
 
 

Experimental and Clinical Cardiology 

 

 

Stress and heart rate: significant 
parameters and their variations 
Article Type: original article 

Manuel Merino, Isabel Gómez*, Alberto Molina 

Electronic Technology Department, Universidad de Sevilla, Spain 
*Corresponding author: Isabel Gómez, Electronic Technology Department, ETS Ingeniería Informática, Avd. Reina Mercedes s/n, 41012. 
Tel: +34-954552787; E-mail: igomez@us.es. 

Abstract The aim of this paper is to identify heart rate 

parameters with higher significant values when a set of 

people are performing a task under stress condition. In order 

to accomplish this, one computer application with arithmetic 

and memory activities which lets drive the subjects to 

different stages of activity and stress has been designed. 

Tests are formed by initial and final rest periods and three 

task phases with incremental stressful level.  

Electrocardiogram is measured in each state and parameters 

are extracted from it. A statistical study using analysis of 

variance (ANOVA) is done to see which ones are the most 

significant. It is concluded that the median of RR segments is 

the parameter to best determine the state of stress. 

Keywords: Electrocardiogram, Heart Rate, Stress, 

Physiological Computing.  

1. Introduction 

Nowadays, interaction with most computing systems does 

not take into account the state of the users operating them, 

responding identically to different users or their emotional 

state. Overcoming this obstacle is the goal of Affective 

Computing (AC) that has been a promising research field 

since the end of the last century. AC can be defined as using 

emotional and contextual information of the user, such as 

facial expression [1], nonverbal features of speech [2], etc., to 

modify the behavior of an application [3-6]. A subfield in AC 

is Physiological Computing (PC) based on data from the 

human body and how it changes to “provide one means of 

monitoring, quantifying and representing the context of the 

user to the system in order to enable proactive and implicit 

adaptation in real-time” [7]. 

This intelligent technology can be used in many different 

fields to improve the adaptive capability of a system [8]. PC 

has been researched as an assistive system for reducing the 

frustration, arousal states, mental block and workload, for 

example, in driving [9-12] and regulating a notifications 

system [13]. It has also been applied to maintain the level of 

challenge and prevent boredom in computer games [14,15]. 

In addition, reinforcing positive emotional states or reducing 

negative emotion is another domain of research of PC; for 

example, changing music according to the mood of the 

subject [16] or speeding up the recovery from stress [17] by 

using biofeedback technique. The main idea in all these 

systems is to determine the subject’s emotional state. Some 

research has concentrated on identifying these states as 

anger, happiness, disgust, surprise, sadness and fear [18] or a 

subset of these [19-24], while others have focused on arousal, 

stress, workload and/or cognitive-mental load [25-32]. They 

have tried to establish the effect of various psychological 

states with diverse physiological elements (many-to-many 

relationship), to determine how several emotional states 

affect a unique body measure (one-to-many relationship), or 

gauge the influence of a psychological state on different 

physiological data (many-to-one relationship) [33,34]. Thus, 

when designing an AC system one has to determine how the 

task modifies body parameters. 
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This paper attempts to establish a one-to-one relationship 

focus on heart activity and stress state. An individual feels 

different situations and levels of psychological pressure in 

the course of a day. Stress, defined as the organism’s 

psychosomatic response to external influences identified as 

dangerous, threatening or unpleasant, causing a fight-escape 

reaction [35], has been identified as the second cause of 

occupational health problems by the European Foundation 

for the Improvement of Living and Working Conditions [36]. 

The most common causes of stress are situations that evoke a 

negative memory of previous stressful situations. There is a 

large interest in knowing how stress can be efficiently 

detected by measuring heart rate variability and/or other 

additional information such the one collected by filling in a 

diary [37] or a questionnaire [38]. Putting together all these 

informations might improve efficiency of a stress classifier. 

