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Abstract In many applications, video streams, images, audio streams and scalar data are
commonly used. In these fields, one of the most important magnitudes to be collected and
controlled is the light intensity in different spots. So, it is extremely important to be able to
deploy a network of light sensors which are usually integrated in a more general Wireless
Multimedia Sensor Network (WMSN). Light control systems have increasing applications in
many places like streets, roads, buildings, theaters, etc. In these situations having a dense grid
of sensing spots significantly enhances measuring precision and control performance. When a
great number of measuring spots are required, the cost of the sensor becomes a very important
concern. In this paper the use of very low cost light sensors is proposed and it is shown how to
overcome its limited performance by directionally correcting its results. A correction factor is
derived for several lighting conditions. The proposed method is firstly applied to measure light
in a single spot. Additionally a prototype of a sensor network is employed to draw the lighting
map of a surface. Finally the sensor grid is employed to estimate the position and power of a
set of light sources in a certain region of interest (street, building,…). These three applications
have shown that using low cost sensors instead of luxmeters is a feasible approach to estimate
illuminance levels in a room and to derive light sources maps. The obtained error measuring
spots illuminance or estimating lamp emittances are quite acceptable in many practical
applications.
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1 Introduction

There are many real-world circumstances where light monitoring systems are used to
improve illuminance control, human health and comfort, industrial security or energy
efficiency. In these cases, the most common approach is to deploy a network of
sensors which can integrate, not only light information, but also some other magni-
tudes or pieces of multimedia information (sounds, images, pollution levels, temper-
ature…). The communication of all these sensors are usually achieved through
wireless connections creating what it is called a Wireless Multimedia Sensor Networks
(WMSN) [1, 15].

Among the most common applications of these technologies is the light control in
urban areas [12] [9], roads [22], smart buildings [14] or context-awareness [28].
Another very promising field, not yet exploited enough, is its use in theaters and
filmmaking industry where light control is extremely important [21]. Finally, some
other situations needing light measurement are ergonomics, safety, photography, cin-
ematography, weather monitoring, theater set and interior design [17]. So, distributed
illumination control is becoming an emerging research topic [3, 4, 19]. A survey on
sensor-based smart lighting can be found in [26].

Obviously, a better light monitoring and control is obtained where a higher spatial resolu-
tion is employed, that is, where many light spots are measured. For this reason in all these
applications the cost of the sensor is a very important concern, moreover when the size of the
grid, and thus the number of sensors, are increased [6].

A good light sensing device should include two important elements: a homogeneous
directional response, regardless of the direction in which light is received (flat directional
sensitivity); and matching the spectral response of the human eye. Most light sensors do not
meet these requirements and often require directional correction devices (usually overlapping
lenses) and spectral compensation (optical filters and/or the combined use of different types of
sensors). These correction mechanisms increase the price of each sensor.

In previous work [29] the authors have proposed a different approach based on the
use of very simple sensors. The measurement of light obtained from them is later
corrected both spectrally and directionally by numerous methods without the need of
additional hardware in each sensor. This allows low-cost distributed systems with
numerous points of light measurements in many applications. Similar solutions have
been reported for the calibration of wearable light exposure devices [7, 11] where
only one spot of light is needed and more sophisticated light sensors are used.

The directional correction system proposed in [29] assumes a known distribution of
light sources. As it will be shown in this paper, in many cases it is possible to
generalize this correction of the light measurement to situations with indeterminate
light sources without significantly altering the measurement error. And from a network
of these light measuring spots, a lighting map of a certain region (usually a surface)
can be drawn.

On the other hand, some lighting control systems are concerned not only with
determining the luminous level at a certain point but also with finding the relative
position between the sensors and the light sources [5, 13, 23]. This paper will also
show a method to estimate the lighting power of different existing light sources in a
region or, equivalently, to draw a map of light sources. This is a very important topic
in many topics like in augmented reality [10].
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In this paper, Section 2 presents the methodology used to directionally correct the illumi-
nance measurements in four circumstances: unidirectional lighting (subsection 2.1), omnidi-
rectional 2D lighting (subsection 2.2), omnidirectional 3D lighting (subsection 2.3), and
general lighting conditions (subsection 2.4). Subsection 2.5 addresses the effect of sensor
tilting on measurements while in subsection 2.6 the problem of determining a map of light
sources is tackled.

This methodology has been applied to an experimental prototype. Section 3 presents the
results obtained in three sets of tests: directional correction for single light measurement
(subsection 3.1), drawing a map of illuminance (subsection 3.2), and obtaining a map of light
sources (subsection 3.3). The conclusions of this studywill eventually be addressed in section 4.

