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Abstract—This paper proposes an extended state ob-
server based second order sliding mode (SOSM) control
for three-phase two-level grid-connected power converters.
The proposed control technique forces the input currents to
track the desired values, which can indirectly regulate the
output voltage while achieving a user-defined power factor.
The presented approach has two control loops. A current
control loop based on a SOSM and a dc-link voltage reg-
ulation loop which consists of an extended state observer
(ESO) plus SOSM. In this work, the load connected to the
dc-link capacitor is considered as an external disturbance.
An ESO is used to asymptotically reject this external dis-
turbance. Therefore, its design is considered in the control
law derivation to achieve high performance. Theoretical
analysis is given to show the closed-loop behavior of the
proposed controller and experimental results are presented
to validate the control algorithm under a real power con-
verter prototype.

Index Terms—Sliding mode control, extended state ob-
server, power factor correction, three-phase power convert-
ers.

I. INTRODUCTION

T
HREE-phase pulse-width-modulated (PWM) converters

play a key role in industrial applications like integration

of renewable energy sources, energy storage systems, motor

drives, etc [1]–[5]. Particularly, active front ends (AFE) are

grid-connected converters that offer features as bidirectional

power flow, near-sinusoidal currents, and power factor and dc-

link capacitor voltage regulation capability [6]. For this reason,

the control objectives for this application are to maintain

the dc-link voltage regulated to a certain reference, supply a

desired reactive power and draw grid currents with the lowest

possible harmonic distortion.
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There are many approaches to develop the control law

for this system. Early solutions were linear regulators like

the one proposed in [7]. It changes the modulation index

slowly to regulate the dc-link capacitor voltage. Therefore,

its main disadvantage is that it presents a slow dynamical

response. A faster response can be obtained using a deadbeat

current control [8]. However, it is well known that it is

highly sensitive to the parameter uncertainties. In general,

these approaches define an operating point and then work with

a small-signal linearized model around it. This is a drawback

because they can not guarantee stability against large signal

disturbances for the large range of operating conditions of

the three-phase PWM converter due to the fact that AFE are

nonlinear systems. Furthermore, the controller implementation

requires the system parameters which depend on the operating

points, otherwise it may result in steady state errors in the

state variables. On the other hand, in light of the strong

nonlinearity of AFE, nonlinear control algorithms may be

suitable for controlling the power converters, which are able

to accommodate a wide range of operating conditions. The

main reason is that there’s no need to have a linear model of

the power converter for nonlinear controller design.

Several nonlinear control approaches have been proposed

for grid-tied power converters, such as nonlinear adaptive con-

trol [9], passivity based control [10], model predictive control

[11] and sliding mode control (SMC) [12]–[16]. Among these

techniques, SMC is suitable for dealing with the nonlinear

behavior of the considered system due to its characteristics of

insensitivity to external disturbances, system reduction, high

accuracy and finite time convergence [17], [18].

SMC has been developed as a new control design method

for a wide spectrum of systems including nonlinear, time-

varying and fault tolerant systems [19]–[21]. SMC can man-

age the nonlinear behavior of the three-phase grid-connected

power converter. Besides, it is characterized to be a robust and

effective control strategy. However, up to authors knowledge,

proposed SMC strategies have only considered the control

of input current in sliding mode [13]–[16]. In general, these

works use a proportional integral (PI) controller for the

dc-link capacitor voltage regulation. This approach achieves

robustness of input current control, but can’t guarantee ro-

bustness of output voltage control since they are derived

using approximations and linearizations. To solve this issue,

extended state observer (ESO) based control strategies are

proposed for voltage control design to reject disturbances and

uncertainties [22], [23]. ESO is an efficient technique for
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disturbance estimation, which regards the lumped disturbances

(such as parametric uncertainty, unmodeled dynamics and load

variation) as a new state. However, only simulation results are

provided in both works and stability analysis of the closed

loop system taking into account the modelling uncertainties is

not performed.