Nevertheless, physiological measurements by themselves, 

like HRV, usually outperforms diaries [38]. In [37] the diary 

method improves physiological data, but in that case just 

one subject took part in the study. Measuring HRV can be 

accomplished by detecting QRS complex in a conventional 

ECG or by analyzing the signal from finger 

plethysmography [39].   

This work is framed inside a project whose main goal is the 

adaptation of an application (game, etc.) to prevent or 

mitigate stressful situations detected in the user by 

electrocardiogram measurements.  To achieve this goal, on 

one hand we want to study how this heart rate  signal 

changes under stressful situations and select a subset of 

parameters extracted from it that allow us to identify such 

situations in a reliable way. On the other hand, to mitigate 

stress or induce stress recovery, the environment has to react 

in some way. Some ideas have been pointed out in different 

works. One of them is based on reproducing sounds of 

nature in a virtual reality forest [40].  In the next section, we 

describe the experimental protocol (Section 2). Sections 3, 4 

and 5 present the experimental results, discussions and 

conclusions.  

2. Methodology 

2.1 Procedure 

The experimentation took place in a room with artificial 

lighting which was kept at a comfortable temperature. 

Subjects were seated on a padded chair placed 50 cm away 

from a 17” monitor with a resolution of 1280x1024 pixels and 

32 bits of color.  Each subject was asked to attend two 22-

minute sessions with one week elapsing between each 

session.  Subjects were randomly grouped into two subsets. 

Subset 1 performed the arithmetic task in the first week and 

the memory task in the second, while subset 2 performed the 

tasks the other way round. 

Similar to other experiments conducted to analyze stress 

[30,41], each session consisted of 5 parts:  the initial and final 

rest periods of 5 minutes and three 4-min phases (Figure 1) 

in which  the task had to be completed. Subjects became 

accustomed to the task in the first phase, and the level of 

difficulty and stress were increased in the following phases. 

Phase 3 should have the greatest level of stress.  

Two questionnaires based on the standard State-Trait 

Anxiety Inventory (STAI) were filled in at the beginning of 

each relaxation phase [42], where the subject relaxed reading 

a magazine. The range of results of testing was between 0 

and 60 with the minimum and maximum values indicating 

total stress/anxiety and complete relaxation. 

 
Figure 1.Timing of trials. 

A Java application was developed to implement the different 

tasks the subjects had to carry out. The application contains 

two activities (memory and arithmetic) with different 

difficulty levels (Figure 2. The application screen has four 

areas: time bar, performance bar with two indicators (correct 

answers and comparison to population), answer panel that 

shows 1 out of 3 messages (correct/non-correct/time out) and 

a task panel showing the activity. 

Figure 2. On the top: the Main Application Window, showing the 

panel for memory and arithmetic activities. In the down-left, the 

arithmetic panel and on the down-right, the memory panel. 

The arithmetic task is based on the Montreal Imaging Stress 

Task (MIST) [26] where the subjects perform basic math 

Robustness of Parameters from Heart Rate for Mental Stress Detection

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3510



 
 

operations (add, subtract, multiplication) whose results are 

always in the range between 0-9. 

The memory activity consists of a matrix where each cell 

contains a black or white geometric figure (circle, square, 

triangle, diamond). The individual must memorize the 

geometric figure, its color and position and then fill in an 

empty 2x3 matrix [25]. 

A timer is incorporated to limit the answer periods and set a 

timeout interval for all phases. The timeout decreases by 

10% after 3 consecutive correct answers and increases by 

10% when the subject accumulates 3 incorrect responses 

or/and exhausted timers. The purpose of the timer is to 

prevent success in the task and to increase stress. Timing in 

the memory task is greater than in the arithmetic task to 

allow subjects to finish it properly.  

The answer panel shows the result of the subject’s (correct or 

incorrect) answer or a timer timeout. A personal score 

increases by one unit after a correct answer, otherwise it 

decreases by two. 