2 Materials and methods

Consider a sensor network consisting on a set of low cost photodiodes. Each photodiode
provides an electric current Ip that is proportional to the received luminous intensity according
to the expression [16]

IP ¼ KvEv: ð1Þ
where the termEv denotes the illuminance, i.e. the visible light power received per unit area of the
diode. The proportionality constantKv can be experimentally obtained and is usually provided by
the manufacturer in its datasheets for certain measurement conditions, usually considering front
illumination. In those cases where the direction of illumination does not meet this characteristic,
the relationship between electric current and illuminance must be corrected by a factor ψ that
takes into account the direction of the light received by the sensor. The electric current in the
photodiode now becomes

IP ¼ KvψEv; ð2Þ
In this section the directional correction factors in several lighting conditions are derived.

2.1 Unidirectional lighting

First of all sensor receiving luminous radiation from a single direction will be considered. The
light source luminous emittance will be denoted as Mv (lm/m2) and corresponds to the visible
luminous power emitted for a unit surface. The visible luminous flux received by the sensor
will be denotedΦv (lm). For a rectangular sensor receiving a homogeneous unidirectional front
light (Fig. 1) the relationship between both magnitudes is

Φv0 ¼ MvA0 ¼ Mvab: ð3Þ
When the sensor is receiving a homogeneous unidirectional light but oriented in an angle φ

(Fig. 2) then the luminous flux becomes

Φvφ ¼ MvAφ; ð4Þ
where

Aφ ¼ ac ¼ ab cosφ ¼ A0cosφ; ð5Þ
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and therefore

Φvφ ¼ Mvab cosφ ¼ Φv0 cosφ: ð6Þ

In this case

Φvφ ¼ SφΦv0: ð7Þ
The following expression is called directional sensitivity of a sensor

Sφ ¼ S φð Þ≡Φvφ

Φv0
: ð8Þ

This is also the directional correction factor ψ in eq. (2). For tilted lighting it can obtained
from (7)

ψ ¼ Sφ ¼ cosφ: ð9Þ

Fig. 1 Unidirectional lighting conditions

Fig. 2 Tilted lighting
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2.2 Omnidirectional 2D lighting

A sensor receiving a homogeneous 2D omnidirectional light will now be considered (Fig. 3).
The luminous emittance corresponding to angles between φ and φ + dφ will be

dMv ¼ J vdφ; ð10Þ
where Jv is the angular emittance, i.e. the luminous emittance per unit of angle (in 2D). The
total emittance received by the sensor is

Mv ¼ ∫þ
π
2

−π
2
dMv ¼ ∫þ

π
2

−π
2
J vdφ ¼ Jv∫

þπ
2

−π
2
dφ ¼ J v φ½ �þπ

2
−π
2
¼ J v

π
2
− −

π
2

� �h i
¼ πJ v; ð11Þ

and therefore

J v ¼ Mv

π
: ð12Þ

The visible luminous flux received by the sensor due to the radiation coming from
angles between φ and φ + dφ will be

dΦv*p ¼ Sφ dΦv0 ¼ Sφ A0dMv: ð13Þ

dΦv*p ¼ A0 J vSφdφ: ð14Þ

dΦv*p ¼ Mv

π
A0Sφdφ: ð15Þ

Fig. 3 2D omnidirectional lighting
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The total visible luminous flux received by the sensor is

Φv*p ¼ ∫þ
π
2

−π
2
dΦv*p ¼ ∫þ

π
2

−π
2

Mv

π
A0Sφdφ ¼ Mv

π
A0∫

þπ
2

−π
2
Sφdφ: ð16Þ

Assuming that Sφ is a symmetrical function, which is usually the case, then

Φv*p ¼ Mv

π
A02 ∫

þπ
2

0
Sφdφ: ð17Þ

Calling integral sensitivity to the expression

Si≡∫
þπ

2
0 Sφdφ; ð18Þ

then

Φv*p ¼ Mv

π
A02Si ¼ 2Si

π
Φv0: ð19Þ

For omnidirectional 2D lighting, the directional correction factor is defined by

ψ*p≡
Φv*p

Φv0
; ð20Þ

and its value is

ψ*p≡
Φv*p

Φv0
¼

2Si
π

Φv0

Φv0
¼ 2Si

π
: ð21Þ

In a flat sensor the directional sensitivity is given by

Sφ ¼ cosφ; ð22Þ
thus the integral sensitivity is

Si≡∫
þπ

2
0 Sφdφ ¼ ∫þ

π
2

0 cosφ dφ ¼ senφ½ �þπ
2

0 ¼ 1−0½ � ¼ 1; ð23Þ
and the directional correction factor is

ψ*p ¼
2Si
π

¼ 2

π
: ð24Þ

For light sensing it is quite common that the sensors include some type of directional
correction, usually by integrating a proper optic. In this case (Fig. 4), a flat (uniform) directional
sensitivity is achieved

Sφ ¼ 1: ð25Þ

For these sensors the integral sensitivity is

Si≡∫
þπ

2
0 Sφdφ ¼ ∫þ

π
2

0 dφ ¼ φ½ �þπ
2

0 ¼ π
2
−0

h i
¼ π

2
; ð26Þ

thus the directional correction factor is
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ψ*p ¼
2Si
π

¼
2
π
2
π

¼ 1: ð27Þ

So, summarizing, for omnidirectional 2D lighting the directional correction factor is 2/π in
non- compensated sensors, and is 1 in optically compensated sensors.

