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INTRODUCTION 

1. Healthcare-acquired infections (HAIs) due to gram-negative bacteria 

A HAI, also known as a nosocomial infection, is an infection that is acquired in a 

hospital or other health care facility. Such infection is manifested after 72 h or more 

after the admission of the patient in the hospital [1]. HAIs are a considerable challenge 

to modern medicine. It is estimated that 4.2 million HAIs occurred in the European 

Union in 2013 [2], resulting in around 175,000 deaths [3]. Similar data have been 

reported from United States (USA), with a total of 1.7 million of HAIs and almost 

99,000 deaths in 2002. [4] This fact makes HAIs the sixth leading cause of death in the 

USA [5] and the European Union (EU) [3]. The estimated medical costs associated to 

HAIs were between $9310-21,013 per patient in the USA [6], which corresponds to $5 

billion to $10 billion annually [4]. 

HAIs are associated with invasive medical devices or surgical procedures. The most 

frequent types of HAIs are lower respiratory tract infections (such as hospital-acquire 

pneumonia and ventilator-associated pneumonia), surgical site, urinary tract, and 

bloodstream infections [4, 7, 8]. They constitute one of the most important problems in 

immunosuppressive patients in intensive care units (ICUs), and lead an increased 

hospital length of stay, higher mortality rates and higher health costs [ 6, 9]. 

Gram-negative bacteria are responsible for more than 30% of HAIs according to recent 

studies from the U.S. National Healthcare Safety Network. These bacteria predominate 

in cases of ventilator-associated pneumonia (47%) and urinary tract infections (45%) 

[10]. In the ICUs in USA, about 70% of these types of infections are caused by gram-

negative bacteria, and similar data are reported from other countries [11]. Recent 

surveillance studies in the USA and Europe showed that the most common gram-
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negative pathogens responsible for nosocomial infections are Pseudomonas aeruginosa, 

Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter 

species [11, 12, 13]. 

 

2. Current situation of antimicrobial resistance 

Antimicrobial resistance in gram-negative pathogens causing nosocomial infections has 

been a major concern in recent years due to the emergence of multi-drug resistant 

(MDR) strains and the lack of active antibiotics against them [14]. The 2014 report by 

the World Health Organization (WHO) warned about this circumstance, and remarked 

that a post-antibiotic era is a real possibility for the 21st century [15]. 

These MDR strains have developed effective resistance mechanisms like antibiotic 

efflux pumps or modifications of the outer membrane proteins, among others, to survive 

to the antibiotic treatment [16]. The development of new antibiotic resistance 

mechanisms has led to the emergence of extensively-drug resistant (XDR) and even 

pan-drug resistant (PDR) organisms [17]. The European Center for Disease Prevention 

and Control (ECDC) met in 2008 to establish standard definitions for MDR (resistant to 

more than 1 agent in 3 or more antimicrobial categories), XDR (non-susceptible to more 

than 1 agent in all but 2 categories), and PDR (resistant to all categories), as well as to 

begin to establish consistency in the categorization of susceptible and non-susceptible 

for different organisms and antimicrobial classes [18]. The objective of developing such 

definitions was for public health and epidemiology purposes. 

Numerous protocols have been taken to contain multi-drug resistant gram-negative 

bacilli, such as hand hygiene to prevent patient-to-patient transmission of pathogens or 

contact isolation precautions including wearing gloves and a gown [1, 19]. However, 

16  
 



these infections have still a significant clinical impact. The ECDC reported in 2014 that 

the percentages of organisms exhibiting antimicrobial resistance, especially resistance to 

multiple antibiotics, continued to increase in Europe. Data from the European 

Antimicrobial Resistance Surveillance Network (EARS-Net) shows large variations in 

percentages of antimicrobial resistance in Europe depending on microorganism, 

antimicrobial agent and geographical region [2]. 

The use of antimicrobial drugs has become widespread over several decades, and has 

been extensively misused in both humans and food-producing animals, where it is not 

only used for disease treatment, but also for prevention, control, and growth promotion 

[20]. This has contributed to the selection and spread of resistant bacteria. In 2012, 

consumption of antibiotics for systemic use in the community ranged from 11.3 to 31.9 

defined daily doses (DDD) per 1000 inhabitants and per day. The DDD per 1000 

inhabitants and per day was 20.9 in Spain in 2012, while in the European 

Union/European Economic Area (EU/EEA) population was 21.5 DDD. Among the 29 

reporting countries, just one country reported a significant decrease in antibiotic 

consumption [2]. Therefore, it is necessary to promote prudent use of antimicrobial 

agents and comprehensive infection control measures to reduce the selection and control 

the transmission of resistant bacteria. Vasudevan et al. [21] reported a prediction tool 

for nosocomial multi-drug resistant gram-negative bacilli infections in critically ill 

patients to help the clinicians to identify critically ill patients who are at risk of 

antibiotic resistant gram-negative infections. A similar study was reported by Ren et al. 

[22] and they conclude that the active screening and culture of MDR strains in patients 

has important value for the controlling and prevention of the infection. This should lead 

to targeted antibiotic treatment and avoid antibiotic overuse which worsens the vicious 

cycle of resistance in the ICU. Furthermore, University Hospital Virgen del Rocío 
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(Seville, Spain) launched the Institutional Programme for the Optimization of 

Antimicrobial Treatment (PRIOAM) in 2011. This programme is coordinated by a 

multidisciplinary team chosen by the Committee on Infections and Antimicrobials and 

its aim is to educate, train and promote the knowledge for the proper use of 

antimicrobials in order to reduce mortality and morbidity in patients with infections and 

delay the development of resistance [20]. 

Unfortunately, the increasing problem of multidrug resistance in gram-negative 

pathogens was not paralleled by the development of novel antimicrobials, as we can see 

in the Figure 1, which has led to the persistence and spread of these resistant strains 

[23]. Due to a diminishing antibiotic pipeline and an alarming rise in MDR gram-

negative bacteria, clinicians are reintroducing older antibiotics (eg, aminoglycosides, 

fosfomycin or colistin) and examining new strategies to optimize the treatment with 

existing classes of antibiotics, such as combination antibiotic therapy [24]. Moreover, 

small companies are trying to modify compounds in existing classes used in human or 

animal health to circumvent emerging resistance mechanisms and to improve 

pharmacokinetics [25]. Furthermore, there are a few new compounds which are being 

clinically studied in some trials and might be used in the next future, like plazomicin or 

cefiderocol [26].  
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Figure 1. Antibiotic discovery and resistance timeline. (Health matters: 

antimicrobial resistance-GOV.UK). 

As mentioned above, the most common gram-negative pathogens responsible for 

nosocomial infections are P. aeruginosa, A. baumannii, E. coli, K. pneumoniae, and 

Enterobacter species [11, 12, 13]. All of them form the “ESKAPE” group of pathogens, 

together with Enterococcus faecium and Staphylococcus aureus, which was defined in 

2008 [27] and then embraced by the Infectious Diseases Society of America [28]. These 

are pathogens that cause the majority of HAIs while effectively “escaping” the effects 

of available antimicrobials [19]. 

 

3. Gram-negative bacilli (GNB): epidemiology, antimicrobial resistance, virulence 

factors and pathogenesis 

The emergence of MDR GNB creates a challenge in the treatment of nosocomial 

infections. GNB are the most common causes of nosocomial infections, especially in 

the ICU, including most cases of hospital-acquired pneumonia and urinary tract 

infections and 25% to 30% of bloodstream and surgical site infections [29]. One of the 

19  
 



most common causes of HAIs are infections caused by the non-lactose fermenting 

bacteria A. baumannii and P. aeruginosa. Both bacteria are considered as priority 1 

(critical) for research and development of new antibiotics by the WHO in 2017 [30]. 

3.1. Acinetobacter baumannii 

3.1.1. Epidemiology and antimicrobial resistance 

Acinetobacter spp. are glucose-non-fermentative, non-motile, non-fastidious, oxidative-

negative, catalase-positive, aerobic gram-negative coccobacilli with a DNA G+C 

content of 39% to 47% [31]. Its ability to survive to desiccation and colonize any type 

of surface has made this pathogen one of the most common species causing nosocomial 

outbreaks in hospitals [32]. In the ECDC point prevalence survey of HAIs in European 

acute care hospitals 2011-2012, Acinetobacter spp. were the 11th most frequently 

reported microorganisms (3.6%) in microbiologically documented HAIs [2]. Among 

Acinetobacter species, Acinetobacter baumannii is the most important pathogen 

associated with HAIs [33]. Most A. baumannii infections occur in critically ill patients 

in the ICU and account for up to 20% of infections in ICUs worldwide [34]. 

A. baumannii is a successful pathogen responsible of opportunistic infections of the 

lower respiratory tract, skin, bloodstream, urinary tract, and other soft tissues [35, 36]. 

Crude mortality rates of 30-75% have been reported for nosocomial pneumonia caused 

by this pathogen, and the mortality attributable to A. baumannii infection was found to 

range from 7.8-43%, with higher levels in patients admitted to ICUs (10-43%) [37]. 

A. baumannii has a high level of intrinsic resistance to many groups of antimicrobials 

(e.g. glycopeptides, macrolides, lincosamides, and streptogramins). Moreover, it is able 

to develop resistance to all classes of antimicrobial agents used in the therapy [38]. For 

this reason, the resistance of A. baumannii has been highly increased in the last decades, 
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which supposes an important problem for the health system. Some European countries 

reported that more than half of Acinetobacter spp. isolates were resistant to all 

antimicrobial categories under surveillance (carbapenems, fluoroquinolones and 

aminoglycosides) [2]. Multicenter surveillance studies have also reported that the 

proportion of imipenem-resistant A. baumannii strains is as high as 85% in bloodstream 

isolates from ICU patients in Greece, and 48% in clinical isolates from hospitalized 

patients in Spain and Turkey [39]. 

The rapid emergence of MDR and PDR strains of Acinetobacter highlights the 

organism’s ability to quickly acclimatize to selective changes in environmental 

pressures [31] and to acquire antimicrobial resistance [35, 40]. A number of A. 

baumannii resistance mechanisms are known, including enzymatic degradation of drugs 

(β-lactamases…), target modifications (PBP2, ArmA…), multidrug efflux pumps 

(AdeABC, AdeFGH, CmlA…), and permeability defects (OmpA, CarO…) [33, 35]. 

Figure 2 shows a summary about virulence factors, pathogenesis, antimicrobial 

resistance and treatment options of this successful pathogen which is important to 

develop new strategies for combating MDR A. baumannii infections. 
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Figure 2. Biology of Acinetobacter baumannii [35]. 

3.1.2. Virulence factors and pathogenesis 

A. baumannii use their virulence factors to first colonize and then infect the host. 

Different genomic, transcriptomic and proteomic analyses have helped to identify 

several virulence factors that participate in the pathogenesis of A. baumannii, including 

outer membrane porins, proteases, phospholipases, protein secretion systems, 

lipopolysaccharides (LPS), capsular polysaccharides, and iron-chelating systems [35, 

41]. Although recent genomic and phenotypic analyses have identified several virulence 

factors responsible for its pathogenicity, we still know relatively few virulence factors 

in A. baumannii, compared to other GNB [42]. Due to the increasing antimicrobial 

resistance rates and the lack of treatments to combat infections, it is important to 

identify new virulence factors to characterize the pathogenesis and determine new 

therapeutic targets that allow the control of this kind of infections. 

22  
 



The main identified virulence factors of A. baumannii are: 

a. Porins: 

A. baumannii, as the rest of GNB, has a double membrane (outer and inner membrane) 

which constitutes the first line of contact between bacteria and its external environment 

(Fig. 3). These two membranes, which differ substantially in their compositions, are 

separated by the periplasmic space [43]. This double membrane is a selective barrier 

which acts as a protection mechanism and it allows the entry of nutrients to promote cell 

survival. 

 

Figure 3. Structure of a GNB double membrane. 

(https://en.wikipedia.org/wiki/Gram-negative_bacteria) 

The outer membrane has a unique composition and asymmetrical distribution of lipids, 

with the inner leaflet containing phospholipids, whereas the outer leaflet is composed of 

lipopolysaccharide (LPS), a highly negatively charged molecule [44]. The outer 
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membrane is mainly composed by proteins, called outer membrane proteins (OMPs) or 

porins, which are associated with the modulation of cellular permeability [35]. These 

proteins are involved in nutrient uptake, cell adhesion, cell signaling and waste export 

[45]. Moreover, for the pathogenic strains, these OMPs also serve as virulence factors 

for nutrient scavenging and evasion of host defense mechanisms [44]. 

One of the main OMPs that has been characterized is OmpA. OmpA is a β-barrel porin 

and one of the most abundant porins in the outer membrane [35]. It plays a considerable 

role in adherence and invasion of epithelial cells by interacting with fibronectin [46], 

and binds to factor H in human serum which may allow A. baumannii to resist 

complement-mediated killing [47]. OmpA is also involved in antibiotic resistance of A. 

baumannii [48, 49] and in biofilm formation [50]. 

Omp33-36 is another OMP associated with A. baumannii cytotoxicity [51]. Other 

porins, such as carbapenem-associated outer membrane protein (CarO) and OprD-like, 

are also virulence factors associated with attenuated virulence in a mouse model [52]. 

b. Capsular polysaccharides and lipopolysaccharides (LPS): 

Capsular polysaccharides are involved in antimicrobial resistance of A. baumannii. It is 

known that mutants deficient in capsular polysaccharides have lower intrinsic resistance 

to peptide antibiotics. Moreover, the presence of antibiotics induces hyperproduction of 

capsular polysaccharides [53]. This increased capsule production depends on the 

regulation of K locus gene expression by bfmRS two-component regulatory system. 

bfmR is important for persistence in the lung in a murine pneumonia model [54] and 

bfmS is involved in biofilm formation, adherence to eukaryotic cells, and resistance to 

human serum [55]. Capsular polysaccharides also promote survival during periods of 

desiccation due to their ability to retain water. 
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LPS is the major component of the outer leaflet of the outer membrane in most GNB 

and is an immunoreactive molecule that induces release of tumor necrosis factor and IL-

8 from macrophages in a Toll-like receptor 4 (TLR4)-dependent manner [35]. LPS is 

composed of an endotoxic lipid A moiety, an oligosaccharide core, and a repetitive O-

antigen and it plays a major role in virulence and survival of A. baumannii [56, 57]. 

c. Phospholipase: 

Phospholipase is a lipolytic enzyme essential for phospholipid metabolism and is a 

virulence factor in A. baumannii [58]. There are three classes of phospholipases: 

phospholipase A (hydrolyzes fatty acids from the glycerol backbone), phospholipase C 

(cleaves the phosphorylated head group from the phospholipid), and phospholipase D 

(transphosphatidylase that only cleaves off the head group). Degradation of 

phospholipids affects the stability of host cell membranes, and the cleaved head group 

can interfere with cellular signaling, changing the host immune response [58, 59]. 

d. Outer Membrane Vesicles (OMVs): 

OMVs are spherical, 20-200 nm diameter vesicles secreted by various pathogenic GNB. 

They are composed of LPS, outer membrane and periplasmic proteins, phospholipids, 

and DNA or RNA, and are recognized as delivery vehicles for bacterial virulence 

factors to the interior of host cells [60]. These virulence factors include OmpA, 

proteases and phospholipases [61]. A. baumannii OMVs has also been reported to 

participate in the spread of antibiotic resistance and induce the horizontal transfer of the 

OXA-24 carbapenemase gene [62]. 
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e. Metal acquisition system: 

It is well known that iron is essential for the growth of bacteria. Therefore, pathogens 

have developed highly efficient iron-acquisition systems to obtain iron from the outside 

medium. A. baumannii produces high-affinity iron chelators known as a siderophores to 

use the limited environmental iron. One of the best characterized A. baumannii 

siderophores is acinetobactin, which is a virulence factor that allows bacteria to persist 

within epithelial cells and cause cell damage and animal death [63]. There are another 

metal acquisition system as NfuA Fe-S scaffold protein [64], the metal-chelating protein 

calprotectin [65], and the zinc acquisiont system ZnuABC [66] which also are virulence 

factors and contribute to the pathogenesis of A. baumannii. 

f. Protein secretion systems: 

Several protein secretion systems have been described in A. baumannii. Three of them, 

the type II secretion system (T2SS), the type VI secretion system (T6SS) and the type V 

system autotransporter Ata, are virulence factors involved in the pathogenesis 

mechanism [35]. The T2SS is a multi-protein complex that translocates a lot of range of 

proteins from the periplasmic space to the extracellular medium or the outer membrane 

surface. First of all, it is necessary that the target protein is transported from the inside 

of the bacteria to the periplasmic space by the general secretory (Sec) system or the twin 

arginine transport (Tat) system [67]. A. baumannii uses this T2SS to transport LipA, a 

lipase that breaks down long-chain fatty acids and allow the pathogen to grow in a 

neutropenic murine model of bacteremia [68]. The T6SS is a multicomponent secretion 

machine capable of mediating lethal injections of protein toxins into other bacteria in a 

contact-dependent manner [69]. A. baumannii is able to kill K. pneumoniae and P. 

aeruginosa using the T6SS, and different strains of A. baumannii are also able to kill 
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each other [70, 71]. Finally, the type V system autotransporter Ata is involved in 

biofilm formation, adherence to extracellular matrix, and virulence in a murine systemic 

model of Acinetobacter infection [72]. 

g. Biofilm formation: 

The ability of A. baumannii to form biofilms allows it to grow persistently in 

unfavorable conditions and environments [31], reduces the antibiotic penetration [73] 

and plays an important role in immune evasion [74]. Pili are essential for A. baumannii 

adherence and biofilm formation on abiotic surfaces as well as virulence [75]. The type 

I chaperone-usher pilus system (Csu pili), regulated by the BfmRS two-component 

system, are crucial for biofilm formation and maintenance on abiotic surfaces, 

constituting an A. baumannii virulence factor [76]. Furthermore, another virulence 

factor is the polysaccharide polymer poly-beta-1,6-N-acetylglucosamine (PNAG), one 

of the most important components of exopolysaccharides constituting biofilm matrix 

that is crucial for maintaining the integrity of A. baumannii biofilm under environmental 

stresses [77]. 

 

3.2. Pseudomonas aeruginosa 

3.2.1. Epidemiology and antimicrobial resistance 

P. aeruginosa is a facultative aerobic, catalase-positive, non-fermentative GNB, which 

has unipolar motility. It is a ubiquitous bacterium that normally inhabits the soil and 

surfaces in aqueous environments. It can adapt to different environments and it has a 

high intrinsic antibiotic resistance which enable it to survive in a wide range of other 

natural and artificial settings, including surfaces in medical facilities [78]. P. aeruginosa 

is among the most common hospital pathogens in the United States and is the second 
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most common pathogen isolated from patients with ventilator-associated pneumonia 

[79]. The ECDC 2011-2012 Point-Prevalence Survey for HAIs found that almost 9% of 

all infections were caused by P. aeruginosa, and that it was the 4th most common 

pathogen in Europe [2]. This pathogen produces a wide range of infections such as 

pneumonia, urinary tract infection, skin and soft tissue infections, ocular infection, 

bacteremia, septicemia and endocarditis [80]. Mortality due to P. aeruginosa has been 

shown to be as high as 70% [81]. 

P. aeruginosa infections are difficult to treat due to its intrinsic ability to resist many 

antibiotics as well as its ability to acquire resistance [78]. Intrinsic resistance is due to 

the low permeability of its outer membrane, the constitutive expression of membrane 

efflux pumps, and the inducible chromosomal β-lactamase AmpC [82]. The increasing 

prevalence of MDR strains is a cause of concern and it hinders the selection of 

appropriate empirical and definitive antimicrobial treatments. This situation is 

associated with worse outcomes, increased costs, and higher mortality [83]. Data 

provided in 2012 by the EARS-Net in 2015 showed that high percentages of P. 

aeruginosa isolates were resistant to aminoglycosides and ceftazidime (13%), and 

fluoroquinolones, piperacillin/tazobactam and carbapenems (20%) [84]. 

3.2.2. Virulence factors and pathogenesis 

P. aeruginosa is an opportunistic pathogen that mainly causes acute or chronic lung 

infections [78]. Several analyses have reported that its phenotype differs when the 

pathogen has been isolated from acute infections or from chronic infections [85]. 

Isolates from acute infections express a different arsenal of virulence factors while those 

isolated from chronic infections lack some of them, like the flagella and pili, and form 

more biofilm [86]. 
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The main identified virulence factors of P. aeruginosa are: 

a. Porins: 

P. aeruginosa has large channel porins (formed by OprF, an OmpA homologue protein) 

and a number of small channel porins (such as OprD and OprB) [78]. Moreover, six 

resistance-nodulation-division (RND) family efflux pumps have been described [87]. 

These efflux pumps can eject a wide range of antibiotics making the bacteria resistant 

and more virulent. Some studies have reported that OprF is involved in P. aeruginosa 

adherence to host cells [88]. Furthermore, P. aeruginosa shows increased levels of OprF 

when they grow under anaerobic conditions in the presence of nitrate, suggesting a 

possible involvement of OprF in the diffusion of nitrates and nitrites [89]. It is 

suggested that OprF is also involved in biofilm formation, OMV biogenesis and quorum 

sensing response [89]. 

b. Flagella and type 4 pili: 

P. aeruginosa possess a single polar flagellum and several type 4 pili localized at a cell 

pole. These appendages are involved in adherence and motility and they can also start 

and inflammatory response [90]. Mutants that do not present flagella are defective in 

models of acute infection [91]. 

Type 4 pili are important adhesins involved in twitching motility and the formation of 

biofilms [92] and in swarming motility [93]. Pili allow bacteria to form aggregates on 

target tissues which protect bacteria from the host immune system and antibiotics [94]. 

c. Type 3 secretion system (T3SS): 

T3SS is a secretion system involved in injecting toxins directly from the cytoplasm into 

host cells. Its expression is associated to increased mortality in infected patients [86, 
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95]. P. aeruginosa T3SS is encoded by 36 genes on five operons, with six other genes 

encoding the effector proteins and their chaperones [95]. This system is controlled by 

the transcriptional activator ExsA [96]. It is still not known the exact role of each of the 

toxins in pathogenesis, but T3SS may allow P. aeruginosa to exploit breaches in the 

epithelial barrier and to promote cell injury [95]. 

d. Quorum sensing: 

Quorum sensing is a mechanism of bacterial cell-to cell communication that allows 

bacteria to adapt to the environment through small membrane-diffusible molecules 

called autoinducers. Autoinducers act as cofactors of transcriptional regulators and they 

activate the expression of determined genes once a population threshold is reached [97]. 

P. aeruginosa produces three autoinducers. Two of them are acyl homoserine lactones 

and the third one is the Pseudomonas quinolone signal [97]. These systems control cell 

survival, biofilm formation, and virulence [86, 92, 98]. 

e. Biofilm formation: 

P. aeruginosa form highly organized biofilms that consist of polysaccharides, nucleic 

acids, lipids, and proteins. Biofilms protect bacteria from toxic chemicals like 

antibiotics or host defense molecules [99]. Furthermore, gene expression in P. 

aeruginosa differs depending on bacteria states (planktonic or forming biofilms) [100]. 

It is known that an upregulation of stress response genes occur during biofilm formation 

and this may lead to increased antibiotic resistance [101]. The shift between motile and 

sessile states is triggered by several regulatory systems. For example, the GacA/GacS 

two-component system, which is implicated in biofilm formation and virulence [102]. 
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f. Proteases: 

P. aeruginosa secretes several proteases which are important for degradating 

immunoglobulins and fibrin and disrupt epithelial tight junctions during infection [92]. 

Some of the proteases that this pathogen secretes are alkaline protease 1, two elastases 

(LasA and LasB), and protease IV [78]. 

g. Capsular polysaccharides and lipopolysaccharides (LPS): 

Some strains of P. aeruginosa produce a mucoid exopolysaccharide capsule, comprised 

of alginate, L-guluronic acid, and an acetylated random co-polymer of β 1-4 linked D-

mannuronic acid. These mucoid strains usually are isolated from patients with cystic 

fibrosis (CF) and it plays a role in cell adherence in the CF lung. Furthermore, it is 

involved in resistance to host defense because it reduces susceptibility to phagocytosis 

and hinder diffusion of antibiotics [103]. 

LPS is a complex glycolipid that forms the outer leaflet of the outer membrane and is 

involved in antigenicity, inflammatory response, exclusion of external molecules, and it 

mediates interactions with antibiotics. LPS in P. aeruginosa, like in A. baumannii, 

consists of a membrane-anchored lipid A, a polysaccharide core region and a variable 

O-polysaccharide [104]. 

Lipid A is localized at the end of LPS so it can bind to host cell receptors MD2 and 

CD14 leading to an activation of the Toll-like-receptor 4 (TLR4) to NFκβ signaling 

pathway and triggering the production of inflammatory cytokines and endotoxic shock 

[105]. Modifications to lipid A can alter P. aeruginosa susceptibility to polymyxins and 

cationic antimicrobial peptides [78]. Isolates from chronically infected cystic fibrosis 

lungs showed hexa- and hepta-acylated species that increase inflammatory response and 
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the severity of lung disease [106]. Lipid A modifications may be regulated and induced 

by environmental changes [78]. 

P. aeruginosa can present simultaneously two types of O-polysaccharide, the A-band 

and the B-band.  A-band elicits a weak antibody response while B-band elicits a strong 

antibody response [104]. Some strains do not produce any O-polysaccharide and other 

strains just produce one of them [78]. Many chronic isolates change their proportion of 

A-band and B-band to evade host adaptive immune response [104]. 

h. Other virulence factors: 

Exotoxin A is an ADP-ribosyltransferase that inhibits host elongation factor EF2, so it 

inhibits protein synthesis and causes cell death. Moreover, it also represses host immune 

response [107]. Exotoxin A also induces host cell death by apoptosis [108] and strains 

that produce it show more virulence in a murine model of infection [109]. 

Phospholipases are also virulent factors of P. aeruginosa because they break down 

lipids and phospholipids of host cell membranes [92]. 

Pyocyanin is a blue-green pigment of P. aeruginosa that causes oxidative stress to the 

host, disrupting its catalase and mitochondrial electron transport [110]. Moreover, it is 

known that pyocyanin in vitro induces apoptosis in neutrophils and inhibit the 

phagocytosis of apoptotic bodies by macrophages [110, 111]. Pyocyanin also retards the 

growth of some other bacteria and thus facilitates colonization by P. aeruginosa [103]. 

This pathogen also needs iron chelation systems to establish and produce a chronic 

infection, since host environment has little free iron available. Therefore, P. aeruginosa 

has several siderophores like pyoverdine or pyochelin. Pyoverdine also acts like a 
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signaling molecule causing the upregulation of exotoxin A, endoprotease and of 

pyoverdine itself [112]. 

 

4. Hypoxia influence on infections and immune response 

4.1. Hypoxia regulation: HIF-1α 

Hypoxia occurs when cellular oxygen demand exceeds supply. Tissue hypoxia can 

occur in a wide variety of pathologic conditions including vascular disease, cancer, 

dermal wounds and respiratory illnesses, and it is common during inflammation 

associated with acute or chronic bacterial infection [113, 114]. The reasons for the 

occurrence of hypoxia (or even anoxia) during inflammation is a combination of 

increased oxygen demand in order to satisfy the requirements of inflamed resident cells, 

infiltrating inflammatory cells and in some cases multiplying pathogens, along with a 

decreased perfusion due to vascular dysfunction (during chronic inflammation) [114]. 

Thus, oxygen levels in the foci of infection are much lower (<1%) than in healthy 

tissues (2.5-9%) [115]. 

It is essential that eukaryotic cells, especially immune cells, remain effective under such 

hypoxic conditions. Therefore, eukaryotic cells have developed the ability to adapt to 

the hypoxic environment through the transcriptional regulation of multiple genes [116]. 

One of them is the hypoxia inducible factor 1 (HIF-1), a heterodimeric transcription 

factor (HIF-1α and HIF-1β) whose expression is regulated at the protein level. Under 

hypoxia and/or bacterial infection, different oxygen and iron dependent proline 

hydroxylases (PHDs; PHD1, PHD2 and PHD3) are inhibited, so HIF-1α accumulates 

and translocates into the nucleus, where it dimerizes with HIF-1β, constitutively 

expressed [113]. Then, the heterodimeric HIF-1 make a complex with the p300/CBP 
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transcriptional coactivator protein and this active HIF-1 complex binds to the hypoxic 

response elements (HREs). These bindings induce the expression of multiple genes 

involved in angiogenesis, glycolysis and cellular stress, among others, as well as the 

repression of genes involved in a reduction in energy demanding processes (Fig. 4) 

[117].  In addition, HIF-1 is also activated under iron deprivation because Fe2+ is an 

essential cofactor of PHDI-3, which promotes HIF-1 degradation [118]. The HIF family 

also comprises the HIF-2 and HIF-3, but they have been less studied. HIF-2 has similar 

functions to HIF-1, but HIF-3 seems to inhibit HIF-1 and HIF-2 activities [119]. 

Under normoxic conditions, oxygen and iron dependent proline hydroxylases are active 

and hydroxylate the proline residues of HIF-1α. Moreover, the hydroxylation of an 

asparagine residue by the Factor Inhibiting HIF-1 (FIH) on HIF-1α blocks the 

interactions between p300/CBP transcriptional coactivator proteins and the α subunit, 

thereby preventing the transcription of several genes. Finally, the hydroxylated prolines 

become ubiquitinated by the von Hippel-Lindau tumor suppressor protein and the HIF-

1α undergoes proteosomal degradation. Therefore, HIF-1 gets inhibited and degraded in 

the presence of oxygen (Fig. 4) [120, 118]. 
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Figure 4. HIF-1α pathway during normoxia and hypoxia [120]. 

 

4.2. Functions of HIF-1 

a. Recovery after hypoxia/ischemia: 

HIF-1 prevent tissue damage induced by ischemia by two fundamental mechanisms: 

shifting the cellular metabolism to the anaerobic mode, and promoting new 

vascularization towards the hypoxic areas hence increasing oxygen supply. Several 

studies show that HIF-1 overexpression induces angiogenesis in hypoxic tissues and it 

can lead to increased oxygenation of the organ [121]. 
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b. Induction of proinflammatory and antimicrobial responses: 

After microbial infection, the immune system activates an immune reaction starting 

with the innate immune response. A key element is the activation of polymorphonuclear 

leukocytes (PMN-s) which are parts of the myeloid cell family. PMN-s seek out, 

migrate, identify, phagocytize and eliminate the invading microbes by releasing reactive 

oxygen species (ROS). ROS are generated in PMN-s in a process called respiratory 

burst. Recent studies employing HIF-1α gene knock out mice showed that HIF-1α is a 

regulator of energy metabolism, aggregation, migration and bactericidal activity of 

PMN-s [122, 123]. In addition, it is known that HIF-1α expression plays a crucial role 

in the differentiation of myeloid cells into monocytes and macrophages [123]. 

c. Shifting metabolism toward anaerobic mode: 

The oxidative phosphorylation is the main source of adenosine triphosphate (ATP) in 

human cells during normoxia. However, the cellular metabolism needs to be shifted 

toward anaerobic energy production during hypoxia. HIF-1 is one of the principal 

molecules to regulate this shift. HIF-1 activates glucose transporters, aldolase A, 

pyruvate kinase M and a number of glycolytic enzymes [124]. In addition, HIF-1 

efficiently downregulates mitochondrial oxygen consumption [125]. Therefore, HIF-1 

helps cells to produce energy even in environments of low oxygen concentrations. 

d. Induction of angiogenesis: 

HIF-1 promotes angiogenesis in a number of different tissues. During hypoxia, HIF-1α 

binds the transcription regulatory region of the VEGF gene and induces its transcription 

and translation [124]. Then the VEGF induces migration of mature endothelial cells 

toward the hypoxic tissue. These activated endothelial cells start producing new blood 

vessels which supply the hypoxic areas with more blood and oxygen [126]. 
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e. Promoting tumor progression: 

When a tumor grows, its quickly dividing cells need an enormous amount of energy, 

and this induces angiogenesis to meet the increasing needs for blood supply providing 

oxygen, glucose and other essential molecules. In cancerous tissues HIF-1α activates 

VEGF inducing angiogenesis, as stated above. Moreover, HIF-1 promotes anaerobic 

metabolic adaptation of hypoxic metastasizing tumors. It has been found that in vHL-

lacking renal carcinoma cells, HIF-1 activation decreases oxygen consumption by 

inhibiting C-MYC, a transcription factor that regulates mitochondrial oxygen 

consumption. The down-regulation of C-MYC results in increased glycolysis and 

suppressed mitochondrial respiration [127, 128]. 

f. Pro-apoptotic effects: 

Hypoxia can activate the p53 tumor suppressor via HIF-1, and p53 induces p21 which 

promotes cell death by apoptosis in embryonic stem cells. A different study in primary 

alveolar epithelial cells reported that low oxygen levels induce apoptosis via the HIF-1 

pathway [129]. The majority of studies describe the HIF-1 as an apoptosis promoting 

factor, but it has also been reported that in hypoxia-challenged neonatal brain tissues the 

activation of HIF-1 protected the cells by preventing them from undergoing apoptosis 

[130]. 

4.3. Hypoxia and infection 

Tissue hypoxia happens in vivo during a range of infections (bacterial, viral and fungal 

infections). For example, hypoxia occurs within the mucus filled airways of cystic 

fibrosis patients who are often infected with the pathogen P. aeruginosa [131]. 

