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Abstract
We study Fourier–Bessel series on a q-linear grid, defined as expansions in complete
q-orthogonal systems constructed with the third Jackson q-Bessel function, and obtain
sufficient conditions for uniform convergence. The convergence results are illustrated
with specific examples of expansions in q-Fourier–Bessel series.
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1 Introduction

Based on the orthogonality relation

∫ 1

0
Jν( jνmt)Jν( jνnt)dt = 0,
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if m �= n, where Jν stands for the Bessel functions of order ν and jνn is their nth
positive zero, a theory of Fourier–Bessel series was developed (see e.g. [48, §XVIII]),
in a close parallelism to the classical theory of Fourier series. Hardy [33] proved
that, within some boundaries, the Bessel functions are the most general functions
satisfying such an orthogonality “with respect to their own zeros”, giving no space
for generalizations of the theory of Fourier–Bessel series in the scope of Lebesgue
measure.

However, for a certain q-analogue of the Bessel function, such an extension is
possible, when considering the proper measure. In the following we will use the
standard notation for the q-calculus (more precisely, we will follow [31] for basic
hypergeometric series, [14] for q-calculus and [39] for q-Bessel functions). The third
Jackson q-Bessel function or, for some authors, the Hahn–Exton q-Bessel function,
is defined as

J (3)
ν (z; q) ≡ Jν(z; q) := zν (qν+1; q)∞

(q; q)∞

∞∑
k=0

(−1)k q
k(k+1)

2

(qν+1; q)k(q; q)k
z2k ,

where ν > −1 is a real parameter. The notation J (k)
ν , k = 1, 2, 3, from [35] is used to

distinguish the three q-analogues of the Bessel function defined by Jackson. We will
often drop the superscript for notational convenience and simply write J (3)

ν (z; q) ≡
Jν(z; q). When q → 1− one recovers the Bessel function after proper normalization.
It is a well known fact [30,42] that Jν(z; q) satisfies the orthogonality relation

∫ 1

0
x Jν( jnνqx; q2)Jν( jmνqx; q2)dq x = ηn,νδn,m ,

ηn,ν = q − 1

2
qν−1 Jν+1(q jnν; q2)J ′

ν( jnν; q2), (1.1)

where jnν(q2) ≡ jnν are the positive zeros of Jν(z; q2) arranged in ascending order
of magnitude, j1ν < j2ν < j3ν < · · · , and dq x stands for the measure of the Jackson
q-integral.

In the papers [22–24], a theory of Fourier series on a q-linear grid was developed,
using a q-analogue of the exponential function and the corresponding q-trigonometric
functions introduced by Exton [30]. This was motivated by Bustoz–Suslov orthog-
onality and completeness results of q-quadratic Fourier series [21]. Later, a simple
argument has been found to prove such orthogonality and completeness results [37],
leading, together with the solution of [38] developed in [7,8] , to a very general the-
ory of expansions relying on expansion formulas of the plane wave type. The plane
wave expansion in Gegenbauer polynomials was extended to the q-quadratic case
[40] and, more recently, to the q-linear case [9] (combined with the orthogonality in
[43, Theorem 4.2] this provides an alternative way to derive the results in [1,5,42]),
using a general method to derive plane-wave type formulas [8]. Since several special
function identities can be obtained from Fourier expansions and the associated sam-
pling theorems (see the section by Butzer and Hauss in [34], last section of [1] and
the expansions in the last section of this paper for some examples), this may be seen,
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modulo some poetic licence, as a small contribution towards Gian-Carlo Rota’s 5th
problem [46] of finding a unified approach that will give the identities satisfied by
both hypergeometric and q-hypergeometric functions.