In this paper, a model-based second order sliding mode

(SOSM) control for three-phase grid-connected power convert-

ers is proposed. The controller design is based on the system

model and has a cascaded structure which consists of two

control loops. The outer loop regulates the dc-link capacitor

voltage and the power factor providing the current references

for the inner control loop. The current control loop tracks the

actual currents to their desired values.

To design the proposed controller, the load connected to

the dc-link capacitor is considered as a disturbance, which

directly affects the performance of the whole system. Thus,

a composite control law consisting of SOSM based on super-

twisting algorithm (STA) and disturbance compensation via

ESO is developed for the voltage regulation loop. The current

control loop is also designed using the STA. The STA is

one of the most popular SOSM algorithms and a unique

absolutely continuous sliding mode algorithm, ensuring all the

main properties of first order SMC for systems with Lipschitz

continuous matched uncertainties/disturbances with bounded

gradients [24].

Compared to [22], this paper incorporates the modelling un-

certainties into the design of ESO and SOSM algorithms. The

sliding surface is designed ensuring the finite time asymptotic

convergence of the sliding variables to its desired values in the

presence of parametric uncertainties. In addition, this paper

provides theoretical study of the stability issue and solves it

by Lyapunov method.

To show the benefits of the proposed controller it can be

compared with some conventional control strategies like PI

synchronous reference frame (PI-SRF) or proportional plus

resonant (PR) controllers. The PI-SRF is considered as the

standard control method in industry for this system and has

been finally selected as the baseline controller. It should be

noticed that the PR controller is also a linear control. Besides,

when PR is adopted, a simple PI regulator is usually employed

for the outer control loop. Therefore, it is expected that

proposed ESO-SOSM provides the same improvements as for

the PI-SRF. That is, better transient response and improved

system performance under a load step. The performance of the

proposed control is compared with a well-tuned conventional

PI-SRF controller. The results show that the performance of

the designed controller presents a faster dynamic behavior

while maintaining a lower THD value in steady state and

improves system performance under a load step. The validity

of the proposed control algorithm has been verified by exper-

imental results for a 3.0 kVA insulated gate bipolar transistor

(IGBT) PWM power converter using a TMS320F28335 digital

signal processor (DSP).

The paper is organized as follows: In Section II, the math-

ematical model for a three-phase two-level grid-connected

power converter is presented. Section III shows the design of

the proposed SOSM controller for the inner and outer control
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Fig. 1. Circuit of the three-phase two-level grid-connected power con-
verter

loops. It also includes the ESO design for estimating the load

disturbances. Experimental results comparing the performance

of the proposed SOSM control with the conventional PI

synchronous reference frame (PI-SRF) controller are discussed

in Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Dynamic System Model

The electrical circuit of the three-phase two-level grid-

connected power converter under consideration is shown in

Fig. 1. The system is connected to the grid through a smooth-

ing inductor L with a parasitic resistance r. It is assumed that

an equivalent resistive load RL is connected at the dc-link

capacitor C. The load is considered as an unknown external

disturbance.

The grid current and dc-link capacitor voltage dynamics

can be written in a dq SRF rotating at the grid frequency

[25]. Assuming that grid voltages are balanced then the system

model is

L
did
dt

= −rid + ωLiq + vd − δdVdc, (1)

L
diq
dt

= −riq − ωLid + vq − δqVdc, (2)

C
dVdc
dt

= (δdid + δqiq)− iLoad, (3)

where δd, δq are the switching functions, vd, vq are grid

voltages, id, iq are input currents, Vdc is dc-link capacitor

voltage and ω is the angular frequency of the grid. From

the control point of view, working on the dq SRF has the

advantage of reducing the current control task into a set-point

tracking problem.

It should be pointed out that the amplitude of the control

vector is constrained due to the fact that only implementable

control vectors are contained in an area limited by the well-

known hexagon . Therefore, it is necessary to consider the

constraint ‖δdq‖ ≤
√
2, which implies that the switching

function stays unsaturated if its magnitude is not larger than√
2. This is a conservative approach but ensures the system

operation.