2.3 Omnidirectional 3D lighting

A sensor receiving a homogeneous 3D omnidirectional light will be considered in this
subsection. The light direction is referenced using the elevation (ε) and azimuth (α)
angles where

ε ¼ π
2
−φ: ð28Þ

The luminous flux received by the sensor corresponding to the light source with
elevation angles between ε and ε + dε, and azimuth angles between α and α + dα is

dMv ¼ Hvdαdε; ð29Þ

where Hv stands for the density of emittance, a constant value in the homogeneous
case. The total emittance received by the sensor is

Mv ¼ ∫þ
π
2

0 ∫þπ
−π dMv ¼ ∫þ

π
2

0 ∫þπ
þπHvdα

h i
dε ¼ Hv∫

þπ
2

0 ∫þπ
−π dα

h i
dε: ð30Þ

Mv ¼ Hv∫
þπ

2
0 α½ �þπ

−π
� �

dε ¼ Hv∫
þπ

2
0 π− −πð Þ½ �dε ¼ Hv∫

þπ
2

0 2πdε: ð31Þ

Fig. 4 Optical compensation of tilted lighting
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Mv ¼ 2πHv ∫
þπ

2

0
dε ¼ 2πHv ε½ �þ

π
2

0 ¼ 2πHv
π
2
−0

h i
¼ π2Hv: ð32Þ

Therefore

Hv ¼ Mv

π2
: ð33Þ

The visible luminous flux received by the sensor due to the radiation coming from elevation
angles between ε and ε + dε, and azimuth angles between α and α + dα, will be

dΦv* ¼ Sε dΦv0 ¼ SεA0dMv ¼ A0HvSεdαdε ¼ Mv

π2
A0Sεdαdε: ð34Þ

where
Sε ¼ S εð Þ ¼ S

π
2
−φ

� �
: ð35Þ

The total visible luminous flux received by the sensor is

Φv* ¼ ∬dΦv* ¼ ∫þ
π
2

0 ∫þπ
−π

Mv

π2
A0dα

� �
Sεdε: ð36Þ

Φv* ¼ Mv

π2
A02π∫

þπ
2

0 Sεdε ¼ Mv

π2
A02π∫

þπ
2

0 Sεdε: ð37Þ

Considering the value of the integral sensitivity

Si≡ ∫
þπ

2

0
Sφdφ ¼ ∫

þπ
2

0
Sεdε; ð38Þ

the luminous flux can be written as

Φv* ¼ 2Mv

π
A0Si ¼ 2Si

π
Φv0: ð39Þ

For omnidirectional 3D lighting, the directional correction factor is defined by

ψ*≡
Φv*

Φv0
; ð40Þ

and its value is

ψ*≡
Φv*

Φv0
¼

2Si
π

Φv0

Φv0
¼ 2Si

π
: ð41Þ

This is the same result obtained in (24). Thus, the directional correction factor for a flat sensor is

ψ* ¼
2Si
π

¼ 2

π
; ð42Þ

and for the optically cosine-compensated sensor

ψ* ¼ 1: ð43Þ
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So, summarizing, for omnidirectional 3D lighting the directional correction factor is 2/π in
non- compensated sensors, and is 1 in optically compensated sensors, the same result as the
omnidirectional 2D lighting.

2.4 General lighting conditions

A sensor receiving a general light will be now studied. The luminous emittance
corresponding to elevation angles between ε and ε + dε, and azimuth angles between
α and α + dα, will be

dMv ¼ Hvdαdε; ð44Þ
where Hv is the density of emittance, now a variable magnitude that can be expressed
as Hv =Hv(α, ε). The visible luminous flux received by the sensor due to the radiation
coming from elevation angles between ε and ε + dε; and azimuth angles between α
and α + dα, is

dΦv ¼ A0Hv α; εð ÞSεdα dε: ð45Þ
The total visible luminous flux received by the sensor is

Φv ¼ ∬dΦv ¼ ∫þ
π
2

0 ∫þπ
−πHv α; εð ÞA0dα

h i
Sεdε: ð46Þ

Calling Jv(ε) the density of emittance at a certain elevation ε

J v εð Þ≡∫þπ
−πHv α; εð Þdα; ð47Þ

then eq. (46) can be expressed as

Φv ¼ A0∫
þπ

2

0 J v εð ÞSεdε: ð48Þ
For the optically cosine-compensated sensor where Sφ = 1,

Φv ¼ A0∫
þπ

2

0 J v εð ÞSεdε ¼ A0∫
þπ

2

0 J v εð Þdε ¼ A0Mv ¼ Φv0: ð49Þ

Thus, the directional correction factor is

ψ≡
Φv

Φv0
¼ 1: ð50Þ

For a general sensor with non-uniform directional sensitivity

Φv ¼ A0∫
þπ

2
0 J v εð ÞSεdε: ð51Þ

Calling

Mva≡∫
þπ

2
0 J v εð ÞSεdε; ð52Þ

equation (51) becomes

Φv ¼ A0Mva: ð53Þ
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Therefore, the directional correction factor is