This paper investigates the most delicate convergence issues of the basic Fourier–
Bessel series on a q-linear grid, based on the orthogonality relation (1.1), on mean
convergence results [5,6], and on the localization of the zeros jnν [4]. We will first
prove that pointwise convergence associated with orthogonal discrete systems follows
directly from the mean convergence. Our main contribution will be a result provid-
ing sufficient conditions for uniform convergence. Since it was proved [2], under the
same general conditions imposed by Hardy, that the above orthogonality relation char-
acterizes the functions J (3)

ν (z; q2), this is the most general Fourier theory based on
functions q-orthogonal with respect to their own zeros. Moreover, the third Jackson
q-Bessel function provides a q-analogue of the Hankel transform with an inversion
formula [44], leading to a full theory of expansions parallel to Fourier theory, including
sampling and Paley–Wiener type theorems [1,3]. As a further evidence of its remark-
able structure, we note in passing that the function J (3)

ν (z; q2) also shows up naturally
in the study of the quantum group of plane motions [41].

It should be emphasized that Ismail stimulated a considerable research activity by
conjecturing properties of the zeros of q-Bessel functions, confirmed in [4,32]. First, as
documented in [20], the asymptotic expansion for the zeros of q-difference equations
has been conjectured in a letter from Ismail to Hayman. Then, in a preprint that
circulated in the early 2000’s [36], Ismail conjectured properties of the positive zeros of
q-Bessel functions. Several results followed, among which we can single out [20,32],
the bounds for the zeros of the third Jackson q-Bessel function [4], the asymptotic
results of [13] and the recent improvement in the corresponding accuracy [47, Prop.
A.3]. Since q-series provide a wealth of examples of nontrivial functions of order zero,
all these results are contributions to the intriguing and relatively overlooked topic of
functions of order zero started in Littlewood’s PhD thesis, published in [45]. Since
it is well known, by a result of Boas [19, Theorem 5.1], that functions of order zero
cannot belong to L p(R) (p ≥ 1) without vanishing identically, there is no possibility
of expanding them using classical Fourier analysis. Actually it is more a rule than an
exception that the methods and concepts used to study functions of positive order do
not suffice to study functions of order zero (this is particular notorious if the notion of
type is used, which explains why classical tools succeed in [2,6] and in the study of
radii of starlikeness of functions of order zero [10,17]). Such obstructions lead to the
search of alternative methods and provide strongmotivation for a theory of expansions
in q-analogues of classical orthogonal basis functions. In this paper wewill investigate
series expansions Sν

q [ f ] of functions f ∈ L2
q [0, 1] of the form

Sν
q [ f ](x) =

∞∑
k=1

aν
k ( f ) x

1
2 Jν(q jkν x; q2). (1.2)

Since the measure of L2
q [0, 1] is discrete, pointwise convergence is a direct conse-

quence of the completeness results of [5,6]. We will make some comments about
this in Sect. 5 of the paper. In the following we will use the notation V +

q =
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{qn : n = 0, 1, 2, . . .} for the support points of the q-integral (2.3) in [0, 1], and intro-
duce the concept of a q-linear Hölder function [24, p. 103].

Definition 1.1 If two constants M and λ exist such that

∣∣∣ f
(
qn−1) − f

(
qn)∣∣∣ ≤ Mqλn, n = 0, 1, 2, . . . ,

then the function f is said to be q-linear Hölder of order λ (in V +
q ∪ {q−1}). If the

inequality only holds for n = 1, 2, 3, . . . then we say that f is q-linear Hölder of
order λ in V +

q .

Our main result is the following sufficient conditions for uniform convergence of
(1.2).

Theorem 1.2 If the function f is q-linear Hölder of order λ > 1 in V +
q , such that

t− 3
2 f (t) ∈ L2

q [0, 1] and the limit limx→0+ f (x) = f (0+) is finite, the correspondent

basic Fourier–Bessel series S(ν)
q [ f ](x) converges uniformly to f on V +

q whenever
ν > 0.

The following is a brief outline of the paper. In the next section, we collect the main
definitions and preliminary results. The third section is devoted to the evaluation of a
few finite sums. The fourth section contains a brief introduction to q-Fourier–Bessel
series and the fifth section discusses pointwise convergence for systems associated
with discrete orthogonality relations. We prove our main result in Sect. 6, relying on
fine estimates for the coefficients of basic Fourier–Bessel series. In the last section of
the paper, two examples of basic Fourier–Bessel expansions are provided.