B. Modelling Uncertainties

In practical applications, the system modeling is usually

obtained under several assumptions, e.g. ignore the switching
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losses, in order to simplify the control design. However, such

models are not exact, and may vary from real system behav-

ior under some operation conditions. Therefore, a controller

should be designed to be robust against any modeling para-

metric uncertainties. For this reason, parametric uncertainties,

i.e. smoothing inductor L, parasitic phase resistance r and

the angular frequency of the grid ω, are fully considered and

included into the model such that the control robustness is

guaranteed. These parameters are formalized as follows:

L = L0 +∆L, r = r0 +∆r, ω = ω0 +∆ω, (4)

where L0, r0, ω0 are the nominal values and ∆L, ∆r, ∆ω
are the parametric uncertainties which can be considered as

unknown slow variant signals.

C. Control Objectives

The control objectives for three-phase two-level grid-

connected power converters are as follows:

• The currents id, iq should track their references i∗d and

i∗q , respectively. The reference value i∗d is calculated in

such a way that dc-link capacitor voltage is regulated to

a certain value. The reference value i∗q is set to provide

a desired instantaneous reactive power.

id → i∗d, iq → i∗q . (5)

• The dc component of the dc-link capacitor voltage should

be driven to some reference value V ∗
dc.

Vdc → V ∗
dc. (6)

III. CONTROL DESIGN

In three-phase two-level grid-connected power converters

there exist different kinds of disturbances, like parameter

uncertainties and load variations. If the controller does not

have enough ability to reject these disturbances then they will

degrade the performance of closed loop system. A cascade

control structure is used to govern the system (1)-(3). The

controller consists of a current tracking loop, inner loop, and

an ESO-based voltage regulation loop, outer loop. For the

current tracking loop, an STA controller is designed which

ensures fast convergence of the currents id and iq to their

references i∗d and i∗q , respectively. For the voltage regulation

loop, an ESO is used to estimate the load power which

is considered as an external disturbance. Besides, an STA

controller is implemented in parallel to regulate the dc-link

capacitor voltage to its desired value using the estimate of the

disturbance. First, the basics of STA will be briefly shown.

Second, the design of both control loops will be presented.

A. Super-twisting algorithm

The sliding mode design approach consists of two steps.

The first step considers the choice of sliding manifold which

provides desired performance in the sliding mode. The second

step concerns the design of a control law which will force the

system states to reach the sliding manifold in finite time, thus

the desired performance is attained and maintained. This part

discusses the STA in a general case for a single input nonlinear

system.

Consider a nonlinear system

ẋ = a (x) + b (x, u) , (7)

y = s (t, x) , (8)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ R is the

input, s(t, x) : Rn+1 → R is the sliding variable and a(x)
and b(x, u) are smooth uncertain functions.

The control objective is to force s and its time derivative

ṡ to zero. By differentiating the sliding variable s(t, x) twice,

the following relations are derived:

ṡ =
∂

∂t
s (t, x) +

∂

∂x
s (t, x) [a (x) + b (x, u)] , (9)

s̈ =
∂

∂t
ṡ (t, x, u) +

∂

∂x
ṡ (t, x, u) [a (x) + b (x, u)]

+
∂

∂u
ṡ (t, x, u) u̇

= ϕ (t, x, u) + γ (t, x, u) u̇. (10)

Assuming that the sliding variable s has relative degree one

with respect to the control input u, i.e. ∂
∂u
ṡ (t, x, u) 6= 0,

there exist positive constant values Φ, Γm and ΓM such that

the following conditions are satisfied,

0 < Γm < γ (t, x, u) < ΓM , (11)

−Φ ≤ ϕ (t, x, u) ≤ Φ. (12)

