the boundary conditions must be set. In the
following, we differentiate between the atomic and nuclear states:

i. Atomic states

In the case of mesic atoms the problem is treated by analogy to the hydrogen
atom where the matching point is chosen to be the classical point turning
of the particle, that is where the energy of the particle equals the potential
energy. By analogy to the hydrogen atom, the energy spectrum is given by
Eµ = −Z2e2/2n2aµ, then

− Z2

2n2

e2

aµ
= −Ze

2

rt
+

~2

2µ

`(`+ 1)

r2
t

, (2.21)

where µaµ = mea0 being a0 the the Bohr radius and µ = m−1
h + m−1

N
the reduced mass of the meson-nucleus system. Solving for rt the classical
turning point is

rmatch ≡ rt =
aµ
Z

[
n2 +

√
n4 − n2`(`+ 1)

]
. (2.22)

In the hydrogen-like atom this turning point is far from the nucleus and its
surface —in the case of the hydrogen the nucleus is just a proton— since
the wave function of the electron expands to distances relatively far from
the nucleus and the wave function’s tail hardly penetrates it. As we will
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show latter, in the case of the mesic atoms this scenario changes. Since
these particles are heavier, part of the tail of its wave function lies within
the nucleus which enhance the effects of the strong interaction.

Besides, the boundary conditions are also the same ones as for the hydro-
gen atom. One is u(0) = 0 —which is a requirement when it is defined
as in Eq. (2.7)— and the other u(∞) = 0. Further, we already stressed
that in order to solve numerically the differential equation using Numerov’s
method we have to give the first two points —or the last two points for the
backwards integration— of the mesh. For this reason, we need the specify
the behaviour of the wave functions at each limit. Also, by analogy to the
well-known wave functions of the hydrogen atom, the expected behaviour
of the atomic wave functions is

uatom(r) −−→
r→0

r`+1, (2.23)

uatom(r) −−−→
r→∞

exp(−Zr/naµ), (2.24)

where ` is the angular quantum number of the atomic level. In our nu-
merical calculation we set the numerical “infinity” at about ten times the
nuclear radius, i.e. ∼ 10RN.

ii. Nuclear states

In the case of the nuclear states the wave function is much closer to the
nucleus. Actually, it is expected that most of the part of the wave function
lies within the nucleus. In this case the matching point is set to be the
nuclear radius

rmatch = r0 A
1/3, (2.25)

where r0 ' 1.2 fm and A is the number of nucleons in the nucleus.

The boundary conditions of our problem are the same as in the atomic
levels, u(0) = u(∞) = 0. From other studies of the nuclear states of meson
particles, e.g. [43], the wave function falls off in a Gaussian-like form, but
the behaviour at the origin remains the same as in the atomic level, that is

unuc(r) −−→
r→0

r`+1, (2.26)

unuc(r) −−−→
r→∞

exp
(
−r2/R2

N

)
, (2.27)

In this case the wave functions are expected to fall off to shorter distances
than in the atomic states, thus we set the numerical “infinity” at 5RN.

To get the desired eigenvalue Eq. (2.8) is integrated in two direction: forward
integration —from the origin to the matching point—; and backward integration
—from “infinity” to the matching point—. The numerical calculation of both
integrals —forward and backward— are independent of each other which might
result in a different scaling of the corresponding wave functions. For that, the
both wave functions must be forced to match at the matching point. At this
stage it is important to stress that the solution u(r) is a complex function
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Figure 2.1. (Left) Real and (right) imaginary parts of the radial wave function.
Wave functions without matching (up) and wave functions with matching (down).
The graphic shows the forward integration (blue starts) and the backwards inte-
gration (orange dots) of Eq. (2.8) for a given self-energy and eigenvalue.

due to the fact that either the self-energy or the optical potential are complex
functions. This fact requires a more detailed calculation than the usual one
to solve the Schrödinger equation, thus we must have to into account that the
continuity conditions must be fulfilled by both the real and imaginary parts of
the wave function. This leads to the continuity condition of the wave function,
i.e.

u(F)m = αũ(B)m , (2.28)

where u(F)m = u(F)(xm) and ũ(B)m = ũ(B)(xm) refer to the forward and backward
integrated wave function, respectively, at the matching point, and α is a scaling
constant. Equation (2.28) can be expressed as

Reu(F)m + Imu(F)m = α
[
Re ũ(B)m + Im ũ(B)m

]
, (2.29)

and to obtain the scaling constant one only needs to solve for α to get

α = u(F)m /ũ(B)m , (2.30)

Finally, to obtain the scaled wave function of, e.g., the backward integrated
wave function one only needs to multiply ũ(B)(x) by α at each point of the
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Figure 2.2. Imaginary parts of the radial wave function. The plot in the left shows
the integrated wave functions without the continuity condition of the derivatives.
In the right shows the same calculation for when the derivative continuity condition
is implemented.

mesh to obtain u(B)(x) such that it is equal to αũ(B)(x) for all x within the
integration mesh. This procedure is shown graphically in Fig. 2.1. There, one
can appreciate the meaning of the scaling and its importance in the numerical
calculation. Further, it is important to stress that this scaling process is crucial
to obtain a correct and precise eigenvalue.

Looking at Fig. 2.1 one can see that there is still needed to impose the
continuity of the derivatives of the wave function. For that, we chose to impose
the continuity of the derivative of the wave function’s logarithm at the matching
point, i.e.

1

u
(F)
m

du(F)

dx

∣∣∣∣
xmatch

=
1

u
(B)
m

du(B)

dx

∣∣∣∣
xmatch

, (2.31)

what ensures the smooth continuity of the wave function. In Fig. 2.2 it is shown
an example of this situation. The left-hand side plot shows the calculation
performed with no requirements on the derivatives of the wave function. It
is easy to see that the derivative of the wave function is not continuous at
the matching point and hence this eigenvalue must be neglected asking to the
program to look for another eigenvalue that improves the continuity of the
derivative. On the other hand, the plot on the right shows the results of the
calculation taking into account the continuity of the derivatives. In contrast to
the plot in the left, the right-hand side plot reveals a smooth continuity of the
wave functions from the forward integration and from the backward integration.