Furthermore, studies have reported that Mycobacterium tuberculosis resides in a 

hypoxic environment within granulomas in guinea rabbits, pigs, and primates [132]. 
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Pulmonary infection with Aspergillus fumigatus in mice also leads to the establishment 

of a hypoxic microenvironment in the infected tissue [133]. Sendai virus (also known as 

a murine parainfluenza virus) responsible for respiratory diseases, shows enhanced 

replication under hypoxia condition [134]. In summary, tissue hypoxia is a common 

microenvironmental feature in a different number of infections. 

HIF-1 is activated during infections of all kind of pathogens, including group A and b 

Streptococci, Staphylococcus aureus, Salmonella typhimurium Escherichia coli, 

Chlamydia pneumoniae and P. aeruginosa [135]. This HIF-1 activation occurs due to 

the low oxygen level because of the presence of a high amount of bacteria in the foci of 

infection that are consuming it (Fig. 5). It was first reported in some studies using the 

pathogen Bartonella henselae [136]. In B. henselae infections, enhanced oxygen 

consumption has been associated with the expression of the outer membrane protein 

Bartonella Adhesin A (BadA), which is a virulence factor involved in adherence (Fig. 

5). Cells infected with a B. henselae mutant in BadA did not get hypoxic upon infection, 

and no HIF-1 activation was detected. In addition, HIF-1 activation also occurs due to 

low iron concentrations. Klebsiella pneumoniae siderophores chelate the host cellular 

iron, causing an inactivation of iron-dependent prolyl hydroxylases and HIF-1α 

stabilization in lung epithelial cells (Fig. 5). This induces vascular permeability and 

angiogenesis, so K. pneumoniae can disseminate better under hypoxia than normoxy 

[137]. Recent studies have shown that bacterial lipopolysaccharide (LPS), a component 

of the gram negative bacteria, also activates HIF-1α in a TLR4 dependent fashion in 

macrophages and neutrophils under normoxic conditions due to the activation of p44/42 

MAPK and NF-κβ pathways, because HIF-1α gene contains binding sites for this factor 

(Fig. 5) [138]. 
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Figure 5. Influence of the interaction pathogen-host cells results in HIF-1 

activation [118]. 

Hypoxia and HIF-1 have a protective role in the defense against pathogens, mainly due 

to NF-κβ, which promote the bactericidal capacity of phagocytes, 

monocyte/macrophages, dendritic cells, neutrophils and, even, epithelial cells, through 

the production of inflammatory cytokines and antimicrobial peptides such as 

cathelicidins (Fig. 6) [115, 139, 140].  Several mouse models have been used to 

investigate the role of HIF in infections. For example, knockout (KO) mice in HIF-1 are 

more susceptible to bacterial infection [141]. Moreover, HIF-1α keratinocytes KO mice 

have shown to develop larger necrotic lesions and had decreased capacity to clear group 

A Streptococcus because they recruited less neutrophils to the site of infection [142, 

143]. Internalization of P. aeruginosa into airway epithelial cells is also lower under 

hypoxia than normoxia [144] and mice infected with Mycobacterium tuberculosis under 

hypoxic conditions shown increased survival time compared with those under normoxia 
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[113]. HIF-1α KO mice displayed impaired leucocyte invasion and inflammation using 

ear and skin inflammation models [122] and BALB/c mice, which are resistant to P. 

aeruginosa keratitis, suffer severe infection when HIF-1α is knocked down using 

siRNA [145]. Moreover, another study showed that IL-6 production was lower under 

hypoxia than normoxia in a keratinocyte culture, but a treatment using a compound 

which boosts HIF resulted in an increase in IL-6 levels compared even to normoxia. 

These treated keratinocytes were more efficient in the clearance of S. aureus, P. 

aeruginosa and A. baumannii. This result suggests that additional changes during 

hypoxia, and not HIF levels alone, can alter cytokine production and immune response 

[142, 146]. 

 

Figure 6. HIF-1α transcriptional regulation of phagocyte innate immune functions 

[115]. 
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However, HIF-1 can have a negative role in the course of systemic infection, e.g. in 

sepsis. A KO of HIF-1α in the myeloid cells showed increased survival rates in a 

murine LPS-induced sepsis model and decreased serum levels of proinflammatory 

cytokines [147]. VEGF, another HIF-1 regulated cytokine, is elevated in serum of 

septicemic patients. Methicillin-resistant S. aureus (MRSA) and Streptococcus 

pneumoniae infections in meningitis patients induce higher serum VEGF levels [148, 

149]. Blocking of VEGF with soluble VEGF receptors increased survival in a murine 

LPS-sepsis model [150]. This harmful effect of VEGF and HIF-1 might be mediated by 

enhanced overwhelming immune response and subsequently to vascular leakage, and 

organ failure, which has already been demonstrated for patients suffering from septic 

shock (Fig. 7) [151]. HIF-1α is also a determinant of sepsis phenotype through the 

production of inflammatory cytokines (IL-1, IL-4, IL-6, IL-12 and TNF-α). High 

cytokines levels may be harmful to the host during early sepsis [152]. Therefore, a 

potential use of HIF-1 inhibitors in sepsis patients could be an interesting option, 

especially in times of widespread antibiotic resistances in clinically relevant pathogens, 

but there is no information from clinical studies available if inhibition of HIF-1 is 

beneficial for the outcome so far [118]. 
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Figure 7. Interdependence of HIF-1and NF-κβ plays an essential role in the 

progress of sepsis [153]. 

Hypoxia and HIF-1 activation not only modifies the host cells but also the bacterial 

metabolism and virulence [118]. Therefore, the microenvironment at the foci of 

infection plays a crucial role in determining the outcome of an infection. It has been 

demonstrated that hypoxia reduces the virulence of P. aeruginosa because it decreases 

the expression of multiple virulence factor such as alkaline protease, siderophores and 

exotoxin A [154]. Exposure to hypoxia also induces antibiotic resistance in P. 

aeruginosa by an alteration of efflux pumps expression [155] and increases the alginate 

production [156]. In addition, some pathogens required an hypoxic environment to grow 

in optimal conditions, e.g. C. pneumoniae or Toxoplasma gondii (Fig. 5). These 

pathogens show a decreased growth and survival rates in HIF-1α KO cells under 
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hypoxic conditions [157, 158]. Together, these results demonstrate the complexity of 

HIF-pathogen interactions. 

4.4. HIF-1α as a pharmacological target for infection treatment 

Nowadays, antimicrobial resistance is a global public health challenge. Therefore, there 

is an urgent need to search for alternative strategies to overcome this problem. Although 

the knowledge of the role of HIF-1 in infections is still unclear and limited, it could be 

considered as one major target for fighting infections in future. 

Modifying the course of infection could diminish the overwhelming inflammatory 

cascades which cause the high lethality in severe sepsis [118]. It has been reported that a 

neutralization of VEGF (regulated by HIF-1) is beneficial in a murine sepsis model 

[150]. Therefore, inhibition of HIF-1 might be beneficial in severe and acute infections. 

There are several compounds available which inhibit HIF-1, e.g. echinomycin 

(produced from Streptomyces lasalienis) that inhibits HIF-1 transcription; or chetomin 

(produced from the fungus Chaetomium spp.) which prevents the binding of HIF-1a to 

the coactivator p300 [159]. A study in a S. aureus peritonitis model showed that the use 

of 17-DMAG, an HIF-1 inhibitor targeting HIF-1 protein stability, reduced lethality 

from 100% down to 70% [135]. On the other hand, activation of HIF-1 might stimulate 

the immune response to overcome infections which cannot be cleared by the host [118]. 

Okumura et al. [146] showed that a new pharmacological compound called AKB-4924 

increased HIF-1 levels and enhanced the antibacterial activity of phagocytes and 

keratinocytes against S. aureus, P. aeruginosa and A. baumanii in vitro. 

Therefore, all these data demonstrate why hypoxia is being extensively studied today to 

try to find out a new way of treatment of MDR bacteria. 
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FUNDAMENTS 

The emergence of MDR GNB infections is a well-recognized global health challenge in 

urgent need of effective solutions. These pathogens cause infections that are very 

difficult to treat due to the high rate of resistance strains to a lot or even all 

antimicrobials used in the clinical practice. Furthermore, these kinds of infections are 

associated to important mortality rates. Unfortunately, the increasing problem of 

multidrug resistance is not followed by the development of novel antimicrobials. For 

this reason, there is an important need to develop new strategies to combat MDR, XDR 

and PDR GNB.  

A new alternative to combat this kind of infections might be blocking specific bacterial 

virulence factors that bacteria need to infect. It is known that bacteria modulate their 

gene expression in function of the environment. Therefore, expression of virulence 

factors can change during the course of infection according to every microenvironment 

in which bacteria are found. Several studies have reported that hypoxia occurs in a wide 

range of infection, so it would be interesting to determine the gene profile of these 

MDR pathogens in order to find out new virulence factors that we could block. 

Moreover, it is also important to know how hypoxia affects to this kind of infection to 

know better what is happening in vitro and in vivo. Because A. baumannii and P. 

aeruginosa are two of the most common pathogens that cause HAIs, we have chosen 

them to study their virulence mechanism under hypoxia in more depth. We have 

selected the strains A. baumannii ATCC 17978 and P. aeruginosa PAO1 because they 

are well-known sequenced strains which allow us to analyze virulence factors in a better 

way. 

On the other hand, septic shock patients present tissue hypoxia that might influence the 

disease. Moreover, septic shock is the most severe complication of sepsis and most 
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studies about this syndrome report a high mortality rate. Hence, it would be useful to 

study the relationship between tissue hypoxia, HIF-1α levels and immune response, and 

to determine new biomarkers to predict the outcome. 
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HYPOTHESES 

The hypotheses of this Doctoral Thesis are: 

Chapter I 

1. Environmental oxygen levels modify A. baumannii gene expression and regulate 

its pathogenicity and virulence.  

Chapter II 

2. Hypoxia affects to the bactericidal activity of eukaryotic cells against A. 

baumannii and P. aeruginosa. 

3. Hypoxia affects to the bacterial adherence and invasion of both pathogens into 

eukaryotic cells. 

4. Hypoxia modifies innate immune response of eukaryotic cells against both 

pathogens. 

Chapter III 

5. Hypoxia modifies innate immune response in septic shock patients. 
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OBJECTIVES 

The general aim of this Doctoral Thesis is to find out the effect of hypoxia on genetic 

regulation and virulence in A. baumannii and P. aeruginosa, in vitro and in vivo, and on 

innate immune response in infections caused by both pathogens. In addition, we would 

like to determine new biomarkers to predict the outcome of septic shock patients in the 

early stages of the disease. 

 

The specific objectives of each chapter are the following: 

Objectives of chapter I: 

1. To identify the genes of A. baumannii whose expression is regulated by 

environmental oxygen levels. 

2. To characterize the role of those genes in infection, in vitro and in murine 

models. 

Objectives of chapter II: 

1. To evaluate the effect of hypoxia on the bactericidal activity of cell lines A. 

baumannii and P. aeruginosa. 

2. To evaluate the effect of hypoxia on the bacterial adherence and invasion of A. 

baumannii and P. aeruginosa into cell lines. 

3. To characterize the effect of hypoxia on the expression of virulence factors of A. 

baumannii during the infection. 

4. To characterize the in vitro innate immune response in infections of A. 

baumannii and P. aeruginosa under hypoxic conditions. 
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5. To study the effect of hypoxia on the innate immune response and prognosis in 

lethal murine models of sepsis by A. baumannii and pneumonia by P. 

aeruginosa. 

Objectives of chapter III: 

1. To investigate the relationship between tissue hypoxia, HIF-1α levels and 

immune response in patients with septic shock (20). 

2. To determine new biomarkers to predict the outcome of septic shock patients. 
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METHODS AND RESULTS 

 

Chapter I. Article I. Comparative gene expression profile of Acinetobacter 

baumannii growing under microaerobiosis and normoxia. 

It will be submitted to The Journal of Infectious Diseases. 

Chapter II. Article II. Effect of hypoxia on the pathogenesis of Acinetobacter 

baumannii and Pseudomonas aeruginosa in vitro and in murine experimental 

models of infections. 

Published in Infection and Immunity 2018. 

Chapter III. Article III. Predictive value of APACHE II, and serum lactate, 

pyruvate, IL-10 and lysophosphatidylcholine levels on survival in patients with 

septic shock. 

It will be submitted to Critical Care Medicine. 
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CHAPTER I. ARTICLE I.  

COMPARATIVE GENE EXPRESSION PROFILE OF ACINETOBACTER 

BAUMANNII GROWING UNDER MICROAEROBIOSIS AND NORMOXIA. 

 

Acinetobacter baumannii is an aerobic Gram-negative pathogen responsible for 

healthcare-associated infections of the respiratory tract, skin, bacteremia, urinary tract, 

and other soft tissues [1]. During the process of infection, bacteria adapt to different 

environments modifying their gene expression [2]. It is known that tissue hypoxia 

occurs in the course of inflammation, due to a higher rate of oxygen consumption by 

immune cells and pathogens together with a reduction of the perfusion caused by 

vascular dysfunction [3]. This means that oxygen levels in the foci of infection are 

much lower (<1%) than in healthy tissues [4]. Moreover, there are different common 

medical conditions that produce hypoxemia and peripheral tissue hypoxia and they are 

often associated with infection and inflammation [5]. Therefore, bacteria must adapt to a 

hypoxic environment during infection, which modifies the expression of genes involved 

in metabolism and virulence [6]. Several virulence factors of A. baumannii have been 

identified through genomic and phenotypic analyses [7]. However, we still have not a 

whole picture of its pathogenic mechanisms. Nowadays, techniques that utilize next-

generation sequencing, such as RNA-seq, have been used for characterization of 

bacterial genomes under different conditions [8, 9]. Some analyses of the A. baumannii 

transcriptome have provided important information regarding A. baumannii biological 

characteristics. RNA-seq has been used to characterize and compare gene expression in 

A. baumannii under biofilm and planktonic growth conditions [10, 11], to analyze A. 

baumannii response and resistance mechanisms to different antibiotics and antibacterial 

agents [12-16], and to examine genetic changes that happen during host infection, 
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bacteremia and treatment [17, 18]. However, no study has investigated the influence of 

hypoxia/microaerobiosis in A. baumannii growth, which is an important condition that 

bacteria have to adapt to during infection. The objective of this study was to identify 

genes of A. baumannii whose expression is regulated by environmental oxygen levels to 

identify virulence factors. Thus, we compare the transcriptional response in A. 

baumannii ATCC 17978 under microaerobiosis (0.1-0.3% of oxygen) and normoxia 

(21% of oxygen) growth conditions. We identified several up and down-regulated genes 

under microaerobiosis. One of the upregulated genes was A1S_2448 (pstS), which is 

part of the pst operon (pstA, pstB, pstC, pstS and phoU) encoding a high-affinity 

phosphate transport system that is activated under low phosphate conditions. This 

transport system together with the low-affinity transporter Pit are the main phosphate 

uptake systems of A. baumannii [19]. 

 

Materials and Methods 

Bacterial Strain and Growth curve analysis 

A. baumannii ATCC 17978 was used in this study. Independent growth in MHB, M9 

minimal medium and phosphate-limiting M9 minimal medium was evaluated over time 

for wild-type strain ATCC 17978 and the pstS mutant. Strains were grown overnight in 

20 ml of Mueller-Hinton broth (MHB, Sigma) in static, and then, a 1:10000 dilution 

was performed to obtain 105 cfu/ml in a 40 ml culture of MHB or minimal medium M9. 

Minimal medium M9 was supplemented with 0.4% glucose, 2 mM magnesium sulfate 

and 0.1 mM calcium chloride. The growth under microaerobiosis (0.1-0.3% O2), 

hypoxia (1% O2), and normoxia (21% O2) were monitored during 24 h at 37 ºC and 160 

rpm. We used a hypoxia chamber (Coy Laboratories, Grass Lake, MI, USA) to culture 
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the bacteria under microaerobiosis and hypoxia conditions. After 4 h of growth in 

MHB, 6 samples (3 of microaerobiosis and 3 of normoxia condition) of bacterial 

cultures (8·108 cells each) were taken to perform RNA extraction.  

Bacterial RNA extraction, sequencing and analysis 

Bacterial RNA was purified from the cultures using the RNeasy Mini Kit (Qiagen). 

Quality control of the RNA samples (integrity number and concentration) was analyzed 

prior sequencing. The enrichment of mRNA was carried out by depletion of rRNA with 

Ribo-Zero rRNA Removal Kit (Illumina). The mRNA enriched fraction was used for 

library construction of cDNA molecules and the sequencing was performed on Illumina 

Hiseq2500 platform using 100bp paired-end sequencing reads. Then, the analysis of the 

generated sequence raw data was performed using CLC Genomics Workbench 8.5.1 

(Qiagen) (http://www.clcsupport.com/clcgenomicsworkbench/802/index.php?manual). 

The bioinformatics analysis started with trimming of raw sequences to generate high 

quality data. This high-quality sequencing reads were mapped against the A. baumannii 

ATCC 17978 genome (accession No. NC_009085). The result of mapping against this 

genome served to determine the gene expression levels based on the Reads per Kilobase 

of exon model per Million mapped reads (RPKM) method [20]. Finally, a gene 

differential expression analysis between normoxia and microaerobiosis groups was 

carried out through an Empirical Analysis of Digital Gene Expression test (DGE-test) 

[21]. The differentially expressed genes were filtered using standard conditions: False 

Discovery Rate P-value ≤ 0.05 and Fold change > 2 or < -2 [22, 23]. Genes considered 

as differentially expressed were used in an enrichment analysis. The R package 

clusterProfiler, included in Bioconductor [24], was selected with A. baumannii ATCC 

17978 (acb) as the organism, and KEGG as the annotation source. All KEGG pathways 

with a p-value cut-off equal to 1 was taken into account. In addition, genes belonging to 
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the Sulfur metabolism pathway, together with their fold-change values were analyzed 

with the Pathview web tool to show these genes in their corresponding KEGG pathway 

graph [25]. Finally, the raw expression for the differentially expressed genes belonging 

to a KEGG pathway were taken and a heatmap with the 6 different experiments (3 for 

normoxia, and 3 for microaerobiosis) was built, using the heatmap.2 method from the R 

gplot package. 

Quantitative Real-Time PCR (qRT-PCR) verification 

The RNA was isolated as described in the previous section and using the same 

conditions. Then, rests of DNA were removed from the RNA samples using the 

TURBO DNA-free Kit (Invitrogen). The reverse transcription step was carried out 

using the Thermo-Script RT-PCR kit (Invitrogen), according to the manufacturer’s 

instructions. The primer3 v.0.4.0 software (http://bioinfo.ut.ee/primer3-0.4.0/) was used 

to select primers that would amplify a product of approximately 120 bp. We selected 

two subexpressed genes under microaerobiosis: Glyoxalase/bleomycin resistance 

protein/dioxygenase A1S_3416 (F: GACCCAAATGGACATCGTTT; R: 

ATGGAGTAAAACCAAACGCG) and Maleylacetoacetate isomerase A1S_3415 (F: 

TAGTGGACGGCGATTTAACC; R: AGAAAGAGCCAAAATCCGTG); two 

overexpressed genes under microaerobiosis: taurine ATP-binding transport system 

component A1S_1443 (F: GGGTTGTGGCAAAACAACTT; R: 

TCACGCCTTACTTCCTTGGT) and sulfate transport protein A1S_2531 (F: 

GCCAGGCGTGGAAATTATTA; R: GGTAACGATGCAAAAGCACA); and two 

housekeeping genes: gyrB A1S_0004 (F: CAGCTTTGGGAAACCACAAT; R: 

CGATGATGTTGAACCACGTC) and rpoD A1S_2706 (F: 

CATGCGTGAAATGGGTACAG; R: TTACTGGCCAAATGCTGTTG). The 

quantitative real-time PCR assay was performed with SYBR Premix Ex Taq (Takara) in 
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a MxPro 3005p system (Stratagene). Three technical replicates for each sample were 

included. The amplification conditions were: 95 °C, 30 s, followed by 35 cycles of 95 

°C 10 s, 56 °C 25 s, and 72 °C 25 s. The specificity of the reaction was confirmed by a 

melting curve assay from 95 to 55 °C. Relative quantification of gene expression was 

analyzed following the Comparative CT Method (Applied Biosystems Guide). 

Construction of mutant and complemented strains 

A stable, in-frame deletion mutant strain was constructed in the A. baumannii ATCC 

17978 strain by homologous recombination using a described protocol [26].  For 

construction of the A1S_2448 deletion mutant (ATCC 17978 ΔA1S_2448::Kan), the 500 

bp immediately upstream of the genes open reading frame, and the 500 bp immediately 

downstream were amplified using the primers A1S_2448 Up Forward 

(CTTGCGGTTTTAGCGATTATG), A1S_2448 Up Reverse 

(GCCCCAGCTGGCAATTCCGGTCTGTTCTCTCTCATTAATG), A1S_2448  Down 

Forward (CTAAGGAGGATATTCATATGGTTGGTTTGAATAGGGGCTG) and 

A1S_2448  Down Reverse (GCGGCACAGACAACAACAGC). The kanamycin 

resistance gene from the plasmid pKD4 was amplified using the primers Kanamycin Up 

Forward (CCGGAATTGCCAGCTGGGGC) and Kanamycin Down Reverse 

(CATATGAATATCCTCCTTAG), resulting in a PCR product with sequences 

overlapping the PCR fragments containing the sequences upstream and downstream of 

the genes.  The three PCR products were mix in a stitching PCR reaction, and 5 µg of 

the resulting construct were transformed into the ATCC 17978 strain by electroporation 

before selection on LB agar plates with 10 mg/L kanamycin. All deletion mutants were 

confirmed by sequencing and maintained in 30 mg/L kanamycin. 
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In order to complement the obtained mutant, the gene reading frame and 200-400 bp 

upstream and downstream were amplified using the primers EcoRI A1S_2448 prom. 

Forward (ACAGAATTCGTGATATTGCGGTTATCTGAC) and XbaI A1S_2448 reg. 

Reverse (ACATCTAGATATTCTCCACTGTTTTCTCAATTG). This fragment was 

cloned into the pUCp24 and introduced into the mutant strains by electroporation before 

selection on LB agar plates containing 10 mg/L of gentamicin to create the 

complemented strain (ATCC 17978 ∆A1S_2448::Kan/pUCp24-2448). Primers 

Seq.insert.pUCp24.Forward (TCCCAGTCACGACGTTGTAAAACG) and 

Seq.insert.pUCp24.Reverse (AATTTCACACAGGAAACAGCTATG) were used to 

check and sequence the cloned gene. The deletion mutant was also transformed with the 

empty pUCp24 plasmid for use as controls (ATCC 17978 ∆A1S_2448::Kan/pUCp24). 

A549 culture and infection 

Human lungs epithelial cell line A549 was grown in DMEM containing 10% Fetal 

Bovine Serum (Gibco), 1% HEPES 1M, vancomycin (50 mg/ml), gentamicin (20 

mg/ml) and amphotericin B (0.25 mg/ml; Gibco), as previously described [27]. In the 

case of hypoxia condition studies (1% O2), cells were transferred to a hypoxia chamber 

with a humidified atmosphere of 1% O2, 5% CO2 and the balance N2 at 37 °C for 6 h 

prior infection. Cells were seeded (105 cells/well in a 24-well plate) for 30 h in 24-well 

plates before infection with A. baumannii ATCC 17978 and mutant strains at a 

multiplicity of infection (MOI) of 500. Immediately before the infection, A549 cells 

were washed thrice with PBS and incubated in supplemented DMEM.  
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Bactericidal activity, bacterial adherence and bacterial invasion in cell cultures 

After A549 cells infections with A. baumannii ATCC 17978 and mutant strains under 

hypoxia and normoxia conditions, extracellular medium was removed and serially 

diluted to determine bacterial concentration at 2 and 24 h post-infection [27].  

Adherence and invasion assays were carried out as previously described [27]. To 

measure the adherent bacteria number, cells were infected as mentioned before, and, 

after washing with PBS, 200µl of trypsin-EDTA (Gibco) was added for 5 min at 37 °C. 

Then, 200 µl of 0.5% Triton X-100 (Sigma) was added for 3 min. The invasion protocol 

also includes a treatment with tetracycline 256 µg/ml (Sigma) before the addition of 

trypsin-EDTA. Diluted lysates were counted to determine the attached and internalized 

bacteria. All assays were performed in triplicate. 

Biofilm assay 

Biofilm production was measured based on a previously described method [28]. Strains 

were cultured in 10 ml MHB overnight at 37 °C, and subsequently diluted to 105 cfu/ml 

in MHB. Two-hundred µl of the cell suspension were added to each well of a round-

bottom 96-well plate and growth overnight at 37 ºC. We washed twice every well to 

remove non-adherent bacteria and added two-hundred µl of 0.4% crystal violet dye 

(Sigma). After 10 min incubation, we washed twice and added two-hundred µl of 96% 

ethanol. After 15 min incubation, biofilm formation was quantified measuring the O.D. 

at 580 nm (Asys UVM 340 Microplate Reader). All assays were performed in triplicate. 

Surface motility assay 

Surface motility was measured based on a previously described method [29]. Overnight 

cultures of each strain were adjusted to an O.D. at 600 nm of 0.6 in PBS (Lonza). Three 
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µl of the bacterial suspension were placed in the center of a LB plate containing 0.3% 

agarose. Plates were incubated at 37 ºC with 80% of humidity and the radius of surface 

extension was measured at 24 hours of incubation. All assays were performed in 

triplicate. 

Statistical analysis  

Differences in bactericidal activity, bacterial adherence and invasion were determined 

using the multiple t-test one per row (GraphPad 6). Differences in biofilm formation 

and motility were determined using an unpaired t test (GraphPad 6). A P value < 0.05 

was considered significant. 

 

Results 

A. baumannii gene expression profile under microaerobiosis  

To identify genes associated with an inducible virulence response in A. baumannii, we 

searched for genes that were differentially expressed between microaerobiosis and 

normoxia conditions. A total of 203 genes were identified as differentially expressed by 

≥ 2-fold (106 genes were subexpressed and 97 were overexpressed under 

microaerobiosis) (Table 1, Fig. 1A). This accounts for 5% of the A. baumannii ATCC 

17978 genome. The RNA-seq results were validated by qRT-PCR analysis on a subset 

of differentially expressed genes (Table 2). Data from the qRT-PCR and RNA-seq 

showed the same trends, although the qRT-PCR expression data generally showed 

higher fold changes than the RNA-seq data. 

Analysis of the differentially expressed genes by Gene Onthology (GO) enrichment 

showed that genes that were overexpressed under microaerobiosis were mainly involved 
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in sulfur metabolism (sulfate transport protein, taurine transport system and 

alkanesulfonate transport system), phenylalanine metabolism, and ABC transporters 

(Fig. 1B). Another set of genes that were overexpressed under microaerobiosis were a 

group of genes involved in lactate metabolism, TatABC transporters, phosphate 

transport system, positive pho regulon response regulator and some hypothetical 

proteins with unknown function (Fig. 1A). In contrast, genes that were subexpressed 

under microaerobiosis were involved in valine, leucine and isoleucine metabolism, 

aminoacyl-tRNA biosynthesis and urea metabolism (Fig. 1A and 1B).  

Fig. 2A shows all the genes that were overexpressed and subexpressed under 

microaerobiosis compared to normoxia with a P <0.05. We identified 17 genes that 

were involved in sulfur metabolism, and all of them were overexpressed under 

microaerobiosis besides A1S_1709. These genes codify proteins involved in the 

extracellular uptake of sulfate (A1S_2531-2536), taurine (A1S_1442-1445) and 

alkanesulfonate (A1S_0028-0030) to obtain sulfate and sulfite inside the cells; and 

genes involved in sulfate (A1S_ 1000-1001) and sulfite (A1S_2846) metabolism to 

obtain energy (Fig. 2B). However, A1S_1709 codifies a quinone reductase involved in 

sulfide metabolism, a parallel pathway inside sulfur metabolism. These data suggest that 

A. baumannii changes its metabolism from an aerobic metabolism to a growth based on 

sulfur (non aerobic metabolism pathway) as main source of energy. Moreover, it seems 

that bacterial protein synthesis is decreased under microaerobiosis due to the 

subexpression of genes involved in aminoacid metabolism and aminoacyl-tRNA 

biosynthesis. This could explain the lower bacterial growth rate under microaerobiosis 

compare to normoxia (see below). 
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A. baumannii virulence factors under hypoxia 

We selected five different genes that were overexpressed under microaerobiosis to 

determine if they are involved in A. baumannii pathogenesis. The genes A1S_0030 

(alkanesulfonate transport protein) and A1S_2532 (sulfate transport protein) are 

involved in two of the pathways that bacteria use to obtain sulfate and sulfite inside the 

cell and use it as a source of energy under microaerobiosis. The gene A1S_2448 

(putative phosphate transporter PstS) is involved in the transport of phosphate, a very 

important mechanism that bacteria need during infection process. The gene A1S_0464 

(Sec-independent protein translocase protein TatC) is part of a 3 protein-complex 

(TatABC) that is involved in transport. And the gene A1S_0172 is a hypothetical protein 

highly expressed under microaerobiosis. Finally, the mutant in the gene A1S_2448 was 

the most promising, so we continue with it for the analysis. 

Growth curves analysis 

Growth curves in MHB under normoxia (21% O2), hypoxia (1% O2), and 

microaerobiosis (0.1-0.3% O2) were performed to find out if ATCC 17978 wild-type 

strain and the mutant ΔA1S_2448::Kan had different growth rates. We showed that both 

strains growths´s during 2 and 24 h were indistinguishable under normoxia and hypoxia 

(Fig. 3A). However, strains showed less growth under microaerobiosis at 24 h, proving 

the results we showed in the RNA-seq experiment (less growth rate). Nevertheless, 

there were no significant differences between the wild-type and the mutant strain 

growth, although the mutant strain grew slightly less than the wild-type under 

normoxia. Complemented strain and strains harboring the empty pUCp24 had the same 

growth than the respectives strains (ATCC 17978 ΔA1S_2448::Kan) and under all the 

conditions.  
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Growth curves in minimal medium M9 under hypoxia were the same for the ATCC 

17978 and the mutant ΔA1S_2448::Kan (Fig. 3B) because the limitation in carbohydrate 

availability is not key in the hypoxic growth due to the bacterial metabolic shift to an 

anaerobic metabolism based on sulfur. However, the mutant ΔA1S_2448::Kan showed 

less growth than the ATCC 17978 in minimal medium M9 under normoxia (Fig. 3C). 

Bactericidal activity, bacterial adherence and bacterial invasion in cell cultures 

We determined if hypoxia affects the bactericidal activity of epithelial cells against the 

mutant strains more than against the wild-type strain. Bacterial counts of ATCC 17978, 

ATCC 17978/pUCp24, ΔA1S_2448::Kan, ΔA1S_2448::Kan/pUCp24-2448, and 

ΔA1S_2448::Kan/pUCp24 strains decreased in the extracellular medium of A549 cell 

line under hypoxia (1% O2) condition, after 2 and 24 h, compared to normoxia (data not 

shown). This decrease was higher in the case of the mutant strain after 2 and 24 h 

infection, compared to the wild-type (P <0.01 and P <0.001 at 2 and 24 h after 

infection, respectively) (Fig. 4A). These data support an increase in the bactericidal 

activity of epithelial cells line after 2 and 24 h under hypoxia against the mutant strain. 

Complementation of ΔA1S_2448::Kan restored the wild-type count levels.  

The bacterial adherence of the wild-type and the mutant strain to A549 cell line was 

significantly lower at 2 and 24 h post-infection under hypoxia compared to normoxia. 

This decrease was higher in the case of the mutant compared to the wild-type (P<0.05 

and P<0.01 at 2 and 24 h after infection, respectively) (Fig. 4B). Complementation of 

ΔA1S_2448::Kan restored the wild-type adherence levels. 

Bacterial counts of the mutant strain inside epithelial cells showed a higher decrease 

than the wild-type strain at 24 h post-infection under hypoxia compared to normoxia 

(P<0.001) (Fig. 4C). Complementation of ΔA1S_2448::Kan restored almost the wild-

type invasion levels. These data indicate that hypoxia affects the adherence and invasion 

61  
 



of mutant strains more than the wild-type, being A1S_2448 an important gene under 

hypoxia.  

Biofilm formation analysis 

Biofilm assays were performed to analyze the biofilm-forming potential of the mutant 

strain compared to the wild-type strain. A. baumannii ATCC 17978 produced thick 

biofilm (Fig. 5A). The mutant ΔA1S_2448::Kan demonstrated significantly lower 

biofilm formation (35.47%) compared to the wild-type strain (100%), as well as the 

ΔA1S_2448::Kan/pUCp24 strain (25.19%) (P<0.001 and P<0.05, respectively). 

Complementation of ΔA1S_2448::Kan restored biofilm production to wild-type levels 

(104.58%).  