ψ≡
Φv

Φv0
¼ A0Mva

A0Mv
¼ Mva

Mv
; ð54Þ

where

Mv≡∫
þπ

2
0 J v εð Þdε; ð55Þ

and Mva is the apparent emittance defined in eq. (52). The electric current provided by the
photodiode can now be stated as

IP ¼ KvEv ¼ Kv
Φv

A0
¼ Kv

ψ Φv0

A0
¼ KvψMv: ð56Þ

2.5 The effect of sensor tilting

Let us now consider that the sensor tilts an angle 휃 with respect to the vertical and study the
effect it has on the illuminance measurements (Fig. 5).

Obviously, the directional correction factor will now depend on the tilting angle, so

ψ θð Þ≡Mva θð Þ
Mv θð Þ : ð57Þ

To study this rotation in the 3D space, a floor-fixed axes (X, Y, Z) and a sensor-fixed axes
(X', Y', Z') are defined (Fig. 6). The rotation of value θ occurs about the Y = Y' axis. The

direction of a certain light beam is denoted by the vector P
!
, whose coordinates in the floor-

fixed axes are P
!¼ Px;Py;Pz

� 	
. This vector is projected onto the (X, Y) plane producing the

vector Q
!
, whose coordinates in the floor-fixed axes are Q

!¼ Qx;Qy; 0
h i

. The angle α

′

′

′

Fig. 5 Tilted sensor
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between the vector Q
!

and the X axis is called the azimuth, in the same way, the angle ε

between the vector P
!

and the (X, Y) plane is called the elevation. In the sensor-fixed

coordinate system the azimuth and elevation angles for the vector P
!

are, respectively, α'

and ε'. Finally, the angle β between the vector P
!

and the Z' axis (sensor’s perpendicular) is the
angle determining the sensor directional sensitivity.

The luminous emittance must now be measured using the sensor-fixed axes, so that

Mv θð Þ ¼ ∫
π
2

0 J v εð Þdε0
: ð58Þ

Considering that

J v εð Þ≡ ∫
þπ

−π
Hv α; εð Þdα0

; ð59Þ

and substituting in (58), it is obtained that

Mv θð Þ ¼ ∫
π
2

0 ∫þπ
−πHv α; εð Þdα0

h i
dε

0
: ð60Þ

To measure the apparent emittance Mva, as it is defined in eq. (52), the sensor
directional sensitivity influence is only needed to be added, so that

Mva θð Þ ¼ ∫
π
2
0 ∫þπ

−πHv α; εð ÞS βð Þdα0
h i

dε
0
: ð61Þ

In these equations the integrals are computed in the sensor-fixed reference system,
but the emittance density function Hv(α, ε) is given in the floor-fixed axes. It is
therefore necessary to express the values of α and ε as a function of α' and ε', i.e., to
calculate the azimuth and elevation angles in the floor-fixed axes, once their values in
the sensor-fixed axes are known (see annexes).

Fig. 6 Rotating the reference system
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2.6 Determining a map of light sources

In the previous subsections, the correction factor ψ has been derived under different sensor
exposure setups to light. Substituting this value in eq. (2), it is possible to obtain the
illuminance at a certain spot by measuring the current Ip in low cost photodiodes (non-
compensated sensors), that is,

Ev ¼ Ip
Kvψ

: ð62Þ

Additionally, spectral compensation can also be obtained for this type of sensors as
it is described in [29]. So, it is possible to deploy a sensor network, obtaining lighting
measurements at different spots in a certain region by the spectral and directional
correction of the electric current provided by low-cost sensors (photodiodes). This
sensor network allows, firstly, the drawing of an illuminance map for the area covered
by the network. Furthermore, as will be seen later, the existence of nearby sensors
will significantly reduce the illuminance errors obtained when measuring with a single
low cost sensor.

By using a network of light sensors it is possible not only to draw an illuminance map of a
certain area, but also to determine the luminous flux emitted by every light source in the
region. So, the light sources can be monitored and controlled.

A region lit by n light sources and monitored by a network made up of m sensors will be
considered. Let Evi be the illuminance measured by the i-th sensor. Let Φvj be the luminous
flux emitted by the j-th source. The relationship between luminous fluxes and illuminances is
actually a relationship between emitted and received powers, taking into account the spectral
correction due to the human eye. Therefore there exists a linear relationship that can be written
as follows

Evi ¼ ∑
n

j¼1
λij Φvj; ð63Þ

where λij is the factor of proportionality between the illuminance measured by the i-th sensor
and the light flux of the j-th source. In matrix terms the expression takes the form Ev =Λ Φv,
where Ev is the illuminance vector as measured by the m sensors, Φvis the luminous flux
vector corresponding to the n light sources, and Λ is the factor of proportionality matrix. The
value of Λ can be determined using light sources of known luminous flux and measuring the
illuminance at each sensor.