Under the conditions (11) and (12), the following differential

inclusion can be obtained:

s̈ ∈ [−Φ,+Φ] + [Γm,ΓM ] u̇. (13)

In the sequel, a control law based on STA is designed. It

consists of two terms, one is the integral of its discontinuous

time derivative while the other is a continuous function of the

available sliding variable s.

u = u1 + u2, (14)

u̇1 = −αsign (s) , (15)

u2 = −λ |s|
1

2 sign (s) , (16)

where α and λ are design parameters that can be determined

from the boundary conditions (11) and (12). The sufficient

conditions for finite time convergence to the sliding manifold

s = ṡ = 0 are [26]:

α >
Φ

Γm

, λ2 ≥ 4Φ

Γ2
m

ΓM

Γm

α+Φ

α− Φ
. (17)

Remark 1: In the case of relative degree one systems,

traditional first order sliding mode could also be applied.

However, motivated by the chattering elimination aim, super-

twisting based control is employed which means that the

control signal u is continuous and chattering is avoided.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

B. Extended State Observer

According to the control objective (6), the outer control

loop is designed to regulate the output capacitor voltage to its

reference value V ∗
dc.

For the system (1)-(3), the current dynamics are much faster

than the dc-link capacitor voltage dynamics [27]. Under this

condition, it can be considered that id ∼= i∗d and iq ∼= i∗q . Based

on the singular perturbation theory [28], if the fast dynamics

are stable then (3) will be reduced to

C
dVdc
dt

=
1

Vdc
(p∗ − pload) , (18)

where p∗ = vdi
∗
d + vqi

∗
q and pload = Vdciload.

It should be noted from (18) that pload can be considered as

an external disturbance. This paper proposes to design an ESO

to estimate the disturbance asymptotically. Then, it will be

injected into the control design. Unlike traditional observers,

such as Luenberger observer [29], high-gain observer [30]

and unknown input observer (UIO) [31], ESO regards the

disturbances of the system as new system states which are

conceived to estimate not only the external disturbances but

also plant dynamics [32].

To design the ESO, the new variable z = V 2
dc/2 is intro-

duced in (18), yielding

Cż = p∗ − d(t), (19)

with d(t) = pload.

A linear ESO is given by

C ˙̂z = p∗ − d̂(t) + β1(z − ẑ), (20)

˙̂
d(t) = −β2(z − ẑ), (21)

where the positive gains β1 and β2 are chosen such that the

polynomial

λ2 +
β1
C
λ+

β2
C
, (22)

is Hurwitz stable. Therefore, its natural frequency ωn and

damping ratio ξ are:

ωn =

√

β2
C
, (23)

ξ =
β1
2

√

1

β2C
. (24)

Denote the observation errors ǫz = z− ẑ, ǫd = d(t)− d̂(t),
the error dynamics are given by,

Cǫ̇z = −β1ǫz − ǫd, (25)

ǫ̇d = β2ǫz + h (t) , (26)

where h(t) = ḋ(t) is the variation rate of load power. The

system (25)-(26) can be written as follows:

ǫ̇ = Aǫ+ ψ, (27)

where ǫ = [ǫz, ǫd]
T , A =

[

−β1

C
− 1

C

β2 0

]

and ψ =
[

0 h(t)
]T

.

Lemma 1: Suppose that h (t) is bounded, there exist a con-

stant δ > 0 and a finite time T1 > 0 such that the trajectories

of the system (27) are bounded, ‖ǫ‖ ≤ δ, ∀t ≥ T1 > 0.

STA
-

+

+

+

ESO
+

-

Fig. 2. Block diagram of the STA+ESO controller for the voltage
regulation loop

Proof 1: Proof of Lemma 1 is given in Appendix A.

Remark 2: In view of (25)-(26), the parameters β1 and β2
determine the bandwidth of the ESO, i.e.