Motility assay 

Surface motility of the ATCC 17978 strain and the mutant ΔA1S_2448::Kan was 

assessed. As shown in Fig. 5B-F, ΔA1S_2448::Kan showed reduced surface motility 

(19.5 mm) compared to ATCC 17978 (42 mm) (P<0.001). The strain ATCC 

17978/pUCp24 showed reduced surface motility (10 mm) compared to ATCC 17978 

due to the introduction of the plasmid pUCp24 in the wild-type strain. The 

complemented strain ΔA1S_2448::Kan/pUCp24-2448 showed the same motility than 

ATCC 17978/pUCp24. Results were confirmed with the strain 

ΔA1S_2448::Kan/pUCp24, which showed reduced surface motility (6 mm) than ATCC 

17978/pUCp24 (P<0.01). 
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Figure 1. A) Plot of differential gene expression under microaerobiosis compared with 
normoxia with respect to gene locus tag number. The fold change in expression for each 
gene meeting the study threshold (False Discovery Rate ≤ 0.05; 2-Fold change) was 
plotted against the gene locus tag number. Genes of interest are highlighted. B) KEGG 
pathways enriched in the differentially expressed genes. It shows the number of genes 
involved in each pathway and the statistical significance of the pathway (P-value). Note 
that Sulfur metabolism is both the pathway more significant and with a higher number 
of genes. 
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Figure 2. A) Clustering of differentially expressed genes assigned to a pathway. All of 
the genes were grouped by pathways and the expression values were converted to Z-
Score for normalization. Note that the same gene can sometimes belong to other of the 
pathways, but here it is only shown in one of them. B) KEGG pathway for Sulfur 
metabolism highlighting the differentially expressed genes. In red and green color are 
highlighted the upregulated and downregulated genes, respectively.  
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Figure 3. A) Growth curves of A. baumannii ATCC 17978 and ΔA1S_2448::Kan in 
MHB under normoxia, hypoxia and microaerobiosis (21%, 1% and 0.1-0.3% O2, 
respectively). B) Growth curves of A. baumannii ATCC 17978, ΔA1S_2448::Kan, 
ATCC 17978/pUCp24, ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24 
in minimal medium M9 (supplemented) under hypoxia. C) Growth curves of A. 
baumannii ATCC 17978, ΔA1S_2448::Kan, ATCC 17978/pUCp24, 
ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24 in minimal medium 
M9 (supplemented) under normoxia. 
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Figure 4. A) Measurement of bacterial concentration (%) in the extracellular medium 
after 2 and 24 h of A549 infection by A. baumannii ATCC 17978, ΔA1S_2448::Kan, 
ATCC 17978/pUCp24, ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24 
under normoxia and hypoxia (1% O2). Bars represent the reduction of bacterial 
concentration under hypoxia compared to normoxia, being the reduction obtained in the 
wild-type equal to 100%. ***: P<0.001 Mutant vs. wild-type at 2 or 24 h; **: P<0.01 
Mutant vs. wild-type at 2 or 24 h; *: P<0.05 Mutant vs. wild-type at 2 or 24 h. B) 
Measurement of bacterial adherence (%) after 2 and 24 h of A549 infection by A. 
baumannii ATCC 17978, ΔA1S_2448::Kan, ATCC 17978/pUCp24, 
ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24 under normoxia and 
hypoxia (1% O2). Bars represent the reduction of bacterial adherence under hypoxia 
compared to normoxia, being the reduction obtained in the wild-type equal to 100%. **: 
P<0.01 Mutant vs. wild-type at 2 or 24 h; *: P<0.05 Mutant vs. wild-type at 2 or 24 h. 
C) Measurement of bacterial internalization (%) after 2 and 24 h of A549 infection by 
A. baumannii ATCC 17978, ΔA1S_2448::Kan, ATCC 17978/pUCp24, 
ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24 under normoxia and 
hypoxia (1% O2). Bars represent the reduction of bacterial internalization under hypoxia 
compared to normoxia, being the reduction obtained in the wild-type equal to 100%. 
***: P <0.001 Mutant vs. wild-type at 2 or 24 h. 
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Figure 5. A) Effect of PstS loss on biofilm production. Biofilm production was 
determined for ATCC 17978, ΔA1S_2448::Kan, ATCC 17978/pUCp24, 
ΔA1S_2448::Kan/pUCp24-2448, and ΔA1S_2448::Kan/pUCp24. Bars represent the 
average of three separate assays, with error bars representing the SEM. ***: P<0.001 
Mutant vs. wild-type; *: P<0.05 Mutant vs. wild-type.  B-F) Efect of PstS loss on 
surface motility (B: ATCC 17978; C: ΔA1S_2448::Kan; D: ATCC 17978/pUCp24; E: 
ΔA1S_2448::Kan/pUCp24-2448; F:ΔA1S_2448::Kan/pUCp24). 

 

 

 

 

 

 

 

67  
 



Table 1. Genes up-regulated and down-regulated in A. baumannii ATCC 17978 under 

microaerobiosis (0.1-0.3% O2). 

Gene ID Protein description Fold Change 
A1S_0028 FMNH(2)-dependent alkanesulfonate monooxygenase 2,867637691 
A1S_0029 ABC-type nitrate/sulfonate/bicarbonate transport system 2,990097961 
A1S_0030 Alkanesulfonate transport protein 4,262666192 
A1S_0040 Putative oxidoreductase 3,36292177 
A1S_0041 Putative linoleoyl-CoA desaturase 3,074780083 
A1S_0059 Putative glycosyltransferase -2,934814162 
A1S_0067 L-lactate permease 2,867983694 
A1S_0068 L-lactate utilization transcriptional repressor (GntR family)  1,740266254 
A1S_0069 L-lactate dehydrogenase FMN linked 2,261836192 

A1S_0070 D-lactate dehydrogenase NADH independent, FAD-binding 
domain 1,839352742 

A1S_0073 2-methylisocitrate lyase 1,779592074 
A1S_0101 Pseudo 3,071015888 
A1S_0103 3-hydroxyisobutyrate dehydrogenase 1,909511059 
A1S_0119 Phosphopantethiene-protein transferase -2,615172123 
A1S_0121 tRNA -6,677734407 
A1S_0170 Putative outer membrane copper receptor (OprC) 2,302305958 
A1S_0172 Hypothetical protein A1S_0172 28,76221182 
A1S_0179 NADPH-dependent FMN reductase 3,316713266 
A1S_0180 Putative membrane protein 4,4043089 
A1S_0224 Hypothetical protein A1S_0224 1,993084202 
A1S_0233 Type 4 fimbriae expression regulatory protein -3,648849006 
A1S_0251 Thiamine hydroxymethylpyrimidine moiety synthesis 2,431468999 
A1S_0256 High affinity phosphate uptake transcriptional repressor 1,965328674 
A1S_0332 tRNA -2,734469972 
A1S_0408 Putative glutathione S-transferase -2,848996933 
A1S_0427 Aspartate-semialdehyde dehydrogenase NAD(P)-binding 1,723788434 
A1S_0463 Putative alkaline phosphatase 2,37093695 
A1S_0464 Sec-independent protein translocase protein (TatC) 2,626200932 
A1S_0465 Sec-independent protein translocase protein TatB 2,119553888 
A1S_0466 Sec-independent protein translocase protein TatA 3,974749135 
A1S_0550 Putative VGR-related protein -3,748574485 

A1S_0566 Pyridine nucleotide transhydrogenase (proton pump) alpha 
subunit (part1)  -2,398701486 

A1S_0567 Pyridine nucleotide transhydrogenase (proton pump) alpha 
subunit (part2)  -2,378531377 

A1S_0595 Putative membrane protein -4,298445076 
A1S_0617 Hypothetical protein A1S_0617 -2,501352623 
A1S_0644 Hypothetical protein A1S_0644  -2,476797404 
A1S_0714 tRNA -8,603938479 
A1S_0715 tRNA -3,367487475 
A1S_0716 tRNA -2,520040074 
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A1S_0717 tRNA -20,90999886 
A1S_0736 Hypothetical protein A1S_0736 6,307013814 

A1S_0737 5-methyltetrahydropteroyltriglutamate-homocysteine 
methyltransferase  2,406360233 

A1S_0738 Putative flavoprotein oxidoreductase 1,708012196 
A1S_0746 Ribonucleoside-diphosphate reductase beta subunit  1,725080265 
A1S_0747 Ribonucleoside diphosphate reductase alpha subunit 1,876363877 
A1S_0800 Bacterioferritin -3,193016034 
A1S_0801 Putative transport protein (permease) 1,753161686 
A1S_0804 Trehalose-6-phosphate phophatase 2,213668666 
A1S_0832 tRNA -2,513627493 
A1S_0908 RND family multidrug resistance secretion protein 1,771695997 
A1S_0909 Putative MFS family drug transporter  1,797570144 
A1S_0922 Putative homocysteine S-methyltransferase family protein 2,001867888 

A1S_0923 Malate dehydrogenase FAD/NAD(P)-binding domain / Malate 
dehydrogenase [quinone] 2,08194988 

A1S_1000 Sulfate adenylyltransferase subunit 2 2,496503751 
A1S_1001 ATP-sulfurylase subunit 1 2,373560166 
A1S_1011 Urease accessory protein UreD -3,038251236 
A1S_1012 EsvC / Urea amidohydrolase subunit gamma -3,096672296 
A1S_1013 Urea amidohydrolase subunit beta -2,661961516 
A1S_1049 Hypothetical protein A1S_1049 -2,741753861 
A1S_1085 Amino acid transporter  -2,539007574 
A1S_1088 Hypothetical protein A1S_1088 -2,860965483 
A1S_1089 Hypothetical protein A1S_1089 -4,443066817 
A1S_1090 Putative transcription regulator (AsnC family) 2,92148878 
A1S_1091 Succinylornithine transaminase (carbon starvation protein C) -3,43656727 
A1S_1092 Succinylornithine transaminase (carbon starvation protein C) -5,862639426 
A1S_1093 Arginine/ornithine N-succinyltransferase beta subunit -5,786008422 
A1S_1094 D-serine/D-alanine/glycine transporter  -2,998003217 
A1S_1216 LysR regulator -2,393257685 
A1S_1223 tRNA -9,61263552 
A1S_1224 Transposase -4,374194522 
A1S_1228 Cold shock protein -4,65134289 
A1S_1229 Pyrroline-5-carboxylate reductase -3,387635633 
A1S_1255 Lipid A biosynthesis lauroyl acyltransferase -3,996642143 
A1S_1266 Putative membrane protein -4,307066915 
A1S_1267 Putative lactam utilization protein -3,526606631 
A1S_1268 Hypothetical protein A1S_1268 -3,735897828 
A1S_1269 Putative allophanate hydrolase subunit 1 and 2 -3,658727334 
A1S_1270 Hypothetical protein A1S_1270 -4,433917777 
A1S_1288 Putative VGR-related protein -3,288256628 
A1S_1320 Transcriptional regulator SoxR -3,066609102 
A1S_1335 Phenylacetic acid degradation protein paaN  3,244622056 
A1S_1336 Phenylacetate-CoA oxygenase subunit PaaA 1,925774812 
A1S_1337 Phenylacetate-CoA oxygenase subunit PaaB 2,151943853 
A1S_1338 Hypothetical protein A1S_1338 2,095589207 
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A1S_1339 Phenylacetate-CoA oxygenase PaaJ subunit 2,158694898 
A1S_1340 Phenylacetate-CoA oxygenase/reductase PaaK subunit 1,988164111 
A1S_1354 (Acyl-carrier protein) phosphodiesterase  -4,371305981 
A1S_1355 p-hydroxybenzoate hydroxylase transcriptional activator -3,458178368 
A1S_1356 p-hydroxybenzoate hydroxylase transcriptional activator 1,909067312 
A1S_1372 Hypothetical protein A1S_1372 -3,685048519 
A1S_1373 Putative acyl-CoA carboxylase alpha chain protein -3,020431978 
A1S_1374 3-methylglutaconyl-CoA hydratase -2,521101799 
A1S_1396 ABC-type amino acid transport system 2,514269767 
A1S_1398 GlnQ protein 1,839868743 
A1S_1435 Hypothetical protein A1S_1435 -2,395374661 
A1S_1436 Putative acyl-CoA dehydrogenase 2,136771227 
A1S_1437 Putative acyl-CoA dehydrogenase 2,303810193 
A1S_1442 Taurine ABC transporter periplasmic taurine-binding protein 9,469009538 
A1S_1443 Taurine ATP-binding transport system component  10,64067184 
A1S_1444 ABC taurine transporter permease subunit 5,268788099 
A1S_1445 Taurine dioxygenase 3,468959789 
A1S_1487 Putative Acyl-CoA dehydrogenase 1,812699687 
A1S_1488 Putative Acyl-CoA dehydrogenase  2,132746095 
A1S_1498 Putative transcriptional regulator (TetR family) -4,003875641 
A1S_1505 yyaM 40,4300082 
A1S_1665 Putative membrane protein 3,073765337 
A1S_1677 Putative porin precursor 2,57721949 
A1S_1708 Beta-lactamase-like protein -3,161623735 
A1S_1709 Hypothetical protein A1S_1709 0,254873163 
A1S_1710 Putative membrane protein -3,257280351 
A1S_1726 Aspartate ammonia-lyase (aspartase) 2,378126552 
A1S_1731 Acetoacetyl-CoA transferase beta subunit -2,579954492 
A1S_1732 Acetoacetyl-CoA transferase alpha subunit  -2,890598255 
A1S_1735 Hypothetical protein A1S_1735 -2,791113316 
A1S_1760 Hypothetical protein A1S_1760 -4,097559303 
A1S_1762 Hypothetical protein A1S_1762 1,742620352 
A1S_1811 Hypothetical protein A1S_1811 -2,426624706 
A1S_1821 Short-chain dehydrogenase/reductase SDR 1,86515805 
A1S_1841 Hypothetical protein A1S_1841 -2,862129625 
A1S_1926 Putative membrane protein 1,873695091 
A1S_1928 Putative signal peptide 4,142089126 
A1S_1943 Putative membrane protein -2,884976522 
A1S_1984 D-amino acid dehydrogenase small subunit -2,364748955 
A1S_2057 Methyl viologen resistance protein (MFS superfamily) -2,451248433 
A1S_2090 Hypothetical protein A1S_2090 -2,551398493 
A1S_2091 Putative exported protein -2,365873959 
A1S_2093 Hypothetical protein A1S_2093 1,859723965 
A1S_2122 Transcriptional regulator 1,875285287 
A1S_2202 Aspartate racemase 2,402465914 
A1S_2218 CsuA/B -3,557110164 
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A1S_2224 Threonine efflux protein 2,836132945 
A1S_2230 Hypothetical protein A1S_2230 -3,089609662 
A1S_2238 tRNA -4,361194157 
A1S_2239 tRNA -2,617275074 
A1S_2289 Putative signal peptide -3,75877858 
A1S_2296 Putative protease 2,224288367 
A1S_2319 Putative membrane protein 2,908415896 
A1S_2320 Transcriptional regulator AraC family 1,763689515 
A1S_2334 S-adenosyl-L-homocysteine hydrolase 1,931879168 
A1S_2347 Hypothetical protein A1S_2347 -3,280881456 
A1S_2446 High-affinity phosphate transport protein 2,779460265 
A1S_2447 EsvD 3,211746538 
A1S_2448 Putative phosphate transporter 4,415621921 
A1S_2458 Putative fatty acid desaturase 5,815884329 
A1S_2459 Putative oxidoreductase 4,811424151 
A1S_2490 UDP-N-acetyl glucosamine-2-epimerase -3,89628889 
A1S_2512 Hypothetical protein A1S_2512 -2,702934785 
A1S_2531 Sulfate transport protein 14,23755414 
A1S_2532 Sulfate transport protein 22,54708807 
A1S_2533 Putative esterase 11,70258487 
A1S_2534 Sulfate transport protein 5,367772795 
A1S_2535 Putative sulfate permease 4,474063585 
A1S_2536 Putative ATPase 2,363384072 
A1S_2537 Putative LysR-type transcriptional regulator 1,717536577 
A1S_2555 Transposition site target selection protein D -2,684175378 
A1S_2648 Hypothetical protein A1S_2648 -2,76460688 

A1S_2654 Putative periplasmic binding protein of 
transport/transglycosylase 1,812087761 

A1S_2694 Mur ligase middle region -2,5493552 
A1S_2695 Hypothetical protein A1S_2695 -2,397710105 
A1S_2699 Putative transcriptional regulator 1,732122956 
A1S_2710 Hypothetical protein A1S_2710 1,820533836 
A1S_2748 Putative ammonium transporter -2,695259213 
A1S_2801 tRNA -2,965003472 
A1S_2841 Putative type 4 fimbrial biogenesis protein FimT -2,383966682 
A1S_2844 Quaternary ammonium compound-resistance protein -2,373154232 
A1S_2846 CysI-like sulfite reductase protein 1,795908099 
A1S_2863 Putative antioxidant protein 2,866965402 
A1S_2909 tRNA -4,931625423 
A1S_2911 Uncharacterized membrane protein LemA family -2,40884189 
A1S_3010 Hypothetical protein A1S_3010 1,768451868 
A1S_3035 Xanthine phosphoribosyltransferase 2,081840296 
A1S_3043 Hypothetical protein A1S_3043 -2,706572314 
A1S_3044 Hypothetical protein A1S_3044 -2,922101167 
A1S_3085 Putative flavohemoprotein 2,283046794 
A1S_3135 Putative APC family S-methylmethionine transporter (MmuP) -2,995657413 
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A1S_3166 Pilin like competence factor -2,418282511 
A1S_3183 tRNA -2,516094839 
A1S_3212 Hypothetical protein A1S_3212 -2,508738565 
A1S_3224 Acyl coenzyme A reductase -2,570691211 
A1S_3225 Putative sulfate permease -2,594439793 
A1S_3231 Putative acetyl-CoA hydrolase/transferase 2,09959443 
A1S_3237 Exonuclease putative -2,392405255 
A1S_3251 Transporter LysE family -6,89413316 
A1S_3305 NADH-dependent FMN reductase 2,176815627 
A1S_3350 Hypothetical protein A1S_3350 -3,744907286 
A1S_3363 Membrane metalloendopeptidase protein -3,116653492 
A1S_3364 Putative VGR-related protein -7,40947075 
A1S_3374 Positive pho regulon response regulator 1,92233217 
A1S_3375 Positive pho regulon response regulator 2,089499576 
A1S_3401 Hypothetical protein A1S_3401 -2,955676254 
A1S_3402 Arginase/agmatinase/formimionoglutamate hydrolase -3,028239302 
A1S_3403 Imidazolonepropionase -2,661908071 
A1S_3404 Proline transport protein (APC family) -2,627117238 
A1S_3413 APC family aromatic amino acid transporter -5,539609242 
A1S_3414 Fumarylacetoacetase -42,06992163 
A1S_3415 Maleylacetoacetate isomerase -54,71945548 
A1S_3416 Glyoxalase/bleomycin resistance protein/dioxygenase -26,46556666 
A1S_3417 Regulatory proteins IclR -2,362911036 
A1S_3418 4-hydroxyphenylpyruvate dioxygenase -23,0065767 
A1S_3436 Putative alcohol dehydrogenase 1,794177485 
A1S_r01 16S ribosomal RNA -4,406220125 
A1S_r08 23S ribosomal RNA -4,297087141 
A1S_r12 16S ribosomal RNA 2,13706962 
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Table 2. qRT-PCR data to validate RNA-seq results. 

Sample 

Fold difference  
A1S_3416 
relative to 

microaerobiosis 

Fold difference  
A1S_3414 
relative to 

microaerobiosis 

Fold 
difference 
A1S_1443 
relative to 
normoxia 

Fold 
difference 
A1S_2531 
relative to 
normoxia 

Normoxia 51.15 
(36.89 ± 70.93) 

166.96 
(113.08 ± 246.51) 

1 
(0.39 ± 2.57) 

1 
(0.16 ± 6.38) 

Microaerobiosis 1 
(0.38 ± 2.72) 

1 
(0.43 ± 2.35) 

5.38 
(3.06 ± 9.46) 

15.45 
(2.86 ± 83.42) 
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Discussion 

RNA-seq is a useful tool that allows a high-throughput sequencing of RNA to study 

transcription on a genome-wide scale [30]. RNA-seq measures RNA abundance, which 

is a product of gene transcription as well as RNA stability. This method has been 

applied to find out new virulence factors in different microorganisms. In this study we 

showed that the gene A1S_2448, which codifies for the PstS protein, is overexpressed in 

A. baumannii under microaerobiosis.  

The gene pstS is located in an operon and the operon genes have different functions. 

pstA, pstB and pstC encode an ABC phosphate transporter, while pstS encodes a 

periplasmic phosphate-binding protein which senses phosphate levels and transfers the 

phosphate to the bacterial cytoplasm through the transporter [31]. Transcription of the 

system genes is regulated by PhoB/R, a two-component system activated by phosphate 

depletion. When phosphate levels in the bacteria are low, PhoR phosphorylates PhoB, 

which binds to a consensus Pho Box and activates genes expression, such as the pst 

operon. Conversely, when phosphate levels are high, the Pho regulon is not induced 

because PhoU interacts with Pst and PhoR constituting a complex that prevents PhoB 

phosphorylation [32].  

Pathogenic bacteria, like A. baumannii, must withstand diverse host environments 

during infection. Environmental signals, such as pH, temperature or oxygen levels, not 

only trigger adaptive responses to these stress conditions but also induce the expression 

of virulence genes [33]. Microaerobiosis is a stress condition that bacteria face during 

the course of infection. In this study, we showed that genes from the sulfate assimilation 

pathway are up-regulated in A. baumannii under microaerobiosis, to facilitate bacterial 

adaptation to oxygen-limiting conditions. This metabolism yields less energy than the 

aerobic one, supporting the fact that A. baumannii growth rate is lower under 
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microaerobiosis condition. In this condition we also observed an increased expression 

of phosphate uptake system, which is very important to colonize during the infection 

due to the phosphate-limiting conditions that are found inside the host [34]. It seems 

that this stressful condition exacerbates the virulence of A. baumannii taking advantage 

of the induction of phosphate uptake mechanism. Camarena et al. [35] showed a strong 

induction of genes involved in phosphate transport when A. baumannii was grown in 

ethanol, indicating that this pathogen makes a better use of the phosphate resources 

under that stressful condition. There is also evidence of a higher PstS secretion 

associated with nutritional stress in other bacteria [36]. Therefore, the slightly less 

growth of the mutant ΔA1S_2448::Kan compared to the ATCC 17978 in minimal 

medium M9 (carbohydrates limitation) under normoxia might be due to a 

hyperproduction of PstS in the ATCC 17978 that emphasize the differences between the 

mutant and the wild-type strains. 

The pst and pho regulon is highly conserved in Gram-negative and Gram-positive 

bacteria and controls the expression of multiple genes, regulating bacterial virulence. It 

has been shown that the activation of the regulon PhoB in Vibrio cholerae results in a 

decreased expression of toxin-co-regulated pilus and the ADP ribosylating cholera toxin 

which impairs bacterial colonization [37].  Moreover, the deletion of the pst operon 

decreases the expression of the main adhesins in Escherichia coli (BFP and intimin) and 

reduces bacterial adherence to Hep-2 cells [38]. Esparza et al. [39] showed that PstS is 

indeed an adhesin which can bind the macrophage mannose receptor and promote 

phagocytosis in Mycobacterium tuberculosis. We showed that pstS deletion reduces 

bacterial adherence in A. baumannii, confirming the influence of PstS in A. baumannii 

adherence like in other microorganisms. Other studies have proposed that the Pst system 

is involved in intracellular invasion. For example, the pstS deletion in Salmonella 
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enterica serotype Typhimurium reduces hilA and invasion gene expression [40]. We 

also found that pstS deletion mutant in A. baumannii is less invasive than the wild-type 

strain. Therefore, pstS deletion reduces adherence as well as invasion, supporting the 

idea of PstS as an A. baumannii virulence factor.  

Biofilms play many important roles in pathogenesis, making bacteria more resistant to 

environmental stresses such as exposure to biocides and antimicrobial agents [41]. 

PhoB induces expression of acgAB, an operon which encodes c-di-GMP metabolic 

enzymes resulting in an increased motility and less biofilm formation in V. cholera [42]. 

Moreover, Pho modulation of the c-di-GMP cellular level was shown to be linked to 

LapA adhesin-decreased secretion, which is required for biofilm formation, in 

Pseudomonas fluorescens [43]. Previous studies have also linked the Pst system with 

the regulation of biofilm formation by Proteus mirabilis and Pseudomonas aeruginosa, 

having the mutants in the pst system less biofilm-forming ability [44, 45]. PhoB also 

controls swarming motility in P. aeruginosa, having a hyper swarming phenotype when 

PhoB is active [46]. However, in our study, we showed that a deletion in pstS in A. 

baumannii, and therefore, a constitutive activation of the PhoB regulon, produced a 

decrease in both motility and biofilm formation, evidencing the existence of a different 

regulatory mechanism in this pathogen. Motility and biofilm formation are usually part 

of bacterial virulence factors that allow a more effective infectious process. Therefore, 

impairing the pstS gene might reduce A. baumannii virulence.  

Zaborina et al. [47] showed that MDR clinical isolates of P. aeruginosa produced PstS-

rich appendages during phosphate limitation condition and they were involved in 

adherence and disruption of intestinal epithelial cells. Moreover, an increased 

expression of PstS in P. aeruginosa produced higher mortality rates in a mouse model 

of gut-derived sepsis model. In this regard, another environmental cue that could shift 
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the virulence of A. baumannii to a more virulent phenotype may be low extracellular 

phosphate. Hypophosphatemia is present in a variety of physiologic stress states such as 

the use of intravenous nutrition [48], and during sepsis [49, 50], remarking the 

importance of this study. 

In summary, we have identified multiple genes that are differentially expressed under 

the stressful condition of microaerobiosis, such as pstS.  This virulence factor confers a 

highly adhesive and virulent phenotype to A. baumannii and seems to have a broader 

regulatory impact beyond its role in phosphate metabolism. However, a better 

understanding of the molecular regulation is needed to completely define its role in the 

virulence of A. baumannii. 
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ADDITIONAL DATA  

We selected five different genes that were overexpressed under microaerobiosis to 

determine if they were involved in A. baumannii pathogenesis. The genes were 

A1S_0030, A1S_2532, A1S_0464, A1S_0172 and A1S_2448. We have analyzed the last 

one in this chapter I. 

Stable, in-frame deletion mutants were constructed in the A. baumannii ATCC 17978 

strain by homologous recombination using the described protocol. For construction of 

the A1S_0030 and A1S_2532 deletion mutant (ATCC 17978 ΔA1S_0030::Kan, and 

ATCC 17978 ΔA1S_2532::Kan, respectively), the 500 bp immediately upstream of the 

genes open reading frame, and the 500 bp immediately downstream were amplified 

using the primers indicated in Table A1.   

A more efficient technique was used to construct in-frame deletion mutants of the 

A1S_0464 and A1S_0172 genes. Gene deletions were performed with an allelic 

exchange plasmid called pMJG42, which harbors the sacB gene for counterselection via 

growth on medium containing sucrose as previously described [1]. For construction of 

the deletion mutants ATCC 17978 ΔA1S_0464 and ATCC 17978 ΔA1S_0172 the 2000 

bp immediately upstream of the genes open reading frame, and the 2000 bp 

immediately downstream were amplified using the primers indicated in Table A1.  The 

plasmid pMJG42 was digested with SpeI and NotI (New England Biolabs). The Up 

insert was digested with SpeI and XhoI/ BamHI, and the Down insert was digested with 

XhoI/ BamHI and NotI (XhoI or BamHI depending on the mutant). The plasmid and 

both inserts were ligated, and the resulting construction was transformed into the 

Escherichia coli DH5α λpir by electroporation before selection on LB agar plates with 

Tetracycline 5 mg/L (Sigma). The construction was then transformed into E. coli MFD 
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[2], a Diaminopimelic acid (DAP) auxotrophic strain. MFD donor strain harboring the 

respective pMJG42-gene(Up/Down) construct and the ATCC 17978 recipient strain 

were cultured overnight at 37°C in LB (supplemented with tetracycline 5 mg/L and 

DAP 200 mg/L for the donor strain). Aliquots of 1 mL of the donor strain and 0.5 mL of 

the recipient strain were washed twice and mix together. The cells were suspended in 30 

µl of LB and added on to a sterile 0.45 µm cellulose nitrate filter paper (Millipore) on 

LB agar plates and incubated for 4 h at 37°C. The cells were washed off from the filter 

by adding 1 ml of LB and they were plated onto LB agar plates containing tetracycline 

5 mg/L. The obtained colonies were grown in LB, plated onto 10% Sucrose plates and 

incubated overnight at room temperature. All deletion mutants were confirmed by PCR 

and sequencing. 

In order to complement the obtained mutants, the genes reading frames and 200-400 bp 

upstream and downstream were amplified using the primers indicated in Table A1.  

These fragments were cloned into the pUCp24 and introduced into the mutant strains by 

electroporation before selection on LB agar plates containing 10 mg/L of gentamicin to 

create the complemented strains (ATCC 17978 ∆A1S_0030::Kan/pUCp24-0030, ATCC 

17978 ∆A1S_2532::Kan/pUCp24-2532, ATCC 17978 ∆A1S_0464/pUCp24-0464, 

ATCC 17978 ∆A1S_0172/pUCp24-0172).  Deletion mutants were also transformed 

with the empty pUCp24 plasmid for use as controls (ATCC 17978 

∆A1S_0030::Kan/pUCp24, ATCC 17978 ∆A1S_2532::Kan/pUCp24, ATCC 17978 

∆A1S_0464/pUCp24, ATCC 17978 ∆A1S_0172/pUCp24). 

Growth curves analysis 

Growth curves in MHB under normoxia (21% O2), hypoxia (1% O2), and 

microaerobiosis (0.1-0.3% O2) were performed to find out if ATCC 17978 wild-type 

strain and the mutant strains had a different growth rate (Fig. A1). We showed that there 
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were no significant differences between the wild-type and the mutant strains growth. 

Complemented strain and strains harboring the empty pUCp24 had the same growth 

than the other strains under all the conditions (data not shown).  

Bactericidal activity, bacterial adherence and bacterial invasion in cell cultures 

We determined if hypoxia affects the bactericidal activity of epithelial cells against the 

mutant strains more than against the wild-type strain. Bacterial counts of ATCC 17978, 

ΔA1S_0030::Kan, ΔA1S_2532::Kan, ΔA1S_0464, and ΔA1S_0172 strains found in the 

extracellular medium of A549 cell line under hypoxia (1% O2) showed a decrease of 

bacterial concentrations after 2 and 24 h compared to normoxia (data not shown). No 

significant reductions were found between the mutant strains and the wild-type (Fig. 

A2). Moreover, bacterial concentration was higher in the case of the mutants 

ΔA1S_0464 and ΔA1S_0172 at 24 h post-infection. 

The bacterial adherence of all the mutant strains to A549 cell line was significantly 

lower at 2 and 24 h post-infection under hypoxia compared to normoxia (data not 

shown). This decrease was higher in the case of the mutants ΔA1S_0030::Kan, 

ΔA1S_2532::Kan, ΔA1S_0464, and ΔA1S_0172 at 2 h and ΔA1S_0030::Kan, 

ΔA1S_2532::Kan, and ΔA1S_0464 at 24 h post-infection compared to the wild-type 

(Fig. A3). Bacterial counts of the mutant strains ΔA1S_0030::Kan and 

ΔA1S_2532::Kan, inside epithelial cells showed a higher decrease than the wild-type 

strain at 24 h post-infection under hypoxia compared to normoxia (Fig. A4). These data 

indicate that hypoxia affects the adherence and invasion of these mutant strains more 

than the wild-type. No significant differences were found in the case of the mutants 

ΔA1S_0464 and ΔA1S_0172.  

According to these results we chose the mutant strain A1S_2448 to continue with the 

analysis.  
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Figure A1. A) Growth curves of A. baumannii ATCC 17978 and ΔA1S_0030::Kan in 
MHB under normoxia, hypoxia and microaerobiosis (21%, 1% and 0.1-0.3% O2, 
respectively). B) Growth curves of A. baumannii ATCC 17978 and ΔA1S_2532::Kan in 
MHB under normoxia, hypoxia and microaerobiosis (21, 1 and 0.1-0.3% O2, 
respectively). C) Growth curves of A. baumannii ATCC 17978 and ΔA1S_0464 in 
MHB under normoxia and hypoxia (21% and 1% O2, respectively). D) Growth curves 
of A. baumannii ATCC 17978 and ΔA1S_0172 in MHB under normoxia and hypoxia 
(21% and 1% O2, respectively). 
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Figure A2. A-D) Measurement of bacterial concentration (%) in the extracellular 
medium after 2 and 24 h of A549 infection by A. baumannii ATCC 17978, ATCC 
17978/pUCp24, ΔA1S_0030::Kan, ΔA1S_2532::Kan, ΔA1S_0464, ΔA1S_0172, and the 
respective complemented strains and the mutant strains harboring the empty pUCp24 
under normoxia and hypoxia (1% O2). Bars represent the reduction of bacterial 
concentration under hypoxia compared to normoxia, being the reduction obtained in the 
wild-type equal to 100%. ***: P<0.001 Mutant vs. wild-type at 2 or 24 h; **: P<0.01 
Mutant vs. wild-type at 2 or 24 h; *: P<0.05 Mutant vs. wild-type at 2 or 24 h. 
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Figure A3. A-D) Measurement of bacterial adherence (%) after 2 and 24 h of A549 
infection by A. baumannii ATCC 17978, ATCC 17978/pUCp24, ΔA1S_0030::Kan, 
ΔA1S_2532::Kan, ΔA1S_0464, ΔA1S_0172, and the respective complemented strains 
and the mutant strains harboring the empty pUCp24 under normoxia and hypoxia (1% 
O2). Bars represent the reduction of bacterial concentration under hypoxia compared to 
normoxia, being the reduction obtained in the wild-type equal to 100%. ***: P<0.001 
Mutant vs. wild-type at 2 or 24 h; **: P<0.01 Mutant vs. wild-type at 2 or 24 h; *: 
P<0.05 Mutant vs. wild-type at 2 or 24 h. 
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Figure A4. A-D) Measurement of bacterial internalization (%) after 2 and 24 h of A549 
infection by A. baumannii ATCC 17978, ATCC 17978/pUCp24, ΔA1S_0030::Kan, 
ΔA1S_2532::Kan, ΔA1S_0464, ΔA1S_0172, and the respective complemented strains 
and the mutant strains harboring the empty pUCp24 under normoxia and hypoxia (1% 
O2). Bars represent the reduction of bacterial concentration under hypoxia compared to 
normoxia, being the reduction obtained in the wild-type equal to 100%. ***: P<0.001 
Mutant vs. wild-type at 2 or 24 h; **: P<0.01 Mutant vs. wild-type at 2 or 24 h. 
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Table A1. Primers used in this study. 

