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Abstract  

We report the study of the catalytic hydrogen combustion over Pt- impregnated 

powdery silicon carbide (SiC) using H2PtCl6 as precursor. The reaction was conducted 

in excess of oxygen.  -SiC was selected for the study because of its thermal 

conductivity, mechanical properties, chemical inertness and surface area.  The obtained 

Pt particles over SiC were medium size (average particle diameter of 5 nm for 0.5wt% 

Pt).  The activity of the Pt-impregnated catalyst over SiC was compared to those 

obtained in oxidized form over TiO2 and Al2O3 commercial supports (Pt particles very 

small in size, average particle diameter of 1 nm for 0.5wt% Pt in both cases). The case 

of a SiO2 support was also discussed. Those Pt/SiC particles were the most active 

because of their higher contribution of surface Pt
0
, indicating that partially oxidized 

surfaces have better activity than those totally oxidized in these conditions. SiC was 

modified with an acid treatment and thus bigger (average particle diameter of 7 nm for 

0.5wt% Pt) and more active Pt particles were obtained. Durability of the SiC and TiO2 

supported catalysts was tested upon 5 cycles and both have shown to be durable and 

even more active than initially.  Exposure to the oxidative reaction mixture activates the 
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catalysts and the effect is more pronounced for the completely oxidized particles. This is 

due to the surface oxygen chemisorption which activates catalysts´ surface. 
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Introduction 

It is now generally accepted that in a near future, the world should move towards a 

greener energetic paradigm.  Fossil fuels´ scarcity and the environmental issues related  

to their extensive use make necessary to think on another energy sources and carriers. In 

this context, hydrogen appears as a clean energy vector with an attractive energy density 

(142MJ.kg
-1 

while for liquid hydrocarbons is 47 MJ.kg
-1

). [1-3] Once obtained through 

green resources, hydrogen can produce energy upon generating water as only by- 

product. For the implementation of the use of hydrogen, challenges related to 

production, transportation, storage and combustion should be met first. The catalytic 

hydrogen combustion (CHC, reaction (1)) is a key reaction in the “hydrogen economy” 

which can be employed as a means of heat production (cookers, heaters etc) as well as 

for safety purposes (elimination of undesired hydrogen). [4-17] For heat production 

applications, high amounts of hydrogen rich mixtures are preferred.  Regarding safety 

purposes, the amount of undesired hydrogen to be eliminated can range from large 

amounts in the nuclear industry (in case of an accident) to the byproducts of chemical 

and petrochemical industries or during the operation of various electrochemical 

processes. Small amounts of hydrogen can be released in the exhaust of fuel cells and 

its accumulation may constitute a hazard. In this field, the study of CHC in lean 

hydrogen/air mixtures is especially relevant.   For this type of application it is desirable 



to use catalysts which are active enough to start the reaction even at room temperature.  

In this sense Pt and Pd oxides are the most appropriate according to previous report. [4] 

H2 + ½ O2 → H2O  -286 kJ.mol
-1

  (1) 

Reaction (1) is also interesting from a fundamental point of view.  It may contribute to 

develop fundamental understanding of catalytic oxidation reactions and permits to test 

metal catalysts in both reducing and oxidizing atmospheres (excess of hydrogen or 

oxygen respectively).  

For practical applications, catalyst should be prepared in supported form, which 

improves dispersion, prevents aggregation and facilitates its use in successive cycles.  

Most papers report the use of metal oxides such as SiO2, TiO2, CeO2, SnO2, ZrO2, but 

only recent works report the use of SiC. [7,14,17,18] Silicon carbide (especially cubic 

phase, -SiC) is a highly advantageous support because of its relatively high specific 

surface area, chemical inertness, thermal conductivity and mechanical properties. [19-

22] The use of SiC as catalyst support is a growing field of research and was reported 

for reactions like n-butane partial oxidation, H2S selective oxidation and methanol 

dehydration. [23-25] SiC was also recently studied as support for the deposition of Co 

nanoparticles in the study of the Fischer Tropsh (FTS) reaction. [26-27] The problem 

with SiC is its inert and hydrophobic surface which suffers from scarcity of reactive 

sites for the adsorption of the metal ions during catalyst preparation. To circumvent this, 

several strategies such as thermal or acid treatments can be employed. [19, 28] 

In this paper, we have studied the CHC under excess of oxygen (lean, 1% v/v H2/ air 

mixture) on Pt-impregnated catalysts over powdery commercial SiC and compared with 

those traditionally used supports. We have prepared the Pt catalysts in their oxidized 

form over SiC, TiO2 , SiO2 and Al2O3 powders and their activity was compared.  We 



have also intended to modify the SiC support with an acid treatment in order to make its 

surface more reactive to metal ion adsorption for a better dispersion of the active phase. 