The performance bar only compares the correct answers 

with 1.5 times the average of results for other subjects. For 

the first subject we used data obtained from application 

testing. A red color (0-60%) shows bad performances, yellow 

(60-80%) mediocre and green (>80%) very good 

performances. 

Finally, the population mark, on the left of the screen, shows 

90% of the average for all individuals who have taken the 

test since it was first implemented.  

In Phase 1, or accommodation period, the subjects grew 

accustomed to the task. This phase is free of pressure and the 

performance bar is not shown.  The average of the results for 

the population was calculated with the correct answers for 

this period (the subjects were not aware of this) to determine 

the population comparison indicator (Figure 1).  

In Phase 2, each subject was asked to try and exceed the 

population result indicator, being told that otherwise the 

data could not be used to compute the average for other 

individuals. The mental stress and arousal were therefore 

higher in this phase. 

In Phase 3, the researcher introduced stressors by telling the 

subject that the data from the last phase was useless because 

he/she had not achieved the goal, unlike the rest of the 

subjects who had passed the phase correctly. Even more 

stress was added by asking questions such as “Did you sleep 

well?”, “Do you have personal problems?”, etc. and making 

comments such as “You’ve got it wrong”, “You must 

concentrate”, “Time’s running out”. 

2.2 Subjects 

The trials were conducted with 13 healthy subjects aged 

between 26-56 (mean 37.86; sd 9.93), two of them were 

women and eleven men. All of them are voluntary and they 

work in our same site.Twelve subjects completed the 

arithmetic task, while eleven performed the memory task. 

We should also mention that the ethics committee of the 

University of Seville approved this research. 

2.3 Equipment 

The biosignal was recorded using  bioamplifier model gtec 

gUSBamp, and version 2.0 of the BCI2000 software [43]. The 

sample rate of the bioamplifier was set at 256 Hz, with a 

notch filter (48, 52)Hz to delete electrical power signals. A 

bandpass filter of 0.5, 100 Hz was applied. 

Auto-adhesive Ag/AgCl Electrodes with conductive gel were 

used. 

The offline data analysis was done with version 7.6.0.324 of 

Matlab. 

2.4 Data Acquisition 

 
Figure 3. Electrode assembly. 

The Electrocardiogram (ECG) signal was recorded using 

monopolar assembly. The reference was set on the right 

clavicle whereas the ground electrode was fixed below the 

right floating rib and the active sensor was placed below the 

left floating rib (Figure 3). 

2.5 Parameters extracted from ECG 

In this section we will explain how ECG was processed and 

what features were extracted from it. Also, the outlier values 

were avoided in our analysis using the interquartile-range 

method, that is, the values out of [Q1 - 1.5(Q3 - Q1), Q3 + 

1.5(Q3 - Q1)] were eliminated, where Q1 and Q3 are the 

lower and upper quartiles respectively. 

The RR segments are obtained from the ECG signal through 

the Pan-Tompkins algorithm [44]. Different parameters are 

extracted from HR and they may be classified in two groups: 

information based on temporal analysis and that based on 

frequency analysis [45]. The more common calculated 

parameters of the first group are the standard deviation of 

RR intervals (SDNN), the square root of the mean squared 

difference of successive RR segments (RMSSD), the 
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proportion of RR intervals that differ by more than 50ms 

(pNN50), the width of the minimum square difference 

triangular interpolation of the highest peak of the histogram 

of all RR intervals (TINN). The other group is based on 

calculating the power spectrum density (PSD) of the HR. 

Normally, the PSD is divided in 4 parts: frequency from DC 

to 0.003Hz (Ultra Low Frequency - ULF), from 0.003 to 

0.04Hz (Very Low Frequency - VLF), from 0.04 to 0.15Hz 

(Low Frequency) and from 0.15 to 4Hz (High Frequency - 

HF). One additional parameter is the ratio between LF and 

HF (LF/HF). The influence of each band on the PSD is 

calculated as the sum of the PSD of the band divided by the 

sum of all PSD. The SDNN, RMSSD and TINN are used to 

determine the variability over a short time period to obtain 

the influence of Parasympathetic Nervous System ( PSNS). 