Steepest descent method

With the procedure described above one can integrate Eq. (2.8). However, the
trial of random eigenvalues to solve the equation might lead to a long compu-
tational time or to a non-convergence of the calculations. Therefore, the code
must look for by itself a new eigenvalue to perform a new calculation and check
if all the above continuity conditions are fulfilled. For this reason we have im-
plemented a steepest descent method routine. This procedure is no more that
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Figure 2.3. Flow diagram describing the steps followed to solve KG equation.

a gradient method that searches for a new eigenvalue such that the difference
between derivatives decreases, that is∣∣∣∣∣u′(F)m

u
(F)
m
− u′(B)m

u
(B)
m

∣∣∣∣∣ −→ 0, (2.32)

or which is the same,

G(B̃h) ≡
∣∣∣∣∣u′(F)m

u
(F)
m
− u′(B)m

u
(B)
m

∣∣∣∣∣
−1

−→∞. (2.33)

Now the problem is left to maximize the function G(B̃h) ≡ G(x, y) where for the
sake of brevity we define x and y as the real and imaginary parts, respectively,
of B̃h. Then, giving some initial conditions (x0, y0) the steepest descent method
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states that the next set of values that maximizes G is given by

x = x0 +
Gx

‖G‖∆, (2.34)

y = y0 +
Gy

‖G‖∆, (2.35)

where ∆ is a small variation step to perform the partial derivatives:

Gx =
∂G

∂x
−→ G(x0 + ∆, y0)−G(x0, y0)

∆
, (2.36)

Gy =
∂G

∂y
−→ G(x0, y0 + ∆)−G(x0, y0)

∆
, (2.37)

and
‖G‖ =

√
G2
x +G2

y. (2.38)

The process described in Eqs. (2.34) and (2.35) is iterated until the correct
eigenvalue B̃h = x + iy is found. At this point, it is important to stress that
∆ is a crucial parameter to obtain good values of the binding energy. In our
calculations described below we varied ∆ until we obtained the optimal value
that lead to the convergence of the calculation.

To get a clearer idea of how te computation has to be performed Fig. 2.3
shows the flow diagram of the computational process. There we can see that
the computation starts with “random” initial values for the real and imaginary
part of the complex binding energy B̃h. With this value for B̃h either the self-
energy Π or the optical potential Vopt is computed —in the Chapter 3 this
computations is explained in detail—. This gives all the parameters to solve
the KG equation (2.8). Then, the solution of the KG equation, u, is studied to
check if it fulfils the required continuity conditions for the derivatives between
the forward and the backward integration parts. If these requirements are
fulfilled then the complex binding energy shot in the first step is correct and
the program stops. Otherwise, the program calls the steepest descent method
routine that computes a new set of values for the real and imaginary parts of
the complex binding energy to start again the the calculation of Π or Vopt. The
process is iterated until the correct B̃h is found.
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Chapter 3

K̄ and η Nuclear Quasi-Bound
States

There is in my opinion a great similarity
between the problems provided by the mys-
terious behavior of the atom and those pro-
vided by the present economic paradoxes
confronting the world.

— P. Dirac

The present chapter shows the result of the calculations explained in Chap-
ter 2. We present the binding energies and widths of K̄ and η nuclear states
for different nuclei along the periodic table and for different models.

3.1 K−-atoms
Although the goal of this work is the study of nuclear bound states of mesons, it
is interesting to first discuss the atomic states of these particles to latter on high-
light the importance of going to the nuclear states to obtain more information
about the strong interaction.

The interaction of mesons with the nucleus happens by two main processes:
the electromagnetic interaction and the strong interaction. The electromag-
netic interaction takes place only between the positively charged nucleus and
negatively charged particles such as, e.g. π−,K−, p̄ and Σ−. Depending on
the energy involved in the nuclear reactions one of the two interactions will
dominate.

In the case of hadronic atoms the predominant interaction is the electro-
magnetic one. However, the experimental data of hadronic atoms is larger an
easier to measure than that of hadronic nuclei. Hence, hadronic atoms provide
a great scenario to study the strong interaction and the effects of the nuclear
medium at zero kinetic energy [6]. In this work we focus in the strangeness
sector S = −1 where the K− belongs.

The important parameters in the study of hadronic atoms are the energy
“shift”, which is defined as the difference of the binding energy with respect to
the purely electromagnetic level, that is

ε = BK− −BC, (3.1)
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where BK− = Re B̃K− , and the “width”, Γ = 2 Im B̃K− .

3.1.1 Optical potential for kaonic atoms

As has already been discussed before, we write the KG equation for K− atoms
as [

∇2 + (µ− B̃K− − VC(r))2 − µ2 − 2µVopt

]
ψ = 0, (3.2)

which differs with Eq. (2.3) in that we take into account the reduced mass of
the meson-nucleus system instead of just the meson mass. The optical potential
is approximated by

2µVopt = −4π

(
1 +

µ

mN

)
f(0)ρ(r), (3.3)

where f(0) is the kaon-nucleon forward scattering amplitude andmN ' 939 MeV
is the nucleon mass. Equation (3.3) is known as tρ approximation and will by
used systematically in this work.

Phenomenological potentials

For phenomenological potentials this forward scattering amplitude is replaced
by a parameter b0 which is fitted to the experimental data and the potential is
called teffρ. In this work we use

b0 = (0.52± 0.03) + i(0.80± 0.03) fm, (3.4)

taken from [43], and we write the optical potential as

V
(1)
opt = −4π

(
1 +

µ

mN

)
b0ρ(r). (3.5)

This potential can, and shall, be improved in such a way that the scattering
amplitude depends on the density in order to take into account the effects of the
nuclear medium. This improvement is achieved by adding a density dependence

V
(2)
opt = −4π

(
1 +

µ

mN

)[
bexp0 +B0

(
ρ(r)

ρ0

)α]
ρ(r), (3.6)

where ρ0 = 0.16 fm, bexp0 = −0.15 + i0.62 fm, α = 0.273± 0.018 and

B0 = (1.62± 0.04) + i(−0.028± 0.009) fm, (3.7)

are experimental values obtained from fits to the available data.