Name Sequence Observations 
A1S_0030 Up 
Forward AACAAGGTATTCGTCAATTG Amplification of A1S_0030 

upstream region 
A1S_0030  Up 
Reverse 

GCCCCAGCTGGCAATTCCGG
GTGGTTTCGTGCTCCCCGA 

Amplification of A1S_0030 
upstream region 

A1S_0030  Down 
Forward 

CTAAGGAGGATATTCATATG
ACCCAGCTTGGGCACAGCT 

Amplification of A1S_0030 
downstream region 

A1S_0030  Down 
Reverse GCTAGAACCTTTCTGTAGCG Amplification of A1S_0030 

downstream region 

EcoRI A1S_0030 
prom. Forward 

ACAGAATTCACTATGCATTT
TTTAAGATATTC 

Amplification of the wild-
type A1S_0030 gene to 
complement 

XbaI A1S_0030 
reg. Reverse 

ACATCTAGAATTGATATCCT
TGTTCCC 

Amplification of the wild-
type A1S_0030 gene to 
complement 

A1S_2532 Up 
Forward CAAATTAAAGATTGGGGTG Amplification of A1S_2532 

upstream region 
A1S_2532  Up 
Reverse 

GCCCCAGCTGGCAATTCCGG
TGGCTTAAATACATTGCTA 

Amplification of A1S_2532 
upstream region 

A1S_2532  Down 
Forward 

CTAAGGAGGATATTCATATG
TTCTTTGTTCTAACGATAAG 

Amplification of A1S_2532 
downstream region 

A1S_2532  Down 
Reverse GACCGACTTGTCCAAGGTT Amplification of A1S_2532 

downstream region 

EcoRI A1S_2532 
prom. Forward 

ACAGAATTCGCCACCAGTTG
CAATTGTTG 

Amplification of the wild-
type A1S_2532 gene to 
complement 

XbaI A1S_2532 
reg. Reverse 

ACATCTAGATCTGTTCTCCTT
ATCGTTAG 

Amplification of the wild-
type A1S_2532 gene to 
complement 

A1S_0464 
pMJG42 SpeI Up 
F 

GGGCCCACTAGTCCATATAG
CCTTTGAATACCACG 

Amplification of A1S_0464 
upstream region 

A1S_0464 
pMJG42 XhoI Up 
R 

GGGCCCCTCGAGTTGGTTCA
TACGGCAATCTTCAAT 
 

Amplification of A1S_0464 
upstream region 

A1S_0464 
pMJG42 XhoI 
Down F 

GGGCCCCTCGAGGCTGAATA
AAAATAATATAAAAAAGCC
TG 

Amplification of A1S_0464 
downstream region 

A1S_0464 
pMJG42 NotI 
Down R 

GGGCCCGCGGCCGCGCGAA
GTTTTTCTGAGAACTTCA 

Amplification of A1S_0464 
downstream region 

EcoRI A1S_0464 
prom. Forward 

ACAGAATTCGCTCTCTCCTC
TCGCTCG 

Amplification of the wild-
type A1S_0464 gene to 
complement 

XbaI A1S_0464 
reg. Reverse 

ACATCTAGAAATAAATCCGT
AACTTTTGTGTGTATAT 

Amplification of the wild-
type A1S_0464 gene to 
complement 

Seq. Deletion TCACAATCGGAATCAGGAG To sequence and confirm the 
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A1S_0464 Up F deletion 
Seq. Deletion 
A1S_0464 Down R GCTTTGTAACGCGACCAGTA To sequence and confirm the 

deletion 
A1S_0172 
pMJG42 SpeI Up 
F 

GGGCCCACTAGTTAGTAGAC
ATCGTTTACGGCATG 

Amplification of A1S_0172 
upstream region 

A1S_0172 
pMJG42 BamHI 
Up R 

GGGCCCGGATCCCATTTGCA
TATCGTTACTTACTTATTG 
 

Amplification of A1S_0172 
upstream region 

A1S_0172 
pMJG42 BamHI 
Down F 

GGGCCCGGATCCCATCAATA
ATTCTGGAATCTAAAAAAG 

Amplification of A1S_0172 
downstream region 

A1S_0172 
pMJG42 NotI 
Down R 

GGGCCCGCGGCCGCTATGAC
CGGATTTCTGTGATTAAG 
 

Amplification of A1S_0172 
downstream region 

EcoRI A1S_0172 
prom. Forward 

ACAGAATTCCGTTTTTTATTC
GTTAAATGCGAATTG 

Amplification of the wild-
type A1S_0172 gene to 
complement 

XbaI A1S_0172 
reg. Reverse 

ACATCTAGACAGCTCAATAA
GGTTCTTAATAGTTG 

Amplification of the wild-
type A1S_0172 gene to 
complement 

Seq. Deletion 
A1S_0172 Up F TCCACACAAGTTGTTCTTC To sequence and confirm the 

deletion 
Seq. Deletion 
A1S_0172 Down R CAGAAACTTTACCTAGTGGT To sequence and confirm the 

deletion 
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CHAPTER II. ARTICLE II.  

EFFECT OF HYPOXIA ON THE PATHOGENESIS OF ACINETOBACTER 

BAUMANNII AND PSEUDOMONAS AERUGINOSA IN VITRO AND IN 

MURINE EXPERIMENTAL MODELS OF INFECTIONS. 

 

Several pathogens, including Escherichia coli, Pseudomonas aeruginosa, Salmonella 

typhimurium, group A and B Streptococci, Staphylococcus aureus, and Chlamydia 

pneumoniae have been shown to regulate hypoxia inducible factor 1 alpha (HIF-1α) [1-

6]. The bacterial lipopolysaccharide has been reported to activate HIF-1α through toll-

like receptor 4 in macrophages and neutrophils under normoxia [2, 7-10].  

It is known that hypoxia seems to have protective role against bacterial infections. In 

this way, HIF-1α-deficient macrophages and PMN affect in vitro the intracellular killing 

of group B Streptococcus and P. aeruginosa, respectively [1,9]. In mice, the HIF-1α-

knockout (KO) keratinocytes induced the development of larger necrotic lesions and 

decreased the mice capacity to clear group A Streptococcus by reducing the recruitment 

of neutrophils to the site of infection [11, 12]; and the HIF-1α knockdown by siRNA 

reduced the mice resistance to P. aeruginosa keratitis [9]. Likewise, the use of 

mimosine, a HIF-1α agonist, can boost the ability of phagocytes and whole blood to kill 

S. aureus and reduce the lesion size in a murine model of skin infection [13].  

However, hypoxia influence on Gram-negative bacterial infection remains to be 

understood. We know that hypoxia impairs innate immune functions of the airway 

epithelial cells during P. aeruginosa infection, and reducing the HIF-1α expression by 

siRNA in the bronchial epithelial cells enhances the immune response [14]. More 

specifically, hypoxia reduced the IL-6 production by keratinocytes when compared to 
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normoxia [11]. Consecutively, the HIF-1α deletion, but not HIF-1α isoform I.1, in T 

lymphocytes prevents the antibacterial effect of these cells [15, 16]. 

During infection, bacteria must adapt to heterogeneous environments [17-19]. The 

oxygen levels in the foci of infection are much lower (<1%) than in healthy tissues (2.5-

9%) [20] due to a combination of increased oxygen consumption by immune cells and 

pathogens, along with a decreased perfusion due to vascular dysfunction [21-23]. 

Therefore, the microenvironment at the area of infection plays a crucial role in 

determining the outcome of an infection. Hypoxia not only modifies the host cells but 

also the bacterial metabolism and virulence [5]. In P. aeruginosa and Mycobacterium 

tuberculosis the expression of virulence factors such as alkaline protease, siderophores 

and exotoxin A are reduced by hypoxia [24, 25]. However, hypoxia can also increase 

the production of alginate and the expression of the PA-I lectin/adhesin by P. 

aeruginosa causing a disruption in intestinal barrier and allowing exotoxin A to cross 

the epithelium [26, 27]. Exposure to hypoxia also induces antibiotic resistance in P. 

aeruginosa by an alteration of efflux pumps expression [28]. Together, these studies 

demonstrate the complexity of HIF-pathogen interactions. 

The aim of this study was to evaluate the effect of hypoxia on A. baumannii and P. 

aeruginosa pathogenesis, in vitro, regarding to bactericidal activity and 

adherence/invasion, and in murine models of infection, regarding to survival, and 

bacterial load; and the innate immune response in vitro and in vivo. 
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Materials and Methods 

Bacterial strains and growth condition 

The wild-type strains A. baumannii ATCC 17978 and P. aeruginosa PAO1 were used. 

They were cultured at 37ºC overnight (160 rpm) in Mueller Hinton Broth (MHB) 

(Sigma, Spain). Cultured strains were washed with phosphate-buffered saline (PBS) and 

suspended in Dulbecco’s modified Eagle’s medium (DMEM) before their use in 

eukaryotic cell culture experiments (human lungs epithelial cell line A549 and murine 

macrophage cell line RAW 264.7). 

Growth curves analysis 

The growth of A. baumannii ATCC 17978 and P. aeruginosa PAO1 strains under 

hypoxia (1% and 10% O2) and normoxia (21% O2) in static were monitored during 24 

h. Both strains were grown overnight in 20 ml of MHB, and a 1:10000 dilution was 

performed to obtain, approximately, 105 cfu/ml in a 40 ml culture of MHB (10% and 

21% O2 ) or DMEM (1% and 21% O2). Three replicates were performed in different 

days. 

A549 and RAW 264.7 culture and infection 

Human lungs epithelial cell line A549 and murine macrophage cell line RAW 264.7 

were grown in DMEM containing 10% Fetal Bovine Serum (Gibco, Spain), 1% HEPES 

1M, vancomycin (50 mg/ml), gentamicin (20 mg/ml) and amphotericin B (0.25 mg/ml; 

Gibco), as previously described [43]. In the case of hypoxia condition studies, cells 

were transferred to a hypoxia chamber (Coy Laboratories, USA) with a humidified 

atmosphere of 1% O2, 5% CO2 and the balance N2 at 37°C. Cells were seeded (105 

cells/well in a 24-well plate) for 30 h in 24-well plates before infection with A. 
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baumannii ATCC 17978 or P. aeruginosa PAO1 at a multiplicity of infection (MOI) of 

500. To mimic hypoxia condition we treated the cells with 0.1 mM 

Dimethyloxaloylglycine (DMOG) (Sigma, Spain), an inhibitor of prolyl hydroxylases 

[44], 6 h prior bacterial infection and during infection. Immediately before the infection, 

A549 cells were washed thrice with PBS and incubated in supplemented DMEM.  

HIF-1α measurement in cell cultures 

A549 and RAW 264.7 cells were seeded for 24 h in 6-well plates (106 cells/well). After 

6 and 24 h in hypoxia (1% O2) or normoxia condition, cells were washed thrice with 

PBS, harvested using cell scraper and homogenized in RIPA buffer supplemented with 

1 mM phenylmethylsulfonyl fluoride and 10% cocktail of protease inhibitors (Sigma, 

Spain), and centrifuged at 13000g 4°C for 20 min. The supernatant was removed and 

the amount of proteins was determined using BCA assay (Promega, Spain). The 

samples were stored at -80°C. Forty µg of proteins of each sample was used to measure 

HIF-1α levels with an enzyme-linked immunosorbent assay (ELISA) kit (Thermo 

Fisher Scientific, Spain). 

Bactericidal activity, bacterial adherence and bacterial invasion in cell cultures 

After A549 and RAW 264.7 cells infections with A. baumannii ATCC 17978 and P. 

aeruginosa PAO1 strains under hypoxia and normoxia conditions, extracellular medium 

was removed and serially diluted to determine bacterial concentration as previously 

described [45].  

Adherence and invasion assays were performed as previously described [45]. To 

measure the number of adherent bacteria, cells were infected as mentioned before, and, 

after washing thrice with PBS, 200 µl of trypsin-EDTA (Gibco, Spain) was added for 5 

min at 37°C. Then, 200 µl of 0.5% Triton X-100 (Sigma, Spain) was added for 3 min. 
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The invasion protocol included a treatment with gentamicin 256 µg/ml (Gibco, Spain) 

before the addition of trypsin-EDTA. Diluted lysates were counted to determine the 

attached and internalized bacteria by A549 and RAW 264.7 cells. 

Every assay was performed three times in different days. In the case of invasion assay, 

four replicates were performed in different days. 

Cytokine Assay 

Extracellular medium of infected A549 and RAW 264.7 cells with A. baumannii ATCC 

17978 and P. aeruginosa PAO1 strains under hypoxia and normoxia conditions were 

collected and centrifuged at 5000g for 15 min at 4ºC. The supernatant was stored at -

80ºC until analysis. TNF-α, IL-6 and IL-10 levels were measured in using an ELISA kit 

(Affymetrix eBioscience, USA), in accordance with the manufacturer’s instructions. 

Levels of pro- and anti-inflammatory cytokines (IL-6, IL-10 and TNF-α) in mice serum 

were measured by ELISA assays (Affymetrix eBioscience, USA). 

iTRAQ assay 

We analyzed the differential protein expression profile between normoxia and hypoxia 

conditions in A549 cell infected by A. baumannii ATCC 17978. After 2 h infection, we 

collected the cells in a lysis buffer composed by 1 M Triethylammonium bicarbonate 

buffer (Sigma, Spain), 0.05% SDS, 1:100 phosphatase inhibitor cocktail (PhosSTOP 

EASYpack, Roche, Spain), 1:100 protease inhibitor cocktail (Complete Mini EDTA-

free, Roche, Spain), and 0.002% benzonase (Novagen, USA). Pellet was separated from 

the supernatant and protein concentration was quantified by fluorimetry (Qubit life 

technology, USA). Samples were treated with 50 mM TCEP (AB Sciex, Spain) to 

reduce disulfide bonds and 200 mM MMTS (AB Sciex, Spain), and then they were 

digested with trypsin (Promega, Spain) at a 10:1 substrate:enzyme ratio at 37° 
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overnight. We used an isobaric tag iTRAQ 4 plex (reporters at 114 to 117, AB Sciex, 

Spain). Samples were analyzed by nano-liquid chromatography (nano LC 100, Thermo 

Fisher Scientific, USA) and tandem mass spectrometry (Q Exactive Plus Orbitrap, 

Thermo Electron, USA). Protein identification was performed using Proteome 

Discoverer 1.4 (Thermo Fisher Scientific, USA). MS/MS fragmentation patterns were 

mapped against Uniprot database. We considered quantifiable proteins those that were 

identified through more than 2 peptides with a confidence level ≥ 95%, a P-value ≤ 

0.05, and an error factor < 2 with every reference tag. 

Animals  

Immunocompetent C57BL/6 male mice, weighing approximately 20 g (Production and 

Experimentation Animal Center, University of Seville, Seville, Spain) were used; they 

had a sanitary status of murine pathogen free and were assessed for genetic authenticity. 

Mice were housed in an individually ventilated cage system under specific pathogen-

free conditions, and water and food supplied ad libitum. This study was carried out 

following the recommendations in the Guide for the Care and Use of Laboratory 

Animals [46]. This study was carried out in strict accordance with Directive 

2010/63/EU on the protection of animals used for scientific purposes. Experiments were 

approved by the Committee on the Ethics of Animal Experiments of the University 

Hospital of Virgen del Rocío of Seville, Spain (20-05-14-84). All procedures were 

performed under sodium thiopental (B. Braun Medical S.A., Spain) anesthesia, and all 

efforts were made to minimize suffering. 

Experimental models 

Both models of infection were carried out under the following conditions: i) hypoxia 

(10% O2), ii) normoxia and iii) six hours under hypoxia followed by normoxia. The 
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minimum lethal doses (MLD) were calculated for A. baumannii and P. aeruginosa 

under hypoxia and normoxia conditions. Briefly, groups of 6 mice were inoculated 

intraperitoneally (ip.) for A. baumannii and intratracheally for P. aeruginosa with 

increasing concentrations until reaching 100% mortality, of each pathogen and the 

survival rate was monitored for 7 days. For the hypoxia condition studies, mice were 

maintained in a hypoxic chamber (Coy Laboratories, USA) with a humidified 

atmosphere of 10% O2 (standard hypoxic condition) 6 h prior the infection and until the 

animal death or the end of the experiment. In the experiments in which mice were 6 h 

under hypoxia followed by normoxia, the animals were maintained in a hypoxic 

chamber during 6 h prior the infection, and placed outside normoxia until the end of the 

experiment or the animal death. The same conditions were used with control mice (not 

infected). 

To evaluate pneumonia, after 4 h of infection and at the time of death, lungs were 

aseptically extracted, fixed in 10% formalin and embedded in paraffin wax. Serial 

sections (3 μm) were cut onto glass slides and stained with hematoxylin and eosin. 

A N of no more than 5 mice per condition was performed in different weeks to 

reproduce the experimental models results. 

(i) Experimental murine model of peritoneal sepsis. A previously characterized murine 

peritoneal sepsis model by A. baumannii was used [36]. Briefly, animals were 

inoculated i.p. with 0.5 ml of MLD100, mixed 1:1 with a saline solution containing 10% 

(wt/vol) mucin from porcine stomach Type II (Sigma, Spain).  

After 4 h of infection, a group of 34 mice (17 under hypoxia and 17 under normoxia) 

were sacrificed by i.p. injection of sodium thiopental (200 µl; Braun Medical, USA) and 

analyzed, and 48 mice (21 under normoxia, 22 under hypoxia and 5 under 6h hypoxia + 

normoxia) were analyzed at the time of death. Survival rates were recorded under 
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hypoxia and normoxia conditions. Bacteremia was evaluated, both qualitatively and 

quantitatively after the animal’s death. For qualitative analysis, the blood was 

inoculated into sterile tubes with 1 ml of MHB and incubated for 24 h at 37ºC, and then 

10 µl was plated on sheep blood agar. To evaluate quantitatively the bacteremia (log10 

cfu/ml), blood was serially diluted and plated on sheep blood agar. Finally, bacterial 

load was quantified in spleen and lungs. Briefly, organs were aseptically removed and 

homogenized (Stomacher 80; Tekmar Co.) in 2 ml of sterile 0.9% NaCl solution. Serial 

dilutions of the homogenized organs were plated on sheep blood agar for quantitative 

cultures (log10 cfu/g). Finally, bacterial concentration in peritoneal fluid was also 

determined by injecting 2 mL of sterile 0.9% NaCl solution i.p. and, after a brief 

massage on the abdomen, peritoneal lavage was collected and plated on sheep blood 

agar (log10 cfu/mL). HIF-1α levels in mice serum were measured by ELISA assays 

(MyBioSource, USA). 

(ii) Pneumonia model. A previously characterized pneumonia model by P. aeruginosa 

[47] was used as follows: anesthetized mice (thiopental at 5% [wt/vol], i.p.) were 

infected by intratracheal instillation, using 50µL of the MLD100 calculated previously. 

Mice remained in a vertical position for 3 min and then resting at 30º positions until 

they awakened. After 4 h of infection, 36 mice (18 under normoxia and 18 under 

hypoxia) were sacrificed (sodium thiopental, Braun Medical, USA) to be analyzed and 

46 mice (20 under normoxia, 18 under hypoxia and 8 under 6 h hypoxia + normoxia) 

were analyzed at the time of death. Survival rates were analyzed for the different 

conditions. Bacteremia, bacterial load in blood and tissue (spleen and lungs) were 

performed as described above. HIF-1α levels in mice serum were measured by ELISA 

assays (MyBioSource, USA).  
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Statistical analysis 

Statistical analyses were performed using the IBM SPSS Statistics 22 software program. 

Tests used included ANOVA (bacterial counts in tissues and fluids and mortality time), 

Chi-square test (bacteremia), and when required Dunnett’s and Tukey post-hoc tests and 

Student's t-test (bacterial counts in vitro, cytokines and HIF-1α levels). A P-value <0.05 

was considered significant. 

 

Results 

Hypoxia increases HIF-1α levels in epithelial and macrophages cells  

HIF-1α levels in cell lines after 6 and 24 h under hypoxia (1% O2) and normoxy (21% 

O2) were measured. In epithelial cells, HIF-1α levels were 2.69 times higher after 6 h in 

hypoxia than in normoxy (2296.98 ± 157.74 pg/mL vs. 853.63 ± 95.47 pg/mL, 

P<0.001) and were higher than after 24 h (1107.70 ± 96.08 pg/mL vs. 592.27 ± 48.86 

pg/mL, P<0.01). In macrophages cells, HIF-1α levels were 1.50 times higher after 6 h 

in hypoxia than in normoxia (331.64 ± 52.93 pg/mL vs. 220.67 ± 11.87 pg/mL) and 

were higher than after 24 h under hypoxia (223.59 ± 7.05 pg/mL vs. 235.27 ± 9.31 

pg/mL; hypoxia 6 h vs. hypoxia 24 h). No significant differences in HIF-1α levels were 

observed in normoxia between the different times points analysed.  

The marked increase of HIF-1α levels after 6 h under hypoxia (1% O2) defined the time 

of hypoxia condition prior the infection for the in vitro and in vivo experiments. 

Hypoxia increases bactericidal activity of epithelial and macrophages cells against A. 

baumannii and P. aeruginosa 
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First, we observed that ATCC 17978 and PAO1 strains growth during 2 and 24 h was 

indistinguishable between hypoxia (1% O2) and normoxia (Fig. 1A). Next, we 

determined if hypoxia affects the bactericidal activity of epithelial and macrophages 

cells. Bacterial counts of ATCC 17978 and PAO1 strains found in the extracellular 

medium of both cell lines under hypoxia (1% O2) showed a decrease of bacterial 

concentrations after 2 and 24 h compared to normoxia, (Fig. 1B and 1C). These data 

support an increase in the bactericidal activity of these cell lines under hypoxia.  

HIF-1α overexpression increases bactericidal activity of epithelial and macrophages 

cells against A. baumannii and P. aeruginosa 

Bacterial counts of ATCC 17978 and PAO1 strains found in the extracellular medium 

of both cell lines under a 0.1 mM DMOG treatment showed a decrease of bacterial 

concentrations after 24 h compared to normoxia, (Fig. 1B and 1C). These data support 

an increase in the bactericidal activity of these cell lines when HIF-1α is overexpressed 

due to the treatment with DMOG.  

Hypoxia decreases bacterial adherence and invasion to epithelial and macrophages 

cells  

The bacterial adherence of ATCC 17978 and PAO1 strains to both cell lines was 

significantly lower under hypoxia (1% O2), except in the case of 2 h post-infection by 

ATCC 17978 strain in the RAW 264.7 cells in which it presented higher bacterial 

adherence (182.67 ± 11% vs. 100% ± 0%, P<0.001) (Fig. 2A and 2B). 

Bacterial counts of ATCC 17978 strain inside epithelial and macrophages cells under 

hypoxia (1% O2) showed an increase of bacterial concentrations 2 h post-infection (150 

± 0% for epithelial cells, and 146.73 ± 5.01% for macrophages cells, P<0.001), and a 

decrease at 24 h post-infection compared to normoxia (48.55 ± 34.80% for epithelial 

104  
 



cells, P<0.001 and 8.69 ± 6.85% for macrophages cells, P<0.001) (Fig. 2C). On the 

other hand, PAO1 strain counts inside both cell lines under hypoxia (1% O2) showed a 

decrease of bacterial concentrations after 2 h (P<0.001 for macrophages cells) and 24 h 

(P<0.001) compared to normoxia (Fig. 2D). These data indicated that hypoxia affects 

the adherence and invasion of A. baumannii and P. aeruginosa 24 h after bacterial 

infection.  

Hypoxia reduces the expression of proteins involved in cell adherence 

iTRAQ results show that there are 51 down-expressed proteins under hypoxia (Fold 

Change < 0.6) present in the extracellular medium of a 2 h infection of A549 cells by A. 

baumannii ATCC 17978 strain (Table S1). Forty-five % are localized in the cytoplasm, 

16% are secreted, 19% are in the inner membrane, 10% in the outer membrane, 6% in 

the periplasm and 4% in the mitochondrion (Fig. S1). The proteins localized in the outer 

membrane and could be involved in cell adhesion are OmpW, putative ferric 

siderophore receptor protein A1S_3339, putative ferric siderophore receptor protein 

A1S_0474, ferric enterobactin receptor A1S_0981, and ferrichrome-iron receptor 

A1S_1921. Moreover, the secreted uncharacterized protein A1S_3900, which is a 

protein that presents SH3-like domains, could also be involved in cell adhesion. 

Hypoxia reduces bacterial load in tissues and fluids in a peritonitis sepsis model by A. 

baumannii  

The MLD needed to achieve 100% mortality for ATCC 17978 strain was lower in 

hypoxia (10% O2) than in normoxia (2.08 vs. 3.20 log10 cfu/mL). For the rest of 

experiments, we used the MLD calculated in normoxia. The survival time was higher in 

mice infected under normoxia than hypoxia (10%O2) (36.42 vs. 23.92 h, P<0.001) (Fig. 

3A).  

105  
 



In the sepsis model by A. baumannii, regardless the studied condition, all mice 

presented bacteremia after 4 h infection. No differences were found in the bacterial load 

in tissues (spleen, and lungs) and fluids (PF and blood) between hypoxia and normoxia 

after 4 h infection (Table 1). However, at the time of death, significant differences 

between hypoxia and normoxia were found in the bacterial loads in lungs, PF, and 

blood (Table 1). Moreover, significant differences between animals under normoxia and 

under hypoxia (6 h) followed by normoxia were found in the bacterial loads at the time 

of death in spleen, lungs and PF (Table 1). Bacterial loads in spleen, lungs, PF and 

blood were lower under hypoxia (hypoxia 6 h prior infection, or during the whole 

experiment) compared to normoxia.  

HIF-1α levels showed no differences between hypoxia and normoxia in controls 

animals (not infected). Contradictorily, infected mice under the different studied 

conditions presented higher HIF-1α levels than controls mice under normoxia at the 

time of death (Fig. 3B). 

Hypoxia reduces bacterial load in tissues and blood in a pneumonia model by P. 

aeruginosa  

The MLD calculated for PAO1 strain was the same for both conditions (8.54 log10 

cfu/mL). Survival time was significantly higher under normoxia than under hypoxia 

(10% O2) (P<0.01) or six hours’ hypoxia followed by normoxia (P<0.05) (Fig. 3A). 

Pathological studies confirmed pneumonia 4 h after infection in all the conditions 

analyzed, but the symptoms were higher under normoxia (data not shown). 

After 4 h of infection, no significant differences were found in the bacterial loads in 

tissues and blood between both conditions (Table 2). Nevertheless, at the mice time of 

death, significant differences were found in spleen, lungs and blood (between hypoxia 
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and normoxia (Table 2). Similarly, significant differences at the time of death were 

found in the bacterial loads in blood between mice under 6 h hypoxia prior the infection 

followed by normoxia and the animals infected in normoxia (Table 2). Bacterial loads 

in tissues and blood were lower under both hypoxemic conditions than under normoxia. 

HIF-1α levels were not significant among the studied conditions. Opposing to what 

happened in the peritoneal sepsis model by A. baumannii; infected mice under the 

different conditions studied presented lower HIF-1α levels than non-infected mice at the 

time of death (Fig. 3B). 

In vitro and in vivo cytokines production under hypoxia and normoxia  

The infection of epithelial cells by ATCC 17978 and PAO1 strains showed that IL-6, 

TNF-α and IL-10 levels were similar for both conditions at 2 and 24 h post-infection 

(Fig. 4A). When infecting the RAW 264.7 cells by ATCC 17978 and PAO1 strains, IL-

6 and TNF-α levels at 24 h and 2 h post-infection were significantly higher in hypoxia 

(P<0.05), respectively (Fig. 4B).  

In the sepsis model by ATCC 17978 strain, only IL-10 levels were significantly higher 

after 4 h infection in hypoxia (P<0.05). No differences were found in IL-6 or TNF-α 

levels, although they were slightly higher under hypoxia. No differences in cytokines 

levels were found at the animal time of death (Fig. 4C). In the pneumonia model by 

PAO1 strain, IL-6 levels were significantly higher in hypoxia (P<0.05) after 4 h 

infection. Again, no differences were found for IL-10 and TNF-α levels although they 

were rather higher under hypoxia (Fig. 4C). Contradictory to what we observed in the 

sepsis model, at the mice time of death, we observed lower IL-10 levels under hypoxia 

(P<0.05). Again, no differences were found in IL-6 or TNF-α levels, although they were 

slightly lower under hypoxia (Fig. 4C).  
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Figure 1. A) Growth curves of A. baumannii ATCC 17978 and P. aeruginosa PAO1 
strains under normoxia and hypoxia (10% and 1% O2). N=3 B) Measurement of 
bacterial concentration (%) in the extracellular medium after 2 and 24 h of A549 and 
RAW 264.7 infection by A. baumannii ATCC 17978 strain under normoxia, hypoxia 
(1% O2) and treated with 0.1 mM DMOG. N=3 ***: P<0.001; *: P<0.05 Hypoxia vs. 
Normoxia at 2 or 24 h and Normoxia + DMOG vs. Normoxia at 24 h. Normoxia + 
DMOG vs. Normoxia at 24 h. C) Measurement of bacterial concentration (%) in the 
extracellular medium after 2 and 24 h of A549 and RAW 264.7 infection by P. 
aeruginosa PAO1 strain under normoxia, hypoxia (1% O2) and treated with 0.1 mM 
DMOG. N=3 **: P<0.01; ***: P<0.001 Hypoxia vs. Normoxia at 2 or 24 h and 
Normoxia + DMOG vs. 
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Figure 2. A) Measurement of bacterial adherence (%) after 2 and 24 h of A549 and 
RAW 264.7 infection by A. baumannii ATCC 17978 strain under normoxia and 
hypoxia (1% O2). N=3 *: P<0.05 and ***: P<0.001 Hypoxia vs. Normoxia at 2 or 24 h. 
B) Measurement of bacterial adherence (%) after 2 and 24 h of A549 and RAW 264.7 
infection by P. aeruginosa PAO1 under normoxia and hypoxia (1% O2). N=3 ***: 
P<0.001 Hypoxia vs. Normoxia at 2 or 24 h. C) Measurement of bacterial 
internalization (%) after 2 and 24 h of A549 RAW 264.7 infection by A. baumannii 
ATCC 17978 strain under normoxia and hypoxia (1% O2). N=4 ***: P<0.001 Hypoxia 
vs. Normoxia at 2 h or 24 h. D) Measurement of bacterial internalization (%) after 2 and 
24 h of A549 RAW 264.7 infection by P. aeruginosa PAO1 strain under normoxia and 
hypoxia (1% O2). ***: P<0.001 Hypoxia vs. Normoxia at 2 h or 24 h. N=4. 
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Figure 3. A) Analysis of survival time in the sepsis model by A. baumannii ATCC 
17978 strain (P<0.001 Hypoxia vs. Normoxia) and in the pneumonia model by P. 
aeruginosa PAO1 strain under normoxia, hypoxia (10% O2), and 6 h of hypoxia (10% 
O2) + normoxia (P<0.01 Hypoxia vs. Normoxia; P<0.05 6 h Hypoxia + Normoxia vs. 
Normoxia). B) HIF-1α levels (pg/mL) in mice serum in the sepsis model by A. 
baumannii ATCC 17978 strain and in the pneumonia model by P. aeruginosa PAO1 
strain at 4 h after infection and at the time of death under normoxia and hypoxia (10% 
O2).  
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Figure 4. A) Cytokines levels (pg/mL) in the extracellular medium of A549 infections 
by A. baumannii ATCC 17978 and P. aeruginosa PAO1 strains after 2 and 24 h under 
normoxia and hypoxia (1% O2). B) Cytokines levels (pg/mL) in the extracellular 
medium of RAW 264.7 infections by A. baumannii ATCC 17978 and P. aeruginosa 
PAO1 strains after 2 and 24 h under normoxia and hypoxia (1% O2). C) Cytokines 
levels (pg/mL) in mice serum in the sepsis model by A. baumannii ATCC 17978 strain 
and in the pneumonia model by P. aeruginosa PAO1 strain. *: P<0.05. 
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Table 1. Bacterial load in fluids and tissues in the sepsis model by A. baumannii ATCC 

17978 strain. 

