
INNOVATIONS AND TECHNOLOGY PROJECTS AND OPERATIONS MANAGEMENT IN THE CITY DEVELOPMENT

 419

INFORMATION SYSTEMS MODELS IN HIGHER EDUCATION

Cristina Mendonça

ABSTRACT
This paper intends to contribute to a better understanding of the process through which information
resource, information technology, and organisation actors can contribute to the performance and
quality of higher education institutions. Conceptual models will be presented and discussed.

KEY WORDS: APIs, Image processing, Motion capturing, Higher Education
__

1.INTRODUCTION

Institutions of Higher Education have to develop a viable strategic information resources management system
and create some operating principles, which provide basis for consistent decision-making and resource
allocation, and support efforts to reach their social mission and objectives. APIs integrates several concepts, such
as competence, skill, expertise, and literacy. It should consider the characteristics of constructive learners, face
attitudes regarding the usefulness of IT as an intensive effort to improve quality management Systems in the
organisation, attempt to incorporate significant differences between prior knowledge, meta-cognition, motivation
and the “learning style.”

We specify flexible structures and we model quality of service goals, to allow comparing of the goal fulfilments
along alternative execution options. We suggest a method to improve quality of service results for image
processing tasks by controlling different execution options.

This is the most promising approach to realize seamless coupling between virtual environments and real world.
The model is based on doing seamless mapping of human motion in the real world into the virtual environments.
Motion capturing by computer vision techniques is applicable for such purposes (Antitiroiko, 2001).

We hope that these three models raise issues for an improvement of quality in Education, particularly in higher
education, which is by the moment our aim.

We will discuss:

� A conceptual model for the performance optimisation of higher education as a function of Applied
Information Systems (APIs).

� The quality of the image processing tasks by modelling them as flexible workflow processes.
� A virtual object manipulation system using a 3-D human motion sensing without physical

restrictions.

CITIES IN COMPETITION

 420

2. APIs MODELS

2.1 PUSH MODEL APIs

In recent times the landscape of APIs and techniques for processing XML has been reinvented as developers and
designers learn from their experiences and some past mistakes. APIs such as DOM and SAX, which used to be
the bread and butter of XML APIs, are giving way to new models of examining and processing XML. Although
some of these techniques have become widespread among developers who primarily work with XML, they are
still unknown to most developers. Nothing highlights this better than a recent article by Tim Bray, one of the co-
inventors of XML, entitled XML is too Hard for Programmers and the subsequent responses on Slashdot.

In a Push model the XML producer (typically an XML parser) controls the pace of the application and informs
the XML consumer when certain events occur. The classic example of this is the SAX API, where the XML
consumer registers call - backs with the SAX parser, which invokes the call - backs as various parts of the XML
document are seen.

The primary advantage of push model APIs when processing XML is that the entire XML document does not
need to be stored in memory only the information about the node currently being processed is needed. This
makes it possible to process large XML documents which can range from several megabytes to a few gigabytes
in size without incurring massive memory costs to the application. However it also means, that certain context
and state information such as the parents of the current node, or its depth in the XML tree, must be tracked by
the programmer.

Another issue with push model parsers is that many developers find call - backs to be an unintuitive way to
control program flow. Tim Bray described call - backs as being non-idiomatic and awkward when used from his
programming language of choice.

The following code sample uses the SAX API in the Apache Xerces Parser to display the content of the title and
author elements of books that have the on-loan attribute set.

It shall be noted that, to register call - backs one needs to create a class devoted to handling events from the SAX
parser, either by implementing the Content Handler interface or extending the Default Handler class.

2.2 PULL MODEL APIs

During pull model processing, the consumer of XML controls the program flow by requesting events from the
XML producer as needed instead of waiting on events to be sent to it. This is very similar to the pseudo - code
described in Tim Bray's post as the typical text - processing idiom. Like push model parsers, pull model XML
parsers operate in a forward - only, streaming fashion while only showing information about a single node at any
given time. This makes pull - based processing of XML as memory efficient as push - based processing but with
a programming model that is more familiar to the average programmer.

INNOVATIONS AND TECHNOLOGY PROJECTS AND OPERATIONS MANAGEMENT IN THE CITY DEVELOPMENT

 421

Two notable pull model XML parsers are the .NET Framework's XmlReader class and the Common API for
XML Pull Parsing. Programming using both APIs is fairly similar; one creates a loop that continually reads from
the XML document until the end of the document is reached but acts solely open items of interest as they are
seen.

The following code sample uses the .NET Framework's XmlTextReader class to display the contents of the title
and author elements of books that have the on-loan attribute set.

Pull model parsers typically do not require a specialized class for handling XML processing since there is no
requirement to implement specific interfaces or subclass certain classes for the purpose of registering call -
backs. Also the need to explicitly track application states using Boolean flags and similar variables is
significantly reduced when using a pull model parser.

2.3 TREE MODEL APIs

A tree-based API is an object model that represents an XML document as a tree of nodes. The object model
consists of objects that map to various concepts from the XML 1.0 recommendation such as elements, attributes,
processing instructions and comments. Such APIs provide mechanisms for loading, saving, accessing, querying,
modifying, and deleting nodes from an XML document. The canonical example of a tree model API for
processing XML is the W3C XML Document Object Model (DOM), which has inspired various programming
language specific variations including JDOM and PyXML, for Java and Python respectively.