Theoretical potentials

In contrast to the phenomenological potentials, theoretical potentials have been
developed for the K̄ in the nuclear medium, as the one in Refs. [37, 44]. There,
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K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 2 1
√

3
2

1
2

3
2

√
3

2
0 1 0 0

K̄0n 2 −
√

3
2

1
2

3
2
−
√

3
2

1 0 0 0

π0Λ 0 0 0 0 0 0
√

3
3

−
√

3
2

π0Σ0 0 0 0 2 2 1
2

1
2

ηΛ 0 0 2 2 3
2

3
2

ηΣ0 0 0 0
√

3
2

−
√

3
2

π+Σ− 2 0 1 0
π−Σ+ 2 0 1
K+Ξ− 2 1
K0Ξ0 2

Table 3.1. Matrix coefficients Cij = Cji of Vij amplitude.

a non-perturbative model in coupled channels has been developed employing
the lowest-order chiral Lagrangian —Eq. (1.13)— where a resummation is per-
formed over all Feynman diagrams in the s-channel. The model includes Pauli
blocking to take into account the states occupied by the other nucleons an the
K̄ self-energy.

Free space amplitude
The free-space model reproduces successfully the Λ(1405) resonance and takes
into account the 10 possible channels for the K−p scattering, i.e.

K−p→ K−p, K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+, ηΛ, ηΣ0, K+Ξ−, K0Ξ0. (3.8)

Using the Lagrangian of Eq. (1.13) one can derive that the potential amplitude
describing these scattering processes is given by

Vij = −Cij
1

4f 2
ū(pi)γ

µu(pj) (ki,µ + kj,µ) , (3.9)

where pj,i and kj,i are the final, initial momenta of baryons and mesons, respec-
tively. In the limit of low energies the spatial component of the momenta can
be neglected and we can rewrite Eq. (3.9) as

Vij = −Cij
1

4f 2

(
k0
j + k0

i

)
, (3.10)

where the Cij coefficients are listed in Table 3.1.
With this Vij amplitude, the Lippman-Schwinger —or Bethe-Salperter—

equation can be written as

Tij = Vij + Vi`G`T `j, (3.11)

where Tij is the T -matrix of the ij channel andG` the Green function introduced
in Chapter 2, and the sub-indices i, ` and j run over all the channels described
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above. The over-line over the last term in Eq. (3.11) stands for the resummation
over all possible Feynman diagrams in the s-channel and reads [37]

Vi`G`T `j = i

∫
d4q

(2π)4

M`

E`(−q)

Vi`(ki, q)T`j(q, kj)√
s− q0 + E`(−q) + iε

1

q2 −m2
` + iε

, (3.12)

where M` is the baryon mass, E`(−q) the baryon energy and m` the mass of
the meson in the intermediate state. Reference [44] justifies that the off-shell
amplitudes can be factorized leaving the loop integral as

G`(
√
s) = i

∫
d4q

(2π)4

M`

E`(−q)

1√
s− q0 − E`(−q) + iε

1

q2 −m2
` + iε

(3.13)

=

∫
|q|<qmax

d3q

(2π)3

1

2ω`(q)

M`

E`(−q)

1√
s− ω`(q)− E`(−q) + iε

, (3.14)

where
√
s = p0 + k0, ω`(q) is the energy of the meson and qmax = 630 MeV [37]

is the cut-off of the regularization loop.

In-medium amplitude
The previous model predicts a repulsive averaged amplitude T of the K−p, K−n
scattering. However, the available data of kaonic atoms show an attractive po-
tential for the K− even for small nuclear densities, far below ρ0. This means that
in order to reproduce the K− properties the density dependence of the T -matrix
must be included explicitly by setting T → T (ρ). Defining the total momentum
P = pN +pK− in the laboratory frame, where pN is the nucleon momentum in
the Fermi sea and pK− the momentum of K−, one can use the previous formal-
ism by replacing the free propagator by the in-medium propagator —in the lab
frame—, i.e.

G`(P
0,P, ρ) =i

∫
d4q

(2π)4

M`

E`(−q)

[
1− n(qlab)√

s− q0 − E`(−q) + iε

+
n(qlab)√

s− q0 − E`(−q) + iε

]
1

q2 −m2
` − Π

(s)

K̄
(q0,q, ρ)

, (3.15)

where P µ = (P 0,P) it he total four-momentum in the lab frame, the Mandel-
stam variable s = (P 0)2 −P2 and

qlab =

[
−
(
P 0

√
s
− 1

)
P · q
|P|2 +

√
s− q0

√
s

]
P− q (3.16)

is the momentum of the nucleon in the lab frame that corresponds to a momen-
tum −q in the center of mass frame.

In this scenario, in Ref. [37] they compute the K̄ self-energy for the s-wave
as

Π
(s)

K̄
(q0,q, ρ) = 2

∫
d3p

(2π)3
n(p)

[
TK̄p(P

0,P, ρ) + TK̄n(P 0,P, ρ)
]
, (3.17)
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Figure 3.1. (Left) Real and (right) imaginary parts of the phenomenological, label
(1), phenomenological density-dependent, label (2), and chiral theory based, label
(3), optical potentials for the 40Ca nucleus. Also, the Coulomb potential is plotted.

where qµ = (q0,q) is the K̄ four-momentum, P 0 = q0 + E(p) the total energy
and P = q + p the total momentum in the lab frame. Finally, the purely
theoretical potential taken from [37, 44] is labelled and defined as

2µV
(3)
opt = Π

(s)

K−(q0,q, ρ), (3.18)

being Π
(s)

K−(q0,q, ρ) the K− self-energy.