Some catalytic tests with pre-reduced catalysts are also included. Trends in catalytic 

activity and durability are discussed herein in connection to the nature of the support, 

surface, particle size and dispersion. Practical conclusions are also obtained regarding 

the use of SiC as catalyst support for this important but scarcely studied reaction.    

 2. Experimental Section 

2.1. The supports  

Commercial TiO2 (nanopowder, 21 nm particle size, Sigma Aldrich), Al2O3 (neutral, 

50-200 m particle size, Sigma Aldrich) and SiC (nanopowder, less than 100 nm 

particle size, Sigma Aldrich) were used as received. The supports were first 

characterized regarding surface area and zeta potential and results are supplied as 

supporting information (Fig.1S). The SiO2 support was prepared by calcining the 

commercial SiC at 1000 °C 7 h under static air (4.2 °C/min ramp). [28] Optimization of 

calcination conditions and characterization of the prepared SiO2 can be also found in the 

supporting information. Except for the alumina powder, the rest of the supports have 

comparable surface area according to BET measurements (see Fig.1S).  

SiC commercial powder was also further modified to improve its surface composition. 

[19]. It was treated in acidic medium in order to introduce hydrophilic surface Si-O 

groups and thus make its surface more reactive to metal ion adsorption for a better 

dispersion of the active phase. Commercial SiC (300mg) was treated with and acidic 

solution of H2SO4 (10 ml) and HNO3 (10 ml) and 1ml of MilliQ® water. [19] The 

mixture was put in an ultrasonic bath for 15 min and then heated under reflux for 1.5h.  



The product was centrifuged (1000 rpm, 10 min) and washed with 20 ml of water five 

times. The solid was dried at 120 °C overnight. 

2.2. Catalysts´ preparation 

Catalysts were prepared by pore volume impregnation of the support with aqueous 

H2PtCl6.6H2O (Sigma Aldrich). When using SiC as support the aqueous H2PtCl6.6H2O 

solution contained 10% v/v ethanol in order to increase support wettability. The Pt 

loading was calculated for a final amount of 1 and 0.5 wt% as will be indicated along 

the text (sample will be named indicating Pt load and support, see Table 1). The pH of 

the impregnating solution was around 0. The H2PtCl6 concentration in the impregnation 

solutions depends on the desired loading, the nature of the support and its pore volume, 

and in this work it is in the range of 0.026-0.06M.  After impregnation, catalysts were 

dried at 120°C for 12 h and then calcined in static air at 400 °C during 4h (3 °C/min 

ramp).  These conditions favor the formation of platinum oxides on catalysts´ surface 

and the degree of oxidation will depend on the particle size. 

2.3. Catalysts´characterization 

For TEM (Transmission Electron Microscopy) studies, samples were dispersed in 

ethanol by ultrasound and dropped on a copper grid. Measurements were performed on 

a FEI Tecnai G2 F30  FEG (field emission gun) microscope, equipped with a HAADF 

(High Angle Annular Dark Field) detector from Fischione Instruments, and operated in 

STEM (scanning TEM) mode at 300 kV. The Pt particle size distributions were 

evaluated from the TEM micrographs. The images were processed with an image 

processing software (Adobe Photoshop) to identify the particles as well-defined dark 

contrast areas which were then analyzed with the ImageJ software. 



X-ray diffraction measurements were performed using the Cu Kα radiation in a Siemens 

D5000 diffractometer in a Bragg-Brentano configuration in the 2θ angle range of 10-90 

degrees.  XPS spectra were recorded with a Leybold Heraus LH electron spectrometer 

using Al Ka radiation with 40 eV pass energy at normal emission take off angle.  The 

alumina and titania supported materials´ spectra were calibrated with the signal of C 1s 

at 284.6 eV (contamination). Those SiC and SiO2 supported materials´ spectra where 

calibrated by setting the signal corresponding to Si-C or  Si(IV)-O in the Si 2p level at 

100.6eV or 103.5 eV, depending on the sample, in  accordance to literature. [29] For 

comparison, the spectra were normalized to the same area.  For some samples, 

deconvolution of the Pt 4f spectra was carried out to evaluate the contributions of the 

individual oxidation states. Peaks were adjusted using CASA XPS software ® under the 

following constraints: peak positions, half width at full maxima (FWHM), distance 

(3.3eV) and relative area ratios (4/3) of the 4f7/2-4f5/2 doublet, according to literature. 