2 Definitions and preliminary results

Following the standard notations of [31], consider 0 < q < 1, the q-shifted factorial
for a finite positive integer n is defined as

(a; q)n = (1 − q) (1 − aq) · · ·
(
1 − aqn−1

)
, (a; q)−n = 1(

aq−n; q
)

n

and the zero and infinite cases as

(a; q)0 = 1, (a; q)∞ = lim
n→∞(a; q)n .

The symmetric q-difference operator acting on a suitable function f is defined by

δq f (x) = f (q1/2x) − f (q−1/2x), (2.1)
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hence, the symmetric q-derivative becomes

δq f (x)

δq x
=

⎧⎪⎨
⎪⎩

f (q
1
2 x)− f (q− 1

2 x)

(q
1
2 −q− 1

2 )x
if x �= 0,

f ′(0) if x = 0 and f ′(0) exists.
(2.2)

The q-integral in the interval (a, b) is defined by

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt −

∫ a

0
f (t) dqt (2.3)

where ∫ a

0
f (t) dqt = (1 − q)

∞∑
k=0

f
(

aqk
)

aqk .

This is a Riemann–Stieltjes integral with respect to a step function having infinitely
many points of increase at the points qk , with the jump at the point qk being q. If we
call this step function μq(t), then dμq(t) = dq t . One can define an inner product by
setting

〈 f , g〉 =
∫ 1

0
f (t) g(t)dqt .

The resulting Hilbert space is commonly denoted by L2
q(0, 1). The space L2

q(0, 1) is
a separable Hilbert space [11]. For the properties of the more general spaces L p

q (a, b)

and L p
q,ω(a, b), with p ≥ 1, see [27]. We will also need the following formula of q-

integration by parts [25, Lemma 2, p. 327], valid for a, b ∈ R, assuming the involved
limits exist:

∫ b

a
g
(
q± 1

2 x
)δq f (x)

δq x
dq x := −

∫ b

a
f
(
q∓ 1

2 x
)δq g(x)

δq x
dq x

+ q
1
2

{[
( f g)(bq− 1

2 ) − ( f g)(aq− 1
2 )
]

−
[

lim
n→+∞( f g)(bq

1
2+n) − lim

n→+∞( f g)(aq
1
2+n)

]}
.

(2.4)

The third Jackson q-Bessel function has a countable infinite number of real and
simple zeros [42]. In [4, Theorem 2.3] it was proved that, when q2ν+2 < (1 − q2)2,
the positive zeros jkν of the function Jν(z; q2) satisfy

jkν = q−k+ε
(ν)
k (q2) (2.5)

with
0 < ε

(ν)
k (q2) < α

(ν)
k (q2), (2.6)
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where

α
(ν)
k (q2) = log

(
1 − q2(k+ν)/(1 − q2k)

)
2 log q

. (2.7)

Using Taylor expansion it is plain that, as k → ∞,

α
(ν)
k (q2) = O

(
q2k

)
. (2.8)

The restriction q2ν+2 < (1 − q2)2 can be dropped if k is chosen large enough [4,
Remark 2.5, p. 4247] because (2.5)–(2.7) remain valid for every k ≥ k0 whenever
q2(k0+ν) ≤ (

1 − q2
)(
1 − q2k0

)
. Hence, the following theorem holds.

Theorem A For every q ∈ ]0, 1[, k0 ∈ N exists such that, if k ≥ k0 then

jkν = q−k+ε
(ν)
k (q2),

where 0 < ε
(ν)
k (q2) < α

(ν)
k (q2) and α

(ν)
k (q2) is given by (2.7).

In the remaining of the paper we will simplify the notation by setting ε
(ν)
k =

ε
(ν)
k

(
q2
)
.

The definition of basic Fourier–Bessel series on a q-linear grid depends on the
following mean convergence result [5,6].

Theorem B The orthonormal sequence {uk}k≥1 defined by u(ν)
k (x) =

x
1
2 Jν( jkνqx; q2)∥∥∥x
1
2 Jν( jkνqx; q2)

∥∥∥
is complete in L2

q(0, 1).