ωb = ωn

√

(4ξ4 − 4ξ2 + 2). (28)

Generally speaking, the larger the ESO bandwidth is, the more

accurate estimation will be achieved. However, this increases

the noise sensitivity due to the augment of the bandwidth. The

function h(t) represents the rate of change of load power. If

this value is quite large then it means that the load power

changes very rapidly. In this case, the observer bandwidth

needs to be sufficiently large for an accurate estimate of d(t).
Therefore, the selection of β1 and β2 should balance between

the estimation performance and the noise tolerance.

C. Capacitor Voltage Regulation Loop

Define the regulation error z̃ = z∗−z with z∗ = (V ∗
dc)

2 /2,

it follows that,

C ˙̃z = −p∗ + d(t). (29)

Notice that the perturbation d(t) is an unknown time varying

variable. The proposed ESO-based STA controller for the

voltage control loop is given by

p∗ = µ
dc
(z̃) + d̂(t), (30)

in which µdc(z̃) is the STA which takes the following form,

µdc(z̃) = λdc|z̃|
1

2 sign(z̃) + αdc

∫ t

0

sign(z̃)dτ, (31)

with some positive constants λdc and αdc.

Substituting (30) into (29), yields

C ˙̃z = −µdc(z̃) + ǫd. (32)

It can be easily obtained from the Lemma 1 that

‖ǫ̇d‖ ≤ ‖A‖ δ + sup
t0≤τ≤t

‖ψ (τ)‖ = Fd, (33)

with ‖A‖ =
√

λmax(ATA) and Fd is a positive value. The

sufficient conditions for the finite time convergence to the

sliding manifold z̃ = ˙̃z = 0 are [26]:

αdc > CFd, λ2dc ≥ 4C2Fd

αdc + Fd

αdc − Fd

. (34)

The block diagram of the ESO based voltage regulation loop

is shown in Fig. 2.
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Fig. 3. Block diagram of the current tracking regulation loop

D. Current Tracking Loop

The objective of the inner control loop is to force id and

iq to their references i∗d and i∗q respectively. The reference

current i∗d is computed from the output of the outer control

loop and is calculated to achieve dynamic voltage regulation.

The reference current i∗q is set to provide a desired instanta-

neous reactive power q∗. Therefore, the current references are

calculated as

i∗d =
p∗

vd
, (35)

i∗q =
q∗

vd
. (36)

The sliding mode variables for the current control are

defined as,

sd = i∗d − id, (37)

sq = i∗q − iq. (38)

Taking the first time derivative of sdq = [sd sq]
T yields,

[

ṡd
ṡq

]

=

[

i̇∗d +
r
L
id − vd

L
− ωiq

i̇∗q +
r
L
iq − vq

L
+ ωid

]

+
Vdc
L

[

δd
δq

]

. (39)

In order to satisfy the saturation constraint, the controllers

δd and δq are designed as follows:

δd = σ (md) , (40)

δq = σ (md) , (41)

where

md =
L0

Vdc

[

− µd(sd) +
vd
L0

− r0
L0
id − i̇∗d + ω0iq

]

, (42)

mq =
L0

Vdc

[

− µq(sq) +
vq
L0

− r0
L0
iq − i̇∗q − ω0id

]

, (43)

µd(sd) and µq(sq) are STAs which are in the form

µd(sd) = λd|sd|
1

2 sign(sd) + αd

∫ t

0

sign(sd)dτ, (44)

µq(sq) = λq|sq|
1

2 sign(sq) + αq

∫ t

0

sign(sq)dτ, (45)

with some positive constants λi, αi, i ∈ {d, q} and σ(x) is

a saturation function.