[16, 30] The Pt 4 f7/2 peak positions were set as follows: metallic Pt: 70-71 eV, Pt
II
: 72-

72.3eV and Pt
IV

: 73.8-74 eV and the FWHM were set with ±0.2eV at Pt: 1.2 eV, Pt
II
: 

1.7 eV and Pt
IV

: 1.9 eV. [16, 30-31] The area of the individual peaks signified the 

amount of Pt in different oxidation states.  Monte Carlo error analysis was performed 

for error estimates also using CASA XPS software ®.   

2.4. Catalytic tests 

Catalytic tests were performed in a fixed bed quartz reactor (20 mm diameter, 500 mm 

length). The activity of the empty reactor, the quartz wool and the bare supports was 

first tested and has shown around 30% conversion at 450 °C and 15% at 150°C. 

 Prior to each experiment, the reactor was loaded with 10 mg of supported catalyst plus 

90 mg of bare support (both catalyst and support previously mortar mixed) over quartz 



wool, to ensure covering the whole reactor section. The catalyst amount was first 

optimized to achieve a sigmoid conversion vs temperature curve.   These conditions are 

essential to evaluate catalytic properties (activation energy, T50, etc).  Unless indicated 

the contrary, catalysts were tested with no previous conditioning treatment. The reactor 

was heated from outside using an electric furnace and temperature was controlled using 

a PID controller. Temperature was measured by a K-type thermocouple placed at the 

center of the packed bed. 

Reactions were carried out with a feed mixture consisting of 200ml.min
-1

 of 1% v/v 

mixture of H2 in air.  Such lean hydrogen mixture was selected for catalysts´ 

comparison purposes as reported before. [4] Working  gases (H2 99.999% and air) were 

measured through Bronkhorst ® mass flow controllers and premixed in a chamber 

before feeding the reactor.  High gas flow rate and low catalyst weight limits H2 

conversion and thus one can obtain the kinetics of the process controlled by the reaction 

at nearly isothermal conditions. A HP 5890 chromatograph was employed to measure 

H2 amount, with a ShinCarbon ® packed column and a thermal conductivity detector. 

N2 was used as the carrier gas.  Catalytic tests were first done at RT and then the 

temperature was increased to 420 °C or 200 °C depending on the experiment. After the 

420 degrees were reached,  the temperature was maintained during 1h and then 

conversion vs temperature curve was measured during cooling down to RT.  For those 

experiments heated to 200 °C, the conversion vs temperature curve was measured 

immediately during cooling down to RT 

Some catalytic experiments were conducted with previous reduction of the catalyst (in 

situ, 100 ml.min
-1

N2, 50 ml.min
-1

 H2, 400°C 4h).  After reduction, the reactor was 

cooled down under nitrogen to 250 °C and the catalysts were exposed to the 1% H2/air 



mixture for some activation. The conversion vs temperature curve was measured from 

200 °C to RT. 

3. Results and Discussion  

3.1. Catalysts and supports 

Figure 1.a shows XRD measurements performed on the 0.5 wt. % Pt catalysts over SiC, 

TiO2 , SiO2 and Al2O3. For the 0.5Pt/SiC catalyst, broad diffraction peaks corresponding 

to the Pt metallic phase (ICDD 00-004-0802) were found.  For the TiO2, SiO2 and Al2O3 

supported catalysts, no diffraction peaks corresponding to metallic platinum or platinum 

oxide were found, indicating the presence of very small nanoparticles.   

Figure 2 shows the representative STEM/HAADF images of the 0.5 wt. % Pt catalysts 

over SiC, TiO2 , SiO2 and Al2O3.  Their corresponding histograms are also shown. The 

SiC supported catalyst shows medium size particles (5±4) nm while those TiO2 , SiO2 

and Al2O3 supported catalysts exhibit very small particles (around 1-2 nm, depending of 

the sample as shown in Table1),  in accordance to XRD measurements. The case of the 

0.5Pt/SiO2 sample is peculiar, because not only very small and disperse nanoparticles 

were obtained but also many big aggregates were found. The obtention of small and 

monodisperse particles for the TiO2 and Al2O3 supports can be understood in terms of 

the interaction of the positively charged surface of the supports (Fig. 1S, supplied as 

supporting info.) at the impregnation pH with the [PtCl6]
2-

, [PtCl5(H2O)]
-  

species. These 

species where reported before as the most abundant in our impregnating conditions (pH 

and H2PtCl6 concentration). [32]   The medium size Pt particles for the SiC support and 

its broad size range can be understood by taking account the presence of Si-C bonds on 

surface. The surface charge of the SiC is positive and relatively high at the impregnation 

pH as shown by zeta potential measurements, (Fig. 1S supplied as supporting info.) 



probably due to the presence of surface acidic Si-O-C and Si-O-Si groups. However, 

XPS measurements on the Si 2p level (Fig. 2S, supplied as supporting info.) show a 

high contribution of Si-C which explains that interactions of metal-complex anions with 

the support are not well favored. In addition, the obtention of big aggregates for the 

SiO2 supported sample is related to its low zeta potential at the impregnating pH (Fig. 