3.1.2 Kaonic atoms energy shifts and widths

We used our program code to compute the energy shifts and widths of K−

atomic states for different nuclei along the periodic table. The solutions of our
calculations are shown in Tables 3.2 and 3.3. There, we specify the nucleus,
the atomic level computed and the shifts, ε = BK− − BC, and widths, Γ, of
the level. To compute the shifts we solved the KG equation twice, one with the
optical potential switched off, V (i)

opt = 0, to obtain BC, and other with the optical
potential switched on to obtain BK− . Then, εi measures the displacement of
the purely electromagnetic atomic level by the action of the strong interaction.
With these definitions, negative values of the shifts mean a repulsive effect of
the strong potential and positive values an attractive effect.

Studying Table 3.2 we see that all the shifts are negative, which means that
the effect of the strong interaction in the atomic levels is repulsive meaning
that the levels are less bound when the strong interaction is taken into account.
Besides, we can see that the overall results obtained with the three different
potentials are similar, although the depth of the potentials is quite different,
as we can see from Fig. 3.1, which shows the optical potential of the K̄N
interactions in 40Ca. The purely theoretical potential V (3)

opt shows a maximum
depth of ∼ 45 MeV, while the phenomenological ones V (1)

opt and V
(2)
opt have the

maximum depth at ∼ 70 MeV and ∼ 220 MeV, respectively. In the case of the
imaginary part, the potential V (1)

opt shows now the biggest depth of ∼ 110 MeV,
followed by V (2)

opt with ∼ 80 MeV and finally V (3)
opt with ∼ 50 MeV. This explains
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Nucleus Level ε1 ε2 ε3 εexp

7Li 2p −0.014 −0.022 −0.017 0.002± 0.026
9Be 2p −0.069 −0.102 −0.088 −0.079± 0.021
10B 2p −0.225 −0.245 −0.265 −0.208± 0.035
11B 2p −0.240 −0.226 −0.291 −0.167± 0.035
12C 2p −0.636 −0.565 −0.758 −0.590± 0.080
16O 3p −0.010 −0.010 −0.009 −0.025± 0.018

24Mg 3d −0.039 −0.041 −0.095 −0.027± 0.015
27Al 3d −0.068 −0.081 −0.172 −0.080± 0.013
28Si 3d −0.125 −0.152 −0.288 −0.139± 0.014
31P 3d −0.265 −0.337 −0.535 −0.330± 0.080
32S 3d −0.439 −0.568 −0.838 −0.494± 0.038

35Cl 3d −0.896 −1.110 −1.504 −1.00± 0.17
59Co 4f −0.107 −0.160 −0.294 −0.099± 0.106
58Ni 4f −0.139 −0.204 −0.370 −0.223± 0.042
63Cu 4f −0.243 −0.343 −0.574 −0.370± 0.047
108Ag 5g −0.260 −0.346 −0.567 −0.18± 0.12
112Cd 5g −0.360 −0.470 −0.749 −0.40± 0.10
115In 5g −0.458 −0.591 −1.003 −0.53± 0.15
228Sn 5g −0.568 −0.718 −1.271 −0.41± 0.18
165Ho 6h −0.185 −0.255 −0.522 −0.30± 0.13
208Pb 7i −0.023 −0.034 −0.098 −0.020± 0.012
238U 7i −0.139 −0.209 −0.538 −0.26± 0.4

Table 3.2. Energy shifts (εi) in keV of K−-atomic levels for different nuclei along
the periodic table computed with potential Vi for i = 1, 2 and 3.

that in our calculation we obtained, in most of the cases, that the narrower
widths are due to the purely theoretical potential, which has the less deep
imaginary part. Comparing these depths with the atomic level widths in Table
3.3 we see that in most of the cases the deeper the imaginary part of the optical
potential the bigger the width and the smaller the magnitude of the energy
shift.

These results reveal that K− atomic levels are not really sensitive neither
to the nuclear potential nor to the depth of the real part of the optical poten-
tial. Therefore, in order to get more information about the K̄N interaction we
have to study the interaction at shorter distances, where the strong interaction
dominates and nuclear bound or quasi-bound states can be formed.

3.2 K̄-nuclei
We saw that the theoretical study of kaonic atoms let us reproduce most of the
available experimental data. However, the calculations do no depend strongly
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Nucleus Level Γ1 Γ2 Γ3 Γexp

7Li 2p 0.044 0.042 0.031 0.055± 0.029
9Be 2p 0.260 0.234 0.214 0.172± 0.058
10B 2p 0.706 0.594 0.626 0.810± 0.100
11B 2p 0.694 0.632 0.631 0.700± 0.080
12C 2p 1.601 1.571 1.500 1.730± 0.150
16O 3p 0.000 0.000 0.000 0.017± 0.014

24Mg 3d 0.278 0.259 0.226 0.214± 0.015
27Al 3d 0.491 0.513 0.412 0.443± 0.022
28Si 3d 0.819 0.867 0.688 0.801± 0.032
31P 3d 1.438 1.515 1.193 1.440± 0.120
32S 3d 2.183 2.285 0.018 2.187± 0.103

35Cl 3d 3.636 3.771 2.934 2.91± 0.24
59Co 4f 0.843 0.853 0.720 0.64± 0.25
58Ni 4f 1.077 1.099 0.901 1.03± 0.12
63Cu 4f 1.584 1.580 1.305 1.37± 0.17
108Ag 5g 1.578 1.566 1.332 1.54± 0.58
112Cd 5g 2.029 2.003 1.696 2.01± 0.44
115In 5g 2.699 2.634 2.205 2.38± 0.57
228Sn 5g 3.403 3.315 2.743 3.18± 0.64
165Ho 6h 1.484 1.465 1.224 2.14± 0.31
208Pb 7i 0.263 0.261 0.240 0.37± 0.15
238U 7i 1.551 1.534 1.268 1.50± 0.75

Table 3.3. Level widths (Γi) in keV of K−-atomic levels for different nuclei along
the periodic table computed with potential Vi for i = 1, 2 and 3.

on the depth of the potential —i.e. in the model used—, which forces to look
for different approaches to obtain new information about the strong interaction.
The importance of the depth of the K− nuclear potential arises when studying
K− nuclear clusters [45], multistrange self-bound matter [46] and compact starts,
since it determines the possibility of having these scenarios.

