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Abstract

In this work we consider the shortest path problem and the single facility Weber
location problem in any real space of finite dimension where there exist different
types of polyhedral obstacles or forbidden regions. These regions are polyhedral
sets and the metric considered in the space is the Manhattan metric. We present a
result that reduce these continuous problems into problems in a “add hoc” graph,
where the original problems can be solved using elementary techniques of Graph
Theory. We show that, fixed the dimension of the space, both the reduction and
the resolution can be done in polynomial time.
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1 Introduction

The Manhattan metric `1 is a well-known distance measure very useful in many
realistic applications: wire layout, circuit design, plant and facility layout,
urban transportation and robot motion, among others.

Associated to the Manhattan metric `1 we find the rectilinear paths. A
rectilinear path RPX,Y between two point X, Y ∈ Rn is a path from X to
Y formed by the union of a finite set of rectilinear segments parallel to the
reference axes. Indeed, if we denote by RPX,Y the set of rectilinear paths
from X to Y , then

`1(X, Y ) = min{length(RPX,Y ) : RPX,Y ∈ RPX,Y },

where length(RPX,Y ) is the sum of the lengths of the segments defining RPX,Y .
We restrict ourselves in what follows to consider the metric d = `1.

In real world applications, it is very often needed to consider constraints
which change the properties of the distance measures in the framework space.
These regions model traveling limitations as, for example, protected or mili-
tary areas, mountain ranges, lakes, or, on small scale, machinery in an indus-
trial plant.

These constraint regions can be:

• Weighted obstacles: traveling through the region is allowed but it increases
a proportional cost on the traveled distance [6].

• Barriers: traveling through the region is forbidden [2,3,5].

In addition, in facility location problems we can consider:

• Forbidden regions: traveling through the region is allowed but locating a
facility is not allowed [1].

• Congested regions: placing a facility is prohibited but traveling through the
region is allowed, although it carries on a proportional cost on the traveled
distance.
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Clearly, in facility location applications locating a facility in a barrier is for-
bidden since it has no sense.

We are interested in rectilinear constraint regions which are regions shaped
like linear polyhedral sets. Linear polyhedral sets are sets delimited by a con-
nected union of a finite set of isotetic parallepipeds (parallepideds whose edges
of dimension one are parallel to the reference axes). This is the framework in
which we consider the problems.

2 The problems

In Rn with n ≥ 2, let B1, ..., Bm be a set of rectilinear constraint regions
pairwise disjoint, where each one of them can be of a different type from one
another. The restriction set B =

⋃m
i=1Bi induced a metric dB in Rn called the

rectilinear restriction region metric. Given two points X, Y ∈ Rn, the metric
dB(X, Y ) is the minimum length for a rectlinear path between X and Y taking
into account how the different types of barriers in B change the value of the
Manhattan metric.

In this context, we want to solve the shortest path problem and the min-
isum (Weber) single facility location problem [7,8]. The first one consists on
finding the dB-minimum rectangular path between two points X, Y ∈ Rn. The
second problem consists on, given a set of existing facilities {Ex1, ..., ExK} ⊆
Rn, finding the location X ∈ Rn of a new facility solving the problem:

min
K∑
k=1

wkdB(X,Exk)

s.t: X ∈ Rn,

where wk > 0 is the weight for facility Exk, for each k ∈ {1, ..., K}.

3 The rectilinear construction grid

Let us denote by P(B) the set of extreme points of B, and let Ex be: the set
{X, Y } of the two points which we want to join by a dB-minimum rectangular
path, if we are considering the shortest path problem; the set {Ex1, ..., ExK}
of existing facilities, if we are considering the single facility location problem.
Algorithm 1 builds a graph N`1 called the base rectilinear construction grid
of the problem, which is the basis of our discretization result.



Algorithm 1 Algorithm to build the graph N`1 (BASEGRID)

PROCEDURE BASEGRID(P(B) ∪ Ex)
STEP 1 For each i ∈ {1, ..., n}, compute the list Li = {xi :

(x1, ..., xi, ..., xn) ∈ P(B) ∪ Ex} and order it in increasing order.
STEP 2 Let V = {} and E = {}. For each (x1, ..., xi, ..., xn) ∈

P(B) ∪ Ex and each i ∈ {1, ..., n} do:
• Add to V the points of the set {(x1, ..., x

′
i, ..., xn) : x′i ∈ Li}.

• Add to E the pairs of the set {((x1, ..., x
′
i, ..., xn), (x1, ..., x

′′
i , ...,

xn)) : x′i, x
′′
i ∈ Li, being x′i, x

′′
i consecutive elements in Li with x′i <

x′′i } being the weight of each edge ((x1, ..., x
′
i, ..., xn), (x1, ..., x

′′
i , ..., xn))

the Euclidean distance between the points of the pair, i.e., |x′i − x′′i |.
RETURN N`1 := (V,E).

END PROCEDURE

Note that, fixed the dimension n of the space, Algorithm 1 is polynomial.
Obtained the base rectilinear construction grid, we make to N`1 a polynomial
transformation (removing some vertices, changing the weight of the edges,
etc.) in order to obtain the rectilinear construction grid NdB . The transfor-
mation above depends on the constraint regions, and their type, present in
the framework space. The grid NdB is an extension, to higher dimension and
more general constraint regions, of the one that appears in [4].

4 Main results

We show how the shortest path problem reduces to finding another shortest
path in the resulting graph NdB and can be solved by using any of the well-
known algorithms for this problem, for instance Dijsktra’s algorithm. Con-
cerning the minisum (Weber) single facility location problem we prove that
there exists a finite dominating set defined by the set of vertices of NdB . Fi-
nally, we show that, fixed the dimension of the space, both the reduction and
the resolution of these continuous problems can be done in polynomial time.
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