 Bacterial load (log10 CFU per g of tissue or per ml of fluid) in:  

Time and conditiona Spleen Lungs PFb Blood Bacteremia (%) 

4 h      

N 3.98 ± 0.30 4.07 ± 0.53 4.06 ± 1.29 3.19 ± 0.42 100 

H 3.88 ± 0.23 4.07 ± 0.70 3.72 ± 1.15 3.18 ± 0.28 100 

Time of death      

N 8.79 ± 0.56 9.36 ± 0.35 9.31 ± 0.33 8.40 ± 0.56 100 

H 8.32 ± 0.71 8.25 ± 0.54e 8.88 ± 0.53c 7.73 ± 0.20d 100 

H (6 h) + N 7.90 ± 0.30f 8.32 ± 0.46f 8.75 ± 0.33f 7.85 ± 0.32 100 

aN, normoxia; H, hypoxia. 
bPF, peritoneal fluid. 
cP ≤ 0.05 (H versus N at the time of death). 
dP ≤  0.01 (H versus N at the time of death). 
eP ≤  0.001 (H versus N at the time of death). 
fP ≤  0.05 [H (6 h) + N versus N at the time of death]. 
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Table 2. Bacterial loads in fluids and tissues in the pneumonia model with P. 

aeruginosa strain PAO1 

 Bacterial load (log10 CFU per g of tissue or per ml of fluid) in:  

Time and conditiona Spleen Lungs Blood Bacteremia (%) 

4 h     

N 2.64 ± 0.69 7.77 ± 0.61 0.26 ± 0.36 44.44 

H 3.10 ± 0.80 7.79 ± 0.42 0.99 ± 0.84 61.11 

Time of death     

N 6.96 ± 0.57 9.81 ± 0.45 7.90 ± 0.67 100 

H 5.27 ± 0.60c 9.04 ± 0.58c 5.66 ± 0.78b 100 

H (6 h) + N 6.60 ± 0.34 9.79 ± 0.27 6.30 ± 0.46d 100 

aN, normoxia; H, hypoxia. 
bP ≤ 0.01 (H versus N at the time of death). 
cP ≤  0.001 (H versus N at the time of death). 
dP ≤  0.05 [H (6 h) + N versus N at the time of death]. 
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Discussion 

To our knowledge, this is the first study that analyses in vitro and in vivo the effect of 

hypoxia during infection by A. baumannii and P. aeruginosa. We observed that hypoxia 

in vitro increases bactericidal activity of host cells, and reduce bacterial adherence and 

invasion. We also found that hypoxia in vivo diminish bacterial load in fluids and 

tissues, but mice survival time was shorter under hypoxia. 

We showed that hypoxia doesn’t affect the in vitro growth of A. baumannii and P. 

aeruginosa. However, it increases the bactericidal activity in epithelial and macrophage 

cells. The study of Peyssonnaux et al. showed that hypoxia modifies gene regulation in 

host cells and it increases the LL-37 cathelicidin levels, an antimicrobial peptide 

involved in the clearance of pathogens [12]. Moreover, we see that hypoxia decreases 

the bacterial adherence to host cells. This effect might be due to the modification of cell 

or bacterial membrane under this condition. iTRAQ results confirmed that hypoxia 

downregulates 51 proteins in A. baumannii ATCC 17978, five of them are localized in 

the outer membrane which could be involved in cell adherence due to the previous 

reports of their involvement in the bacterial adherence [29-33].  

Regarding to bacterial invasion, we observed differences in behavior between A. 

baumannii and P. aeruginosa under hypoxia. Our data showed a reduction in the P. 

aeruginosa internalization into epithelial and macrophages cells, confirming the results 

obtained in a previous study in which it is demonstrated that hypoxia decreases the P. 

aeruginosa internalization into A549 cells [34]. However, A. baumannii internalization 

in both host cells is higher after 2 h under hypoxia, but it is reduced after 24 h. 

Consequently, hypoxia cannot stop the A. baumannii invasion during the first few hours 

of infection but it is finally hindered after 24 h. Therefore, we believe that hypoxia 
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confers higher resistance against bacterial invasion to host cells in order to avoid an 

intracellular replication and the infection evolution. 

In the in vivo experiments, we observe that a lower bacterial inoculum is needed to 

cause 100% of mice mortality under hypoxia in the peritoneal sepsis model by A. 

baumannii. All infected mice presented bacteremia 4 h post-infection for the studied 

conditions. Moreover, we observe lower bacterial load in blood, PF lungs and spleen 

under hypoxia. We also show that maintaining animals 6 h under hypoxia before the 

infection is enough to reduce bacterial load at the time of death. These results are in 

accordance with a previous study in which the use of the compound AKB-4924, that 

increases HIF-1α levels, reduced bacterial loads recovered in a S. aureus skin infection 

model [35]. Moreover, these results are in accordance with the in vitro adherence assays 

data. The increase of host cells bactericidal activity under hypoxia as well as a reduction 

of bacterial adherence could allow the immune system to eliminate the infection better. 

In the pneumonia model of infection by P. aeruginosa, we observed no differences in 

the inoculum needed to cause 100% of mortality between the studied conditions. 

Bacteremia observed in mice 4 h post-infection was 44.44% and 61.11% for normoxia 

and hypoxia, respectively. The difference found in the bacteremia levels between both 

animal models is because the severity of the sepsis model [36, 37]. As in the sepsis 

model by A. baumannii, we observed lower bacterial load in fluids and tissues under 

hypoxia, and under hypoxia followed by normoxia, are in accordance with the in vitro 

results of adherence and invasion. Again, as in the sepsis animal model, survival time 

was longer under normoxia.  

In both animal models, HIF-1α levels were higher after 4 h under hypoxia, being the 

levels similar at the animal time of death regardless the studied conditions. These results 

are in accordance with the in vitro studies in which HIF-1α levels increased over time 
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under hypoxia and then decreased 24 h after. We observed that A. baumannii causes an 

increase of HIF-1α levels compared to the control as what reported in another study in 

which infection with A. baumannii produced HIF-1α levels increase [4]. In contrast, P. 

aeruginosa produces HIF-1α levels reduction under hypoxia compared to the control. 

This result could be explained because 2-alkyl-4-quinolone and Pseudomonas 

Quinolone Signal triggers the HIF-1α degradation through the 26S-proteasome 

proteolytic pathway, blocking the HIF-1α effect [38, 39].  

As it is well defined in the literature, hypoxia regulates the immune response [20]. In 

the A. baumannii sepsis model, we observed under hypoxia high IL-10 levels after 4 h 

infection. Meng et al. indicated that HIF-1α is involved in IL-10 production by B cells 

[40], and IL-10 is an anti-inflammatory cytokine that suppresses macrophage and 

dendritic cells function [41]. In the P. aeruginosa pneumonia model, we detected high 

IL-6 levels 4 h post-infection under hypoxia. It has been showed that HIF-1α increase 

TNF-α and IL-6 levels [20, 42]. Moreover, IL-10 levels decreased under hypoxia in the 

pneumonia model by P. aeruginosa at the time of death. However, we did not find 

differences in cytokines levels between hypoxia and normoxy neither in vitro nor in 

vivo. Therefore, we found that hypoxia has not a strong impact on cytokine production 

[20], being more important on the bactericidal activity of host cells and on the reduction 

of infection in animals. 

However, this study has some limitations. HIF-1α is a factor involved in multiple 

cellular pathways and its expression is also regulated by different proteins. Therefore, 

finding a clear correlation between hypoxia, HIF-1α expression, inflammatory 

responses and infection is complex, and multiple cellular processes have to be taken 

into consideration. 
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In conclusion, hypoxia increases the bactericidal activity of host cells. In contrast, 

mortality in animals under hypoxia is faster even with a lower bacterial load in tissues 

and fluids. Moreover, we find that hypoxia has not a strong impact on cytokine 

production by both pathogens. Finally, despite both studied microorganism are close 

phylogenetically, they present slightly different behavior under hypoxia.  
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SUPPLEMENTAL DATA 

Table S1. Identification of the A. baumannii ATCC 17978 subexpressed proteins under 

hypoxia condition (1%O2). 

Accession Description Fold 
Change Location 

A3M753 

Putative outer membrane protein OmpW 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2325 
PE=4 SV=2 - [A3M753_ACIBT] 

0,38 Outer 
membrane 

A3M6R9 
DNA-binding protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_2186 PE=4 SV=1 - [A3M6R9_ACIBT] 

0,39 Cytoplasm 

A3M6Q5 
30S ribosomal protein S18 OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=rpsR PE=3 SV=1 - [RS18_ACIBT] 

0,44 Cytoplasm 

A3M178 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0191 PE=4 SV=2 - 
[A3M178_ACIBT] 

0,45 Secreted 

A7FBY7 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3900 PE=4 SV=2 - 
[A7FBY7_ACIBT] 

0,45 Secreted 

A3M3Z7 
Benzoate transporter OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_1211 PE=4 SV=2 - [A3M3Z7_ACIBT] 

0,45 Inner 
membrane 

A3M4R4 

Putative membrane protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1480 PE=4 SV=2 - 
[A3M4R4_ACIBT] 

0,46 Inner 
membrane 

A3M9Y4 

Putative ferric siderophore receptor protein 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3339 
PE=3 SV=2 - [A3M9Y4_ACIBT] 

0,46 Outer 
membrane 

A3M6W6 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_2233 PE=4 SV=1 - 
[A3M6W6_ACIBT] 

0,46 Cytoplasm 

A7FBL2 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3775 PE=4 SV=2 - 
[A7FBL2_ACIBT] 

0,47 Cytoplasm 

A3M745 

Putative lipoprotein (RlpA-like) OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_2317 PE=3 SV=2 - 
[A3M745_ACIBT] 

0,47 Secreted 

A7FBU1 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3854 PE=4 SV=2 - 
[A7FBU1_ACIBT] 

0,49 Inner 
membrane 

A7FAY0 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3543 PE=4 SV=2 - 
[A7FAY0_ACIBT] 

0,49 Inner 
membrane 

A3M9A7 Putative ATP-dependent RNA helicase OS=Acinetobacter 0,49 Cytoplasm 
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baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_3104 PE=3 SV=1 - 
[A3M9A7_ACIBT] 

A3M4B3 

FAD-dependent pyridine nucleotide-disulphide 
oxidoreductase OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1329 PE=4 SV=1 - [A3M4B3_ACIBT] 

0,49 Cytoplasm 

A7FAV9 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3522 PE=4 SV=2 - 
[A7FAV9_ACIBT] 

0,49 Secreted 

A3M2E7 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0642 PE=4 SV=2 - 
[A3M2E7_ACIBT] 

0,49 Cytoplasm 

A3M9R3 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3268 PE=4 SV=2 - 
[A3M9R3_ACIBT] 

0,50 Secreted 

A3M5K5 

Putative MFS family drug transporter OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_1772 PE=4 SV=2 - 
[A3M5K5_ACIBT] 

0,51 Inner 
membrane 

A3M4T1 

Putative acyltransferase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1497 PE=4 SV=2 - 
[A3M4T1_ACIBT] 

0,51 Cytoplasm 

A3M5H9 

Putative transcriptional regulator OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_1746 PE=4 SV=2 - 
[A3M5H9_ACIBT] 

0,51 Cytoplasm 

A3M2X6 

Putative signal peptide OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0836 PE=4 SV=1 - 
[A3M2X6_ACIBT] 

0,51 Cytoplasm 

A3M268 

Putative NAD(P)-binding enzyme OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_0559 PE=4 SV=2 - 
[A3M268_ACIBT] 

0,52 Inner 
membrane 

A3M1Y5 

Putative ferric siderophore receptor protein 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0474 
PE=3 SV=1 - [A3M1Y5_ACIBT] 

0,52 Outer 
membrane 

A3M2F0 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0645 PE=4 SV=2 - 
[A3M2F0_ACIBT] 

0,52 Secreted 

A3M140 
ATP synthase subunit b OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=atpF PE=3 SV=2 - [ATPF_ACIBT] 

0,52 Inner 
membrane 

A3M3P2 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1106 PE=4 SV=1 - 
[A3M3P2_ACIBT] 

0,52 Secreted 

A3M3U3 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1157 PE=4 SV=2 - 
[A3M3U3_ACIBT] 

0,52 Cytoplasm 

A3M3E9 Urease accessory protein UreD OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 0,52 Cytoplasm 

126  
 



NCDC KC755 / 5377) GN=ureD PE=3 SV=2 - 
[URED_ACIBT] 

A3M146 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0157 PE=4 SV=2 - 
[A3M146_ACIBT] 

0,52 Periplasm 

A3M5D5 

Dihydrolipoamide dehydrogenase OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / 
NCDC KC755 / 5377) GN=A1S_1702 PE=4 SV=1 - 
[A3M5D5_ACIBT] 

0,54 Cytoplasm 

A3M976 
50S ribosomal protein L29 OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=rpmC PE=3 SV=1 - [RL29_ACIBT] 

0,54 Cytoplasm 

A3M615 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1932 PE=4 SV=1 - 
[A3M615_ACIBT] 

0,54 Inner 
membrane 

A3M4U6 

Putative membrane protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1513 PE=3 SV=2 - 
[A3M4U6_ACIBT] 

0,55 Cytoplasm 

A3M1W4 

Putative biopolymer transport protein (ExbB) 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0453 
PE=3 SV=2 - [A3M1W4_ACIBT] 

0,56 Inner 
membrane 

A3M2C9 
Putative lipoprotein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_0624 PE=3 SV=2 - [A3M2C9_ACIBT] 

0,56 Periplasm 

A3M3B9 

Ferric enterobactin receptor OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0981 PE=3 SV=1 - 
[A3M3B9_ACIBT] 

0,57 Outer 
membrane 

A3M7D6 

Oxidoreductase short-chain dehydrogenase/reductase 
family OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2411 PE=4 SV=2 - [A3M7D6_ACIBT] 

0,57 Cytoplasm 

A3M472 

Putative VGR-related protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1288 PE=4 SV=1 - 
[A3M472_ACIBT] 

0,58 Cytoplasm 

A3M604 

Ferrichrome-iron receptor OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1921 PE=3 SV=2 - 
[A3M604_ACIBT] 

0,58 Outer 
membrane 

A3M3V8 
Putative transposase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_1172 PE=4 SV=2 - [A3M3V8_ACIBT] 

0,58 Cytoplasm 

A3M9R8 

Putative peptide signal OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3273 PE=4 SV=1 - 
[A3M9R8_ACIBT] 

0,58 Secreted 

A3M3R8 

Oxidoreductase short chain dehydrogenase/reductase 
family OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1132 PE=3 SV=2 - [A3M3R8_ACIBT] 

0,59 Cytoplasm 

A3M2V3 

ATP-dependent dethiobiotin synthetase BioD 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=bioD 
PE=3 SV=2 - [A3M2V3_ACIBT] 

0,59 Cytoplasm 

A7FAX8 Uncharacterized protein OS=Acinetobacter baumannii 0,59 Cytoplasm 
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(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3541 PE=4 SV=2 - 
[A7FAX8_ACIBT] 

A3M5R8 

Aldehyde dehydrogenase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_1835 PE=4 SV=2 - 
[A3M5R8_ACIBT] 

0,60 Cytoplasm 

A3M2E9 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0644 PE=4 SV=2 - 
[A3M2E9_ACIBT] 

0,60 Mitochondrion 

A3M1E1 

Alginate biosynthesis protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_0260 PE=4 SV=2 - 
[A3M1E1_ACIBT] 

0,60 Inner 
membrane 

A7FAX2 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3535 PE=4 SV=2 - 
[A7FAX2_ACIBT] 

0,60 Periplasm 

A3M6C3 

Putative phage integrase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_2040 PE=4 SV=2 - 
[A3M6C3_ACIBT] 

0,60 Mitochondrion 

A7FB06 

Uncharacterized protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC 
KC755 / 5377) GN=A1S_3569 PE=4 SV=2 - 
[A7FB06_ACIBT] 

0,60 Cytoplasm 
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Figure S1. Subcellular localization of subexpressed proteins under hypoxia (1%O2).  
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ADDITIONAL DATA 

Table A1. Identification of the A. baumannii ATCC 17978 overexpressed proteins 

under hypoxia condition (1%O2). 

Accession Description Fold 
Change 

A3M7U7 
23-dihydroxybenzoate-AMP ligase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2574 PE=4 SV=2 - [A3M7U7_ACIBT] 

1,49 

A3M1P4 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0379 PE=4 SV=2 
- [A3M1P4_ACIBT] 

1,49 

A3M6H4 
Putative exported protein OS=Acinetobacter baumannii (strain ATCC 17978 
/ CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2091 PE=4 
SV=2 - [A3M6H4_ACIBT] 

1,49 

A3M4I6 
Putative amino acid efflux transmembrane protein OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_1402 PE=4 SV=2 - [A3M4I6_ACIBT] 

1,49 

A3M4F4 
Oxidoreductase OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1370 PE=4 SV=1 - 
[A3M4F4_ACIBT] 

1,49 

A3M7E7 
50S ribosomal protein L31 OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=rpmE PE=3 
SV=1 - [RL31_ACIBT] 

1,49 

A3M5N6 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1803 PE=4 SV=2 
- [A3M5N6_ACIBT] 

1,49 

A3M194 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0212 PE=4 SV=2 
- [A3M194_ACIBT] 

1,50 

A3M6J0 
Putative glutamine amidotransferase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2107 PE=4 SV=2 - [A3M6J0_ACIBT] 

1,50 

A3M700 
RNA-splicing ligase RtcB OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=rtcB PE=3 
SV=2 - [A3M700_ACIBT] 

1,50 

A3M6X5 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2246 PE=4 SV=2 
- [A3M6X5_ACIBT] 

1,50 

A3M343 
Putative D-amino acid oxidase OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0905 
PE=4 SV=2 - [A3M343_ACIBT] 

1,51 

A3M6Q0 
Cytochrome o ubiquinol oxidase subunit I OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2167 PE=3 SV=2 - [A3M6Q0_ACIBT] 

1,51 

A3M5Z0 
Putative peroxidase OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1907 PE=4 SV=2 - 
[A3M5Z0_ACIBT] 

1,51 

A3M4R7 
Methionine import ATP-binding protein MetN OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=metN PE=3 SV=2 - [A3M4R7_ACIBT] 

1,51 

A3M9I0 
Fimbrial protein OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3177 PE=3 SV=1 - 
[A3M9I0_ACIBT] 

1,52 

A3M185 Putative signal peptide OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0202 PE=4 SV=2 1,52 
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- [A3M185_ACIBT] 

A3M7C9 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2404 PE=4 SV=2 
- [A3M7C9_ACIBT] 

1,53 

A3M8V7 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2946 PE=4 SV=2 
- [A3M8V7_ACIBT] 

1,54 

A3M7Y3 
Competence factor involved in DNA uptake OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2610 PE=4 SV=2 - [A3M7Y3_ACIBT] 

1,54 

A7FBB0 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3673 PE=4 SV=1 
- [A7FBB0_ACIBT] 

1,54 

A3M308 
Putative metal-dependent hydrolase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0870 PE=4 SV=2 - [A3M308_ACIBT] 

1,54 

A3M4Z2 
Type 4 fimbrial biogenesis protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1559 PE=4 SV=2 - [A3M4Z2_ACIBT] 

1,54 

A3M2S3 
Putative threonine efflux protein (RhtC) OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0777 PE=4 SV=2 - [A3M2S3_ACIBT] 

1,54 

A3M1A1 
Transcriptional repressor NrdR OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=nrdR PE=3 
SV=2 - [NRDR_ACIBT] 

1,55 

A3M5P7 
Putative transporter OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1814 PE=4 SV=2 - 
[A3M5P7_ACIBT] 

1,55 

A3M731 

ABC Lysine-arginine-ornithine transporter periplasmic ligand binding 
protein OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / 
LMG 1025 / NCDC KC755 / 5377) GN=A1S_2302 PE=3 SV=2 - 
[A3M731_ACIBT] 

1,55 

A3M1E7 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0266 
PE=4 SV=2 - [A3M1E7_ACIBT] 

1,55 

A3M3A6 
Putative phthalate transporter OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0968 
PE=4 SV=2 - [A3M3A6_ACIBT] 

1,56 

A3M175 
Putative transport protein (MFS superfamily) OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0188 PE=4 SV=2 - [A3M175_ACIBT] 

1,56 

A3M426 
Putative ABC family drug transporter OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1242 PE=4 SV=2 - [A3M426_ACIBT] 

1,56 

A3M1I3 
Putative acyl-CoA thioesterase II OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0311 PE=4 SV=2 - [A3M1I3_ACIBT] 

1,57 

A3M3E0 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1002 PE=4 SV=1 
- [A3M3E0_ACIBT] 

1,57 

A3M2Y3 
Putative flavodoxin or tryptophan repressor binding protein 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 
/ NCDC KC755 / 5377) GN=A1S_0843 PE=4 SV=2 - [A3M2Y3_ACIBT] 

1,57 

A3M1X9 
Non-canonical purine NTP pyrophosphatase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0468 PE=3 SV=2 - [NTPA_ACIBT] 

1,57 

A3M2V2 
Malonyl-[acyl-carrier protein] O-methyltransferase OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=bioC PE=3 SV=2 - [A3M2V2_ACIBT] 

1,57 

A3M3N7 Probable 5-dehydro-4-deoxyglucarate dehydratase OS=Acinetobacter 1,58 
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baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_1101 PE=3 SV=2 - [KDGD_ACIBT] 

A3M9S0 
Putative methyltransferase OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3275 
PE=4 SV=2 - [A3M9S0_ACIBT] 

1,58 

A3M169 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0182 PE=4 SV=2 
- [A3M169_ACIBT] 

1,59 

A3M4R9 
D-methionine transport protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1485 
PE=4 SV=2 - [A3M4R9_ACIBT] 

1,59 

A3M590 
Putative siderophore biosynthesis protein putative acetyltransferase 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 
/ NCDC KC755 / 5377) GN=A1S_1657 PE=4 SV=2 - [A3M590_ACIBT] 

1,60 

A3M4M0 
Putative acyl-CoA dehydrogenase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1436 PE=4 SV=1 - [A3M4M0_ACIBT] 

1,60 

A3M998 
ATP-dependent DNA helicase RecG OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=recG 
PE=3 SV=2 - [A3M998_ACIBT] 

1,61 

A3M5R5 
Oxidoreductase FMN-binding OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1832 
PE=4 SV=2 - [A3M5R5_ACIBT] 

1,61 

A3M8U2 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2931 PE=4 SV=2 
- [A3M8U2_ACIBT] 

1,61 

A3M3L8 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1082 PE=4 SV=1 
- [A3M3L8_ACIBT] 

1,62 

A3M684 
Molybdenum cofactor guanylyltransferase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=mobA PE=3 SV=2 - [MOBA_ACIBT] 

1,62 

A3M445 
Putative 3-hydroxyacyl-CoA dehydrogenase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1261 PE=4 SV=2 - [A3M445_ACIBT] 

1,63 

A3M5D4 
Dihydrolipoamide acetyltransferase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1701 PE=3 SV=1 - [A3M5D4_ACIBT] 

1,63 

A3M5K3 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1770 PE=4 SV=2 
- [A3M5K3_ACIBT] 

1,63 

A3M3E7 
Putative lipoprotein OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1009 PE=4 SV=2 - 
[A3M3E7_ACIBT] 

1,64 

A3M5M6 
Transcriptional regulator LysR family OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1793 PE=4 SV=2 - [A3M5M6_ACIBT] 

1,64 

A3M2N6 
Putative phage related protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0740 
PE=4 SV=2 - [A3M2N6_ACIBT] 

1,64 

A3M255 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0546 
PE=4 SV=2 - [A3M255_ACIBT] 

1,64 

A3M2G3 
Transposase OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / 
LMG 1025 / NCDC KC755 / 5377) GN=A1S_0658 PE=4 SV=2 - 
[A3M2G3_ACIBT] 

1,64 

A7FBX4 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3887 PE=4 SV=1 
- [A7FBX4_ACIBT] 

1,65 

A3M9L6 Putative RND family drug transporter OS=Acinetobacter baumannii (strain 1,66 
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ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_3219 PE=4 SV=2 - [A3M9L6_ACIBT] 

A3M5U7 
Acyl-CoA dehydrogenase-like protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1864 PE=4 SV=2 - [A3M5U7_ACIBT] 

1,66 

A3M5A0 
Putative ferric hydroxamate siderophore receptor OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_1667 PE=3 SV=2 - [A3M5A0_ACIBT] 

1,68 

A3M6X9 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2250 
PE=4 SV=2 - [A3M6X9_ACIBT] 

1,69 

A3M8R5 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2903 PE=4 SV=2 
- [A3M8R5_ACIBT] 

1,69 

A3M8Y0 
Putative vanillate O-demethylase oxygenase subunit OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_2971 PE=4 SV=2 - [A3M8Y0_ACIBT] 

1,70 

A3M5F8 
Putative ferric siderophore receptor protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1725 PE=3 SV=2 - [A3M5F8_ACIBT] 

1,70 

A3M2R7 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0771 
PE=4 SV=2 - [A3M2R7_ACIBT] 

1,70 

A3M944 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3041 
PE=4 SV=2 - [A3M944_ACIBT] 

1,71 

A3M3M5 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1089 PE=3 SV=2 
- [A3M3M5_ACIBT] 

1,72 

A3M5Y0 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1897 PE=4 SV=2 
- [A3M5Y0_ACIBT] 

1,72 

A3M4F1 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1367 PE=4 SV=2 
- [A3M4F1_ACIBT] 

1,73 

A3M9G3 
Lipase OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / 
LMG 1025 / NCDC KC755 / 5377) GN=A1S_3160 PE=4 SV=2 - 
[A3M9G3_ACIBT] 

1,74 

A3M5N0 
Aldehyde dehydrogenase OS=Acinetobacter baumannii (strain ATCC 17978 
/ CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1797 PE=4 
SV=1 - [A3M5N0_ACIBT] 

1,74 

A3M236 
Putative holo-(Acyl carrier protein) synthase 2 OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0527 PE=4 SV=2 - [A3M236_ACIBT] 

1,74 

A3MA44 
VirP protein OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / 
LMG 1025 / NCDC KC755 / 5377) GN=A1S_3399 PE=4 SV=2 - 
[A3MA44_ACIBT] 

1,75 

A3M1N5 
General secretion pathway protein F OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0369 PE=3 SV=2 - [A3M1N5_ACIBT] 

1,75 

A7FB98 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3661 PE=4 SV=1 
- [A7FB98_ACIBT] 

1,77 

A3M3L5 
Dichlorophenol hydroxylase OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1079 
PE=4 SV=2 - [A3M3L5_ACIBT] 

1,77 

A3M0R6 
Anhydro-N-acetylmuramic acid kinase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=anmK 
PE=3 SV=2 - [A3M0R6_ACIBT] 

1,78 

A7FBY9 Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 1,81 
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CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3902 PE=4 SV=2 
- [A7FBY9_ACIBT] 

A3M6J9 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2116 PE=4 SV=1 
- [A3M6J9_ACIBT] 

1,82 

A3M5B9 
Ribonuclease D OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1686 PE=4 SV=2 - 
[A3M5B9_ACIBT] 

1,83 

A3M0Z5 
Putative transcriptional regulator (LysR family) OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_0100 PE=4 SV=1 - [A3M0Z5_ACIBT] 

1,83 

A3M754 
Putative nitrate transporter transmembrane protein (MFS superfamily) 
OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 
/ NCDC KC755 / 5377) GN=A1S_2326 PE=4 SV=2 - [A3M754_ACIBT] 

1,83 

A3M7B7 
Putative acinetobactin utilization protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2392 PE=4 SV=2 - [A3M7B7_ACIBT] 

1,84 

A3M6K4 
UPF0756 membrane protein A1S_2121 OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2121 PE=3 SV=2 - [Y2121_ACIBT] 

1,86 

A3M910 
Stringent starvation protein B OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3003 
PE=4 SV=2 - [A3M910_ACIBT] 

1,86 

A3M7V7 
MFS family drug transporter OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2584 
PE=4 SV=2 - [A3M7V7_ACIBT] 

1,86 

A3M3A1 
Putative transcriptional regulator (AraC family) OS=Acinetobacter 
baumannii (strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 
5377) GN=A1S_0963 PE=4 SV=2 - [A3M3A1_ACIBT] 

1,86 

A3M539 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1606 PE=4 SV=1 
- [A3M539_ACIBT] 

1,89 

A3M833 
Glycerophosphoryl diester phosphodiesterase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2661 PE=4 SV=2 - [A3M833_ACIBT] 

1,89 

A3M7T9 
Putative ferric siderophore receptor protein OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2566 PE=3 SV=2 - [A3M7T9_ACIBT] 

1,92 

A7FBD9 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3702 PE=4 SV=2 
- [A7FBD9_ACIBT] 

1,92 

A3M5T4 
Penicillin G amidase OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1851 PE=4 SV=2 
- [A3M5T4_ACIBT] 

1,93 

A3M9V2 
Putative transcriptional regulator (Lrp-like) OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_3307 PE=4 SV=2 - [A3M9V2_ACIBT] 

1,94 

A3M4S8 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1494 PE=4 SV=2 
- [A3M4S8_ACIBT] 

1,97 

A3M4G2 
Putative long chain fatty-acid CoA ligase OS=Acinetobacter baumannii 
(strain ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1378 PE=4 SV=2 - [A3M4G2_ACIBT] 

2,02 

A3M1P9 
DNA gyrase inhibitor YacG OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=yacG PE=3 
SV=1 - [A3M1P9_ACIBT] 

2,02 

A3M3W0 
DNA polymerase V component OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1174 
PE=4 SV=1 - [A3M3W0_ACIBT] 

2,06 

A3M7R9 Secreted trypsin-like serine protease OS=Acinetobacter baumannii (strain 2,07 
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ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2546 PE=4 SV=2 - [A3M7R9_ACIBT] 

A3M6Y3 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2254 PE=4 SV=2 
- [A3M6Y3_ACIBT] 

2,08 

A3M3Y0 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1194 PE=4 SV=2 
- [A3M3Y0_ACIBT] 

2,09 

A3M6A5 
Putative tail fiber OS=Acinetobacter baumannii (strain ATCC 17978 / CIP 
53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2022 PE=4 SV=2 - 
[A3M6A5_ACIBT] 

2,10 

A3M598 
Putative membrane protein OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1665 
PE=3 SV=2 - [A3M598_ACIBT] 

2,12 

A3M2F8 
Ferrous iron transport protein B OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0653 
PE=3 SV=1 - [A3M2F8_ACIBT] 

2,16 

A3M5P4 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1811 PE=4 SV=2 
- [A3M5P4_ACIBT] 

2,17 

A3M5L0 
Methylenetetrahydrofolate reductase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1777 PE=3 SV=1 - [A3M5L0_ACIBT] 

2,17 

A3M1I7 
Putative fusaric acid resistance protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0317 PE=4 SV=2 - [A3M1I7_ACIBT] 

2,25 

A3M6H7 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2094 PE=4 SV=2 
- [A3M6H7_ACIBT] 

2,28 

A7FBR2 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3825 PE=4 SV=2 
- [A7FBR2_ACIBT] 

2,30 

A3M0Y1 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0086 PE=4 SV=2 
- [A3M0Y1_ACIBT] 

2,32 

A3M594 
Fructose-26-bisphosphatase OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1661 
PE=4 SV=2 - [A3M594_ACIBT] 

2,32 

A3M166 
NADPH-dependent FMN reductase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_0179 PE=4 SV=2 - [A3M166_ACIBT] 

2,37 

A3M6U3 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2210 PE=4 SV=2 
- [A3M6U3_ACIBT] 

2,38 

A3M525 
Putative Phage head-tail adaptor OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_1592 
PE=4 SV=1 - [A3M525_ACIBT] 

2,40 

A3M6S8 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2195 PE=4 SV=1 
- [A3M6S8_ACIBT] 

2,43 

A7FBB9 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3682 PE=4 SV=1 
- [A7FBB9_ACIBT] 

2,44 

A3M5Q5 
Putative transcription regulator protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1822 PE=4 SV=2 - [A3M5Q5_ACIBT] 

2,48 

A3MA53 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3408 PE=4 SV=2 
- [A3MA53_ACIBT] 

2,62 

A3M7D5 Fatty acid desaturase OS=Acinetobacter baumannii (strain ATCC 17978 / 2,75 
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CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2410 PE=4 SV=2 
- [A3M7D5_ACIBT] 

A7FBC0 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3683 PE=4 SV=2 
- [A7FBC0_ACIBT] 

2,88 

A7FAV6 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_3519 PE=4 SV=2 
- [A7FAV6_ACIBT] 

2,95 

A3M1D5 
Permease (DMT) superfamily OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0254 
PE=4 SV=2 - [A3M1D5_ACIBT] 

3,01 

A3M8U0 
Putative cation efflux system protein OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_2929 PE=4 SV=2 - [A3M8U0_ACIBT] 

3,70 

A3M4M1 
Putative acyl-CoA dehydrogenase OS=Acinetobacter baumannii (strain 
ATCC 17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) 
GN=A1S_1437 PE=4 SV=1 - [A3M4M1_ACIBT] 

4,30 

A3M8N5 
Uncharacterized protein OS=Acinetobacter baumannii (strain ATCC 17978 / 
CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_2873 PE=4 SV=1 
- [A3M8N5_ACIBT] 

5,01 

A3M2Q8 
NADH dehydrogenase I chain L OS=Acinetobacter baumannii (strain ATCC 
17978 / CIP 53.77 / LMG 1025 / NCDC KC755 / 5377) GN=A1S_0762 
PE=4 SV=2 - [A3M2Q8_ACIBT] 

5,37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

136  
 



Table A2. Identification of the A549 subexpressed proteins under hypoxia condition 

(1%O2). 