On the other hand, neutral mesons —as K̄0 and η— are of great interests
in these studies since only the strong interaction takes place. In this section we
study the nuclear states of antikaos, K̄, in the nuclear medium. The theoretical
framework in which we performed the calculations belongs to the work of [37, 44]
already discussed for the kaonic atoms.

3.2.1 Antikaon scattering amplitudes

Figure 3.2 shows the K̄ scattering T -matrix computed in a in-medium chiral
motivated calculation in [37, 44]. In order to make an intuitive meaning of the
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Figure 3.2. (Left) Real and (right) imaginary parts of the K̄ scattering T -matrix
from [37] for different fractions of the nuclear density ρ0 = 0.16 fm−3.

quantity TK̄N , it can be related with the scattering amplitude FK̄N by

TK̄N(
√
s, ρ) = −4π

√
s

EN
FK̄N(

√
s, ρ), (3.19)

where
√
s is the total energy in the center of mass frame (c.m.), ρ the nuclear

density and EN the energy of the nucleon.
Although the formalism has already been discussed in the previous section

for the kaonic atoms it is interesting to reformulate some equations in terms of
the important parameters for the nuclear states. To begin with, we started we
the K̄ potential in nuclear matter density [47]

VK̄ = − 2π

ωK̄

(
1 +

ωK̄
mN

)
FK̄N(

√
s, ρ)ρ, (3.20)

where ωK̄ is the K̄ meson energy, mN ' 939 MeV the nucleon mass. An
important quantity here is the Mandelstam variable

s = (EK̄ + EN)2 − (pK̄ + pN)2, (3.21)

where EK̄(N) and pK̄(N) is the energy and momentum of the meson (nucleon)
in the laboratory frame. It is important to point out some remarks about Eq.
(3.21). Previous works on the topic —Refs. [47, 48]— consider the following
approximation:

EK̄ =
√
m2
K̄

+ p2
K̄

+ ReUK̄(r) ' mK̄ +
p2
K̄

2mK̄

+ ReUK̄(r) = mK̄ −BK̄ (3.22)

EN =
√
m2
N + p2

N + UN(r) ' mN +
p2
N

2mN

+ UN(r) = mN −BN (3.23)
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where UK̄ = VK̄ + VC and BK̄(N) are the meson (nucleon) binding energies.
Introducing this information in Eq. (3.21) and doing the square root one obtains

√
s =

√
(mK̄ +mN −BK̄ −BN)2 − (pK̄ + pN)2 ≤ √sth, (3.24)

where
√
sth = mK̄ +mN . This result is crucial to understand the result of this

work since pK̄ + pN = 0 in the c.m. frame but pK̄ + pN 6= 0 in the lab frame.
The fact of having non-zero nucleon momentum is a direct consequence of taking
into account the presence of the nuclear medium. Thus, this momentum term
that is subtracting the energy part of Eq. (3.24) is producing a shift to

√
s,

forcing it to lie below the energy threshold
√
sth. This is an important result

since the amplitude TK̄N(
√
s, ρ) has to be computed at subthreshold energies.

Looking at Fig. 3.2 we see that at subthreshold energies TK̄N is, in general,
attractive and the probability of finding nuclear quasi-bound states increases.

On the other hand, the average of the momentum term can be developed as〈
(pK̄ + pN)2

〉
= p2

K̄ + p2
N , (3.25)

where the term pK̄ · pN → 0 since the direction of the nucleon momentum in
the nucleus, pN , shall be averaged over all the directions in the space. This
allows to write

√
s = mK̄ +mN −BK̄ −BN −

mN

mK̄ +mN

p2
N

2mN

− mK̄

mK̄ +mN

p2
K̄

2mK̄

(3.26)

Finally, approximating the kinetic energy of the nucleon to the one in a
Fermi sea,

p2
N

2mN

= TN

(
ρ

ρ0

)2/3

, (3.27)

where TN = 23.0 MeV, and the kinetic energy of the meson in the local density
approximation —directly form Eq. (3.22)— for the antikaon

p2
K̄

2mK̄

= −BK̄ − ReUK̄ , (3.28)

where UK̄ = VK̄ + VC for K− and UK̄ = VK̄ for K̄0. Therefore, the total energy
in the c.m. can be rewritten as

√
s−VC = mK̄+mN−BN−

mN

mK̄ +mN

BK̄−15.1

(
ρ

ρ0

)2/3

+
mK̄

mK̄ +mN

ReUK̄(ρ).

(3.29)
This expression is the one used in previous works as in Refs. [47, 48]. However,
in this work we propose our own prescription of

√
s. For the antikaon energy

we us the same approximation as in Eq. (3.22) from which we can solve for the
momentum

p2
K̄ = (EK̄ − ReUK̄)2 −m2

K̄ ' (mK̄ −BK̄ − ReUK̄)2 −m2
K̄ . (3.30)
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Nucleus BK− ΓK−
√
sK−N

12C 15.70 73.34 1388.5
24Mg 25.77 72.10 1385.8

32S 29.79 80.27 1382.4
40Ca 32.78 82.55 1379.0
208Pb 30.73 65.81 1378.6

Table 3.4. Binding energies, widths
and energy in the c.m. for K− nu-
clear states in different nuclei.

Nucleus BK̄0 ΓK̄0

√
sK̄0N

12C 10.04 76.07 1394.2
24Mg 19.13 73.05 1392.5

32S 22.17 80.41 1390.1
40Ca 24.35 81.26 1387.5
208Pb 35.13 85.79 1381.8

Table 3.5. Binding energies, widths
and energy in the c.m. for K̄0 nu-
clear states in different nuclei.