1S). 

With the idea of increasing the dispersion of the active phase on the SiC support, 

chemical treatment was employed in order to introduce hydrophilic surface Si-O 

groups. The SiC support was treated with a mixture of H2SO4 and HNO3 during 1.5h at 

60°C (SiC sulfo 1.5h).  Figure 3S (supplied as supporting information) shows the XRD 

difractogram of the as received SiC in comparison to the acid treated sample.  The SiC 

shows diffraction peaks at 35.6, 41.3, 60, and 71.7 degrees (2) which correspond to the 

-SiC (ICDD 00-029-1129). The acid treated SiC (SiC sulfo 1.5h) does not show any 

contribution of SiO2 in the XRD diffractogram and shows only a slight increase in the 

intensity of the Si-O-Si IR signal respect to the SiC (Fig 3S).  This shows that the acidic 

treatment has not been very successful in introducing many surface Si-O groups. 

Nevertheless acid treated SiC supports were impregnated with 0.5 wt.% Pt and 

compared with the 1 and 0.5 wt% Pt catalysts supported on powdery SiC as received. 

XRD measurements are shown in Fig.1.b  For the catalysts supported on as received 

SiC and acidic treated SiC, the broad peak at 39.76 degrees (2) assigned to (111) plane 

of Pt is clearly observed although does not permit to calculate crystal size accurately.  

STEM/HAADF images are shown in Fig 3 for the 0.5 wt% Pt impregnated catalysts on 

the as received SiC in comparison to the acid modified SiC powder. Their  

corresponding histograms are shown.  Particle size for the as received SiC supported 



catalyst is medium and polidisperse (average size 5±4) nm as discussed above.  The 0.5 

Pt SiC sulfo sample also shows a polidisperse particle size distribution with an increase 

in the population of the small nanoparticles (0-2nm) and also in the big nanoparticles 

(>10nm) respect to the as received SiC supported catalyst, being the average particle 

size in the range 7±5 nm (see Table 1).  What is clear from these results is that in our 

conditions, HNO3/H2SO4 treatment was unsuccessful in the obtention of small and 

monodisperse Pt particle size as expected. Instead of that, a broad particle size 

population was obtained, including bigger particles.  Similar result was reported for a 

Co/SiO2 catalyst for the Fischer Tropsh reaction in which SiO2 was treated with HNO3 

before impregnation and thus bigger Co particles were obtained. [33] 

Surface states were studied by XPS (Pt 4f level) for the prepared catalysts and results 

are shown in Fig. 4 (normalized for comparison).  In the case of alumina supported 

catalyst there is a superimposition with the Al 2p level which makes the analysis of 

surface oxidation states of Pt very difficult.  Deconvolution was carried out to 

differentiate surface oxidation states and the results are also shown in Figure 4. The 

0.5Pt/SiC sample has shown a poor signal which did not allow to obtain reliable 

deconvolution.   Pt impregnated catalyst supported on titania does not show contribution 

of Pt
0
 (70-71eV) but shows (60±1)% of Pt

II
 contribution and (40±1)% of Pt

IV
. This high 

degree of surface oxidation is clearly consistent with the tiny particle size (less than 

1nm). For the SiC supported Pt particles, an important contribution of metallic platinum 

can be qualitatively appreciated from the plot. This is consistent with the medium 

particle size obtained during impregnation. In the case of the 0.5Pt/SiO2 sample there is 

also some contribution of Pt
0 

(34±2%) and the rest corresponds to Pt
 II

 (66±3%) in 

accordance to average particle size.  



Pt impregnated catalyst over acid treated SiC support was also studied by XPS (Fig 4). 

Observation of the plot permits to conclude that the 0.5Pt/SiC sulfo sample shows the 

highest contribution of reduced Pt. The contribution of Pt
0
 is (78±3) % of total while the 

remaining (22±1) % corresponds to Pt
II
. This result is connected to particle size, since 

this sample, has shown a high contribution of Pt particles of more than 5nm size.  

3.2. Catalytic activity 

With the idea of a practical application and also considering that metal oxides are active 

for CHC, catalysts were tested in their oxidized (or partially oxidized) form unless 

indicated the contrary. 