Typically tree model APIs load the entire XML document into memory, and thus do not limit users to forward-
only access of the XML data. This prevents traditional tree model APIs from being used in situations where large
XML documents have to be processed. Although it is possible to build optimised tree model APIs that only load
portions of an XML document as needed, such APIs are not in widespread usage.

The following code sample uses the Apache Xerces DOM API to display the contents of the title and author
elements of books that have the on-loan attribute set.

There are numerous advantages to this approach. First, the memory footprint of XML data can be reduced
because information isn't being stored as nodes and textual data but as classes and programming language
primitives. A DOM node that represents a <foo> element that contains a numeric value as text is more memory
intensive than its counterpart foo class with an integer field. In particular, the memory footprint is better if you
are able to turn lots of leaf values into primitive valued fields, or if you can do away with parent and sibling
pointers. Second, it is more convenient to perform calculations on certain types of data such as numbers or dates
as native programming language constructs than it is to interact with them as string values stored in nodes. But,
third, the most compelling argument is the improved ease of use. It's no longer necessary to navigate the XML
tree to access the information but instead one can simply access data as fields and properties of an object.

Object to XML mapping technologies have certain limitations that prevent them from replacing traditional
methods for accessing XML data. Most of these technologies cannot represent all the information in an XML
document with full fidelity. Many do not preserve processing instructions and comments. Similarly mixed

CITIES IN COMPETITION

 422

content is problematic to map to objects since the tendency is to map element and attribute nodes to objects and
text nodes to the values of fields or properties in said objects. Although the order of elements is significant in an
XML document, this typically cannot be enforced on objects. Most object oriented languages do not have a way
of expressing that in a book class the title field precedes the author field, although one could use ordered
collections to get around this problem.

It seems natural that one would process XML using a language that is designed for processing XML as opposed
to going through traditional programming languages. For performing complex operations on XML data, all of
the aforementioned techniques suffer from either being too cumbersome, require too many lines of code, or do
not handle all of XML. In such cases, the wise decision is to go with a language, which natively understands how
to process XML to do the heavy lifting and invoke that from the target programming language. Examples of
languages specifically designed for processing and manipulating XML include XPath, XQuery, XSLT, and
Xtatic.

There are various sites where one can try out sample XQuery expressions, including QEXO XQuery Sandbox
and Microsoft's XQuery demo site.

3. SERVICE-ORIENTED ARCHITECTURE (SOA)

A service-oriented architecture is essentially a collection of services. These services communicate with each
other. The communication can involve either simple data passing or it could involve two or more services
coordinating some activity. Some means of connecting services to each other is needed.

Service-oriented architectures are not a new thing. The first service-oriented architecture for many people in the
past was with the use DCOM or Object Request Brokers (ORBs) based on the CORBA specification. For more
on DCOM and CORBA, see Prior service-oriented architectures (new window).

If a service-oriented architecture is to be effective, we need a clear understanding of the term service. A service
is a function that is well - defined, self - contained, and does not depend on the context or state of other services.
See Service (new window).

The technology of Web services (new window) is the most likely connection technology of service-oriented
architectures. Web services essentially use XML (new window) to create a robust connection.

A basic service-oriented architecture diagram can show a service consumer at the right sending a service request
message to a service provider at the left. The service provider returns a response message to the service
consumer. The request and subsequent response connections are defined in some way that is understandable to
both the service consumer and service provider. How those connections are defined is explained in Web Services
explained (new window). A service provider can also be a service consumer.

4. AN AVATAR MOTION CONTROL BY BODY POSTURES

The goal is to do seamless mapping of human motion in the real world into virtual environments. We hope that
the idea of direct human motion sensing will be used on future interfaces. With the aim of making computing

INNOVATIONS AND TECHNOLOGY PROJECTS AND OPERATIONS MANAGEMENT IN THE CITY DEVELOPMENT

 423

systems suited for users, a computer vision based avatar motion control was developed. The human motion
sensing is based on skin - colour blob tracking. The method can generate realistic avatar motion from the sensing
data. The framework is addressed to use virtual scene context as a priori knowledge. It is assumed that virtual
objects in virtual environments can afford avatar's action, that is, the virtual environments provide action
information for the avatar. Avatar's motion is controlled, based on simulating the idea of affording extended into
the virtual environments.

A 3D representation for visualizing large software systems is developed. The origins of this representation can
be directly traced to the SeeSoft metaphor. This work extends these visualization mechanisms by utilizing the
third dimension, texture, abstraction mechanism, and by supporting new manipulation techniques and user
interfaces. By utilizing a 3D representation we can better represent higher dimensional data than previous 2D
views.

These prototype tools and its basic functionality have applications to particular software engineering tasks,
which contribute to a quality approach for I formation System Models in Higher Education.

BIBLIOGRAPHY

Antitiroiko, A. V. et al. R. (2001): “Information society competencies of managers: conceptual considerations”, In search of a human-
centred information society. Edited by E. Pantzar, R. Savolainen & P. Tynjälä, Tampere