For the nucleon we use also the same approximation as in Eq. (3.23) and the
same kinetic energy for a Fermi gas model, but we use a linear dependence in
ρ for the nucleon potential in the nuclear medium, i.e.

UN(r) = U0
ρ

ρ̄
MeV, (3.31)

where U0 = −50 MeV and ρ̄ is the normalization constant of the density such
that ∫

d3rρ(r) = A. (3.32)

With these recipes we write our Mandelstam variable as

s =

[
mK̄ −BK̄ +mN + TN

(
ρ

ρ0

)2/3

+ U0
ρ

ρ̄

]2

− (mK̄ −BK̄ − UK̄(
√
s, ρ))2 +m2

K̄ − 4m2
NT

2
N

(
ρ

ρ0

)4/3

, (3.33)

whose square root is the quantity used in our calculations.

3.2.2 Antikaon binding energies and widths

To compute the binding energies of the K̄ nuclear quasi-bound states we solved
KG equation as explained in Chapter 3. In this particular case the KG equation
is written as [

∇2 + (mK̄ − B̃K̄ − VC)2 −m2
K̄ − ΠK̄(

√
s, ρ)

]
ψ = 0, (3.34)

where B̃K̄ = BK̄ + iΓK̄/2, VC is only activated for K− and

ΠK̄(
√
s, ρ) ' TK̄N(

√
s, ρ)ρ. (3.35)

where
TK̄N = 1

2
(tK̄p + tK̄n), (3.36)
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Figure 3.3. (Up) K− (bottom) K̄0 calculations. (Left) Binding energies and (right)
widths of nuclear states levels for different nuclei computed with the scattering
TK̄N plotted in Fig. 3.2. Both graphs show the calculations for different

√
s pre-

scriptions:
√
s (1) stands for prescription in Eq. 3.29 and

√
s (2) for our prescrip-

tion in Eq. 3.33.

being tK̄p and tK̄n the proton and neutron contributions to the amplitude.
To perform the calculation it is important to take into account the

√
s and

ρ dependence of the quantities. We see that the KG equation (3.34) contains,
by Eq. (3.35), TK̄N , which depends on

√
s and ρ. From the square root of Eq.

(3.33) we see that
√
s also depends on ρ and on VK̄(ρ), which in turn, from Eq.

(3.20), depends on TK̄N and thus on
√
s. This presents a scenario in which the

KG equation must be solved in a self-consistent way in order to compute
√
s for

each point in the mesh. An schematic flow diagram is shown in Fig. 3.4 showing
the self-consistent algorithm to compute the scattering amplitude at each point
of the mesh, which is an extension to the previous flow diagram shown in Fig.
2.3.

The results of these calculations are shown in Tables 3.4 for K−-nuclei and
3.5 for K̄0-nuclei, where we present the nucleus for which the calculations is
performed, the binding energy, BK̄ , and width, ΓK̄ , of the level, and the c.m.
energy

√
s. We recall that the

√
sth ' 1435 MeV, hence the first thing to notice

is that all the values of the c.m. energy fulfil
√
s ≤ √sth as expected from our

definition of s in Eq. (3.21).
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Figure 3.4. Flow diagram describing the steps followed to compute the scattering
amplitudes in a self-consistent way with

√
s.

Studying the binding energies and widths we see first that these results
predict quasi-bound states of K− and K̄0 —since we defined BK̄ > 0 for bound
states—. The term quasi-bound is related to the non-zero width of the level.
These widths are usually —at least for the calculations made to this date—
much greater than the binding energies, what broadens the level to values where
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BK̄ < 0, a condition where the particles are unbound. When comparing K−

with K̄0 nuclear states we see that the levels for K− are always more bound
that the ones for K̄0. This is partly because of the presence of the Coulomb
field that attracts negatively charged mesons towards the nucleus.

To see the behaviour of these nuclear states, the data in Tables 3.4 and
3.5 are plotted in the upper and bottom parts of Fig. 3.3, respectively. There,
we also plot the same calculation made for the

√
s prescription in Eq. (3.29) —

labelled as
√
s (1)— used in previous works as in Ref. [47]. The behaviour of the

binding energy is similar for both prescriptions. In the case of the K− results
the difference of binding energies between prescriptions increases for heavier
nuclei. Actually, with our prescription Eq. (3.33) —labelled as

√
s (2) in Fig.

3.3— the binding energy turns out to be smaller for the 208Pb than for the 40Ca
as well as the width of the level. On the other hand, the calculated K̄0 binding
energies are quite the same for all nuclei, and so do the widths, which only show
slight deviations from one prescription to the other for certain nuclei.

3.3 η-nuclei
For the study of η nuclear quasi-bound states we followed a similar procedure
as in the case of K̄ nuclear levels. In this case we study the nuclear quasi-bound
states of five different models for the ηN interaction, namely: CS [50], GW [51],
IOV [52], KSW [53] and M2 [54] —all five already discussed in Refs. [48, 49]—.
For the case of the CS model we also study the η nuclear quasi-bound states
employing the ηN scattering amplitude in the nuclear medium, that is FηN at
ρ = ρ0.

All the ηN models considered are based in coupled-channel calculations
that reproduce dynamically the baryon N∗(1535) resonance, which lies around
50 MeV over the ηN threshold, √sηN th

= mη + mN ' 1487 MeV. However,
as will be shown latter, the scattering amplitudes of the ηN interaction are
strongly model dependent.