Accession Description Fold 
Change 

Q05823 2-5A-dependent ribonuclease OS=Homo sapiens GN=RNASEL PE=1 SV=2 
- [RN5A_HUMAN] 0,25 

Q9UJT2 Testis-specific serine kinase substrate OS=Homo sapiens GN=TSKS PE=1 
SV=3 - [TSKS_HUMAN] 0,36 

B7ZVZ4 KIAA1211 protein OS=Homo sapiens GN=KIAA1211 PE=2 SV=1 - 
[B7ZVZ4_HUMAN] 0,36 

Q9Y4A8 Nuclear factor erythroid 2-related factor 3 OS=Homo sapiens GN=NFE2L3 
PE=1 SV=1 - [NF2L3_HUMAN] 0,40 

B9EIP2 Olfactory receptor, family 51, subfamily A, member 4 OS=Homo sapiens 
GN=OR51A4 PE=2 SV=1 - [B9EIP2_HUMAN] 0,48 

Q99501 GAS2-like protein 1 OS=Homo sapiens GN=GAS2L1 PE=1 SV=2 - 
[GA2L1_HUMAN] 0,51 

P05543 Thyroxine-binding globulin OS=Homo sapiens GN=SERPINA7 PE=1 SV=2 
- [THBG_HUMAN] 0,51 

Q8N4C6-10 Isoform 3 of Ninein OS=Homo sapiens GN=NIN - [NIN_HUMAN] 0,55 

E9PPJ0 Uncharacterized protein OS=Homo sapiens GN=SF3B2 PE=4 SV=1 - 
[E9PPJ0_HUMAN] 0,55 

Q96JB1 Dynein heavy chain 8, axonemal OS=Homo sapiens GN=DNAH8 PE=1 
SV=2 - [DYH8_HUMAN] 0,56 

Q96LI6 Heat shock transcription factor, Y-linked OS=Homo sapiens GN=HSFY1 
PE=1 SV=1 - [HSFY1_HUMAN] 0,56 

Q15058 Kinesin-like protein KIF14 OS=Homo sapiens GN=KIF14 PE=1 SV=1 - 
[KIF14_HUMAN] 0,57 

Q9BWV3 Cytidine and dCMP deaminase domain-containing protein 1 OS=Homo 
sapiens GN=CDADC1 PE=2 SV=1 - [CDAC1_HUMAN] 0,57 

O00420 F19541_1 OS=Homo sapiens GN=PRODH2 PE=2 SV=1 - 
[O00420_HUMAN] 0,57 

Q5U086 Serine/threonine-protein phosphatase OS=Homo sapiens PE=2 SV=1 - 
[Q5U086_HUMAN] 0,57 

Q70EL1 Inactive ubiquitin carboxyl-terminal hydrolase 54 OS=Homo sapiens 
GN=USP54 PE=1 SV=4 - [UBP54_HUMAN] 0,57 

Q9Y678 Coatomer subunit gamma OS=Homo sapiens GN=COPG PE=1 SV=1 - 
[COPG_HUMAN] 0,59 

B4E1D5 cDNA FLJ54400, highly similar to Eukaryotic translation initiation factor 3 
subunit 8 OS=Homo sapiens PE=2 SV=1 - [B4E1D5_HUMAN] 0,59 

B4DMB1 cDNA FLJ53358, highly similar to Heterogeneous nuclear ribonucleoprotein 
R OS=Homo sapiens PE=2 SV=1 - [B4DMB1_HUMAN] 0,59 

P25705 ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 
PE=1 SV=1 - [ATPA_HUMAN] 0,59 

B7ZM61 PLCE1 protein OS=Homo sapiens GN=PLCE1 PE=2 SV=1 - 
[B7ZM61_HUMAN] 0,60 

F8W6H6 Uncharacterized protein OS=Homo sapiens GN=MYO5A PE=4 SV=1 - 
[F8W6H6_HUMAN] 0,60 

Q8TER5-3 Isoform 3 of Rho guanine nucleotide exchange factor 40 OS=Homo sapiens 
GN=ARHGEF40 - [ARH40_HUMAN] 0,60 

Q562R1 Beta-actin-like protein 2 OS=Homo sapiens GN=ACTBL2 PE=1 SV=2 - 
[ACTBL_HUMAN] 0,61 

Q9P2F8 Signal-induced proliferation-associated 1-like protein 2 OS=Homo sapiens 
GN=SIPA1L2 PE=1 SV=2 - [SI1L2_HUMAN] 0,61 

F5GYZ0 Uncharacterized protein OS=Homo sapiens GN=KLRC1 PE=4 SV=1 - 
[F5GYZ0_HUMAN] 0,61 

B4DWZ4 cDNA FLJ51365, highly similar to Flap endonuclease 1 (EC 3.1.-.-) 0,61 
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OS=Homo sapiens PE=2 SV=1 - [B4DWZ4_HUMAN] 

B4DNW7 Adenylyl cyclase-associated protein OS=Homo sapiens PE=2 SV=1 - 
[B4DNW7_HUMAN] 0,61 

P08582 Melanotransferrin OS=Homo sapiens GN=MFI2 PE=1 SV=2 - 
[TRFM_HUMAN] 0,62 

Q9UHD8 Septin-9 OS=Homo sapiens GN=SEPT9 PE=1 SV=2 - [SEPT9_HUMAN] 0,63 

B4DL95 cDNA FLJ54330, highly similar to Usher syndrome type-1G protein 
OS=Homo sapiens PE=2 SV=1 - [B4DL95_HUMAN] 0,63 

B4DG54 cDNA FLJ56635 OS=Homo sapiens PE=2 SV=1 - [B4DG54_HUMAN] 0,63 

Q5T215 Trafficking protein particle complex subunit 3-like protein OS=Homo 
sapiens GN=BET3L PE=1 SV=1 - [TPC3L_HUMAN] 0,64 
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Table A3. Identification of the A549 overexpressed proteins under hypoxia condition 

(1%O2). 

Accession Description Fold 
Change 

Q8TD06 Anterior gradient protein 3 homolog OS=Homo sapiens GN=AGR3 PE=1 
SV=1 - [AGR3_HUMAN] 1,41 

O14737 Programmed cell death protein 5 OS=Homo sapiens GN=PDCD5 PE=1 
SV=3 - [PDCD5_HUMAN] 1,41 

P09936 Ubiquitin carboxyl-terminal hydrolase isozyme L1 OS=Homo sapiens 
GN=UCHL1 PE=1 SV=2 - [UCHL1_HUMAN] 1,41 

P05198 Eukaryotic translation initiation factor 2 subunit 1 OS=Homo sapiens 
GN=EIF2S1 PE=1 SV=3 - [IF2A_HUMAN] 1,42 

P06753-2 Isoform 2 of Tropomyosin alpha-3 chain OS=Homo sapiens GN=TPM3 - 
[TPM3_HUMAN] 1,42 

P56545-2 Isoform 2 of C-terminal-binding protein 2 OS=Homo sapiens GN=CTBP2 - 
[CTBP2_HUMAN] 1,42 

P04080 Cystatin-B OS=Homo sapiens GN=CSTB PE=1 SV=2 - [CYTB_HUMAN] 1,43 

B7Z6N2 cDNA FLJ56154, highly similar to Gelsolin OS=Homo sapiens PE=2 SV=1 
- [B7Z6N2_HUMAN] 1,43 

P13796 Plastin-2 OS=Homo sapiens GN=LCP1 PE=1 SV=6 - [PLSL_HUMAN] 1,43 

P26639 Threonyl-tRNA synthetase, cytoplasmic OS=Homo sapiens GN=TARS 
PE=1 SV=3 - [SYTC_HUMAN] 1,44 

B3KVF9 
cDNA FLJ16507 fis, clone HCHON2000364, highly similar to Insulin-like 
growth factor-binding protein 3 OS=Homo sapiens PE=2 SV=1 - 
[B3KVF9_HUMAN] 

1,45 

P50238 Cysteine-rich protein 1 OS=Homo sapiens GN=CRIP1 PE=1 SV=3 - 
[CRIP1_HUMAN] 1,46 

B7Z722 Tropomyosin 1 (Alpha), isoform CRA_i OS=Homo sapiens GN=TPM1 
PE=2 SV=1 - [B7Z722_HUMAN] 1,46 

F5GWF6 Uncharacterized protein OS=Homo sapiens GN=CCT2 PE=3 SV=2 - 
[F5GWF6_HUMAN] 1,48 

P62736 Actin, aortic smooth muscle OS=Homo sapiens GN=ACTA2 PE=1 SV=1 - 
[ACTA_HUMAN] 1,48 

Q9UQ80 Proliferation-associated protein 2G4 OS=Homo sapiens GN=PA2G4 PE=1 
SV=3 - [PA2G4_HUMAN] 1,51 

Q96HN2-2 Isoform 2 of Putative adenosylhomocysteinase 3 OS=Homo sapiens 
GN=AHCYL2 - [SAHH3_HUMAN] 1,51 

B4DUX5 Methionine aminopeptidase OS=Homo sapiens GN=METAP2 PE=2 SV=1 - 
[B4DUX5_HUMAN] 1,52 

P13196 5-aminolevulinate synthase, nonspecific, mitochondrial OS=Homo sapiens 
GN=ALAS1 PE=1 SV=2 - [HEM1_HUMAN] 1,58 

P67809 Nuclease-sensitive element-binding protein 1 OS=Homo sapiens GN=YBX1 
PE=1 SV=3 - [YBOX1_HUMAN] 1,58 

A8K3C3 T-complex protein 1 subunit delta OS=Homo sapiens PE=2 SV=1 - 
[A8K3C3_HUMAN] 1,58 

B4DPZ3 cDNA FLJ53290, highly similar to Cytoplasmic dynein 1 intermediate chain 
2 OS=Homo sapiens PE=2 SV=1 - [B4DPZ3_HUMAN] 1,58 

O43423 Acidic leucine-rich nuclear phosphoprotein 32 family member C OS=Homo 
sapiens GN=ANP32C PE=2 SV=1 - [AN32C_HUMAN] 1,59 

B4DJ30 cDNA FLJ61290, highly similar to Neutral alpha-glucosidase AB OS=Homo 
sapiens PE=2 SV=1 - [B4DJ30_HUMAN] 1,62 

B9A018 Uncharacterized protein OS=Homo sapiens GN=USP39 PE=4 SV=1 - 
[B9A018_HUMAN] 1,67 

Q59G24 Activated RNA polymerase II transcription cofactor 4 variant (Fragment) 
OS=Homo sapiens PE=2 SV=1 - [Q59G24_HUMAN] 1,68 

Q86VN1-2 Isoform 2 of Vacuolar protein-sorting-associated protein 36 OS=Homo 1,68 

139  
 



sapiens GN=VPS36 - [VPS36_HUMAN] 

P05091 Aldehyde dehydrogenase, mitochondrial OS=Homo sapiens GN=ALDH2 
PE=1 SV=2 - [ALDH2_HUMAN] 1,69 

P07951-2 Isoform 2 of Tropomyosin beta chain OS=Homo sapiens GN=TPM2 - 
[TPM2_HUMAN] 1,71 

Q9BYV8 Centrosomal protein of 41 kDa OS=Homo sapiens GN=TSGA14 PE=1 
SV=1 - [CEP41_HUMAN] 1,73 

P62269 40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3 - 
[RS18_HUMAN] 1,80 

Q9UF56 F-box/LRR-repeat protein 17 OS=Homo sapiens GN=FBXL17 PE=2 SV=3 - 
[FXL17_HUMAN] 1,81 

F8VVL1 Uncharacterized protein OS=Homo sapiens GN=DENR PE=4 SV=1 - 
[F8VVL1_HUMAN] 1,88 

P30041 Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1 SV=3 - 
[PRDX6_HUMAN] 1,94 

P47813 Eukaryotic translation initiation factor 1A, X-chromosomal OS=Homo 
sapiens GN=EIF1AX PE=1 SV=2 - [IF1AX_HUMAN] 1,96 

P63241-2 Isoform 2 of Eukaryotic translation initiation factor 5A-1 OS=Homo sapiens 
GN=EIF5A - [IF5A1_HUMAN] 1,98 

Q6UY18 
Leucine-rich repeat and immunoglobulin-like domain-containing nogo 
receptor-interacting protein 4 OS=Homo sapiens GN=LINGO4 PE=2 SV=1 
- [LIGO4_HUMAN] 

2,04 

Q6NW36 Proteasome (Prosome, macropain) 26S subunit, ATPase, 1 OS=Homo 
sapiens GN=PSMC1 PE=2 SV=1 - [Q6NW36_HUMAN] 2,17 

O60673 DNA polymerase zeta catalytic subunit OS=Homo sapiens GN=REV3L 
PE=1 SV=2 - [DPOLZ_HUMAN] 2,22 

Q53G85 Elongation factor 1-alpha (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53G85_HUMAN] 2,58 

Q13442 28 kDa heat- and acid-stable phosphoprotein OS=Homo sapiens 
GN=PDAP1 PE=1 SV=1 - [HAP28_HUMAN] 4,40 
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20 ABSTRACT 
 

21 Hypoxia modulates bacterial virulence and inflammation response through the hypoxia- 
 

22 inducible factor-1α (HIF-1α). Here, we study the influence of hypoxia on Acinetobacter 
 

23 baumannii and Pseudomonas aeruginosa infections. In vitro hypoxia increases 
 

24 bactericidal activity of epithelial cells against A. baumannii reducing extracellular 
 

25 bacterial concentration (50.5 ± 7.5%) and against P. aeruginosa (90.8 ± 13.9%) 2h post- 
 

26 infection. The same happens in macrophages cells (67.6 ± 18.2% at 2h, and 50.3 ± 
 

27 10.9% at 24 h, respectively). Hypoxia decreases A. baumannii adherence to epithelial 
 

28 (42.87 ± 8.16% at 2 h) and macrophages cells (52.0 ± 18.7% at 24 h). The same 
 

29 happens in P. aeruginosa (24.9 ± 4.5% and 65.7 ± 5.5% at 2 h, respectively). Moreover, 
 

30 hypoxia decreases A. baumannii invasion 24h post-infection in epithelial (48.6 ± 3.8%) 
 

31 and macrophages cells (8.7 ± 6.9%), and P. aeruginosa (75.0 ± 16.3% and 63.4 ± 5.4% 
 

32 at 2 h, respectively). In vivo hypoxia diminishes bacterial load in fluids and tissues in 
 

33 animal models of infection by both pathogens. Contradictory, mice survival time was 
 

34 smaller under hypoxia (23.92 vs. 36.42 h, for A. baumannii). No differences were found 
 

35 in vitro and in vivo in cytokines and HIF-1α production between hypoxia and normoxia. 
 

36 We conclude that hypoxia increases the bactericidal activity of host cells against both 
 

37 pathogens and reduces their interaction. Moreover, hypoxia accelerates the rate at which 
 

38 animals die despite their lower bacterial concentration in vivo. 
 

39 
 
 

40 
 
 

41 
 
 

42 
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44 INTRODUCTION 
 

45 Several pathogens, including  Escherichia coli, Pseudomonas aeruginosa,  Salmonella 
 

46 typhimurium, group A and B Streptococci, Staphylococcus aureus, and Chlamydia 
 

47 pneumoniae have been shown to regulate hypoxia inducible factor 1 alpha (HIF-1α) (1- 
 

48 6). The bacterial lipopolysaccharide has been reported to activate HIF-1α through toll- 
 

49 like receptor 4 in macrophages and neutrophils under normoxia (2,7-10). 
 

50 It is known that hypoxia seems to have protective role against bacterial infections. In 
 

51 this way, HIF-1α-deficient macrophages and PMN affect in vitro the intracellular killing 
 

52 of group B Streptococcus and P. aeruginosa, respectively (1,9). In mice, the HIF-1α- 
 

53 knockout (KO) keratinocytes induced the development of larger necrotic lesions and 
 

54 decreased the mice capacity to clear group A Streptococcus by reducing the recruitment 
 

55 of neutrophils to the site of infection (11,12); and the HIF-1α knockdown by siRNA 
 

56 reduced  the  mice  resistance  to  P.  aeruginosa  keratitis  (9).  Likewise,  the  use  of 
 

57 mimosine, a HIF-1α agonist, can boost the ability of phagocytes and whole blood to kill 
 

58 S. aureus and reduce the lesion size in a murine model of skin infection (13). 
 

59 However, hypoxia influence on Gram-negative bacterial infection remains to be 
 

60 understood. We know that hypoxia impairs innate immune functions of the airway 
 

61 epithelial cells during P. aeruginosa infection, and reducing the HIF-1α expression by 
 

62 siRNA in the bronchial epithelial cells enhances the immune response (14). More 
 

63 specifically, hypoxia reduced the IL-6 production by keratinocytes when compared to 
 

64 normoxia (11). Consecutively, the HIF-1α deletion, but not HIF-1α isoform I.1, in T 
 

65 lymphocytes prevents the antibacterial effect of these cells (15,16). 
 

66 During infection, bacteria must adapt to heterogeneous environments (17-19). The 
 

67 oxygen levels in the foci of infection are much lower (<1%) than in healthy tissues (2.5- 
 

68 9%) (20) due to a combination of increased oxygen consumption by immune cells and 
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69 pathogens, along with a decreased perfusion due to vascular dysfunction (21-23). 
 

70 Therefore, the microenvironment at the area of infection plays a crucial role in 
 

71 determining the outcome of an infection. Hypoxia not only modifies the host cells but 
 

72 also the bacterial metabolism and virulence (5). In P. aeruginosa and Mycobacterium 
 

73 tuberculosis the expression of virulence factors such as alkaline protease, siderophores 
 

74 and exotoxin A are reduced by hypoxia (24,25). However, hypoxia can also increase the 
 

75 production of alginate and the expression of the PA-I lectin/adhesin by P. aeruginosa 
 

76 causing a disruption in intestinal barrier and allowing exotoxin A to cross the epithelium 
 

77 (26,27). Exposure to hypoxia also induces antibiotic resistance in P. aeruginosa by an 
 

78 alteration of efflux pumps expression (28). Together, these studies demonstrate the 
 

79 complexity of HIF-pathogen interactions. 
 

80 The aim of this study was to evaluate the effect of hypoxia on A. baumannii and P. 
 

81 aeruginosa pathogenesis, in vitro, regarding to bactericidal activity and 
 

82 adherence/invasion, and in murine models of infection, regarding to survival, and 
 

83 bacterial load; and the innate immune response in vitro and in vivo. 
 

84 
 

85 RESULTS 
 

86 Hypoxia increases HIF-1α levels in epithelial and macrophages cells 
 

87 HIF-1α levels in cell lines after 6 and 24 h under hypoxia (1% O2) and normoxy (21% 
 

88 O2) were measured. In epithelial cells, HIF-1α levels were 2.69 times higher after 6 h in 
 

89 hypoxia  than  in  normoxy  (2296.98  ±  157.74  pg/mL  vs.  853.63  ±  95.47  pg/mL, 
 

90 P<0.001) and were higher than after 24 h (1107.70 ± 96.08 pg/mL vs. 592.27 ± 48.86 
 

91 pg/mL, P<0.01). In macrophages cells, HIF-1α levels were 1.50 times higher after 6 h 
 

92 in hypoxia than in normoxia (331.64 ± 52.93 pg/mL vs. 220.67 ± 11.87 pg/mL) and 
 

93 were higher than after 24 h under hypoxia (223.59 ± 7.05 pg/mL vs. 235.27 ± 9.31 
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94 pg/mL; hypoxia 6 h vs. hypoxia 24 h). No significant differences in HIF-1α levels were 
 

95 observed in normoxia between the different times points analysed. 
 

96 The marked increase of HIF-1α levels after 6 h under hypoxia (1% O2) defined the time 
 

97 of hypoxia condition prior the infection for the in vitro and in vivo experiments. 
 

98 
 

99 Hypoxia increases bactericidal activity of epithelial and macrophages cells against 
 

100 A. baumannii and P. aeruginosa 
 

101 First, we observed that ATCC 17978 and PAO1 strains growth during 2 and 24 h was 
 

102 indistinguishable between hypoxia (1% O2) and normoxia (Fig. 1A). Next, we 
 

103 determined if hypoxia affects the bactericidal activity of epithelial and macrophages 
 

104 cells. Bacterial counts of ATCC 17978 and PAO1 strains found in the extracellular 
 

105 medium of both cell lines under hypoxia (1% O2) showed a decrease of bacterial 
 

106 concentrations after 2 and 24 h compared to normoxia, (Fig. 1B and 1C). These data 
 

107 support an increase in the bactericidal activity of these cell lines under hypoxia. 
 

108  
 

109 HIF-1α overexpression increases bactericidal activity of epithelial and 
 

110 macrophages cells against A. baumannii and P. aeruginosa 
 

111 Bacterial counts of ATCC 17978 and PAO1 strains found in the extracellular medium 
 

112 of both cell lines under a 0.1 mM DMOG treatment showed a decrease of bacterial 
 

113 concentrations after 24 h compared to normoxia, (Fig. 1B and 1C). These data support 
 

114 an increase in the bactericidal activity of these cell lines when HIF-1α is overexpressed 
 

115 due to the treatment with DMOG. 
 

116  
 

117 Hypoxia decreases bacterial adherence and invasion to epithelial and macrophages 
 

118 cells 
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119 The bacterial adherence of ATCC 17978 and PAO1 strains to both cell lines was 
 

120 significantly lower under hypoxia (1% O2), except in the case of 2 h post-infection by 
 

121 ATCC 17978 strain in the RAW 264.7 cells in which it presented higher bacterial 
 

122 adherence (182.67 ± 11% vs. 100% ± 0%, P<0.001) (Fig. 2A and 2B). 
 

123 Bacterial counts of ATCC 17978 strain inside epithelial and macrophages cells under 
 

124 hypoxia (1% O2) showed an increase of bacterial concentrations 2 h post-infection (150 
 

125 ± 0% for epithelial cells, and 146.73 ± 5.01% for macrophages cells, P<0.001), and a 
 

126 decrease at 24 h post-infection compared to normoxia (48.55 ± 34.80% for epithelial 
 

127 cells, P<0.001 and 8.69 ± 6.85% for macrophages cells, P<0.001) (Fig. 2C). On the 
 

128 other hand, PAO1 strain counts inside both cell lines under hypoxia (1% O2) showed a 
 

129 decrease of bacterial concentrations after 2 h (P<0.001 for macrophages cells) and 24 h 
 

130 (P<0.001) compared to normoxia (Fig. 2D). These data indicated that hypoxia affects 
 

131 the adherence and invasion of A. baumannii and P. aeruginosa 24 h after bacterial 
 

132 infection. 
 

133  
 

134 Hypoxia reduces the expression of proteins involved in cell adherence 
 

135 iTRAQ results show that there are 51 down-expressed proteins under hypoxia (Fold 
 

136 Change < 0.6) present in the extracellular medium of a 2 h infection of A549 cells by A. 
 

137 baumannii ATCC 17978 strain (Table S1). Forty-five % are localized in the cytoplasm, 
 

138 16% are secreted, 19% are in the inner membrane, 10% in the outer membrane, 6% in 
 

139 the periplasm and 4% in the mitochondrion (Fig. S1). The proteins localized in the outer 
 

140 membrane and could be involved in cell adhesion are OmpW, putative ferric 
 

141 siderophore receptor protein A1S_3339, putative ferric siderophore receptor protein 
 

142 A1S_0474, ferric enterobactin receptor A1S_0981, and ferrichrome-iron receptor 
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143 A1S_1921. Moreover, the secreted uncharacterized protein A1S_3900, which is a 
 

144 protein that presents SH3-like domains, could also be involved in cell adhesion. 
 

145  
 

146 Hypoxia reduces bacterial load in tissues and fluids in a peritonitis sepsis model by 
 

147 A. baumannii 
 

148 The MLD needed to achieve 100% mortality for ATCC 17978 strain was lower in 
 

149 hypoxia (10% O2) than in normoxia (2.08 vs. 3.20 log10 cfu/mL). For the rest of 
 

150 experiments, we used the MLD calculated in normoxia. The survival time was higher in 
 

151 mice infected under normoxia than hypoxia (10%O2) (36.42 vs. 23.92 h, P<0.001) (Fig. 
 

152 3A). 
 

153 In the sepsis model by A. baumannii, regardless the studied condition, all mice 
 

154 presented bacteremia after 4 h infection. No differences were found in the bacterial load 
 

155 in tissues (spleen, and lungs) and fluids (PF and blood) between hypoxia and normoxia 
 

156 after 4 h infection (Table 1). However, at the time of death, significant differences 
 

157 between hypoxia and normoxia were found in the bacterial loads in lungs, PF, and 
 

158 blood (Table 1). Moreover, significant differences between animals under normoxia and 
 

159 under hypoxia (6 h) followed by normoxia were found in the bacterial loads at the time 
 

160 of death in spleen, lungs and PF (Table 1). Bacterial loads in spleen, lungs, PF and 
 

161 blood were lower under hypoxia (hypoxia 6 h prior infection, or during the whole 
 

162 experiment) compared to normoxia. 
 

163 HIF-1α levels showed no differences between hypoxia and normoxia in controls 
 

164 animals (not infected). Contradictorily, infected mice under the different studied 
 

165 conditions presented higher HIF-1α levels than controls mice under normoxia at the 
 

166 time of death (Fig. 3B). 
 

167  
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168 Hypoxia reduces bacterial load in tissues and blood in a pneumonia model by P. 
 

169 aeruginosa 
 

170 The MLD calculated for PAO1 strain was the same for both conditions (8.54 log10 
 

171 cfu/mL). Survival time was significantly higher under normoxia than under hypoxia 
 

172 (10% O2) (P<0.01) or six hours’ hypoxia followed by normoxia (P<0.05) (Fig. 3A). 
 

173 Pathological studies confirmed pneumonia 4 h after infection in all the conditions 
 

174 analyzed, but the symptoms were higher under normoxia (data not shown). 
 

175 After 4 h of infection, no significant differences were found in the bacterial loads in 
 

176 tissues and blood between both conditions (Table 2). Nevertheless, at the mice time of 
 

177 death, significant differences were found in spleen, lungs and blood (between hypoxia 
 

178 and normoxia (Table 2). Similarly, significant differences at the time of death were 
 

179 found in the bacterial loads in blood between mice under 6 h hypoxia prior the infection 
 

180 followed by normoxia and the animals infected in normoxia (Table 2). Bacterial loads 
 

181 in tissues and blood were lower under both hypoxemic conditions than under normoxia. 
 

182 HIF-1α levels were not significant among the studied conditions. Opposing to what 
 

183 happened in the peritoneal sepsis model by A. baumannii; infected mice under the 
 

184 different conditions studied presented lower HIF-1α levels than non-infected mice at the 
 

185 time of death (Fig. 3B). 
 

186  
 

187 In vitro and in vivo cytokines production under hypoxia and normoxia 
 

188 The infection of epithelial cells by ATCC 17978 and PAO1 strains showed that IL-6, 
 

189 TNF-α and IL-10 levels were similar for both conditions at 2 and 24 h post-infection 
 

190 (Fig. 4A). When infecting the RAW 264.7 cells by ATCC 17978 and PAO1 strains, IL- 
 

191 6 and TNF-α levels at 24 h and 2 h post-infection were significantly higher in hypoxia 
 

192 (P<0.05), respectively (Fig. 4B). 
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193 In the sepsis model by ATCC 17978 strain, only IL-10 levels were significantly higher 
 

194 after 4 h infection in hypoxia (P<0.05). No differences were found in IL-6 or TNF-α 
 

195 levels, although they were slightly higher under hypoxia. No differences in cytokines 
 

196 levels were found at the animal time of death (Fig. 4C). In the pneumonia model by 
 

197 PAO1  strain,  IL-6  levels  were  significantly  higher  in  hypoxia  (P<0.05)  after  4 h 
 

198 infection. Again, no differences were found for IL-10 and TNF-α levels although they 
 

199 were rather higher under hypoxia (Fig. 4C). Contradictory to what we observed in the 
 

200 sepsis model, at the mice time of death, we observed lower IL-10 levels under hypoxia 
 

201 (P<0.05). Again, no differences were found in IL-6 or TNF-α levels, although they were 
 

202 slightly lower under hypoxia (Fig. 4C). 
 

203  
 

204 DISCUSSION 
 

205 To our knowledge, this is the first study that analyses in vitro and in vivo the effect of 
 

206 hypoxia during infection by A. baumannii and P. aeruginosa. We observed that hypoxia 
 

207 in vitro increases bactericidal activity of host cells, and reduce bacterial adherence and 
 

208 invasion. We also found that hypoxia in vivo diminish bacterial load in fluids and 
 

209 tissues, but mice survival time was shorter under hypoxia. 
 

210 We showed that hypoxia doesn’t affect the in vitro growth of A. baumannii and P. 
 

211 aeruginosa. However, it increases the bactericidal activity in epithelial and macrophage 
 

212 cells. The study of Peyssonnaux et al. showed that hypoxia modifies gene regulation in 
 

213 host cells and it increases the LL-37 cathelicidin levels, an antimicrobial peptide 
 

214 involved in the clearance of pathogens (12). Moreover, we see that hypoxia decreases 
 

215 the bacterial adherence to host cells. This effect might be due to the modification of cell 
 

216 or bacterial membrane under this condition. iTRAQ results confirmed that hypoxia 
 

217 downregulates 51 proteins in A. baumannii ATCC 17978, five of them are localized in 
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218 the outer membrane which could be involved in cell adherence due to the previous 
 

219 reports of their involvement in the bacterial adherence (29-33) 
 

220 Regarding to bacterial invasion, we observed differences in behavior between A. 
 

221 baumannii and P. aeruginosa under hypoxia. Our data showed a reduction in the P. 
 

222 aeruginosa internalization into epithelial and macrophages cells, confirming the results 
 

223 obtained in a previous study in which it is demonstrated that hypoxia decreases the P. 
 

224 aeruginosa internalization into A549 cells (34). However, A. baumannii internalization 
 

225 in both host cells is higher after 2 h under hypoxia, but it is reduced after 24 h. 
 

226 Consequently, hypoxia cannot stop the A. baumannii invasion during the first few hours 
 

227 of infection but it is finally hindered after 24 h. Therefore, we believe that hypoxia 
 

228 confers higher resistance against bacterial invasion to host cells in order to avoid an 
 

229 intracellular replication and the infection evolution. 
 

230 In the in vivo experiments, we observe that a lower bacterial inoculum is needed to 
 

231 cause 100% of mice mortality under hypoxia in the peritoneal sepsis model by A. 
 

232 baumannii. All infected mice presented bacteremia 4 h post-infection for the studied 
 

233 conditions. Moreover, we observe lower bacterial load in blood, PF lungs and spleen 
 

234 under hypoxia. We also show that maintaining animals 6 h under hypoxia before the 
 

235 infection is enough to reduce bacterial load at the time of death. These results are in 
 

236 accordance with a previous study in which the use of the compound AKB-4924, that 
 

237 increases HIF-1α levels, reduced bacterial loads recovered in a S. aureus skin infection 
 

238 model (35). Moreover, these results are in accordance with the in vitro adherence assays 
 

239 data. The increase of host cells bactericidal activity under hypoxia as well as a reduction 
 

240 of bacterial adherence could allow the immune system to eliminate the infection better. 
 

241 In the pneumonia model of infection by P. aeruginosa, we observed no differences in 
 

242 the inoculum needed to cause 100% of mortality between the studied conditions. 
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243 Bacteremia observed in mice 4 h post-infection was 44.44% and 61.11% for normoxia 
 

244 and hypoxia, respectively. The difference found in the bacteremia levels between both 
 

245 animal models is because the severity of the sepsis model (36,37). As in the sepsis 
 

246 model by A. baumannii, we observed lower bacterial load in fluids and tissues under 
 

247 hypoxia, and under hypoxia followed by normoxia, are in accordance with the in vitro 
 

248 results of adherence and invasion. Again, as in the sepsis animal model, survival time 
 

249 was longer under normoxia. 
 

250 In both animal models, HIF-1α levels were higher after 4 h under hypoxia, being the 
 

251 levels similar at the animal time of death regardless the studied conditions. These results 
 

252 are in accordance with the in vitro studies in which HIF-1α levels increased over time 
 

253 under hypoxia and then decreased 24 h after. We observed that A. baumannii causes an 
 

254 increase of HIF-1α levels compared to the control as what reported in another study in 
 

255 which infection with A. baumannii produced HIF-1α levels increase (4). In contrast, P. 
 

256 aeruginosa produces HIF-1α levels reduction under hypoxia compared to the control. 
 

257 This result could be explained because 2-alkyl-4-quinolone and Pseudomonas 
 

258 Quinolone Signal triggers the HIF-1α degradation through the 26S-proteasome 
 

259 proteolytic pathway, blocking the HIF-1α effect (38,39). 
 

260 As it is well defined in the literature, hypoxia regulates the immune response (20). In 
 

261 the A. baumannii sepsis model, we observed under hypoxia high IL-10 levels after 4 h 
 

262 infection. Meng et al. indicated that HIF-1α is involved in IL-10 production by B cells 
 

263 (40), and IL-10 is an anti-inflammatory cytokine that suppresses macrophage and 
 

264 dendritic cells function (41). In the P. aeruginosa pneumonia model, we detected high 
 

265 IL-6 levels 4 h post-infection under hypoxia. It has been showed that HIF-1α increase 
 

266 TNF-α and IL-6 levels (20,42). Moreover, IL-10 levels decreased under hypoxia in the 
 

267 pneumonia model by P. aeruginosa at the time of death. However, we did not find 
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268 differences in cytokines levels between hypoxia and normoxy neither in vitro nor in 
 

269 vivo. Therefore, we found that hypoxia has not a strong impact on cytokine production 
 

270 (20), being more important on the bactericidal activity of host cells and on the reduction 
 

271 of infection in animals. 
 