3.2.1. Effect of catalyst loading 

The characterization of catalysts described above refers to the 0.5 wt% for all the 

investigated supports. In fact in first experiments catalysts´ loading was optimized.   1 

wt.% Pt impregnated catalysts over SiC and over TiO2 were tested first at RT (25 °C) 

and 100% conversion was obtained for both materials. The temperature increased up to 

40 °C indicating that the heat released by the reaction was too high. For this reason 

catalyst loading was reduced to 0.5 wt % Pt and then 11% conversion for the SiC 

supported catalyst was measured while the conversion for the TiO2 supported was 0% 

(Table 1).  Nearly isothermal conditions were achieved for this 0.5 wt% Pt loading and 

were selected for further experiments. 

3.2.2. Effect of catalysts´ history. Reproducibility of the results 

Many reports indicate that H2/O2 reaction mixtures strongly modify platinum´s surface 

and causes irreproducible activity results. [34-36] For a Pt wire a high activity catalyst 

surface was found when temperature was decreased from 180°C (Ea=10kJ.mol
-1

) while 



a less active surface was produced after the catalyst was raised from a low to a high 

temperature (Ea=35kJ.mol
-1

). For this reason, 0.5 wt. % Pt impregnated catalysts on 

TiO2 and SiC were tested in cooling mode under different initial conditions.  First of all 

activity was measured at RT. Then, catalysts were heated to 200°C and immediately 

cooled down. On another (independent) experiment catalysts were heated to 420°C 

during one hour and then cooled down.  In both cases, heating was performed under the 

1% H2/air atmosphere.  Results are shown in Fig. 5. For both materials activity appears 

to increase with the heating temperature. For the 0.5 Pt/SiC catalyst (Fig 5) a decrease 

in T50 can be estimated in 9°C (T50 not achieved for the 420°C heated catalyst) when the 

heating temperature was increased from 200 to 420°C. Figure 5 also shows the 

conversion vs temperature curves for the 0.5% Pt/TiO2 material where a decrease in T50 

of around 20 °C was obtained when the initial temperature was 420 °C respect to 

200°C. Results obtained on TiO2 and SiC supported catalysts indicates a clear 

sensitivity to the catalysts´ history and an activation upon exposing to higher 

temperatures under the reaction (oxidizing) environment. This sensitivity to the heating 

history seems to be more pronounced for the TiO2 supported than for the SiC supported 

Pt particles and can be ascribed to the formation of an active layer of strongly adsorbed 

oxygen species. [34-36] 

Regarding the reproducibility of results, working in excess of oxygen leads to more 

reproducible results than in stoichiometric conditions. [35-36]   In particular, we found 

differences in T50 of around ±2°C for the 0.5Pt/SiC sample and ±4°C for the 0.5Pt/TiO2 

sample in sets of two independent experiments. We consider that the reproducibility of 

our results in these conditions is acceptable.   

 



3.2.3. Comparison between different supports 

The activity of the 0.5 wt % Pt impregnated catalysts over TiO2, SiC, SiO2 and Al2O3 

was compared. First of all the conversion was measured at RT. Only the SiC and SiO2 

supported catalysts showed activity in these conditions (11 and 9% conversion 

respectively, according to Table 1).  Conversion vs temperature curves were measured 

in cooling mode from 200°C to RT for the four catalysts and results are shown in Figure 

6a.  From the plot it is clear that the most active are the SiC and SiO2 supported 

materials with a T50 of around 38 and 50 °C respectively. The TiO2 catalyst showed a 

medium activity with a T50 equal to 95°C. The alumina supported catalyst has shown no 

significant activity respect to the activity of the reactor, the glass wool and the support 

itself.   Activities (expressed in mlH2.min
-1

.gcatalyst
-1

) and apparent activation energies 

(obtained through the Arrhenius plot, shown in figure 4S) support the following activity 

trend:  SiC supported ≥ SiO2 supported > TiO2 supported >> Al2O3 supported.  As 

shown in Fig. 2 (particle size histograms) and Fig. 4 (XPS analyses) the activity of the 

SiC supported in comparison to the titania, silica and alumina supported catalysts in 

oxidized form can be correlated to particle size.  Bigger particles, with a higher 

contribution of Pt
0
 are more active than those smaller and highly oxidized particles.  

The case of titania supported catalyst should be considered with special attention. Like 

the alumina supported counterpart, particle size is very small and around 1nm. In both 

cases, the strength of the M-O bond is high enough to get completely oxidized particles. 

However, for Pt impregnated catalysts over TiO2, activity is higher than over alumina. 

Previous reports has shown an enhancement in the activity of the TiO2 supported 

catalysts owing to metal-support interactions which cannot be ruled out in our 

conditions. [16] Regarding the 0.5Pt/SiO2 sample, there is a high contribution of big Pt 

aggregates whose effect in catalytic activity is difficult to evaluate. However, the high 



contribution of Pt
0
 in the XPS spectrum explains its higher activity respect to the titania 

and alumina supported particles.  