3.3.1 η scattering amplitudes

The scattering amplitudes in free-space of different models used in this work
are plotted in Fig. 3.5. We notice that the qualitative features of the scattering
amplitudes in free-space for all five different models are similar. The real part
of the ηN scattering amplitude FηN(

√
s) at ρ = 0 has its maximum at thresh-

old. Above threshold, the scattering amplitudes decrease until becoming, in all
cases, negative. The maximum value of the imaginary part of the scattering
amplitudes is closely related with the N∗(1535) resonance. It is remarkable
that the position of the peak is above threshold, in contrast to the one of the
K̄ scattering amplitude where the Λ(1405) resonance appears below the K̄N
threshold. This means that the influence of the N∗(1535) resonance in our in-
medium η results will be more moderate than that for the K̄ mesons, because
we will also explore subthreshold energies, as we show in our Table 3.6, where
the √sηN are now further away from the resonant structure.
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Figure 3.5. Up: (Left) Real and (right) imaginary parts of the ηN scattering
amplitude FηN (

√
s) in the free-space as a function of

√
s for the models CS, GW,

IOV, KWS and M2. Bottom: Scattering amplitudes for the CS model in the
free-space and in the nuclear medium ρ0 = 0.17 fm−3.

Further, the bottom part of Fig. 3.5 shows the scattering amplitudes for the
CS model in free-space and in the nuclear medium at ρ0 = 0.17 fm−3. One can
notice that the real part of the scattering amplitude in the nuclear medium is
smaller, at subthreshold, than the free-space one. In the case of the imaginary
part the peak is displaced to higher values of

√
s above threshold at the same

time that it is smoothed showing a wider and less sharper peak than in the free-
space scenario. However, as has already been mentioned, the relevant part for
the η nuclear quasi-bound states is the subthreshold domain, and the imaginary
part of FηN(

√
s) has a similar behaviour for the free-space and for the nuclear

medium, falling off rapidly for subthreshold values of the total c.m. energy.
Thus we expect similar values of the energy level width for the calculations
with the free-space and the nuclear-medium CS model scattering amplitudes,
although the results might differ due to the different value of the

√
s employed

in each case.
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(a) Free CS model

Nucleus Bη Γη
√
sηN

12C 5.85 1.62 1456.7
24Mg 7.11 0.99 1459.5

32S 9.63 0.99 1458.4
40Ca 10.39 0.87 1457.0
208Pb 14.14 0.39 1455.7

(b) Nuclear medium CS model

Nucleus Bη Γη
√
sηN

12C 2.38 1.89 1461.1
24Mg 3.97 1.68 1463.0

32S 5.98 2.01 1462.2
40Ca 6.71 2.00 1460.9
208Pb 10.59 1.92 1459.1

(c) Free GW model

Nucleus Bη Γη
√
sηN

12C 15.12 5.03 1445.8
24Mg 18.27 3.71 1449.7

32S 23.25 3.91 1446.7
40Ca 24.61 3.74 1444.9
208Pb 30.18 3.04 1442.9

(d) Free IOV model

Nucleus Bη Γη
√
sηN

12C −1.41 9.96 1465.6
24Mg −0.43 8.92 1466.9

32S 0.71 12.12 1466.8
40Ca 1.27 12.69 1465.6
208Pb 4.52 14.63 1464.0

(e) Free KWS model

Nucleus Bη Γη
√
sηN

12C 3.79 9.53 1459.0
24Mg 5.54 8.86 1461.2

32S 8.00 10.78 1460.1
40Ca 8.85 10.93 1458.7
208Pb 13.06 10.98 1456.9

(f) Free M2 model

Nucleus Bη Γη
√
sηN

12C 0.61 8.36 1463.1
24Mg 1.50 7.38 1465.0

32S 2.87 9.66 1464.7
40Ca 3.35 10.03 1463.5
208Pb 5.95 11.43 1462.4

Table 3.6. Binding energies, level widths and total c.m. energy for the different
models and different nuclei.

3.3.2 η binding energies and widths

To compute the binding energies of the η nuclear bound states we follow the
same steps as in the previous section. Now, the KG equation is written as[

∇2 + (mη − B̃η)
2 −m2

η − Πη(
√
s, ρ)

]
ψ = 0, (3.37)

where B̃ = Bη + iΓη, mη ' 548 MeV is the mass of the η and the self-energy

Πη(
√
s, ρ) = 2ωηVη = −4π

√
s

EN
FηN(

√
s, ρ)ρ, (3.38)
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with ωη = mη − Bη. In our calculations we use our proposed prescription for√
s as in Eq. (3.33). In the particular case of the η it reads

s =

[
mη −Bη +mN + TN

(
ρ

ρ0

)2/3

+ U0
ρ

ρ̄

]2

− (mη −Bη − Vη(
√
s, ρ))2 +m2

η − 4m2
NT

2
N

(
ρ

ρ0

)4/3

. (3.39)

The algorithm followed to solve the KG equation for the η nuclear quasi-
bound states is the same as we explained for the K̄ nuclear levels. The scattering
amplitudes in Fig. 3.5 have to be interpolated and

√
s has to be solved self-

consistently for each point in the mesh.
The results of our calculations are shown in Table 3.6. For a better analysis

of these results, the data are also plotted in Fig. 3.6. In the case of the CS
model, we see that the binding energies are, approximately, in a range between
6–15 MeV for the calculation with the free-space scattering amplitude and be-
tween 2–10 MeV for the nuclear medium scattering amplitude. Besides, the
most interesting part of these result are the widths of the levels. The values
of the widths range around 0.3–2 MeV for both the free-space and the nuclear
medium calculation, which are much smaller than the binding energies. The
ratio of the widths with respect to the binding energies, i.e. Γη/Bη, goes from
3% for the minimum to 30% for the maximum. However, a proper calcula-
tion would require to take into account the in-medium effects, i.e. computing
FηN(

√
s, ρ) for each values of the density ρ —as we did with the K̄ nuclear

quasi-bound states—. Either way, we expect that the calculation with the in-
medium scattering amplitude gives binding energies and widths in between the
ones computed for the free-space scattering amplitude at ρ = 0 and for the
nuclear medium one at ρ = ρ0. In this scenario we can talk about nuclear
bound states and no about nuclear quasi-bound states, since —theoretically—
this levels could be experimentally resolved.

For the other models we obtain different results. In the case of the GW
model the binding energies are more than twice the ones of the CS model.
However, the widths are also small in comparison with the binding energies,
the ratio of the widths with respect to the binding energies range over 10 to
30%.