TABLE I
ELECTRICAL SYSTEM PARAMETERS

Parameter Description

Phase-to-neutral voltage (RMS) 230 V

Grid frequency ω0 50 Hz

Filter inductor L0 15 mH

dc-link capacitor C 2800 µF

dc-link voltage reference V ∗

dc
750 V

sampling frequency fs 10 kHz

switching frequency fsw 10 kHz

Theorem 1: Consider the system (1)-(3) in closed loop with

the saturated controller (40)-(41). This yields

ṡd = −L0

L
µ(sd) + ϕd(t), (46)

ṡq = −L0

L
µ(sq) + ϕq(t), (47)

where

ϕd(t) =
∆r

L
id +

∆L

L
i̇∗d +

ω0L0 − ωL

L
iq (48)

ϕq(t) =
∆r

L
iq +

∆L

L
i̇∗q −

ω0L0 − ωL

L
id. (49)

The state trajectories of the system (46)-(47) converge to

the origin sd = 0, sq = 0 in finite time if the gains of

µ(sd), µ(sq) and V ∗
dc are chosen such that the following

conditions are satisfied,

αd >
γd

1− γ0
, λ2d > αd,

αq >
γq

1− γ0
, λ2q > αq,

(50)

and

V ∗
dc >

√

2
(

Lω‖i∗dq‖
)2

+ 3E2, (51)

where γ0, γd and γq are positive constants and E is the

amplitude of the grid source.

Proof 2: Proof of Theorem 1 is given in Appendix B.

Remark 3: It should be noted that the cross-coupling terms

and the source voltage are compensated by (40)-(43). How-

ever, (42)-(43) require the information of the derivative of

i∗d and i∗q . Usually, these values are zero during the steady

state and only affect slightly the system performance during

the transient state. Therefore, these terms are neglected in the

final control law. Similarly, parameter r0 is very small in order

to reduce system losses. Moreover, this parameter is usually

unknown and its use it is also avoided. Taking into account

these considerations, the block diagram for the current tracking

control loop is shown in Fig. 3, where udq = Vdcδdq.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the feasibility of the proposed

control algorithm, practical results have been performed, com-

paring the proposed ESO-based SOSM control to a well

tuned linear conventional PI-SRF regulator. The PI-SRF is

considered as the standard control method for this system
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(a) (b)

Fig. 4. Power converter prototype: (a) Power converter, (b) DC load.

TABLE II
CONTROLLER DESIGN PARAMETERS

PI-SRF Values

Voltage regulation loop (kpdc, kidc) 0.04, 0.5

Current tracking loop (kpd, kpq, kid, kiq) 75, 400, 75, 400

ESO-SOSM Values

Voltage regulation loop (λdc, αdc, β1, β2) 3, 750, 3, 300

Current tracking loop (λd, αd, λq, αq) 85, 20000, 85, 20000

and has been selected as a baseline controller. The electrical

parameters of the power converter, dc-link voltage reference,

and switching and sampling frequencies for the experimental

setup are summarized in Table I.

The power converter prototype used for the experiment

is shown in Fig. 4. A digital implementation of both cur-

rent and dc-link voltage control algorithms is executed in a

TMS320F28335 floating point digital signal processor board.

Two sets of experiments are done. The first one consists of

a load step at dc-link from no load to full load (3.125 kW).

To perform the experiment, the capacitor voltage reference

is set to 750 V and a 180 Ω resistive load is suddenly

connected to the dc-link. The second test focuses on the reac-

tive power tracking ability. For this purpose, an instantaneous

reactive power command step is done. Measurements of dc-

link voltage, phase voltages and currents, harmonic contents of

currents, active power, reactive power, and power factor have

been taken.

The parameters of the PI-SRF and ESO-SOSM controllers

are given in Table II. They are chosen so that the current

dynamics are much faster than the capacitor output voltage

dynamics. It should be noticed that a Phase Locked Loop

(PLL) is also implemented in the digital platform in order

to work in the SRF [33].

A. Load Step at DC-Link

The first test consists of evaluating the proposed controller

performance under a load step at the dc-link capacitor. Fig. 5

shows the transient response of the dc-link capacitor voltage

for a load step from no load to a load composed by a

resistor of 180 Ω. Three waveforms are presented. Fig. 5a

corresponds with the conventional approach with a PI-SRF

controller. Fig. 5b is the result achieved with the proposed

(a)

(b)

(c)

Fig. 5. Transient response of dc-link capacitor voltage under a load step:
(a) PI-SRF algorithm, (b) ESO-SOSM strategy, (c) PI-SRF algorithm with
increased bandwidth.