For further insights on the CHC, catalysts were in-situ reduced before testing and then 

tested in 1% H2/air mixture in cooling mode and results are shown in Fig 6.b and Table 

1 (Arrhenius plots shown in Figure 5.S). The activity of the in-situ reduced 0.5Pt/SiC 

sample respect to the oxidized one remained unchanged. Apparent activation energies 

and activities (Table 1) did not significantly change with the pretreatment, indicating 

that catalysts’ surface is similar to the fresh sample in both cases (partially oxidized).  

However, the titania and alumina supported catalysts increased significantly their 

activity.  The 0.5Pt/SiO2 sample, with both contribution of small particles and big 

aggregates has shown a medium increase in activity (T50=28°C vs 50°C) probably due 

to the contribution of the small particles.  These results support the idea of that the CHC 

requires the presence of metallic sites for higher activity. Except for the titania 

supported catalyst, which probably combines the reduced state of Pt and oxygen 

vacancies to obtain the best activity, the activity seems not to be correlated to particle 

size.  In this sense, Boudart et al studied the activity of in-situ pre reduced Pt particles in 

a wide dispersion range (14 to 100%) and found that the CHC under excess of oxygen 

was structure insensitive.  Corrosive chemisorption of oxygen could erase the surface 

anisotropies which exist on metal surfaces.  However, our results obtained from 

previously in-situ reduced Pt particles are much more sensitive to catalysts´ history than 

the ones obtained in oxidized form.  A decrease in 33°C in T50 was found when the pre 

reduced 0.5Pt/Al2O3 catalyst was exposed to the 1% H2/air reaction mixture at 250°C 

instead of 200°C (Figure 6.S, as supporting information). 

The interpretation of activity trends in CHC in this work is not straightforward because 

in our conditions for most catalysts the overall reaction mechanism follows a mixture of 



two mechanisms. A previous report explains that when CHC occurs in reductive 

reaction mixtures (when the ratio of H2 to O2 exceeds five) on a reduced Pt surface, H2 

is completely dissociated and competes with molecular oxygen for adsorption sites. [36] 

In completely oxidized surfaces and when the reaction mixtures are oxidant (when the 

ratio of O2 to H2 exceeds twenty), weakly adsorbed hydrogen species react with 

strongly adsorbed oxygen with no competition for adsorption sites.  [4, 37] In partially 

oxidized samples (which can be considered as a mixture of the two surfaces) under 

oxidant reaction mixtures, the overall mechanism is a mixture of the two.  This mixture 

of mechanisms occurs in our samples with in-situ previous reduction as well as in the 

0.5Pt/SiC and SiO2 samples in oxidized form. For further comprehension of this, studies 

of catalysts after use and in operando should be performed but this exceeds the scope of 

the present work.  

3.2.4. Activity of the Pt particles on previously acid treated SiC support 

The catalyst supported on the previously acid treated SiC surface was investigated. The 

conversion of the 0.5 wt. % Pt catalyst over modified SiC was measured at RT and 

compared (Table 1). The highest activity was obtained for this catalyst (0.5 Pt/SiC 

sulfo, 92% conversion) followed by the 0.5 Pt/SiC material which has shown 11% 

conversion. This trend in activities was later confirmed with the conversion vs. 

temperature curves as shown in Figure 7. The resulting trend is: 0.5 Pt/SiC sulfo>> 0.5 

Pt/SiC. Those Pt particles supported on the sulfo treated SiC have shown the highest 

contribution of big particles according to Figure 3 and correlates with the particle size 

effect explained in 3.2.3. 

 

 



3.2.5. Comparison with literature 

The comparison of catalysts with literature is difficult since it is hard to find papers in 

which materials were tested in exactly the same conditions as ours. Activity for CHC 

depends on catalysts´ history, H2 and O2 concentration, total gas flowrate, amount of 

catalyst, nature and state of the metal (metal substituted more active than impregnated), 

type of support (reducible more active than inert), metal loading, etc. [15-16, 34-36]   

Haruta and Sano screened metal oxides (300mg) for CHC in air (1%H2) and obtained a 

Volcano plot in which bulk PtO2 has similar T50 to our SiC supported catalyst. [4] From 

that plot it can also be derived that our TiO2 supported catalyst has a T50 similar to bulk 

Ag2O. [4] Our SiC sulfo supported catalyst has similar activity to bulk PdO. [4] 

Madras et al tested Pt and Pd substituted ceria based catalysts for CHC in air (3%H2, 