Once the Λ matrix has been obtained, for a certain illuminance measurements vector, it is
possible to estimate the luminous flux emitted for every light source. When the number of
sensors and sources is the same (m = n) the luminous flux can be obtained by solving the
corresponding system of equations, i.e., through the expressionΦv =Λ−1 Ev. If the number of
sensors is greater than the number of light sources (m > n) the system of equations is
overdetermined (more equations than unknowns). In this case it is possible to reduce the
measurement errors by computing the luminous fluxes such as those that minimize the mean
square error, i.e., by performing a least squares fitting according to the expression

min∥Ev−Λ Φv∥2; ð64Þ
where x denotes the norm of the vector x.
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3 Results

3.1 Results on directional correction

The method developed in the previous section has been tested in 3 specific applications using a
low cost photodiode [18] in a prototype with a cost of about one dollar. Reverse biased, the
current supplied by the device is proportional to the received illuminance, according to eq. (1). In
the photodiode datasheet the proportionality factor can be found, showing a value of measured
using a type A front light (corresponding to a lamp with a tungsten filament at 2856 K [8]).

Kv ¼ 135
nA
lx

; ð65Þ

The first application is to measure the illuminance at a single spot in a laboratory lit by
numerous fluorescent lamps (type F light [8]). The measurements obtained with the photodi-
ode for different values of the sensor tilting angle θ, is compared with the results obtained
using a mid-range commercial luxmeter [20] with a cost of about one hundred dollar. As the
room is illuminated with non-A type lights, which have a different spectral behavior, the
illuminance values have to be spectrally corrected with a factor σ, that in the case of the
proposed photodiode takes the value σ = 0.112 [29]. On the other hand, as the sensor is
receiving light from many directions and it is not optically-compensated, a directional correc-
tion factor ψ must also be included. Finally, the illuminance measurement is derived from the
electric current produced by the photodiode, using the equation

Ev ¼ Ip
Kv σ ψ

: ð66Þ

A 3D omnidirectional lighting will be firstly considered. According to eqs. (41) and (38)
the directional correction factor can be computed as

ψ ¼ 2

π
∫þ

π
2

0 Sφdφ; ð67Þ

where Sφ represents the photodiode directional sensitivity and its value, as provided by the
manufacturer in the datasheet, is depicted in Fig. 7.

Using eq. (67) to integrate this figure, the value for the directional correction factor ψ =
0.134 is obtained and, therefore, the factor to convert the photodiode electric current to
illuminance becomes

Ev

Ip
¼ 1

Kv σ ψ
¼ 493:6

lx
μA

: ð68Þ

Measuring the electric current produced by the photodiode at different inclination angles (angle
with the vertical), and converting these values to an illuminance measurement according to (68),
the result shown in Fig. 8 is obtained. In this figure the illuminance values obtained using the
photodiode and the calibrated luxmeter (which is used as the right value) are compared. The
difference between these two values is the error in the illuminance as measured by the photodiode.

For relatively small inclination angles (photodiode exposed to direct illumination), errors
are greater than in the case of indirect light. In most of the measurements, the error does not
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exceed 20%, although in a few cases the error is significantly higher and can be up to 100%
(see Fig. 9). These results are similar to the 57% maximum error reported for an RGB
photosensor [7], and much better than the 152% error stated for three-color sensors equipped
device [11]. The proposed method equals or supersedes previously reported research using less
complex (and cheaper) sensors.

Although having a 100% maximum illuminance error is not a good result for laboratory
measurements, it could be acceptable for applications where the goal is to control the lighting
subjective perception. In fact, the relationship between illuminance level and brightness

Fig. 7 Photodiode directional sensitivity

-200 -150 -100 -50 0 50 100 150 200
0

200

400

600

800

1000

1200
Photodiode
Luxmeter

Fig. 8 Illuminance vs. inclination angles assuming 3D omnidirectional lighting

14512 Multimed Tools Appl (2018) 77:14499–14526



(subjective perception) is logarithmic [24], following Fechner’s Law [25]. To reflect this bright-
ness subjective perception notion, the illuminance relative to the visibility threshold Evt is defined

Evt ¼ Ev

E0
; ð69Þ

where E0 denotes the minimum illuminance that the human eye is able to detect (illuminance
threshold). An accepted value of this constant is E0 = 10

−7.5lx [27]. The logarithmic effect of
Fechner’s law is achieved by expressingEvt in decibels. Using this procedure the brightness value
is reflected in Fig. 10 and its errors in Fig. 11. As it can be seen, the error of the proposed method
in brightness terms (difference between photodiode and luxmeter) is about 3% or below for all
inclination angles.