Important information about quick random changes of 

heartbeat is extracted from pNN50.  The frequency bands 

can inform about different pathologies, such as the 

thermoregulatory system (ULF band), blood pressure (LF) 

and breath (HF). Also, the HF band is connected with the 

parasympathetic system, whereas the sympathetic system is 

linked with LF. Thus, the LF/HF ratio is associated with the 

Autonomic Nervous System (ANS), so that an increase in 

sympathetic activity causes its value to rise, while an 

increase in parasympathetic activity causes its value to fall.  

Additionally, we obtained the main frequencies of each band 

(fmVLF, fmLF, fmHF), by applying equation (1), main 

frequency (fm) is calculated as the average weighted spectral 

frequencies with energy spectrum density (ESD). 

( ) ∑∑ ⋅=
ii

iESDiESDiffmb )()()(   (Eq. 1)  

The median of RR segments (Mrr), was obtained too. This 

measure is based in the histogram too, it is simple but not as 

common as the other measures based in HR. 

3.  Results 

We are not just interested in discovering how the different 

features change through the phases for a specific subject, but 

also in choosing the best features for detecting the onset of a 

stressful situation for a population as a whole.  After 

obtaining the features for the set of subjects in each phase we 

studied the ANOVA test for the variations of such features 

through the different phases in order to select the ones with 

statistical significance. The variations between phases were 

obtained by applying the equation (2), where 
i
refJ∆  is the 

variation of the parameter J in the phase i with phase ref as 

refline; iJ∆   and
refJ∆  are the values of the parameter J in 

the phase i and ref where refi ≠ . 

( )( ) refiJJJ refii
ref ≠−⋅=∆ 1/100 (Eq. 2) 

The expected behavior for the change from the initial-rest 

period to the first task phase is a change resulting from a 

higher-induced stress level, since the subject passes from an 

initial relaxed state to a mental-activity period and because 

the individual does not know how the task and the control of 

the application work. Thus, the stress level is confirmed if 

these variations occur in the other activity phases compared 

to the initial rest time. So, a significant difference between 

task phases and rest periods is the a priori expected behavior 

(PEB), making it possible to distinguish between the activity 

and relaxed states. This is the goal of the first analysis (A1). 

The parameters which do not show those changes must be 

rejected as correct indicators of stress level, even if one of the 

phases has a significant change.  

Passing from one phase to the next means an increase in 

what a subject is required to do in an activity. In fact, from 

rest to the performance period (or viceversa) means moving 

from relaxed (or arousal) to arousal (or relaxed) state, 

because the individual goes from reading a magazine to 

answering different mental operations without having the 

pressure of an aim. In addition, the second activity phase 

raises the stress level, in that the subject must achieve a 

target, and the third phase increases the arousal state 

because the subject did not succeed in the previous phase. 

This is the focus in the second analysis (A2). The desired 

behavior is a significant change from one phase to the next, 

with the stress level being higher in an activity phase and 

lower in the relaxed periods. 

The arousal of the first activity phase is the induced initial 

stress level.  Taking this phase as baseline, the expected 

behavior of the parameters is a significant variation from 

their values in rest periods. Also, the other activity phases 

must maintain or increase stress levels. Thus, we expect 

results to include significant changes for the start and finish 

relaxed phases, and significant variations or not depending 

on whether stress levels are similar or vary. Therefore, the 

target of the third analysis (A3) is to distinguish between the 

stress level and arousal produced by the task. 

The three analyses mentioned above were carried out using 

a one-way analysis (ANOVA). The A1 analysis was 

performed using the initial rest phase as reference, so that 

the changes due to the task could be observed. The A2 

analysis compared one phase to the previous phase (ref line). 