10mg catalyst) and found that Ce0.98Pd0.02O2-Pd-substituted) and Pd/CeO2 (Pd 

impregnated) had similar activity at 50°C to our 0.5Pt/SiC sulfo in oxidized form and 

our 0.5Pt/TiO2 with previous in-situ reduction (around 200mlH2.min
-1

gcatalyst
-1

all). [15] 

However Ce0.83Ti0.15Pd0.02O2- and Ce0.83Ti0.15Pt0.02O2-catalysts showed higher activity 

at 50°C than any of the catalysts presented herein (around 550 mlH2.min
-1

gcatalyst
-1

). [15]  

In our previous work, we tested a commercial catalyst (0.27wt % Pt/SiC-washcoat) 

which consisted of 2-20nm Pt particles dispersed on alumina washcoat on monolithic 

SiC (mashed into granules) in similar conditions to herein. [18] We found a T50 around 

34°C which is comparable to that obtained for our 0.5Pt/SiC (with higher Pt loading). 

However, activities show that the 0.27wt % Pt/SiC-washcoat (38 mlH2.min
-1

gcatalyst
-1

) is 

less efficient than our 0.5Pt/SiC catalyst at 50°C. 

 



3.2.6. Durability upon cycling 

Durability of the 0.5 wt % Pt catalysts over TiO2 and SiC was tested upon cycling (5 

cycles) and results are shown in Figure 8. For both materials, the activity has shown an 

increase upon 5 cycles.  However, the 0.5Pt/TiO2 sample has shown a 20°C decrease in 

T50, while the 0.5Pt/SiC has shown a 10°C decrease, indicating different sensitivity to 

the cycles.  For a comprehension of this effect, both used samples were characterized by 

TEM and XPS. As described in the experimental section, for catalytic tests, samples are 

diluted 1/10 with bare support. This makes difficult the detection of Pt levels through 

XPS and also it is hard to find small particles by TEM for the used catalysts. Despite 

these difficulties, some data were obtained and results are shown in Fig. 9.  Regarding 

the 0.5Pt/SiC sample, neither Pt 4f nor Pt 5d levels were detected by XPS. As we 

mentioned before due to lower dispersion the Pt signals were already difficult to detect 

before dilution. A series of STEM/HAADF images were studies and a representative 

one is depicted in Figure 9.a for the 0.5Pt/SiC sample together with its corresponding 

particle size distribution plot. The comparison of the particle size of the Pt particles after 

5 cycles (5±3) nm with the fresh catalyst (5±4) nm shows no evidence of particle 

aggregation.  Also, no evidence of aggregation or growth was found for the 0.5Pt/TiO2 

sample used in 5 cycles (Fig 9.b) respect to the initial fresh sample.  In our conditions, 

particle aggregation seems not to be favored and does not explain the activation of both 

catalysts upon cycling. 

 XPS measurements on the Pt 4f level of the 0.5Pt/TiO2 sample used 5 cycles in 

comparison to the fresh sample shows an increase in the contribution of Pt
IV

 (Fig 9.c).  

This result is connected with the results presented in section 3.2.2., regarding catalyst´s 

history. Exposure of catalysts to the reaction mixture produces an active oxide layer 

which activates catalysts. For the 0.5Pt/TiO2 sample, the enhancement is higher because 



the reaction occurs by weak H2 adsorption over strongly adsorbed oxygen, while for the 

0.5Pt/SiC (partially oxidized) reaction occurs by a mixture of this mechanism and 

dissociative adsorption of H2 and oxygen, as explained in section 3.2.3.  From a 

practical point of view, this finding is very interesting, since catalysts do not suffer from 

deactivation upon use.  In practical applications in which the amounts of lean hydrogen 

mixtures are high, the heat generated by the reaction would increase the efficiency of 

the catalysts during operation. 

4. Conclusions 

In this work, Pt particles were prepared on commercial SiC (-SiC) powder by pore 

volume impregnation with CPA and tested as catalysts for CHC under excess of 

oxygen.  The activity was compared with those particles obtained impregnating CPA on 

traditional powdery supports such as titania, silica and alumina. Thinking of a practical 

application, catalysts were tested in their oxidized (or partially oxidized) form. The 

activity of the medium size Pt particles obtained on SiC was higher than those smaller 

obtained in other supports and increased upon exposure to the reaction mixture at high 

temperatures. No significant change in the activity of the SiC supported particles was 

found with previous in-situ pre-reduction of the catalyst. All these results point out that 

for practical applications in which lean hydrogen/air mixtures should be eliminated, the 

best activity is achieved with partially oxidized Pt surfaces as the ones obtained on SiC.  