To obtain the above results it has been assumed that the sensor is exposed to a homogeneous
3D omnidirectional light. Now this assumption will be disregarded and the problem for the
general lighting conditions described in [29] will be addressed. Using eqs. (57), (60) and (61)
the directional correction factor for every inclination angle is computed. The illumination errors
obtained employing these values are shown in Fig. 12. It can be seen that taking into account the
spatial light distribution does not improve the measurement, with similar or slightly worse error
values than the simplified homogeneous 3D omnidirectional light assumption.

As it can be seen, the high sensor directionality makes the illuminance measurement obtained
with the photodiode very sensitive to the inclination angle, producing great differences in
illuminance for small angle deviations. For this reason, and also for spectral compensation,
commercial luxmeters commonly use optical filters and lenses or, the most advanced ones, an
array of photodetectors (e.g. 256). But to overcome the directionality drawback a simpler approach
is proposed: to use a slightly more complex sensor that, instead of using a single photodiode, it is
made up of a few photodetectors with different inclinations. Specifically, a 5 sensor arrangement
has been tested where each photodiode is tilted 30° apart from its closest neighbors. Figure 13
shows the measurements and its error obtained for this arrangement, considering the simplified
assumption of 3D omnidirectional light.

It is noted that the measurement maximum error is reduced to about a 30%, a very
remarkable improvement since it means reducing errors to less than a third of its original
value. In terms of brightness, the measurement error is less than 2%, which also represents a
clear enhancement over the one photodiode arrangement and also over the results in [7, 11].
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Fig. 9 Illuminance errors assuming 3D omnidirectional lighting
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3.2 Results on determining the map of illuminance

In the previous section the feasibility of using a low cost sensor in measuring the illuminance
at a single spot has been explored. A second and probably more promising application of the
proposed technique is to determine the illumination map of a certain region. For this reason, a
laboratory room of approximately 50 m2, illuminated by numerous ceiling-mounted fluores-
cent lamps, has been used for testing purposes. The working region covers a 7 m × 4 m area,
avoiding the room edges. To measure the illuminance level at each room spot an 8 × 5 low-cost
sensors grid has been arranged, where the sensors are 1 m evenly spaced in each direction. The
sensor grid was modeled by moving just one sensor from one spot to another and recording the
measurements at every point.
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Fig. 11 Brightness errors assuming 3D omnidirectional lighting
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14514 Multimed Tools Appl (2018) 77:14499–14526



In this application the same previously described sensor has been used and, so, its electric
current measurements are converted to illuminance levels using the same spectral correction
(σ = 0.112) and, also assuming 3D omnidirectional light, the same directional correction factor
(ψ = 0.134). For the sake of measurement comparison, a commercial luxmeter [20] is also used
at the same spots. In the region between measurement points, the illuminance is estimated
using a two-dimensional linear interpolation. The results of this method are shown in Fig. 14
where axes represent the 2D coordinates (x, y) in meters (m).

Looking at the map provided by the luxmeter, it can be said that, in general, the illuminance
of the room is quite uniform with a value close to 600 lx, although slightly lower at the edges
and, especially, at the corners. Considering now the map obtained with the photodiode grid, the
result does not significantly differ from the previous one, although close to 1000 luxes
illuminance peaks appear. These peaks arise where the photodiodes are illuminated by front
light, i.e., where they are located just below a light source. The Fig. 15 depicts the measure-
ment errors at each spot, both in illuminance and brightness terms. In these error maps the fact
that the maximum errors are locally concentrated is even more clearly grasped, again corre-
sponding to spots where the photodiodes are illuminated by front light.
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Fig. 13 Illuminance vs. inclination angles using a 5 photodiode sensor
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Fig. 12 Illuminance errors assuming general lighting conditions
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Not only it is interesting to know where the maximum errors are located, but also the
knowledge of statistical errors distribution. For this purpose, a 1000 × 1000 (106) spots grid is
employed and the errors for every location is obtained. The histogram of these errors is
displayed in Fig. 16 for both illuminance and brightness.

An alternative way to represent the distribution of illuminance and brightness errors is by
the mean of their box plot (Fig. 17). The obtained result shows a 35% as the central value
(median) for the illuminance error, with outlier values of up to 200%.

These results are consistent with the errors measured in the subsection 3.1 when a non-tilted
photodiode (θ = 0°) is considered. In order to reduce the measurement errors, the same procedure
suggested above can be used. i.e., using at each measurement spot not only a single photodiode
but a short set of them tilted at different angles. According to the results obtained in the previous
subsection, the errors should be reduced to a third of their original value using this procedure.