The other models present a different scenario. For the case of the IOV
model the calculated binding energies are much smaller than in the previous
cases. Actually, for the 12C and 24Mg the binding energies are negative, which
means that a bound state cannot be formed. Besides, the widths are bigger
than the binding energies and the ratio Γη/Bη is much greater than the unity
in all the cases. The M2 model shows a similar behaviour. Although in this
model all calculations give Bη > 0 and the widths of the levels are also much
higher — twice or three times— than the binding energies.

Finally, slightly better result are obtained for the KWS model. The binding
energies are more similar to the ones of the CS model —in particular for the
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Figure 3.6. (Left) Binding energies and (right) widths of η-nuclear states levels
for different nuclei computed for different models. Top: CS model for free-space
and nuclear medium; middle: IOV model in free-space; bottom: GW, KWS and
M2 models in free-space.
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nuclear medium results—. However, the widths are also bigger than the binding
energies of the nuclear quasi-bound states.

The result of these calculations can be explained by studying the scattering
amplitudes of each model in Fig. 3.5. For example, the imaginary scattering
amplitude of the CS and GW models in the free-space fall off faster —for de-
creasing values of

√
s— than the other models. Actually, the smaller widths are

due to the CS model which is the one that falls of faster followed by the GW
model which predicts the next smaller widths. The imaginary part of the scat-
tering amplitudes of the KSW and M2 models almost overlap at subthrehold,
what justify the similarity in their calculated widths. Finally, the scattering
amplitude of the free-space IOV model is the one that falls off more slowly and,
consequently, the one that predicts larger values of the widths of the nuclear
levels.

As a last comment on these result, looking at the values of √sηN in Table 3.6
—that gives the values that solve Eq. (3.39)— we see that all of them are below
the threshold of 1487 MeV. This agrees with our previous expectation that the
relevant part of the scattering amplitudes for the η nuclear quasi-bound states
is the one below threshold.
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Summary

There are two possible outcomes: if the re-
sult confirms the hypothesis, then you’ve
made a measurement; if the result is con-
trary to the hypothesis, then you’ve made
a discovery.

— E. Fermi

In this work we have calculated the binding energies of the nuclear quasi-
bound states of mesons in the strangeness S = −1 sector, K−, K̄0, and of the
η mesons. For this purpose we developed a code to solve the Klein-Gordon
equation describing the problem. This code implements several options to com-
pute the nuclear binding energies, Bh, and widths, Γh, of K̄ and η mesons for
a wide variety of nuclear —optical— potentials based on different theoretical
models. The purpose of this study has been to bring about some information
on whether these mesons are able or not to form nuclear quasi-bound states
in order to provide some information on the properties of the meson-baryon
interaction.

In the case of the K− we first reviewed the atomic states that these particles
can create when interacting electromagnetically with the nucleus. In contrast
to the K̄0 and η mesons the K− has negative charge. This means that, even at
long distances, where the range of the strong interaction vanishes or it is small,
K− mesons can form atomic bound states due to the Coulomb interaction with
the nucleus. We saw that the energy shifts —or displacements of the purely
electromagnetic binding energies by the action of the strong interaction— were
rather small for both the phenomenological and theoretical potentials used.
Besides, the computed widths of the levels, were rather big in comparison with
the binding energies. However, we noticed that, although the results did not
depend strongly on the model used, they were not conclusive in determining the
depth of the K̄-nucleus optical potential. For this reason we stepped forward
to study the nuclear states of the K̄ and η mesons.

For the study of the nuclear quasi-bound states of antikaons K̄ we per-
formed calculations for a chiral motivated model based on the lowest-order
meson-baryon chiral Lagrangian in s-wave. The amplitudes TK̄N were influ-
enced by the presence of the Λ(1405) resonance at subthreshold with a ten-
dency to disappear for increasing values of the nuclear density. The K̄-nucleus
optical potential required computing the amplitude TK̄N(

√
s, ρ) for each value
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of the nuclear density ρ(r). At this point we should remark that the exigence of
the calculation increased notably when comparing with the calculation of the
atomic states. Further, we took into account the energy dependence, of the
scattering amplitude at subthreshold energies, introducing a new prescription
for
√
s and performing our calculations in a self-consistent way to solve the KG

equation. The results showed positive values of the binding energies and large
values of the widths of the nuclear states. These results gave us important in-
formation about the K̄N interaction: first that it can bind K̄ mesons in nuclei,
although the states would be highly unstable, and second, a strong energy and
density dependence at subthrehold energies, what stresses the dominant effect
of the Λ(1405) below threshold.

We also studied η nuclear bound and quasi-bound states for five different
ηN chirally motivated interaction models. All the models studied reproduce
the N∗(1535) baryon resonance above threshold, but present a quite different
behaviour at subthreshold energies. The computational procedure of this cal-
culation was quite similar to the one for the K̄ mesons and a bit less exigent
since the nuclear medium has not been taken into account self-consistently when
computing the scattering amplitudes. In relation with the results obtained for
the binding energies and widths we observed several facts. On the one hand, we
saw that some of the models, as the IOV, KWS and M2, produced widths with
similar values to the binding energies. This led us to refer to them as η nuclear
quasi-bound states. On the other hand, we saw that the CS model —the one
that include meson self-energies self-consistently— produces η nuclear binding
energies much higher than the widths of the levels. This is a quite important re-
sult since these models predict realistic scenarios where experimental evidences
of these systems can be measured. However, we recall that these results are
strongly model dependent, both for the binding energies and the widths.

As a final note we would like to stress that studying meson bound states
in nuclei serves as a link between the theory and the experiment. Nuclear
bound states can be measured in nuclear reactions, and have been the goal of
several experiments. By comparing the theoretical predictions for the binding
energies and widths with the experiments, the issue of the model dependence
shown in this work can be overcome by rejecting the results that do not fit the
experimental data, smoothing the path for a better understanding of the strong
interaction.
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