Efforts to get high dispersion on SiC seem to be unnecessary. Instead, the higher size Pt 

particles obtained with previous acid treatment on SiC have shown better activity. The 

catalyst was activated upon cycling when tested from 200°C in cooling mode.  For the 

design of a practical device, heating under the reaction mixture would be beneficial to 

the activity of the catalyst, and less dangerous than in-situ reducing in hydrogen 

atmosphere. However, if the desired application permitted in-situ reducing treatments, 



washcoating the SiC with TiO2 would lead to the best activity probably because of the 

synergies between the amount of metallic Pt surface and the contribution of oxygen 

from the support.  
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Figure Captions 

Figure 1: XRD measurements performed on: (a) The 0.5Pt/SiC sample in comparison 

to the alumina, titania and silica supported catalysts. Bare TiO2 and Al2O3 supports are 

also shown. Main peaks positions for reference metallic Pt are indicated (top bar 

diagram). (b) The 0.5Pt/SiC and 1Pt/SiC samples in comparison to the 0.5wt% catalysts 

supported on previously acid modified SiC. Main peaks positions from reference β-SiC 

are also indicated at top bar diagram. 

Figure 2:  Representative STEM/HAADF images of the 0.5 wt% Pt catalysts supported 

on (a) SiC, (b) TiO2 (c) Al2O3 and (d) SiO2 powders. The corresponding particle size 

histrograms are also shown on the right. 

Figure 3: Representative STEM/HAADF images of the Pt catalysts on commercial and 

modified SiC samples: (a) 0.5Pt/SiC (b)0.5Pt/SiC sulfo. The corresponding particle size 

distribution plots are shown on the right. 

Figure 4: XPS measurements on the Pt 4f level of the 0.5Pt/SiC sample in comparison 

to the titania, silica and acid treated SiC supported catalysts.  

Figure 5: Effect of catalysts´ history. Comparison of the conversion vs temperature 

plots in cooling mode from 200°C and 450°C for the 0.5 Pt/SiC and the 0.5Pt/TiO2 

catalysts.  

Figure 6: Conversion vs temperature plot for the 0.5Pt/SiC sample in comparison to the 

alumina, titania and silica supported catalysts. (a)With no previous catalyst conditioning 

(oxidized or partially oxidized form) (b) With previous in-situ reduction.  



Figure 7: Conversion vs temperature plots of the 0.5Pt/SiC sample in comparison to the 

Pt catalysts supported on previously acid modified SiC.   

Figure 8: Durability upon cycling (5 cycles) of (a) the 0.5Pt/SiC catalyst and (b) the 

0.5Pt/TiO2 sample. 

Figure 9: Representative STEM/HAADF images of (a) the 0.5Pt/SiC and (b) the 

0.5Pt/TiO2 catalysts both after 5 cycles.  The insets show the particle size distribution 

plot. (c) XPS measurements of the Pt 4f level on the fresh and used (5 cycles) 

0.5Pt/TiO2 sample.  

 

 

 

 

 

 

 

 

 

 

 

 



Table Legends 

Table 1: Catalysts´characteristics 

 

 

 



 

 

 

Catalyst 

 

 

%Pt 

 

 

 

Particle size (nm) 

TEM  

 

 

No previous conditioning before test (oxidized form) 

 

 

In-situ reduced before test 

 

% Conversion   

at RT 

 

T50 

(°C) 

 
 

Activitya 

at 50°C 

(mlH2.min-1.gcatalyst
-1) 

 

bE a 

(kJ.mol
-1

) 

 

T50 

(°C) 

 

 

Activitya 

at 50°C 

(mlH2.min-1.gcatalyst
-1) 

 

bE a 

(kJ.mol
-1

) 

0.5Pt/SiC 0.5 (5±4)  11 38 132 16 40 124 19 

0.5Pt/SiCsulfo  0.5 (7±5)  92 --- 200 ---- -- - -- 

0.5Pt/SiO2 0.5 (1.5±0.8) many 

aggregates 

9 50 101 20 28 164 33 

0.5Pt/Al2O3 0.5 (1.0±0.3)  0 >200 0 ----- 40 134 29 

0.5Pt/TiO2 0.5 (0.9±0.2)  0 95 14.4 46 -- 200 -- 

a extracted from the conversion vs temperature curve in cooling mode  b  apparent activation energy obtained from the Arrhenius plots as shown in Fig 4S and 5S 

as supporting information 

Table
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Figure 4  
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Figure 9 
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*Graphical Abstract



Catalytic hydrogen combustion was studied under oxidant conditions 

Pt particles in oxidized form studied over powdery -SiC and other supports  

Catalysts activated upon exposure to the oxidant mixture and high temperatures 

Medium size, partially oxidized Pt particles on SiC show high activity  

Catalysts have shown a reactivation upon cycling experiments 
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