ESO-SOSM algorithm and Fig. 5c is associated to the PI-SRF

but increasing the bandwidth of the controller.

Both control laws can achieve the dc-link capacitor voltage

regulation. Comparing Fig. 5a with Fig. 5b, the settling time

is roughly the same when PI-SRF and ESO-SOSM are used

but the last one reduces the dc-link capacitor voltage drop.

The PI-SRF results in a voltage drop of 45 V while in the

case of the ESO-SOSM approach this is only 22 V. Therefore,

the proposed controller reduces the dc-link capacitor voltage

drop under a load step in 48.9 %. Clearly the ESO-SOSM

requires less energy from the dc-link capacitors compared with

the PI-SRF. Same dc-link voltage drop can be achieved with

the PI-SRF but it is necessary to increase the outer controller

bandwidth. It is possible to do this, but it is well known
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Fig. 6. Transient response of grid currents in the dq frame under a load
step. Top: PI-SRF algorithm. Bottom: ESO-SOSM strategy.

TABLE III
GRID CURRENT THD FOR THE LOAD STEP EXPERIMENT

Controller THD(%)

PI-SRF 2.4

ESO-SOSM 2.1

PI-SRF ((kpdc , kidc) ∗ 3) 4.9

that increasing the bandwidth of the outer control loop in

the conventional PI-SRF affects the grid current harmonic

content. Table III collects the current THD computed up to

50th harmonics for the three situations. Clearly the ESO-

SOSM allows to achieve a better transient response while

maintaining a low THD in steady state.

Fig. 6 plots the grid currents for the load step at the dc-

link capacitor tests. The waveforms are represented in the

SRF. Only the currents for Fig. 5a and Fig. 5b are plotted.

Clearly the PI-SRF presents a slow transient response and

needs some time to reach the steady state value. On the other

hand, the ESO-SOSM approach quickly changes the id current

component value. It should be noticed that i∗d comes from

the outer control loop. Therefore, the ESO introduced in the

control law provides a clear improvement compared with the

conventional approach that only considers a PI for the dc-link

voltage regulation.

B. Reactive Power Command Step

The second experiment assesses the control law capability

to provide a desired amount of reactive power. To do so, it is

introduced a instantaneous reactive power command step from

0 to 3 kVAr. The system response is evaluated for both the

PI-SRF and ESO-SOSM controllers.

Fig. 7 presents the transient state for the experimental

results achieved by the PI-SRF and Fig. 8 shows the corre-

sponding one to the ESO-SOSM. As expected, both controllers

provide the desired reactive power. However, the dynamic

response for the ESO-SOSM is faster than the PI-SRF. Most
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Fig. 7. Transient response of grid currents in the dq frame under a load
step for the PI-SRF algorithm. Top: Grid currents in the SRF. Bottom:
Instantaneous active and reactive power.
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Fig. 8. Transient response of grid currents in the dq frame under a load
step for the ESO-SOSM strategy. Top: Grid currents in the SRF. Bottom:
Instantaneous active and reactive power.

interesting is the steady state behavior. Fig. 9a-Fig. 9c show

the steady state features for the PI-SRF controller. Fig. 9a,

Fig. 9b and Fig. 9c are the grid currents, the current spectrum

and information about the active power, reactive power values

and the power factor respectively. On the other hand Fig. 9e-

Fig. 9f present the same information in the case of the ESO-

SOSM approach. Comparing the grid spectrum in Fig. 9b and

Fig. 9e the ESO-SOSM controller has better performance. Par-

ticularly, the 5th and 7th harmonics are reduced compared with

the PI-SRF results. Furthermore, the current THD is 1.2 % for

the ESO-SOSM and 1.7 % for the PI-SRF. This supposes a

reduction of 29.4 % when the ESO-SOSM approach is used

in the same power converter prototype.