This showed the differences between phases, and made it 

possible to determine whether there was an incremental 

stress effect. The A3 analysis was done with the first activity 

phase as refline. The first performance period was used 

because the subject grew accustomed to the task without 

Robustness of Parameters from Heart Rate for Mental Stress Detection

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3512



 
 

pressure. Using this phase as triger line made it possible to 

calculate the variations caused by the stress level. 

Outliers were dismissed beforehand because the ANOVA is 

very sensitive to them, although we did not find more than 3 

outliers in the worst case. 

3.1 Test STAI 

As we mentioned earlier, the subjects were given two stress 

tests during the initial and final rest phases for arithmetic 

and memory tasks. The difference between the final and 

initial STAI scores gave us information about whether or not 

the task was stressful. Negative differences indicated that the 

task was stressful, whatever the experimental situation for 

both tasks. Specifically, in the arithmetic task, the average 

difference was -7.5 with a standard error of 2.18%, and in the 

memory task this difference was -5.0 with a standard error of 

1.46%. An ANOVA analysis applied to the initial and final 

STAI tests confirmed that such differences were significant 

(arithmetic p= 0.004, memory p=0.05) 

3.2 Electrocardiogram 

Table 1 contains the maximum p-value obtained using A1 

analysis for each parameter and task in no significant cases. 

Exceptions are ∆pNN50 and ∆HF band in the memory task 

as shown below. 

 Arithmetic Memory 

∆SDNN 0.97 0.78 

∆RMSSD 0.25 0.13 

∆TINN 0.88 0.67 

∆VLF 0.39 0.51 

∆LF 0.65 0.91 

∆LF/HF 0.81 0.21 

∆fmVLF 0.51 0.93 

∆fmLF 0.69 0.71 

∆fmHF 0.79 0.68 

Table 1. Maximum p-value in task phases for A1 analysis. 

Although the averages of most parameters applied to 

subjects were not statistically significant, there were changes 

in heart rate for all of them. In Figure 4 we can see the 

histogram in both the two phases of rest and the three of 

activity  for one of the subjects who performed the test. It can 

be observed that RR intervals changed significantly 

throughout the experimental task. The maximum for the 

histogram shifted to the left when the subject went from rest 

period 1 to phase 1. This implies a reduction in the RR 

interval or, equivalently, an increase in heart rate. One can 

also see how, even in the most stressful phase, phase 3, this 

histogram shifted even further to the left.  The final period, 

rest 2, caused the histogram to shift to the right and go back 

to the initial position.  Hence, a parameter exhibiting the 

shifting of the histogram through the different phases and 

showing robustness against outliers is needed.  The median 

of RR segments (Mrr) was not sensitive to outliers and 

adjusted fairly well to the shifting of the histogram, so this 

might be a good choice.  

A first approximation of the performance of this parameter is 

shown in Figure 5. The horizontal axis contains all the 

experimental subjects, with the vertical axis showing the 

∆Mrr parameter according to the experimental phase. The 

expected behavior for phase 1 was that the position of the 

median would decrease from the refline (rest 1) and continue 

to drop even further as the experimentation moved into 

phase 2 and 3. This behavior was observed for most subjects 

in both tasks. Subjects 4, 5, 7, 8 and 10, in the arithmetic task, 

and 2, 8 and 11, in the memory task, showed a sequential 

decrease in Mrr values through the phase.  In the memory 

task, subjects 1, 4, 5, 6, 7, 9, and 10, and 2, 9 and 11 in the 

arithmetic task exhibited a lower value in the third 

performance than in the second. The final rest period had a 

higher value in 13 cases (6 arithmetic / 7 memory) than in the 

initial rest time and in 5 cases they were almost the same.  

 
Figure 4. RR interval Histogram for a subject in different phases. 

 
Figure 5. Median variations for subjects. 