However, another approach is also possible without increasing the number of
photodiodes (and the sensor cost). In most applications illuminance does not sharply
change from one location to the next one so, it is possible to reduce the errors
averaging the measure values at each point with those of its closest neighbors, i.e., by
performing a spatial low-pass filtering of the illuminance. Thus a 3 × 3 matrix is

PhotodiodeLuxmeter

Fig. 14 Illuminance map

Brightness errorIlluminance error

Fig. 15 Illuminance and brightness error maps
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arranged using the illuminance values of the point to be measured (central element of
the matrix) and its 8 nearest neighbors, where the matrix mean value is computed.
The result is depicted in Fig. 18. In this graph it becomes clear that the illuminance
measurement error not only remarkably decreases but also its worst values are located
in the room edges and, particularly, in their corners. In those regions, spatial filtering
is less efficient because a smaller number of neighbors are available.

The fact that the room central region has significantly smaller error values is
clearly shown in Fig. 19 where the area with errors less than 20% is filled out in
blue. Only the edges, and mainly the corners, have values exceeding this error limit.

The illuminance error statistical distribution is represented in Fig. 20, both through
its histogram and its box plot. A quite important decrease in the illuminance errors
can be observed now obtaining about one-third of the original error. This reduction is
even more remarkable for the maximum error values.

In applications where the subjective perception of the illumination level is the relevant
issue, the brightness measures as defined in (69) can be used. The brightness measurement
error statistical distribution is depicted in Fig. 21 where it becomes clear that, in terms of
brightness, the measurement error does not exceed in the 2.5%, in any case.
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3.3 Results on obtaining a map of light sources

In the previous subsection it has been shown that it is possible to draw an illuminance map of a
certain area from the local values measured by a low-cost sensor network. But additionally, properly
calibrating the sensor network, the luminous fluxes emitted by the light sources can also be obtained.

To illustrate this third application, a prototype experiment has been designed where a
surface was illuminated using 3 type A light sources: incandescent light bulbs powered at
220 V, with an electric nominal power of 60 watts and a luminous flux of 800 lm. The
luminous flux at every lamp is controlled modifying the supply voltage. The surface’s
illuminance is measured using a 3 × 3 sensors grid where there is 1 m evenly spaced in each
direction. The sensor grid can be built up placing 9 sensors at the 9 spots in the grid but in the
prototype it has been modeled by moving just one sensor from one spot to another and
recording the measurements at every point.

The relationship between supply voltage and electric power is quadratic, but its conversion to
luminous flux is not straightforward. The nominal 800 lm value is obtained when the 60 W
nominal electric power is dissipated, i.e., when the supply voltage is 220 V. When other non-
nominal electric power values are considered, the filament temperature, the radiant flux and the
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Fig. 18 Illuminance and its error using spatial low-pass filtering
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light spectrum non-linearly change. For this reason, firstly, experimentally obtaining the relation-
ship between the dissipated electric power and the luminous flux emitted by the lamp is needed.

The luminous flux (Φv) emitted by a light source, given a certain supply voltage, is
computed by measuring the illuminance (Ev) found at a certain point and comparing this
value with the illuminance (Evn) obtained at that same point when the lamp is powered at its
nominal value and its nominal luminous flux (Φvn = 800 lm) is emitted. This procedure is
summarized in the following equation

Φv ¼ Φvn

Evn
Ev: ð70Þ

The experimental relationship between the supply voltage (V) and the luminous flux
emitted by the lamp is obtained in the form

Φv ¼ Φv Vð Þ: ð71Þ
The result is shown in Fig. 22 where the experimental relationship between the luminous

flux and the electric supply is fitted to a voltage quadratic function (linear for electric power).
A very good fitting is obtained except for the lowest values of the power supply.
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The next step is experimentally determining the value of the λijcoefficients in eq. (63). For
this purpose every light source is turned off, except the j-th lamp which is connected to a
known supply voltage (Vj). Now using (71) the luminous flux (Φvj) emitted by that light source
is computed. Then, the illuminance level (Evi) at every i-th point is measured using the sensor
network. By repeating this procedure for every sensor and every light source, the elements in
the Λ matrix can be obtained by

λij ¼ Evi

Φvj
: ð72Þ

Now applying the Least-Mean-Square algorithm to (64) it is possible to estimate the
luminous flux (Φv) emitted by the sources knowing the illuminance measurements (Ev)
obtained by the sensor network. Applying this procedure to various configurations of the light
sources it is possible to compute the error in the estimation of the luminous flux of each source.

A set of experiments have been performed using different light source configurations and
the error on luminous flux estimation has been measured. Figure 23 depicts the statistical box
plots for the luminous flux estimation errors both when using a commercial luxmeter and the
low cost photodiode. In this later case, about 25% maximum error is obtained, with an error
central value of 10%. This figure is quite satisfactory for many applications, furthermore
considering that light sources commonly are only in two states: on or off.

4 Discussion and conclusions

From the theoretical and experimental work described in previous sections it follows that it is
possible to use a simple (and inexpensive) sensor (a photodiode) as a light meter capable of
providing fairly accurate illuminance and brightness measurements. Low-cost sensors, such as
the one proposed, require directional correction whose expressions have been derived through-
out the paper.

