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In Sec. IV of our original paper, we assumed a particular conservation law Eq. (4.6), which was true in the absence of external
potentials, to derive some particular potentials for which we obtained solutions to the nonlinear Dirac equation (NLDE). Because
the conservation law of Eq. (4.6) for the component T 11 of the energy-momentum tensor is not true in the presence of these
external potentials, the solutions we found do not satisfy the NLDEs in the presence of these potentials. Thus all the equations
from Eq. (4.6) through Eq. (4.44) are not correct, since the exact solutions that followed in that section presumed Eq. (4.6) was
true. Also Eqs. (A3)–(A5) are a restatement of Eq. (4.6) and also are not correct. These latter equations are also not used in
Sec. V and beyond. The rest of our original paper (starting with Sec. V) was not concerned with exact solutions, rather it was
concerned with how the exact solitary-wave solutions to the NLDE in the absence of an external potential responded to being in
the presence of various external potentials.

In this Erratum, we correct this mistake and show how to directly find exact solutions of the NLDE in a particular class
of external potentials. That is, we show how to directly solve the equations for the two components of the NLDE in 1+1
dimension with scalar-scalar self-interaction g2

κ+1 (�̄�)κ in the presence of an external electromagnetic potential in the axial
gauge eA0(x) = V (x),A1(x) = 0 without resorting to the conservation law of Eq. (4.6).

Writing the two components of the bound-state solution of the NLDE as � = e−iωt {R cos θ,iR sin θ} and assuming that V (x)
depends on x only through its dependence on R2 = y, we are able to find exact solutions of the NLDE for arbitrary κ in these
potentials.

We start with the NLDE in the presence of an external electromagnetic potential:

(iγ μ∂μ − m)� − eγ μAμ� + g2(�̄�)κ� = 0. (1)

Using the freedom of gauge invariance, one can choose the axial gauge A1 = 0, eA0 = V (x). One can also rescale the fields so
that we can set the coupling constant g = 1. In the axial gauge, the NLDE becomes

iγ μ∂μ� − m� + (�̄�)κ� − γ 0V (x)� = 0. (2)

Going into the rest frame and choosing �(x,t) = e−iωtψ(x), and for ψ(x) the representation

ψ(x) =
(

A(x)
iB(x)

)
= R(x)

(
cos θ

i sin θ

)
, (3)

we find that the NLDE becomes

∂xA + (m + ω)B − g2[A2 − B2]κB − V (x)B = 0,

∂xB + (m − ω)A − g2[A2 − B2]κA + V (x)A = 0. (4)

These two equations can also be written if we let y = R2(x) as

dy

dx
= 2yκ+1(cos 2θ )κ sin 2θ − 2ym sin 2θ (5)

and
dθ

dx
= yκ cosκ+1 2θ − m cos 2θ + [ω − V (x)]. (6)

We can now follow the approach that Chang, Ellis, and Lee [1] used in obtaining exact solutions when V = 0. Dividing Eq. (5)
by Eq. (6) and assuming that V is just a function of y = R2 and furthermore setting V [y] = df [y]/dy, we obtain

d

dθ

[
yκ+1

κ + 1
cosκ+1 2θ + [ω − m cos 2θ ]y − f [y]

]
= 0. (7)

Integrating with respect to θ and assuming that we have a no-node solution going to zero at large |x| so that the constant of
integration is zero, we obtain

yκ cosκ+1 2θ = −(κ + 1)[ω − m cos 2θ − f (y)/y]. (8)

Substituting this result into Eq. (6), one obtains the equation

dθ

dx
= −κ(ω − m cos 2θ ) −

(
df

dy
− (κ + 1)

f

y

)
. (9)
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We notice that if we choose f to be a solution of

df

dy
− (κ + 1)

f

y
= 0, (10)

i.e.,

f = v0
yκ+1

κ + 1
, (11)

so that

V [y] = v0y
κ, (12)

we obtain the same equation for θ as when V [y] = 0. Namely,

dθ

dx
= −κ(ω − m cos 2θ ), (13)

whose solution is

θ (x) = tan−1[α tanh βκ (x)], (14)

where α =
√

m−ω
m+ω

and βκ = κ
√

m2 − ω2.

When κ = 1, this solution was obtained by different means by Nogami and Toyama [2]. Now we can solve for y = R2 by
using Eq. (8) to obtain

R2 =
[

(κ + 1)(m cos 2θ − ω)

cosκ+1 2θ − v0

]1/κ

. (15)

This can also be written using the fact that

cos 2θ = m + ω cosh 2βκx

ω + m cosh 2βκx
(16)

as

R2 =
⎛
⎝ (κ + 1)(m2 − ω2)

[m cosh(2βκx) + ω]
[(

m+ω cosh(2βκx)
m cosh(2βκx)+ω

)κ+1 − v0
]
⎞
⎠

1
κ

. (17)

This reduces to our previous result when v0 → 0, i.e.,

R2 =
(

m cosh(2βκx) + ω

m + ω cosh(2βκx)

)[
(κ + 1)β2

κ

κ2(m + ω cosh 2βκx)

]1/κ

. (18)

Now R2 has to be positive and vanish when |x| → ∞, which means that for κ = 1, v0 < ω2/m2. When v0 < 0 one has an
attractive potential, and this type of solution always exists. As v0 approaches ω2/m2, R2 can start to become double-humped.
We show some results for κ = 1 in the figures. For example, when ω = 7/10 and we go from v0 = 0.4 to 0.48, the shape of R2

shifts from single-humped to double-humped, as seen in Fig. 1. For v0 � 0.49, there are no solutions that vanish when |x| → ∞.
Choosing v0 = −1 and ω = 1/2, we obtain instead the results of Fig. 2 for the bound-state solution.

FIG. 1. R2 vs x when ω = 7/10, v0 = 0.4 (lower curve), and v0 = 0.48 (upper curve) for the bound-state solution in the external potential
V = v0R

2.
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FIG. 2. R2 vs x when ω = 1/2 and v0 = −1 for the bound-state solution in the external potential V = −R2.
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