272 However, this study has some limitations. HIF-1α is a factor involved in multiple 
 

273 cellular pathways and its expression is also regulated by different proteins. Therefore, 
 

274 finding a clear correlation between hypoxia, HIF-1α expression, inflammatory 
 

275 responses and infection is complex, and multiple cellular processes have to be taken 
 

276 into consideration. 
 

277 In conclusion, hypoxia increases the bactericidal activity of host cells. In contrast, 
 

278 mortality in animals under hypoxia is faster even with a lower bacterial load in tissues 
 

279 and fluids. Moreover, we find that hypoxia has not a strong impact on cytokine 
 

280 production by both pathogens. Finally, despite both studied microorganism are close 
 

281 phylogenetically, they present slightly different behavior under hypoxia. 
 

282  
 

283 MATERIALS AND METHODS 
 

284 Bacterial strains and growth condition 
 

285 The wild-type strains A. baumannii ATCC 17978 and P. aeruginosa PAO1 were used. 
 

286 They were cultured at 37ºC overnight (160 rpm) in Mueller Hinton Broth (MHB) 
 

287 (Sigma, Spain). Cultured strains were washed with phosphate-buffered saline (PBS) and 
 

288 suspended  in  Dulbecco’s  modified  Eagle’s  medium  (DMEM)  before  their  use  in 
 

289 eukaryotic cell culture experiments (human lungs epithelial cell line A549 and  murine 
 

290 macrophage cell line RAW 264.7). 
 

291  
 

292 Growth curves analysis 
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293 The growth of A. baumannii ATCC 17978 and P. aeruginosa PAO1 strains under 
 

294 hypoxia (1% and 10% O2) and normoxia (21% O2) in static were monitored during 24 
 

295 h. Both strains were grown overnight in 20 ml of MHB, and a 1:10000 dilution was 
 

296 performed to obtain, approximately, 105 cfu/ml in a 40 ml culture of MHB (10% and 
 

297 21% O2 ) or DMEM (1% and 21% O2). Three replicates were performed in different 
 

298 days. 
 

299  
 

300 A549 and RAW 264.7 culture and infection 
 

301 Human lungs epithelial cell line A549 and murine macrophage cell line RAW 264.7 
 

302 were grown in DMEM containing 10% Fetal Bovine Serum (Gibco, Spain), 1% HEPES 
 

303 1M, vancomycin (50 mg/ml), gentamicin (20 mg/ml) and amphotericin B (0.25 mg/ml; 
 

304 Gibco), as previously described (43). In the case of hypoxia condition studies, cells 
 

305 were transferred to a hypoxia chamber (Coy Laboratories, USA) with a humidified 
 

306 atmosphere of 1% O2, 5% CO2 and the balance N2 at 37°C. Cells were seeded (105 
 

307 cells/well in a 24-well plate) for 30 h in 24-well plates before infection with A. 
 

308 baumannii ATCC 17978 or P. aeruginosa PAO1 at a multiplicity of infection (MOI) of 
 

309 500. To mimic hypoxia condition we treated the cells with 0.1 mM 
 

310 Dimethyloxaloylglycine (DMOG) (Sigma, Spain), an inhibitor of prolyl hydroxylases 
 

311 (44), 6 h prior bacterial infection and during infection. Immediately before the infection, 
 

312 A549 cells were washed thrice with PBS and incubated in supplemented DMEM. 
 

313  
 

314 HIF-1α measurement in cell cultures 
 

315 A549 and RAW 264.7 cells were seeded for 24 h in 6-well plates (106 cells/well). After 
 

316 6 and 24 h in hypoxia (1% O2) or normoxia condition, cells were washed thrice with 
 

317 PBS, harvested using cell scraper and homogenized in RIPA buffer supplemented with 
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318 1 mM phenylmethylsulfonyl fluoride and 10% cocktail of protease inhibitors (Sigma, 
 

319 Spain), and centrifuged at 13000g 4°C for 20 min. The supernatant was removed and 
 

320 the amount of proteins was determined using BCA assay (Promega, Spain). The 
 

321 samples were stored at -80°C. Forty µg of proteins of each sample was used to measure 
 

322 HIF-1α  levels  with  an  enzyme-linked  immunosorbent  assay  (ELISA)  kit (Thermo 
 

323 Fisher Scientific, Spain). 
 

324  
 

325 Bactericidal activity, bacterial adherence and bacterial invasion in cell cultures 
 

326 After A549 and RAW 264.7 cells infections with A. baumannii ATCC 17978 and P. 
 

327 aeruginosa PAO1 strains under hypoxia and normoxia conditions, extracellular medium 
 

328 was removed and serially diluted to determine bacterial concentration as previously 
 

329 described (45). 
 

330 Adherence and invasion assays were performed as previously described (45). To 
 

331 measure the number of adherent bacteria, cells were infected as mentioned before, and, 
 

332 after washing thrice with PBS, 200 µl of trypsin-EDTA (Gibco, Spain) was added for 5 
 

333 min at 37°C. Then, 200 µl of 0.5% Triton X-100 (Sigma, Spain) was added for 3 min. 
 

334 The invasion protocol included a treatment with  gentamicin 256 µg/ml (Gibco, Spain) 
 

335 before the addition of trypsin-EDTA. Diluted lysates were counted to determine the 
 

336 attached and internalized bacteria by A549 and RAW 264.7 cells. 
 

337 Every assay was performed three times in different days. In the case of invasion assay, 
 

338 four replicates were performed in different days. 
 

339  
 

340 Cytokine Assay 
 

341 Extracellular medium of infected A549 and RAW 264.7 cells with A. baumannii ATCC 
 

342 17978 and P. aeruginosa PAO1 strains under hypoxia and normoxia conditions were 
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343 collected and centrifuged at 5000g for 15 min at 4ºC. The supernatant was stored at - 
 

344 80ºC until analysis. TNF-α, IL-6 and IL-10 levels were measured in using an ELISA kit 
 

345 (Affymetrix eBioscience, USA), in accordance with the manufacturer’s instructions. 
 

346 Levels of pro- and anti-inflammatory cytokines (IL-6, IL-10 and TNF-α) in mice serum 
 

347 were measured by ELISA assays (Affymetrix eBioscience, USA). 
 

348  
 

349 iTRAQ assay 
 

350 We analyzed the differential protein expression profile between normoxia and hypoxia 
 

351 conditions in A549 cell infected by A. baumannii ATCC 17978. After 2 h infection, we 
 

352 collected the cells in a lysis buffer composed by 1 M Triethylammonium bicarbonate 
 

353 buffer (Sigma, Spain), 0.05% SDS, 1:100 phosphatase inhibitor cocktail (PhosSTOP 
 

354 EASYpack, Roche, Spain), 1:100 protease inhibitor cocktail (Complete Mini EDTA- 
 

355 free, Roche, Spain), and 0.002% benzonase (Novagen, USA). Pellet was separated from 
 

356 the supernatant and protein concentration was quantified by fluorimetry (Qubit life 
 

357 technology, USA). Samples were treated with 50 mM TCEP (AB Sciex, Spain) to 
 

358 reduce disulfide bonds and 200 mM MTTS (AB Sciex, Spain), and then they were 
 

359 digested with trypsin (Promega, Spain) at a 10:1 substrate:enzyme ratio at 37° 
 

360 overnight. We used an isobaric tag iTRAQ 8 plex (reporters at 113–119 and 121, AB 
 

361 Sciex, Spain). Samples were analyzed by nano-liquid chromatography (nano LC 100, 
 

362 Thermo Fisher Scientific, USA) and tandem mass spectrometry (Q Exactive Plus 
 

363 Orbitrap, Thermo Electron, USA). Protein identification was performed using Proteome 
 

364 Discoverer 1.4 (Thermo Fisher Scientific, USA). MS/MS fragmentation patterns were 
 

365 mapped against Uniprot database. We considered quantifiable proteins those that were 
 

366 identified through more than 2 peptides with a confidence level ≥ 95%, a P-value ≤ 
 

367 0.05, and an error factor < 2 with every reference tag. 
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368  
 

369 Animals 
 

370 Immunocompetent C57BL/6 male mice, weighing approximately 20 g (Production and 
 

371 Experimentation Animal Center, University of Seville, Seville, Spain) were used; they 
 

372 had a sanitary status of murine pathogen free and were assessed for genetic authenticity. 
 

373 Mice were housed in an individually ventilated cage system under specific pathogen- 
 

374 free conditions, and water and food supplied ad libitum. This study was carried out 
 

375 following the recommendations in the Guide for the Care and Use of Laboratory 
 

376 Animals. This study was carried out in strict accordance with Directive 2010/63/EU on 
 

377 the protection of animals used for scientific purposes. Experiments were approved by 
 

378 the Committee on the Ethics of Animal Experiments of the University Hospital of 
 

379 Virgen del Rocío of Seville, Spain (20-05-14-84). All procedures were performed under 
 

380 sodium thiopental (B. Braun Medical S.A., Spain) anesthesia, and all efforts were made 
 

381 to minimize suffering. 
 

382  
 

383 Experimental models. 
 

384 Both models of infection were carried out under the following conditions: i) hypoxia 
 

385 (10% O2), ii) normoxia and iii) six hours under hypoxia followed by normoxia. The 
 

386 minimum lethal doses (MLD) were calculated for A. baumannii and P. aeruginosa 
 

387 under hypoxia and normoxia conditions. Briefly, groups of 6 mice were inoculated 
 

388 intraperitoneally (ip.) for A. baumannii and intratracheally for P. aeruginosa with 
 

389 increasing concentrations until reaching 100% mortality, of each pathogen and the 
 

390 survival rate was monitored for 7 days. For the hypoxia condition studies, mice were 
 

391 maintained  in  a  hypoxic  chamber  (Coy  Laboratories,  USA)  with  a  humidified 
 

392 atmosphere of 10% O2 (standard hypoxic condition) 6 h prior the infection and until the 
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393 animal death or the end of the experiment. In the experiments in which mice were 6 h 
 

394 under hypoxia followed by normoxia, the animals were maintained in a hypoxic 
 

395 chamber during 6 h prior the infection, and placed outside normoxia until the end of the 
 

396 experiment or the animal death. The same conditions were used with control mice (not 
 

397 infected). 
 

398 To evaluate pneumonia, after 4 h of infection and at the time of death, lungs were 
 

399 aseptically extracted, fixed in 10% formalin and embedded in paraffin wax. Serial 
 

400 sections (3 μm) were cut onto glass slides and stained with hematoxylin and eosin. 
 

401 A N of no more than 5 mice per condition was performed in different weeks to 
 

402 reproduce the experimental models results. 
 

403 (i) Experimental murine model of peritoneal sepsis. A previously characterized 
 

404 murine peritoneal sepsis model by A. baumannii was used (36). Briefly, animals were 
 

405 inoculated i.p. with 0.5 ml of MLD100, mixed 1:1 with a saline solution containing 10% 
 

406 (wt/vol) mucin from porcine stomach Type II (Sigma, Spain). 
 

407 After 4 h of infection, a group of 34 mice (17 under hypoxia and 17 under normoxia) 
 

408 were sacrificed by i.p. injection of sodium thiopental (200 µl; Braun Medical, USA) and 
 

409 analyzed, and 48 mice (21 under normoxia, 22 under hypoxia and 5 under 6h hypoxia + 
 

410 normoxia) were analyzed at the time of death. Survival rates were recorded under 
 

411 hypoxia and normoxia conditions. Bacteremia was evaluated, both qualitatively and 
 

412 quantitatively after the animal’s death. For qualitative analysis, the blood was 
 

413 inoculated into sterile tubes with 1 ml of MHB and incubated for 24 h at 37ºC, and then 
 

414 10 µl was plated on sheep blood agar. To evaluate quantitatively the bacteremia (log10 
 

415 cfu/ml), blood was serially diluted and plated on sheep blood agar. Finally, bacterial 
 

416 load was quantified in spleen and lungs. Briefly, organs were aseptically removed and 
 

417 homogenized (Stomacher 80; Tekmar Co.) in 2 ml of sterile 0.9% NaCl solution. Serial 
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418 dilutions of the homogenized organs were plated on sheep blood agar for quantitative 
 

419 cultures (log10 cfu/g). Finally, bacterial concentration in peritoneal fluid was also 
 

420 determined by injecting 2 mL of sterile 0.9% NaCl solution i.p. and, after a brief 
 

421 massage on the abdomen, peritoneal lavage was collected and plated on sheep blood 
 

422 agar (log10 cfu/mL). HIF-1α levels in mice serum were measured by ELISA assays 
 

423 (MyBioSource, USA). 
 

424  
 

425 (ii) Pneumonia model. A previously characterized pneumonia model by P. aeruginosa 
 

426 (46) was used as follows: anesthetized mice (thiopental at 5% [wt/vol], i.p.) were 
 

427 infected by intratracheal instillation, using 50µL of the MLD100 calculated previously. 
 

428 Mice remained in a vertical position for 3 min and then resting at 30º positions until 
 

429 they awakened. After 4 h of infection, 36 mice (18 under normoxia and 18 under 
 

430 hypoxia) were sacrificed (sodium thiopental, Braun Medical, USA) to be analyzed and 
 

431 46 mice (20 under normoxia, 18 under hypoxia and 8 under 6 h hypoxia + normoxia) 
 

432 were analyzed at the time of death. Survival rates were analyzed for the different 
 

433 conditions. Bacteremia, bacterial load in blood and tissue (spleen and lungs) were 
 

434 performed as described above. HIF-1α levels in mice serum were measured by ELISA 
 

435 assays (MyBioSource, USA). 
 

436  
 

437 Statistical analysis 
 

438 Statistical analyses were performed using the IBM SPSS Statistics 22 software program. 
 

439 Tests used included ANOVA (bacterial counts in tissues and fluids and mortality time), 
 

440 Chi-square test (bacteremia), and when required Dunnett’s and Tukey post-hoc tests and 
 

441 Student's t-test (bacterial counts in vitro, cytokines and HIF-1α levels). A P-value <0.05 
 

442 was considered significant. 
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613 Figure 1. A) Growth curves of A. baumannii ATCC 17978 and P. aeruginosa PAO1 
 

614 strains under normoxia and hypoxia (10% and 1% O2). N=3 B) Measurement of 
 

615 bacterial concentration (%) in the extracellular medium after 2 and 24 h of A549 and 
 

616 RAW 264.7 infection by A. baumannii ATCC 17978 strain under normoxia, hypoxia 
 

617 (1% O2) and treated with 0.1 mM DMOG. N=3 ***: P<0.001; *: P<0.05 Hypoxia vs. 
 

618 Normoxia at 2 or 24 h and Normoxia + DMOG vs. Normoxia at 24 h. Normoxia + 
 

619 DMOG vs. Normoxia at 24 h. C) Measurement of bacterial concentration (%) in the 
 

620 extracellular  medium  after  2  and  24  h  of  A549  and  RAW  264.7  infection  by P. 
 

621 aeruginosa PAO1 strain under normoxia, hypoxia (1% O2) and treated with 0.1 mM 
 

622 DMOG. N=3 **: P<0.01; ***: P<0.001 Hypoxia vs. Normoxia at 2 or 24 h and 
 

623 Normoxia + DMOG vs. Normoxia at 24 h. 
 

624  
 

625 Figure 2. A) Measurement of bacterial adherence (%) after 2 and 24 h of A549 and 
 

626 RAW 264.7 infection by A. baumannii ATCC 17978 strain under normoxia and 
 

627 hypoxia (1% O2). N=3 *: P<0.05 and ***: P<0.001 Hypoxia vs. Normoxia at 2 or 24 h. 
 

628 B) Measurement of bacterial adherence (%) after 2 and 24 h of A549 and RAW 264.7 
 

629 infection by P. aeruginosa PAO1 under normoxia and hypoxia (1% O2). N=3 ***: 
 

630 P<0.001 Hypoxia vs. Normoxia at 2 or 24 h. C) Measurement of bacterial 
 

631 internalization (%) after 2 and 24 h of A549 RAW 264.7 infection by A. baumannii 
 

632 ATCC 17978 strain under normoxia and hypoxia (1% O2). N=4 ***: P<0.001 Hypoxia 
 

633 vs. Normoxia at 2 h or 24 h. D) Measurement of bacterial internalization (%) after 2 and 
 

634 24 h of A549 RAW 264.7 infection by P. aeruginosa PAO1 strain under normoxia and 
 

635 hypoxia (1% O2). ***: P<0.001 Hypoxia vs. Normoxia at 2 h or 24 h. N=4 
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636 Figure 3. A) Analysis of survival time in the sepsis model by A. baumannii ATCC 
 

637 17978 strain (P<0.001 Hypoxia vs. Normoxia) and in the pneumonia model by P. 
 

638 aeruginosa PAO1 strain under normoxia, hypoxia (10% O2), and 6 h of hypoxia (10% 
 

639 O2) + normoxia (P<0.01 Hypoxia vs. Normoxia; P<0.05 6 h Hypoxia + Normoxia vs. 
 

640 Normoxia).  B)  HIF-1α  levels  (pg/mL)  in  mice  serum  in  the  sepsis  model  by  A. 
 

641 baumannii  ATCC 17978 strain and in the pneumonia  model by  P. aeruginosa PAO1 
 

642 strain at 4 h after infection and at the time of death under normoxia and hypoxia (10% 
 

643 O2). 
 

644 
 

645 Figure 4. A) Cytokines levels (pg/mL) in the extracellular medium of A549 infections 
 

646 by A. baumannii ATCC 17978 and P. aeruginosa PAO1 strains after 2 and 24 h under 
 

647 normoxia  and  hypoxia  (1%  O2).  B)  Cytokines  levels  (pg/mL)  in  the extracellular 
 

648 medium of RAW 264.7 infections by A. baumannii ATCC 17978 and P. aeruginosa 
 

649 PAO1 strains after 2 and 24 h under normoxia and hypoxia (1% O2). C) Cytokines 
 

650 levels (pg/mL) in mice serum in the sepsis model by A. baumannii ATCC 17978 strain 
 

651 and in the pneumonia model by P. aeruginosa PAO1 strain. *: P<0.05. 
 

652  
 
 

653  
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654 Table 1. Bacterial load in fluids and tissues in the sepsis model by A. baumannii ATCC 17978 strain. 

 
 4h   Time of death  

Bacterial load N  H N H H (6 h) + N 

Log10 cfu/g spleen 3.98 ± 0.30 
 

3.88 ± 0.23 8.79 ± 0.56 8.32 ± 0.71 7.90 ± 0.30 d 

Log10 cfu/g lungs 4.07 ± 0.53 
 

4.07 ± 0.70 9.36 ± 0.35 8.25 ± 0.54 b 8.32 ± 0.46 d 

Log10 cfu/mL PF 4.06 ± 1.29 
 

3.72 ± 1.15 9.31 ± 0.33 8.88 ± 0.53 a 8.75 ± 0.33 d 

Log10 cfu/mL blood 3.19 ± 0.42 
 

3.18 ± 0.28 8.40 ± 0.56 7.73 ± 0.20 c 7.85 ± 0.32 

Bacteriemia, % 100 
 

100 100 100 100 

655 N: Normoxia; H: Hypoxia; PF: peritoneal fluid 
 

656 a P<0.05, H vs. N at the time of death 

657 b P<0.001, H vs. N at the time of death 

658 c P<0.01, H vs. N at the time of death 

659 d P<0.05, H (6 h) + N vs. N at the time of death 
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660 Table 2. Bacterial load in fluids and tissues in the pneumonia model by P. aeruginosa PAO1. 

 
  4h   Time of death  

Bacterial load N  H N H H (6 h) + N 

Log10 cfu/g spleen 2.64 ± 0.69 
 

3.10 ± 0.80 6.96 ± 0.57 5.27 ± 0.60 a 6.60 ± 0.34 

Log10 cfu/g lungs 7.77 ± 0.61 
 

7.79 ± 0.42 9.81 ± 0.45 9.04 ± 0.58 a 9.79 ± 0.27 

Log10 cfu/ml blood 0.26 ± 0.36 
 

0.99 ± 0.84 7.90 ± 0.67 5.66 ± 0.78 b 6.30 ± 0.46 c 

Bacteriemia, % 44.44 
 

61.11 100 100 100 

661 N: Normoxia; H: Hypoxia 
 

662 a P<0.001, H vs. N at the time of death 
 

663 b P<0.01, H vs. N at the time of death 
 

664 c P<0.05, H (6 h) + N vs. N at the time of death 
 

665  
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CHAPTER III. ARTICLE III.  

PREDICTIVE VALUE OF APACHE II, AND SERUM LACTATE, PYRUVATE, IL-10 

AND LYSOPHOSPHATIDYLCHOLINE LEVELS ON SURVIVAL IN PATIENTS 

WITH SEPTIC SHOCK. 

Sepsis is a heterogeneous life-threatening condition caused by an exacerbated systemic 

inflammatory response [1]. The immune system arises a local inflammatory process in 

response to infection, but when the auto-regulation fails and systemic inflammation occurs, 

the infection converted to sepsis or septic shock [2]. Septic shock is a common condition in 

patients with other underlying diseases [3]. It is a clinical syndrome in which patients present 

a sepsis with hypotension that persists after resuscitation with intravenous fluid [2], an 

inadequate tissue perfusion [4] and profound hemodynamic alterations such as hypovolemia, 

decrease in vascular tone and myocardial depression [5]. Hypovolemia and hypoperfusion 

lead to an imbalance between the delivery and demand for oxygen and other substrates, 

inducing a tissue hypoxia and a cellular and organ injury. The cellular injury induces an 

increased activation of the innate immune response and a release of inflammatory mediators 

that further compromise perfusion through changes in the microvasculature. All these 

alterations finally cause a multiorgan failure that lead to death [4]. Thereby, severity of these 

alterations is associated with increased mortality [5]. 

In the United States in 2003, sepsis incidence was 50-95 cases per 100000 every year [6] and, 

in 2015, the incidence had reached 535 cases per 100000 every year, and it is still increasing 

[7]. In 9% of patients, sepsis progress to severe sepsis, and 3% of those ends up with septic 

shock [8]. The mortality rate in patients with septic shock decreased from 62% in the early 

1990s to 56% in 2000 [9] and it varies from 35-70% depending on different factors (age, sex, 

underlying disorders, among others) [2, 10]. 
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It was concluded in a study in 2000 that goal-directed therapy at the earliest stages of septic 

shock has significant benefits [11]. Nowadays, the laboratory parameters used are often late 

signs associated with organ dysfunction and a higher mortality rate [12]. Thereby, there is a 

demand for better biomarkers to improve the diagnosis and evolution of septic shock, to 

determine the severity of the disease and to know the patient prognosis, which will allow 

applying a more accurate treatment.  

Multiple studies have investigated about potentially useful sepsis markers such as IL-6, IL-8, 

procalcitonin (PCT) [13], lysophosphatidylcholine (LPC) [14], sTREM-1, CD64 expression 

on polymorpfonuclear leukocytes (PMNs) [15], and lactate [16]. All this biomarkers have 

shown a modest discriminative value, but CD64 expression on PMNs [15] and lactate [16], 

and there are contradictory results on the diagnostic accuracy of PCT [13, 17, 18]. Lactate 

concentration is a marker of tissue hypoperfusion and hypoxia, but it can be a consequence of 

other alterations. Hence, several studies propose to measure lactate clearance [19] or the 

lactate/pyruvate ratio to discriminate hypoxic from non-hypoxic lactate [20, 21]. A study 

showed that persistent hyperlactatemia together with an augmented Pv-aCO2/Ca-vO2 ratio 

was associated with poor outcomes during the initial phases of septic shock [22]. 

Septic shock patients present a severe tissue hypoxia [23], which seems to modulate bacterial 

virulence through the hypoxia-inducible factor-1 (HIF-1). HIF-1 is a heterodimeric molecular 

key regulator (HIF-1α and HIF-1β) which activates gene expression in response to hypoxemic 

or inflammatory conditions allowing immune cells to function under low oxygen 

concentration [24, 25]. Thereby, HIF-1α might be a good marker to determine patient´s 

outcome in septic shock. 

The aim of the present study was to prospectively evaluate the association of regional oxygen 

saturation index, acid-base balance, HIF-1, inflammatory biomarkers - including cytokines, 
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procalcitonin and lysophosphatidylcholine blood levels, and HLA-DR expression in 

circulating monocytes with the survival in adult patients with septic shock. 

 

Materials and Methods 

Study Population 

Clinical prospective and observational study in 20 adult patients (≥ 18 years old) with septic 

shock [31], who were hospitalized in the Intensive Care Unit (ICU) of the University Hospital 

of Virgen del Rocio, Seville, Spain, from September 2014 to May 2016. Patients with 

advanced chronic diseases (heart failure, chronic obstructive pulmonary disease, liver 

cirrhosis), neutropenia (< 500 cells/µl), advanced, metastatic or disseminated solid neoplasms, 

chronic immunosuppression, pregnancy, or requiring red blood cells transfusion by the 

underlying disease at the time of inclusion were excluded. A group of ten healthy adult 

volunteers was included in the study as control group. The study was approved by the Ethics 

Committee, and patients and control individuals signed an informed consent before inclusion. 

Data collection 

Patients were followed up for 7 days since inclusion. Arterial and venous blood samples were 

drawn every 12 hours the first day and daily until day 3rd to immediately determine the pH, 

base deficit, oxygen saturation, and lactate concentration (ABL80 Basic FLEX, Radiometer, 

Copenhagen, Denmark). Tissue hypoxia (regional oxygen saturation index) was monitored by 

noninvasive near infrared spectroscopy (NIRS) at the same time-points (Somanetics 

Corporation, Troy, Michigan) in the thenar eminence. At inclusion, 3rd and 7th days, venous 

blood samples were obtained to determine pyruvate, IL-6, IL-10, TNF-α, HIF-1α, PCT, LPC 

and HLA-DR in circulating monocytes.  
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Patient charts were review to collect demographics data and chronic underlying diseases 

(Charlson Comorbidity Index) [26], acute severity scores (SOFA and APACHE II) [27, 28], 

source of infection, etiology, presence of bacteremia, C-reactive protein (CRP) levels, total 

leukocytes and neutrophils counts, and antimicrobial and support treatments. Survival or 

death were recorded during 30 days after inclusion. Death was as related to septic shock if 

occurred before its resolution; otherwise, was considered unrelated. 

Measurements of variables levels 

Venous blood samples were obtained (EDTA tube and serum-separating tube) at inclusion, 3rd 

and 7th days, and centrifuged at 4 °C; serum was aliquoted and stored at 80 °C until the day of 

assays. IL-6, IL-10, TNF-α, HIF-1α, PCT and LPC serum levels were determined using 

commercial assays. IL-6, IL-10 and TNF-α levels were measured using enzyme-linked 

immunosorbent assay (ELISA) test (eBioscience, Vienna, Austria). HIF-1α levels were 

determined by Sandwich-ELISA Kit (MyBioSource, San Diego, CA, USA). LPC was 

measured by Azwell LPC Assay Kit (Alfresa Pharma Corporation, Osaka, Japan). LPC was 

hydrolyzed with lysophospholipase, followed by glycerophosphorylcholine phosphodiesterase 

and choline oxidase, and hydrogen peroxides were colorimetrically measured in the presence 

of peroxidase. Serum PCT concentrations were measured in duplicates in accordance with the 

manufacturer's instructions (Roche Diagnostic, Basel, Switzerland). 

Pyruvate levels and HLA-DR in circulating monocytes were determined in whole blood. 

Pyruvate levels were determined using commercial Pyruvate Assay Kit (Cayman Chemical 

Company, Ann Arbor, Michigan). HLA-DR expression in circulating monocytes was 

measured by flow cytometric assay [29]. The used surface markers were FITC anti-Human 

HLA-DR, APC anti-Human CD56 and PerCP anti-Human CD14 (BioLegend, San Diego, 

California). 
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Statistical Analyses 

Values were expressed as % or as the median and interquartile range in the continuous 

variables, and the 95% confidence interval [95% CI] when required. Comparison of patient 

and control groups medians differences was done by nonparametric Mann-Whitney U Test. 

Comparison of variables medians in different days in patients was done by nonparametric 

Wilcoxon signed-rank test. Sensitivity, specificity, and positive and negative predictive values 

(PPV and NPV) of each parameter were calculated according to standard methods [30]. 

Binary logistic regression analysis was applied to obtain a model equation that includes the 

chosen clinical parameters. This logistic regression analysis was used after to obtain a 

Receiver Operating Characteristic (ROC) curve with a combination of variables. IBM SPSS 

Statistics 22 statistical software program was used for data processing and analyses. Statistical 

significance was set at a p-value <  0.05. 

 

Results  

Demographics and clinical characteristics of septic shock patients 

We prospectively included 20 adults ICU patients meeting the criteria for septic shock and 

tissue hypoxia. Demographics, underlying diseases and clinical and laboratory data referred to 

the current infections, severity, and septic shock episodes are in Table 1 and 2. Basal values of 

severity at inclusion were APACHE II (22.50 points [17.25-31.00]) and SOFA (9.50 points 

[8.25-12.75]). Regional oxygen saturation index was 59.50% [54.25-68.50]. Twelve patients 

had had major surgery (60%) previously. Most sources of infection was the intra-abdominal 

space (n = 16), with two respiratory tract and skin and soft tissue infections each. Etiology of 

infection was identified in 15 (75%) patients, and two of them had bacteremia. Six patients 

died during the follow up of 7 days; the overall 30-days mortality was 55%. 
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Demographics of healthy adult controls 

Ten healthy adult volunteers were included in the study as controls to obtain reference values 

of non-standard determinations (pyruvate, HIF-1α, LPC, PCT, and HLA-DR on circulating 

monocytes). Age was 58 years [36.5-60.25] and four individuals were female (40%). Table 1 

shows demographics data.  

Acid-base balance, inflammatory biomarkers, and hypoxia-inducible factor-1 at inclusion 

and the 7-days follow up 

Clinical data and data of the different biomarkers at the basal and follow up time-points are in 

Table 2. Patients had increased levels of leukocytes, neutrophils, CRP and lactate compared to 

normal physiological levels on the day of inclusion. These levels decreased during the 7 days 

follow up. Moreover, patients had lower basal venous pH levels, increasing over time until 

reach normal levels. Pyruvate levels were higher than in controls on the day of inclusion and 

they were decreasing during the 7 days, but they didn’t reach control levels. In contrast, levels 

of HLA-DR on circulating monocytes in patients were 1.48 times lower than in controls on 

the day of inclusion and they diminished at the day 3rd and increased at the day 7th, but they 

were still lower than in controls. IL-6 and IL-10 levels in patients were much higher than in 

controls on the day of inclusion with marked reduction at day 3rd by 22.22 and 2.59 times, 

respectively. TNF-α values were undetectable in 19 patients who received glucocorticoids 

before the blood collection; in the remaining was 2864.62 pg/ml. PCT levels were higher in 

patients than in controls, with high variability among patients (range 1.31-284 ng/ml). LPC 

levels were lower in patients than in control and they increased on the day 3rd. Finally, levels 

of HIF-1α were higher in patients than in controls due to the tissue hypoxia they suffered and 

the maximum levels were reached on day 3rd.  
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Variables differences between survivors and non-survivors 

The objective of the study was to early identification of parameters predicting the patient 

survival. Among all studied variables, those that presented a significant difference between 

survivors from non-survivors were APACHE II, lactate, pyruvate, IL-6, IL-10 and LPC (Fig. 

1). As we were interested in an early prediction of the outcome, we discarded IL-6 because 

the difference was on the day 7th. The other variables did not show differences between 

survivors and non-survivors, including the HIF-1α levels and regional oxygen saturation.  

Discriminative power of clinical, metabolic and inflammatory biomarkers to predict 

survival 

To assess the discriminative value of clinical, hypoxia and acid-base data, and inflammatory 

biomarkers, we obtained the ROC curves of those variables that showed significant 

differences between survivors and non-survivors (Fig. 2A and 2B). Lactate at day 3rd yielded 

the highest discriminative value, with an area under the curve (AUC) of 0.90 (95% CI 0.73 to 

1.00; p < 0.05), followed by APACHE II at day 3rd (AUC, 0.84; 95% CI, 0.65-1.00; p < 0.05), 

basal lactate (AUC, 0.82; 95% CI, 0.62-1.00; p < 0.05) and LPC at day 3rd (AUC, 0.82; 95% 

CI, 0.58-1.00; p < 0.05) (Fig. 2A and 2B). The discriminative values of the other variables are 

in Table 3), including the cutoff points for all the parameters to obtain the highest possible 

values for sensitivity and specificity. 

Taking all these data into account, it is possible to make combinations of parameters to obtain 

better results of sensitivity and specificity, and therefore, better positive and negative 

predictive values. This approach may increase the clinical usefulness of these biomarkers. 

Thus, we evaluated the combination of these clinical and biological variables as predictors of 

survival using binary logistic regression and AUC analysis. The best combinations were basal 

APACHE II (x1), lactate (x2) and pyruvate (x3) (AUC, 0.91; 95% CI, 0.78-1.00; p < 0.01), 
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(Fig. 2C) and basal APACHE II (x1), lactate (x2), pyruvate (x3) and IL-10 (x4) (AUC, 0.90; 

95% CI, 0.76-1.00; p < 0.01) (Fig. 2D). The figures show the equations that include the 

chosen parameters to obtain a coefficient and determine the patient outcome depending on the 

selected cutoff. The best cutoff derived from the ROC curves for the first combination was > 

0.25 (sensitivity = 100%, specificity = 72.7%, PPV = 75% and NPV = 100%) and for the 

second combination was > 0.26 (sensitivity = 100%, specificity = 72.7%, PPV = 75% and 

NPV = 100%). Both combinations increase the results of sensitivity, specificity, and positive 

and negative predictive values. 