V. CONCLUSION

Second order sliding mode (SOSM) technique is a promis-

ing alternative for the control of three-phase two-level grid-
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Steady state currents for a instantaneous reactive power command of 3 kVAr: (a) Current waveforms for PI-SRF algorithm, (b) Current
spectrum for PI-SRF algorithm, (c) Power factor for PI-SRF algorithm, (d) Current waveforms for ESO-SOSM strategy, (e) Current spectrum for
ESO-SOSM algorithm, (f) Power factor for ESO-SOSM strategy.

connected power converters due to its features of robustness

and effectiveness for nonlinear systems. Considering the dy-

namics of the output voltage, the load connected to the dc-

link capacitor is regarded as a disturbance for the voltage

control loop, which directly affects the performance of the

whole system. To improve the disturbance rejection ability, a

composite control law consisting of SOSM based on super

twisting algorithm (STA) and disturbance compensation via

extended state observer (ESO) is proposed for the voltage

regulation loop. With the disturbance compensation using

ESO, the gains of STA for the outer control loop can be

reduced without decreasing the settling time and reducing

the dc-link capacitor voltage drop. The current loop has been

designed to track the current references in the presence of

system parameter uncertainties using an STA. Experimental

results have demonstrated that the proposed ESO-SOSM con-

troller performs better than that of the the conventional PI

SRF control. The power converter operated with the proposed

algorithm has achieved less dc-link voltage drop under a

sudden load step, shorter settling time and better grid current

quality in terms of lower THD and reduced values of low-order

harmonics content.

APPENDIX

A. Proof of Lemma 1

Solving (27), one has

ǫ (t) = e(t−t0)Aǫ (t0) +

∫ t

t0

e(t−τ)Aψ (τ) dτ, (52)

where t0 is the initial time. Using the bound
∥

∥e(t−t0)A
∥

∥ ≤
ke−β(t−t0), with k > 0, β > 0, then (52) can be estimated as

follows:

‖ǫ (t)‖ ≤ ke−β(t−t0) ‖ǫ (t0)‖+
∫ t

t0

ke−β(t−τ) ‖ψ (τ)‖ dτ

≤ ke−β(t−t0) ‖ǫ (t0)‖+
k

β
sup

t0≤τ≤t

‖ψ (τ)‖ . (53)

It follows from (53) that ‖ǫ‖ ≤ δ, ∀t ≥ T1 > 0, where δ is

a positive constant that depends on k, β and the upper bound

of ‖ψ (τ)‖.

B. Proof of Theorem 1

The proof is divided into two parts. Firstly, if the control

vector ‖δdq‖ ≤
√
2, then δdq = [md, mq]

T . Secondly, in the

case when the control vector ‖udq‖ >
√
2, thus the control

vector is saturated to that value.

Case 1: The controller is given by δd = md and δq = mq

in (40)-(41). Considering closed loop behavior (46)-(47) and

given that (1)-(3) is a physical system, thus it is reasonable

to assume that the variables ϕd(t) and ϕq(t) and its time

derivatives are bounded functions:

‖ϕ̇d(t)‖ ≤ γd, ‖ϕ̇q(t)‖ ≤ γq, (54)

with some positive constants γd and γq . Taking into account

that

(1− γ0)L ≤ L0 ≤ (1 + γ0)L, (55)
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for some scalar 0 < γ0 < 1. Then, according to [26], the

trajectories of the system (46)-(47) will converge to sd = ṡd =
0 and sq = ṡq = 0 in finite time when the controller gains

satisfy conditions (50).

Case 2: According to [34], the sufficient condition for the

control vector δdq to enter into the circle of radium
√
2, (i.e.,

‖δdq‖ ≤
√
2) is that V ∗

dc satisfies the condition (51). Thus,

Theorem 1 is proven.
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