 
Figure 6. ∆Mrr, ∆Pnn50 and ∆HF-band averages. 
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Figure 6 shows the ∆Mrr averages for all phases and tasks 

based on analysis A1. One can see that for both tasks its 

behavior was very similar. For phase 1 ∆Mrr fell showing 

that the RR interval decreased, and for phases 2 and 3, when 

more stress was applied, the ∆Mrr dropped again close to -

10% (±3%) but  it is not easy to  distinguish phase 3 from the 

previous one. As the task ended and the subject went to the 

final rest period, the median rose up to the refline. The 

ANOVA test confirmed what we can see in Figure 6 ∆Mrr 

was very significant for the A1 analysis in which the p-value 

was lower than 0.01 for all phases and tasks, excluding the 

final rest period, and the p-value for phase 3 in analysis A2 

and A3 was not significant.  

The ∆pNN50 did not behave as expected as we can see in 

Figure 6. In the arithmetic task, this parameter drew a w-

shape, going down in phase 1, then up in phase 2, and so on 

to the end. The ANOVA test (Table 2) showed this feature 

was not significant in the A1 analysis (p=0.25 in phase 2). 

This situation was similar for this parameter and the 

memory task, where the curve it described was not PEB 

compliant but the A1 ANOVA test was significant (p<0.01 

for phases 1-3). 

 
Phase 

Rest 1 Phase1 Phase2 Phase3 Rest 2 

A1 

∆Mrr 
 

<0.01a 

0.02m 

<0.01a 

<0.01m 

<0.01a 

<0.01m 

0.31a 

<0.01m 

∆pNN50  
<0.01a 

<0.01m 

0.25a 

<0.01m 

<0.01a 

<0.01m 

0.33a 

0.14m 

∆HF  
0.52a 

<0.01m 

0.81a 

0.05m 

0.80a 

0.05m 

0.79a 

0.43m 

A2 

∆Mrr 
 

<0.01a 

0.02m 

0.02a 

0.02m 

0.21a 

0.39m 

<0.01a 

<0.01m 

∆pNN50  
<0.01a 

<0.01m 

0.07a 

<0.01m 

0.27a 

0.46m 

0.05a 

<0.01m 

∆HF  
0.52a 

<0.01m 

0.73a 

0.78m 

0.12a 

0.12m 

0.50a 

0.15m 

A3 

∆Mrr <0.01a 

0.02m 
 

0.02a 

0.02m 

0.10a 

0.30m 

<0.01a 

<0.01m 

∆pNN50 
0.37a 

0.04m 
 

0.07a 

<0.01m 

0.15a 

0.33m 

0.13a 

<0.01m 

∆HF 
0.54a 

0.03m 
 

0.73a 

0.78m 

0.90a 

0.17m 

0.87a 

0.02m 

Table 2. ANOVA Analysis of ECG. a=arithmetic, m=memory. 

∆HF showed PEB in the arithmetic task but not in the 

memory task. Focusing on the first task, the ANOVA test 

was not significant either for activity or stress detection. The 

significance in this feature only appeared as an indicator of 

activity in the memory task. 

4. Discussion 

During the development of a stressful activity changes occur 

in the homeostasis of the human body which can be detected 

because several regulatory variables modify their resting 

values. The progressive increase in the level of stressors 

during the subject’s task would determine the dependence of 

the analyzed variables with the degree of induced stress. The 

analysis conducted in this study aimed to identify such 

dependencies and profile a subset of these variables which 

would be suitable for stress detection in a population. To 

achieve this goal we have to take into account, on the one 

hand, that a variable is suitable for detecting stress when it is 

significant from a statistical point of view. Due to the 

variability in resting values in a population, the statistical 

analysis requires, on the other hand, changes in these 

variables to be processed subject by subject before they can 

be used in a statistical study, otherwise the results could be 

irrelevant.  