 

Discussion   

The results of the present study show that APACHE II score and several biological 

parameters, as lactate, pyruvate, IL-10 and LPC serum levels, have an early significant 

difference between survivors and non-survivors in patients with septic shock. Additionally, 

we explore if the combination of clinical data and biological variables was better in predicting 

the of survival of septic shock patients. Using a binary logistic regression and AUC analysis 

we found that the combinations of APACHE II, lactate and pyruvate and that of APACHE II, 

lactate, pyruvate and IL-10, with cutoffs derived from the ROC curves > 0.25 and > 0.26, 

respectively, have a negative predictive value for survival of 100%, with a sensitivity of 

100%. 

Critical care attending physicians have a variety of data that may serve as a guide in 

discriminating the outcome in newly admitted septic shock patients. Discrimination between 

infectious (sepsis) and non-infectious conditions (systemic inflammatory response syndrome, 

SIRS) is better stablished, with the general acceptation of PCT (cutoff of 0.5-1.1 ng/ml) and 

SOFA (cutoff of 2) as the best markers [13, 31, 32]. However, nowadays, there is not a 
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defined protocol to predict septic shock patients’ outcome. The Third International Consensus 

Definitions for Sepsis and Septic Shock (Sepsis-3) in 2016 agreed that 3 variables 

(hypotension, elevated lactate level, and a sustained need for vasopressor therapy) should be 

test in cohort studies, exploring alternative combinations and different lactate thresholds [32]. 

Two different studies reported that the combination of hypotension, vasopressor use, and 

lactate level greater than 2 mmol/L identified patients with mortality rates of 54% at 

University of Pittsburgh Medical Center and 35% at Kaiser Permanente Northern California. 

Therefore, it is necessary to look for new better predictor variables. Some studies propose 

serum PCT on day 5th as a biomarker to identify the clinical outcome of sepsis patients [33-

35]. However, our study shows that PCT on the day of inclusion was not a good biomarker 

because there was a high variability between patients, and no difference between survivors 

and non-survivors. Moreover, our objective was to find an early biomarker due a recent study 

showed that the crude mortality rate of septic shock patients is 32% within the first 3 days of 

ICU admission [36].  

The parameters that presented an early significant difference between survivors and non-

survivors in our study were APACHE II score and lactate, pyruvate, IL-10 and LPC serum 

levels. APACHE II has shown to be a good predictor for hospital mortality in ICU patients 

[37], and our data confirms it. Higher APACHE II score on the 3rd day indicate a worse 

prognostic in septic shock patients. Lactate and pyruvate are important parameters because 

they are associated to tissue hypoxia, as we confirmed in our results. Septic shock patients had 

increased HIF-1α levels, which have been shown to promote cell survival under hypoxia by 

switching metabolism from oxidative to glycolytic, increasing the flux of glucose to pyruvate 

[38], which explain why the patients had increased levels of pyruvate compared to controls. 

Pyruvate is transformed in lactate through anaerobic metabolic pathways causing a lactic 

acidosis in these patients. It is not known if lactic acid has beneficial or negative effects. A 
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study showed that lactic acid provoked an increase in TNF-α release in LPS-stimulated 

peritoneal macrophages [39]. On the other hand, other studies have shown that lactate based 

dialysis solutions decrease TNF-α synthesis and release [40, 41]. Experiments in LPS-

stimulated RAW 264.7 murine macrophages showed that the pH of the cell culture medium 

alters the release of inflammatory mediators, and acid lactic had anti-inflammatory effect 

reducing IL-6 and IL-10 expression [42]. Therefore, acidosis may have beneficial effects, but 

data from clinical studies are very limited. However, our results showed that non-survivors 

had higher lactate levels on the day of inclusion and on the 3rd day (and higher pyruvate levels 

on the day of inclusion), indicating a negative outcome effect. Although septic shock patients 

had higher HIF-1α levels compared to control, we have demonstrated that it is not a 

biomarker predicting the survival prognosis. 

Recent evidences indicate that increased production of pro- and anti-inflammatory cytokines 

may be used as a marker of poor outcome in septic patients. In fact, IL-10 levels are 

associated with mortality in these patients (non-survivors had higher levels of IL-10) [43-46]. 

It seems that patients with septic shock release more IL-10 from monocytes when TNF-α 

release is down-regulated, what happens in our study probably by the glucocorticoid therapy 

[47]. This persistent release causes an impairment of monocyte proinflammatory cytokine 

release and immune dysfunction [48]. Therefore, observing high levels of IL-10 in serum may 

reflect the immunosuppressive state in these patients and poorer outcomes. In our study, we 

observed higher levels of basal IL-10 in non-survivors compared to survivors, indicating the 

excellent prognostic value of this parameter. An important immunomodulatory molecule is 

LPC, which is generated by inflammatory lipases and involved in immune cell recruitment 

and stimulation [14, 49]. It is an inflammatory lipid mediator in the septic process because it 

has a pro-inflammatory effect and promotes an excessive immune response [50]. Recent 

reports showed that LPC levels on the 7th day [51] and on the days 4th and 11th [52] in patients 
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with severe sepsis or septic shock was lower in non-survivors than in survivors. Here we have 

demonstrated that LPC level already on day 3rd may be a useful prognostic marker for septic 

shock patients. 

In this study we show several useful parameters to predict the survival outcome in patients 

with septic shock. A combination of these parameters allows to obtain a better prognostic 

value. Thus, the combinations of basal APACHE II score and basal lactate and pyruvate 

levels (related variables), with or without IL-10, have achieved the best results. 

 

Conclusion 

In summary, we have shown in this prospective and observational clinical study that basal 

APACHE II score, lactate, pyruvate and IL-10 levels, and APACHE II score, lactate and LPC 

levels on day 3rd have a good ability to discriminate between survivors and non-survivors 

alone. However, we propose the combination of basal APACHE II score, and serum lactate 

and pyruvate levels, which strongly predict the survival outcome of septic shock patients and 

they are parameters widespread used in the current clinical setting. Previous studies usually 

just focus on biomarkers to predict the outcome of septic shock. However, we propose a 

scoring system using a combination of biomarkers plus a clinical score which is an innovative 

approach. A positive correlation was also established between the values of lactate and 

pyruvate.  
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Table 1. Demographics and clinical data of Septic Shock Patients at inclusion and the 7-
days follow up and Controls. 

 Patients (n = 20) Controls (n = 10) 

Age (yr.) 67 [57.30-74.50] 58 [36.50-60.25] 

Female sex, n (%) 7 (35%) 4 (40%) 

Charlson Index 1.50 [0.00-3.00]  

Source on infection   

         Intra-abdominal space 16 (80%)  

         Community-acquired pneumonia 2 (10%)  

         Skin and soft tissue infection 2 (10%)  

Etiology   

Enterobacteriaceae a 8 (40%)  

Stenotrophomonas maltophilia  1 (5%)  

Bacteroides thetaiotaomicron 1 (5%)  

Clostridium spp. b 2 (10%)  

Aeromonas veronnii 1 (5%)  

Enterococcus ssp. c 2 (10%)  

Staphylococcus aureus 1 (5%)  

Candida albicans  1 (5%)  

Mixed infections  5 (25%)  

No isolates 5 (25%)  

Bacteremia d 2 (10%)  

Appropriate antimicrobial therapy e 10/15 (66.67%)  

Mechanical ventilation e 20 (100%)  

Vasopressor therapy (noradrenalin) e 20 (100%)  

Glucocorticoid therapy e 19 (95%)  

Death at 7-days 6 (30%)  

Death at 30-days 9 (45%)  
All data expressed as percentage or median and interquartile range. 
a Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae; b C. hathewayi, C. 
inocuum, c E. faecium, E. faecalis d E. coli, Clostridium tertium. e In the first 24 hours 
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Table 2. Clinical severity data, acid-base balance, hypoxia-inducible factor-1, and 
inflammatory biomarkers at inclusion and the 7-days follow up. 

 Control Basal Day 3 Day 7 p-value 

SOFA (points) - 9.50  
[8.25-12.75] 

7.00  
[2.50-11] 

2.00  
[1.00-5-50] 

p < 0.05b  
p < 0.01c 

APACHE II 
(points) - 22.50  

[17.25-31.00] 
12.00  

[9.50-19.50] 
12.00  

[5..0-15.00] 

  p < 0.001a  
p < 0.05b  

  p < 0.001c 

Arterial SatO2 
(%) - 96.75 

[95.45-98.05] 
96.28 

[94.21-98.35] - - 

rSatO2 (%) d - 58.55  
[51.94-65.16] 

66.40  
[61.91-70.89] - p < 0.01a 

Lactate 
(mmol/l) 

1.80  
[1.58-2.63] 

3.65  
[2.25-5-23]* 

1.30  
[1.00-2-00] -   p < 0.001a 

Pyruvate (µM) 8.11  
[0.00-15.34] 

125.52  
[71.14-

154.05]*** 

49.75  
[30.08-83.26]*** 

46.39  
[26.28-84.67]** 

p < 0.01a  
p < 0.01c 

Venous Ph 7.33  
[7.25-7.36] 

7.31  
[7.25-7.37] 

7.38  
[7.35-7.40]]** - p < 0.05a 

CRP (mg/l) - 278.25  
[186.63-376.90] 

218.50  
[113.35-321.00] 

189.65  
[127.50-259.55] p < 0.05a 

Leukocytes 
(1000 cells/µl) - 16.56  

[5.13-20.52] 
12.85  

[10.65-20.93] 
14.01  

[10.77-16.94] - 

Neutrophils 
(1000 cells/µl) - 13.10  

[4.33-19.35] 
10.70  

[8.95-18.15] 
11.70  

[8.68-14.55] - 

HIF-1α (pg/ml) 115.08  
[23.97-449.58] 

443.18  
[116.44-715.72] 

448.54  
[311.65-654.56]* 

348.15 
[158.07-534.34] NS 

IL-6 (pg/ml) 0.14  
[0.00-0.39] 

713.48  
[28.58-

1102.82]*** 

32.11  
[1.12-125.55]** 

27.63  
[4.55-54.21]*** 

  p < 0.001a  
p < 0.05b  

  p < 0.001c 

IL-10 (pg/ml) 0.00  
[0.00-1.48] 

46.15  
[19.31-

234.38]*** 

17.84  
[6.50-39.85]*** 

3.52  
[0.35-11.69]* 

p < 0.05a  
p < 0.05b  
p < 0.05c 
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HLA-DR (%) 88.09 
[80.19-95.99] 

59.14 
[47.20-71.09]** 

33.64 
[22.86-44.43]*** 

44.19 
[31.29-57.10]*** p < 0.05a 

PCT (ng/ml) 0.03  
[0.02-0.05] 

47.09  
[22.88-

113.56]*** 
- - - 

LPC (µM) 
203.37  

[158.80-
240.65] 

24.35  
[18.24-34.95]*** 

54.74  
[30.06-63.36]*** - p < 0.05a 

All data expressed as percentage or median and interquartile range. 
a Basal data vs. day 3 data comparison; b Day 3 data vs. day 7 data comparison; c Basal data vs. 
day 7 data comparison. Wilcoxon signed-rank test; d rSatO2 regional oxygen saturation index. 
*p<0.05, compared with controls; **p<0.01, compared with controls; ***p<0.001, compared 
with controls. Mann-Whitney U Test. NS, non-significant. 
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Table 3. Diagnostic performance of different metabolic, severity sepsis biomarkers. 

 Lactate 
Basal 

Lactate 
Day 3 

Pyruvate 
Basal 

APACHE 
II Basal 

APACHE 
II Day 3 

IL-10 
Basal 

LPC 
Day 3 

Cutoff value* > 4 mM > 2 mM > 135 
µM 

> 21 
points 

> 13 
points 

> 61 
pg/ml < 26 µM 

Sensitivity, % 77.8 75 77.8 88.9 83.3 66.7 66.7 

Specificity, % 81.8 90.9 81.8 63.6 72.7 81.8 100 

PPV, % 77.8 75 77.8 66.7 62.5 75 100 

NPV, % 81.8 90.9 81.8 87.5 88.9 75 84.6 

AUC (95% CI) 
0.82 

(0.62-
1.00) 

0.90 
(0.73-
1.00) 

0.80 
(0.58-
1.00) 

0.74 
(0.51-
0.96) 

0.84 
(0.65-
1.00) 

0.77 
(0.56-
0.98) 

0.82 
(0.58-
1.00) 

* Sensitivity, specificity and predictive values are referred to each cutoff, which represented 
the best discrimination values as derived from the ROC curves. PPV, positive predictive 
value; NPV, negative predictive value; AUC, area under ROC curve; ROC, Receiver 
Operating Characteristic; LPC, lysophosphatidylcholine. 
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Figure 1. Variables with significant difference between survivors and non-survivors in 

the follow up (Wilcoxon signed-rank test. *p < 0.05; **p < 0.001). 
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Figure 2. A. ROC curves for parameters with significant differences between survivors 

and non-survivors at the day of inclusion (lactate, APACHE II, pyruvate and IL-10). B. 

ROC curves for parameters with significant differences between survivors and non-

survivors on the 3rd day (lactate, APACHE II and LPC). C. ROC curves of a 

combination of parameters in a binary logistic regression with the corresponding 

equation [basal APACHE II (x1), lactate(x2) and pyruvate (x3)]. D. ROC curves of a 

combination of parameters in a binary logistic regression with the corresponding 

equation [basal APACHE II (x1), lactate (x2), pyruvate (x3) and IL-10 (x4)]. 
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DISCUSSION 

Antimicrobial resistance in Gram-negative pathogens causing nosocomial infections is 

nowadays a major public health concern due to the emergence of MDR strains and the 

lack of active antibiotics. The increasing problem of MDR is not followed by the 

development of novel antimicrobials. Hence, there is an important need to develop new 

strategies to combat this kind of infections.  

First step is to have a better understanding of microbial pathogenesis. During the course 

of infection, bacteria are found in different microenvironments which influence 

bacterial pathogenesis and virulence factors expression. The focus of infection is usually 

a hypoxic environment [140], so understanding bacterial behavior under hypoxia could 

help to discover new targets to develop antimicrobials. Moreover, studying the 

consequences of systemic hypoxia and bacterial infection acting together is highly 

relevant to some clinical situations in which both situations co-exist, such as the Adult 

Respiratory Distress Syndrome (ARDS) [160], or a systemic hypoxia and bacterial 

colonization of the airways occurs, like in chronic obstructive pulmonary disease 

(COPD) or CF [161, 162]. 

Then, our work in this doctoral thesis is focused on the study of bacterial pathogenesis 

under hypoxia. To increase the knowledge of impact of the hypoxia in the clinical 

setting, we have also studied septic shock patients which suffer from tissue hypoxia. 

The results obtained will be discussed below. 
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Chapter I. Article I. Comparative gene expression profile of Acinetobacter 

baumannii growing under microaerobiosis and normoxia. 

Nowadays, identifying bacterial virulence factor is an important research line due to the 

high rate of MDR bacteria emergence. The determation of new antibiotic targets is 

increasing in importance because of the lack of new compounds and omics technologies 

are facilitating the elucidation of key components in multiple bacterial functions. 

Transcriptomic analysis, as RNA-seq, permit the quantification of RNA levels and the 

characterization of important bacterial factors for survival or to infect [163]. Liu et al. 

[164] showed the critical role of OtpR in regulating Brucella melitensis metabolism and 

virulence under acidic stress using this technique. Another study used differential RNA-

seq of wild-type Vibrio cholerae and a locked low-cell-density QS-mutant strain to 

identify the VqmR small RNA as a regulator of biofilm formation and virulence [165].  

In our study we identified multiple genes that were upregulated under microaerobiosis. 

We selected five of them (A1S_0030, A1S_2532, A1S_0464, A1S_0172 and A1S_2448) 

to check out their potential role as virulence factors. First of all, we determined their 

growth rate in MHB and minimal medium M9 under normoxia and hypoxia, and under 

microaerobiosis in the case of MHB. We did not find significant differences in the 

growth between mutants and the wild-type strain (Fig. 3 and Fig. A1, Art.I). Secondly, 

we evaluated the extracellular bacterial concentration of the mutants in a A549 cells 

infection at 2 and 24 h under normoxia and hypoxia 1%O2. We just found significant 

differences in the mutant A1S_2448 (Fig. 4 and Fig. A2, Art. I). We showed that 

bacterial adherence was decreased in all the mutant strains at 2 h post-infection (Fig. 4 

and Fig. A3, Art. I), but bacterial invasion was just decreased in the mutants A1S_0030, 

A1S_2532, A1S_02448 at 24 post-infection (Fig. 4 and Fig A4, Art. I). However, the 
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mutant A1S_02448 (pstS) showed the most promising results. For this reason, we 

continue with the analysis only with this mutant strain. 

PstS is involved in phosphate uptake in different bacteria [166]. A PstS overexpression 

leads to a PhoB activation which regulates the expression of multiple genes [167]. 

Inorganic phosphate is a very essential limiting nutrient. Thus, mutations in the pst 

operon may affect metabolic and physiological processes, and the expression of some 

virulence genes. Many lines of evidence suggest that the Pho regulon and the bacterial 

stress response and virulence are connected [168]. Lamarche et al. [169] determined that 

the pst mutation affects different virulence attributes, such a reduction in the resistance 

to the bactericidal effect of serum, to acidity and to cationic antimicrobial peptides 

(polymyxin). Proteome studies of Edwardsiella tarda wild-type strain and its pst mutant 

revealed that the T3SS proteins as well as other virulence proteins were absent in the 

mutant, suggesting that pst mutation causes a bacterial cell surface modification [170]. 

This might explain why the pstS mutant is less adherent and invasive than the wild-type 

strain (Fig. 4, Art. I). However, we have not found any differences in antibiotic 

susceptibility or permeability between wild-type and pstS mutant strains (data not 

shown).  

PstS is a phosphate transporter, but it is also a highly immunogenic protein that induces 

Th1 immunity [171] and antibody responses. A previous study also indicated that mice 

immunized with a recombinant form of the Streptococcus mutans PstS protein exhibited 

protective antibody response, demonstrating its potential as an immunogen in vaccine 

strategies [172]. Therefore, it seems that PstS is not only a bacterial virulence factor, 

regulating adherence, invasion, biofilm formation and motility (Fig. 4 and 5, Art. I), but 

also a potential vaccine.   
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There are multiple clinical situations that induce hypophosphatemia, as sepsis [173]. 

During sepsis, the high density of immune cells and bacteria increase oxygen 

consumption. This situation together with a decreased perfusion generate an hypoxic 

state [174]. Both acute and chronic hypoxia are conditions that promote 

hypophosphatemia [175, 176], maintaining this hypophosphatemic condition. Orihuela 

et al. [177] demonstrated a twofold increase of PstS expression in S. pneumoniae in a 

murine peritoneal culture model due the low concentration of phosphate present the 

peritoneum. This study suggests that phosphate acquisition is necessary for survival in 

vivo, and PstS might be an important A. baumannii virulence factor. 
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Chapter II. Article II. Effect of hypoxia on the pathogenesis of Acinetobacter 

baumannii and Pseudomonas aeruginosa in vitro and in murine experimental 

models of infections. 

It is known that hypoxia, through HIF-1α, regulates both host cells and bacteria, 

influencing the outcome of infection. We observed that HIF-1α is an important cellular 

factor and its levels increase in cell cultures under hypoxia, reaching a maximum 

concentration after 6 h. Therefore, cellular response to hypoxia seems to be pretty fast. 

When cells are under hypoxic condition they start to produce active HIF-1α and it 

regulates multiple genes [178] but it looks like a negative feedback on HIF-1α 

expression over time does exist because HIF-1α levels decrease after 24 h. Thence, 

hypoxia affects the course of acute infections through HIF-1α expression and this effect 

can last for a long period of time during chronic inflammation due to the multiple 

signaling pathways that are activated [140, 179]. 

In this study we observed that hypoxia does not affect the in vitro growth of A. 

baumannii and P. aeruginosa (Fig. 1A, Art II). Nevertheless, several studies have 

shown that hypoxia decelerates the progress of infection. Thompson et al. [180] 

reported that acute hypoxia increased mortality in a pneumonia model by S. 

pneumoniae. However, expositions of animals to hypoxia prior infection changed bone 

marrow leukocytes, repressing HIF pathway and glycolysis genes, and protected against 

the infection. HIF-1α also seem to mediate the functional reprogramming of monocytes 

in sepsis, enhancing protective actions like phagocytosis, tissue re-modeling and 

antimicrobial activity [181]. Another study showed that HIF-1α-deficient macrophages 

have a hampered metabolic adaptation to hypoxia resulting in a decreased motility and 

reduced capacity to clear bacterial infection [122]. Moreover, VEGF secretion is 
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increased under hypoxia which enhance vascular permeability and allow immune cells 

to access to the focus of infection [182].  

Hypoxia also influences adaptive immunity, e.g. hypoxia-induced signaling pathways 

stimulate the proliferation and differentiation of regulatory T cells [183]. In summary, 

hypoxia affects host response to infection because it regulates both innate and adaptive 

immune responses, and it also affects to the environment in the foci of infection. 

Therefore, hypoxia increases bactericidal activity of host cells and that is the reason 

why hypoxia hinders infection progress. Our study confirms these results in two 

different cell cultures (A549 and RAW 264.7) and using two different pathogens (A. 

baumannii and P. aeruginosa), proving that hypoxia effect is not restricted to a specific 

kind of cells or to a pathogen (Fig. 1B, 1C, Art. II). The treatment with DMOG, a HIF-

1α stabilizer that mimic the hypoxia condition, also showed an increase in the 

bactericidal activity of epithelial and macrophage cells (Fig. 1B, 1C, Art. II). However, 

the increase in the bactericidal activity wasn’t as higher as in the hypoxia condition. 

This could be due to the missing effect of hypoxia on the bacteria and to the fact that 

hypoxia regulates other eukaryotic genes more than HIF-1α. 

Different studies have reported hypoxia effect on bacteria. Hypoxia reduces the 

pathogenicity of P. aeruginosa by decreasing the expression of virulence factors as the 

siderophores pyoverdine, pyochelin [154], and pyocyanin [184]. Pyocyanin induces 

reactive oxygen species (ROI)-mediated lysosomal dysfunction and neutrophil 

apoptosis [185], so under hypoxia neutrophil apoptosis is decreased and they can help to 

clear the infection. Another study showed that the exposure to hypoxia leads to 

downregulation of RNA and the protein biosynthetic machinery of Mycobacterium 

tuberculosis, impairing its growth [186]. Therefore, hypoxia manages to slow down the 

course of infection altering host response as well as bacterial activity. 
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Our study also showed that hypoxia decreased A. baumannii and P. aeruginosa 

adherence to host cells (A549 and RAW 264.7) and invasion, demonstrating again the 

global character of hypoxia influence on different host cells and pathogens (Fig. 2A, 

2B, 2C, 2D, Art. II). This reduction in bacterial adherence and invasion is due hypoxia 

effect on bacterial and host cell gene/protein expression. The iTRAQ experiment that 

we performed in an infection of A549 cells by A. baumannii ATCC 17978 showed a 

total of 174 A. baumannii proteins identified as differentially expressed (51 proteins 

were subexpressed and 123 were overexpressed under hypoxia) (Table S1, A1, Art. II). 

This accounts for almost 5% of the A. baumannii ATCC 17978 genome. Some of the 

proteins that were subexpressed have been described to be involved in adherence to host 

cell, as OmpW [187], Putative ferric siderophore receptor protein A1S_3339, Putative 

ferric siderophore receptor protein A1S_0474, Ferric enterobactin receptor A1S_0981, 

Ferrichrome-iron receptor A1S_1921 [188-190] and the hypothetical protein A1S_3900 

which has a SH3 domain [191]. Therefore, this subexpression under hypoxia would 

explain why bacterial adherence decreases under this condition. Moreover, we also 

found 73 A549 proteins identified as differentially expressed (33 proteins were 

subexpressed and 40 were overexpressed under hypoxia) (Table A2, A3, Art. II). 

Between the subexpressed proteins, we find proteins that are involved in the 

cytoskeleton structure (TSKS, GAS2L1, ACTBL2, SEPT9 and USH1G) and in the 

transport through the cytoskeleton (DNAH8, KIF14, MYO5A and BET3L). DNAH8 is 

an axonemal dynein and KIF14 is a kinesin. Dynein and kinesin are motor proteins 

involved in transporting cellular cargoes toward opposite ends of microtubule net [192]. 

In epithelial cells, microtubule accumulation is accompanied by the recruitment of both 

kinesin and dynein to transport vacuoles that contain Salmonella enterica serovar 

Typhimurium [193]. MYO5A is a myosin Va that can bind to both actin and 

205  
 



 
microtubules resulting in the formation of cross-linked gels of microtubules and actin 

[194]. Wang et al. [195] reported that the actin cytoskeleton of the T84 epithelial cells 

was required for Neisseria gonorrhoeae invasion into and traversal through the cells. 

Furthermore, microtubule inhibitors blocked the traversal movement of the bacteria and 

the inhibition of the motor activity of myosins reduced both invasion and traversal. 

Therefore, the subexpression of these motor proteins under hypoxia might be an 

explanation of why hypoxia decreases bacterial invasion. 

All the results that we obtained in vitro were also confirmed in vivo in a sepsis model by 

A. baumannii and a pneumonia model by P. aeruginosa. Hypoxia in vivo diminished 

bacterial load in fluids and tissues (Table 1, 2, Art. II), which may be due to the increase 

in the bactericidal activity as well as the decrease in the bacterial adherence and 

invasion. However, mice survival time was shorter under hypoxia (Fig. 3A, Art. II). It is 

known that adaptation to hypoxia depends on co-ordinated metabolic responses that 

maintain ATP production and modify energy requirements. Thompson et al. [180] 

reported that animals infected in the setting of acute hypoxia switched towards 

carbohydrate utilization, increasing glycolysis pathway, in contrast to normoxia where 

carbohydrates and fat were consumed. Therefore, hypoxic mice displayed a loss of liver 

glycogen. Infection combined with acute hypoxia resulted in a negative energy state 

with increased serum ketone production, loss of white and brown adipose tissue, and 

lower circulating glucose levels. For this reason, in our study animals that were infected 

under acute hypoxia (from 6 h before infection until animal death) died before the ones 

that were under normoxia. However, hypoxic preconditioning for a longer time rescued 

the animals from this negative energy state and allowed a restoration of proportionate 

carbohydrate and fat consumption, liver glycogen reserves and fat mass, reduction in 

circulating ketones and a restoration of glucose levels [180]. We also showed that 
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maintaining the mice just 6 h under hypoxia before the infection was enough to reduce 

bacterial load and increased survival time, proving the effect of hypoxia on the outcome 

of infection. 

In conclusion, hypoxia is a common feature in the site of infection and has implications 

in the development of bacterial infection. As multidrug resistant bacterial infections are 

a worldwide problem, a better understanding of the interplay host-pathogen could 

provide new drugs targets for the treatment of these pathogens [196] and new methods 

to alter the hypoxic response, boosting endogenous immunity. Thus, targeting the host 

response in combination with an anti-microbial strategy could improve outcomes where 

hypoxia and infection co-exist. 
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Chapter III. Article III. Predictive value of APACHE II, and serum lactate, 

pyruvate, IL-10 and lysophosphatidylcholine levels on survival in patients with 

septic shock 

Despite the development of diagnostic and therapeutic methods, the mortality of sepsis 

and septic shock remains high [197, 198]. It is important to diagnose these patients and 

predict the outcome as soon as possible because early resuscitation and intensive care 

can increase survival rate [199, 200]. Therefore, the early detection of sepsis/septic 

shock and the prediction of the outcome are essential in the emergency department. 

Nowadays, various diagnostic tools are being used but there is no gold standard 

guideline to predict the outcome of these patients. Moreover, the definition of 

sepsis/septic shock was recently revised in the Third International Consensus 

Definitions for Sepsis and Septic Shock (Sepsis-3) in 2016 [201]. They proposed a 

combination of three variables (hypotension, elevated lactate level, and a sustained need 

for vasopressor therapy) to identify septic shock that should be tested. However, these 

variables just identified patients with mortality rates of 54% and 35% in two different 

studies. Therefore, there is an urgent need of new predictor tools.  

Several studies have proposed serum PCT [202] or CPR [203], nevertheless their values 

may be elevated in clinical settings without sepsis, and they often fail to provide reliable 

prediction of the patient outcome. Our study confirmed that PCT was not a good 

biomarker because of its high variability between patients. Another study reported that 

serum amyloid P might be used for prediction of mortality in adults with bacterial sepsis 

[204]. Serum amyloid P diminish neutrophil recruitment and adhesion, activates the 

complement pathway, inhibits monocyte differentiation into fibrocytes, and promotes 

phagocytosis [205]. Serum amyloid P is secreted and catabolized by the liver, so it 
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could be also decreased in patients with liver insufficiency. Therefore, further studies 

are required. 

Searching for new biomarkers is a difficult task. Nowadays, omics technologies allow 

high-throughput screening of biomarkers and they are being used in this field too [206]. 

Another study reported Secretory Phospholipase A2 Group IIA (sPLA2-IIA), which is a 

protein that is triggered in response to inflammation, to be a potential biomarker to 

distinguish sepsis from other disease entities. However, further study is warranted to 

identify predictive value of trends in sPLA-IIA during the course of the disease [207]. 

Prognostic value of secretoneurin in patients with septic shock has also been studied. 

Secretoneurin influences cardiomyocyte calcium handling, and serum secretoneurin 

levels seem to improve risk prediction in patients with myocardial dysfunction. 

Therefore, secretoneurin would provide early prognostic information in patients with 

septic shock because these patients are hemodynamically unstable [208]. Pan et al. 

[209] reported that peripheral perfusion index and proportion of perfusion vessel change 

rate from sublingual microcirculation monitoring in septic shock patients were related to 

lactate clearance and combining these two parameters to assess microcirculation might 

predict organ dysfunction and 28‑day mortality in patients with septic shock. In 

summary, there are a lot of different studies which analyze very different kind of new 

biomarkers to predict the prognosis in septic shock patients, but it is still an unsolved 

challenge.  

In our study all the patients suffered from tissue hypoxia due to the hypoperfusion they 

experienced. We confirmed it measuring regional oxygen saturation by NIRS (Table 1, 

Art. III) and serum HIF-1α levels, which were higher than in controls (Fig. 1A, Art. III). 

However, HIF-1α levels were not a good biomarker to predict the outcome of these 

patients because there were no significant differences between survivors and non-
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survivors (Fig. 1B, Art. III). However, APACHE II, lactate, pyruvate, IL-6, IL-10 and 

LPC presented an early significant difference between survivors and non-survivors (Fig. 

2A, 2B, 2C, 2D, 2E, 2F, Art. III). Lactate and pyruvate levels were also higher than in 

controls due to the effect of hypoxia (Table 1, Art. III), and levels were higher in non-

survivor patients. The same happened to the APACHE II score. 

Septic shock patients show a systemic hyperinflammatory response at the beginning that 

is followed by an immunosuppressive phase during which multiple organ dysfunction 

occur and patients are susceptible to nosocomial infection [210]. During this state of 

functional immunosuppression, a decreased production of both pro- and anti-

inflammatory cytokines, a reduced monocyte HLA-DR expression, and a decreased 

immunocompetent cell count are present [211]. In our study IL-10 levels at the day of 

inclusion were higher in non-survivor patients, which indicated that these patients were 

in an advanced septic shock state and the outcome would be worse (Fig. 2E, Art. III). 

Finally, the levels of the immunomodulatory molecule LPC, that has a pro-

inflammatory effect and promotes an exorbitant immune response [212], were also 

higher in non-survivors on day 3rd after inclusion (Fig. 2F, Art. III). 

Having into account all the biomarkers and clinical scores that showed a significant 

difference between survivors and non-survivors, we proposed that the best combination 

was basal APACHE II score and basal lactate and pyruvate levels, which are available 

in the clinical setting, with cutoffs of >21 points, >4 mM and >135 µM, respectively (Table 

2, Art. III). 
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CONCLUSIONS 

1. Differences in gene expression were observed between normoxia and 

microaerobiosis in A. baumannii ATCC 17978, being the gene pstS overexpressed 

under microaerobiosis. 

2. The loss of the phosphate sensor pstS produces a decrease in adherence, invasion, 

motility and biofilm formation in A. baumannii ATCC 17978, supporting its role as 

A. baumannii virulence factor. 

3. Hypoxia increases HIF-1α levels and the bactericidal activity of host cells and 

reduces the adherence and invasion of A. baumannii and P. aeruginosa. 

4. The mice survival time is significantly different between hypoxia and normoxia in 

murine models, being shorter under hypoxia due to the negative energy state that 

animals experiment. 

5. Patients with septic shock have a marked and prolonged peripheral tissue hypoxia.  

6. Although septic shock patients suffer from tissue hypoxia, HIF-1α level is not a 

sensitive biomarker to predict the outcome, with no differences between survivors 

and non-survivors. 

7. The combination of basal APACHE II, and serum lactate and pyruvate is the best 

score system to predict the outcome of septic shock patients, which is an innovative 

approach because it includes available biomarkers in the clinical setting and a 

widespread used clinical score. 
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