The error analysis has shown that a directional correction assuming a 3D omnidirectional
lighting equals or even supersedes the results obtained in previous research, although much
simpler sensors are used in the proposed approach. On the other hand, increasing the number
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of photodiodes in every sensor (5 photodiodes per sensor are proposed) the illuminance
measurement error can be further reduced while paying a slight increase in sensor cost.

It has also been shown that using low cost sensor networks feasibly allows drawing illumi-
nance maps while the errors can be significantly reduced by spatial low-pass filtering algorithms.

It has been shown that using a low cost sensor network it is possible to estimate the luminous
flux emitted by a set of light sources in a certain area while maintaining the estimation error at a
low level for most practical applications.

The paper results have been obtained using a lab prototype. Some issues should be
addressed for its use in real situations such as the power supply or the connectivity concerns.
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Appendix 1. Effect of sensor tilt on azimuth and elevation

Considering Fig. 6 it can be stated that the vector Q
!

magnitude is

Qj j ¼ Pj jcosε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
x þ P2

y

q
: ð73Þ

On the other hand, the vector coordinates P
!¼ Px;Py;Pz

� 	
are

Px ¼ Qx ¼ Qj jcosα ¼ Pj jcosε cosα; ð74Þ

Py ¼ Qy ¼ Qj jsenα ¼ Pj jcosε senα; ð75Þ

Pz ¼ Pj jsenε: ð76Þ
Considering the two first coordinates it can be written that

Py

Px
¼ Pj jcosε senα

Pj jcosε cosα ¼ tgα; ð77Þ
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and, thus,

α ¼ arctg
Py

Px
: ð78Þ

Considering now the third coordinate it can be written that

Pz

Qj j ¼
Pj jsenε
Pj jcosε ¼ tgε; ð79Þ

and, thus,

ε ¼ arctg
Pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
x þ P2

y

q : ð80Þ

These equations can also be referenced to the sensor-fixed coordinate system, i.e.,

Px0 ¼ P
0�� ��cosε0

cosα
0
; ð81Þ

Py0 ¼ P
0�� ��cosε0

senα
0
; ð82Þ

Pz0 ¼ P
0�� ��senε0

; ð83Þ

α
0 ¼ arctg

Py0

Px0
; ð84Þ

ε
0 ¼ arctg

Pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
x0 þ P2

y0

q : ð85Þ

The relationship between coordinates on the two reference systems can be written as

Px

Py

Pz

0
@

1
A ¼ Ry

Px0

Py0

Pz0

0
@

1
A ð86Þ

where Ry is the well-known rotation matrix about the y axis [2]

Ry ¼
cosθ 0 senθ
0 1 0

−senθ 0 cosθ

0
@

1
A: ð87Þ

Therefore, the relationship between coordinates can be written as

Px ¼ Px0cosθþ Pz0senθ ¼ Pj jcosε0
cosα

0
cosθþ Pj jsenε0

senθ; ð88Þ

Py ¼ Py0 ¼ Pj jcosε0
senα

0
; ð89Þ

Pz ¼ −Px0 senθþ Pz0 cosθ ¼ − Pj jcosε0
cosα

0
senθþ Pj jsenε0

cosθ; ð90Þ
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Eventually, recalling (78) and (80) the azimuth and elevation angles can be stated as

α ¼ arctg
cosε

0
senα

0

cosε0cosα0cosθþ senε0 senθ
; ð91Þ

ε ¼ arctg
−cosε0

cosα
0
senθþ senε

0
cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosε0cosα0cosθþ senε0 senθð Þ2 þ cosε0senα0ð Þ2
q : ð92Þ

Appendix 2. Effect of sensor tilt on the sensitivity angle.

Considering again Fig. 6 it can be stated that the vector Z
!0

coordinates are

Z
!0

¼ Z 0
x0 ; Z

0
y0 ; Z

0
z0

h i
¼ 0; 0; 1½ �: ð93Þ

The dot product of the P
!0

and Z
!0

is

P
!0

� Z!
0

¼ Px0Z
0
x0 þ Py0Z 0

x0 þ Pz0Z 0
x0 ¼ Pz0 ¼ P

0�� ��senε0
; ð94Þ

and also,

P
!0

� Z!
0

¼ P
0�� �� Z

0�� �� cosβ ¼ P
0�� �� cosβ: ð95Þ

Comparing (94) and (95) it can be stated that

cosβ ¼ P
!0

� Z!
0

P
0�� �� ¼ P

0�� ��senε0

P
0�� �� ¼ senε

0
: ð96Þ

Recalling the equation for the cosine of a difference

cos
π
2
−ε

0
� �

¼ cos
π
2
cosε

0 þ sen
π
2
senε

0 ¼ senε
0 ¼ cosβ; ð97Þ

where the final equation can be derived

β ¼ π
2
−ε

0
: ð98Þ
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