The trials were designed to increase the stress level in each 

activity phases. However, observing the ANOVA results and 

parameter's variation charts could be concluded the subjects 

were less arousal in the third task period, where it had to be 

the most stressful performance. This fact may be caused by 

the users tried relax and concentrate because they previously 

did twice the operations and their nervousness level made 

that they failed. Furthermore, it should also take into 

account that the main difference between the third and 

second phase were the questions of the person driving the 

experiment. The desired stress increase could not be 

achieved.  

It is important in this study to identify an activity period 

from a rest phase, differentiate properly an unstressful 

activity from a stressful one, and check variable dependency 

on stressor intensity.  To achieve these goals, we carried out 

three types of analysis. In analysis A1, we wanted to 

calibrate the changes in the set of values of the physiological 

variables when the task (or stressful task) was performed 

compared to the rest state and thus determine how the 

activity and stress affected them. In the second analysis, A2 

and A3, we identified stress by erasing the effect the activity 

had over the analyzed variables.  

Finally, to confirm that the proposed tasks were stressful, the 

STAI test was given to subjects at the beginning and at the 

end of each trial. The results confirmed that the tasks 

subjects performed did produce stress.  

Most of the typical features widely used in ECGs are not 

suited to showing clearly the shifts in the RR- histogram 

even if the outliers are deleted. Their sensitivity to extreme 

values may be the cause. However, the median of RR 

segments was less sensitive to outliers and was better for 

showing the histogram shift between phases. 

The value of the median, ∆Mrr, in the arithmetic and 

memory tasks decreased significantly during phases, while it 

was similar in rest periods. Furthermore, the changes from 

one phase to the next showed that the stress level was the 

cause of this variation. The phase 3 showed a behavior 
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indistinguishable from the others two task periods (analysis 

A2 and  A3 show that), in spite of changes of this feature 

(Figure 3.2.3) drew similar values of average and standard 

error respect to phases 1 and 2. This can be due to the fact 

that the subjects knew the operations and they tried to get 

relaxed.  We conclude that this feature is appropriate for 

being used as a stress detector. 

On the other hand, the ∆pNN50 and ∆HF band only 

exhibited relevance in the memory task. A low pNN50 

meant that the variability of the RR segment was also low, so 

the PSNS activity was lower and thus subjects were more 

aroused. The HF band was also linked to PSNS, so low 

values in this band represented a reduction in activity in 

PSNS, meaning individuals were more overexcited. 

5. Conclusions 

The goal of this research was to determine the statistical 

significance of the effect of stress levels in parameters related 

with HR and verify the results with a subjective 

psychological questionnaire. To do this, these biosignals 

were recorded, processed and analyzed.  The STAI test 

confirmed that the significant parameter changes were 

caused by increased stress levels during task periods, since 

the results showed lower values after activity periods than 

before they had started. Some features extracted from 

biosignals changed depending on the task and their 

variations were significant during the arithmetic tasks while 

others were significant during the memory activity task. A 

summary of significant parameters is shown in Table 3.  

The most interesting parameters were those that made it 

possible to distinguish activity and stress situations in both 

memory and arithmetic tasks. This was the case of ∆Mrr in 

ECG. 

∆pNN50 and ∆HF of ECG also showed effects in both tasks 

but only weakly.  

PHYSIOLOGICAL 

SIGNAL 
PARAMETER 

ACTIVITY 

INDICATOR 

STRESS 

INDICATOR 

ECG 

∆Mrr 

∆pNN50 

∆HF 

both tasks 

both tasks 

both tasks 

both tasks 

both tasks 

both task 

Table 3. Significant parameters. 

In future work, we will analyze stressor effects on others 

biosignals as a result of the tasks described in this paper, 

examining the best features for detecting such a situation. 

When significant physiological variables are detected, they 

should all be combined into a system capable of deciding 

about the state of the subject and acting accordingly, so as to 

lead the subject towards a less stressful state.   
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