More precisely, whenever a function f is in L2
q(0, 1) and

∫ 1
0 f (x)u(ν)

k (x)dq x =
0, k = 1, 2, 3, . . . , then f

(
qk
) = 0, k = 0, 1, 2, . . .. Thus, the orthogonal comple-

ment of the space generated by {u(ν)
k }k≥1 in L2

q(0, 1) is {0} and any f ∈ L2
q(0, 1) can

be expanded in terms of the sequence u(ν)
k (x).

The following estimate [26] will also be key in the proof of the main results.

Theorem C For large values of k,
∣∣Jν

(
q jkν; q2

)∣∣ ≤
(−q2,−q2(ν+1);q2

)
∞

(q2;q2)∞
q(k+ν)(k−1).

3 Identities for finite sums in q-calculus

In this section we gather some new and old identities for finite sums. First observe
that one can rewrite the obvious identity

(a; q)m
(
aqm; q

)
k = (a; q)k

(
aqk; q

)
m,
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which holds for every a and for every integers m and k, as

(
aqm; q

)
k

(a; q)k
=

(
aqk; q

)
m

(a; q)m
(3.1)

valid for any a �= q− j , j = 0, 1, 2, . . . , and m and k nonnegative integers.

Proposition 3.1 For each complex a, the identity

n∑
k=0

qk

(
a; q

)
k

(q; q)k
=

(
aq; q

)
n

(q; q)n

holds for all n = 0, 1, 2, . . . .

Proof We argue by induction. The proposition is obvious when n = 0. For the induc-
tion step, one can write the sum for n + 1 as

n+1∑
k=0

qk

(
a; q

)
k

(q; q)k
=

n∑
k=0

qk

(
a; q

)
k

(q; q)k
+ qn+1

(
a; q

)
n+1

(q; q)n+1

=
(
aq; q

)
n

(q; q)n
+ qn+1

(
a; q

)
n+1

(q; q)n+1
.

From the induction hypothesis,

n+1∑
k=0

qk

(
a; q

)
k

(q; q)k
=

(
aq; q

)
n

(q; q)n

(
1 + qn+1 1 − a

1 − qn+1

)

=
(
aq; q

)
n

(q; q)n

1 − aqn+1

1 − qn+1 =
(
aq; q

)
n+1

(q; q)n+1
.

��
Proposition 3.2 For each a and λ in the complex plane, the identity

n∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
q1+n−k+λ; q

)
1

= (q; q)1
(aq; q)n

(q; q)n
+ (

qλ; q
)
1q1+n (a; q)n

(q; q)n

holds for all n = 0, 1, 2, . . . .

Proof We will perform the proof in two steps. First, using induction on n, we prove
the case λ = 0:

n∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
q1+n−k; q

)
1

= (q; q)1
(aq; q)n

(q; q)n
(3.2)
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and then reduce the general case to this particular one.
(i) Step 1: λ = 0. For n = 0, the identity is trivial. For the induction step one

decomposes the sum as

n∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
q1+n−k; q

)
1

=
n−1∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
q1+n−k; q

)
1
+ q2n

( a
q ; q

)
n

(q; q)n
(q; q)1

=
n−1∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
qn−k; q)1 + (q; q)1qn

n−1∑
k=0

qk

( a
q ; q

)
k

(q; q)k
+ q2n

( a
q ; q

)
n

(q; q)n
(q; q)1,

using
(
q1+n−k; q

)
1 = 1 − q1+n−k = 1 − qn−k + qn−k(1 − q) = (

qn−k; q)1 +
qn−k(q; q)1 in the last identity. Combining the induction hypothesis with Proposi-
tion 3.1 yields

n∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
q1+n−k; q

)
1

= (q; q)1
(aq; q)n−1

(q; q)n−1
+ (q; q)1qn (a; q)n−1

(q; q)n−1

+ q2n

( a
q ; q

)
n

(q; q)n
(q; q)1

=
(
aq; q

)
n−2

(q; q)n
(q; q)1

(
1 − aqn−1

) (
1 − aqn)

=
(
aq; q

)
n

(q; q)n
(q; q)1,

leading to (3.2).
(ii) Step 2: λ ∈ C. First notice that

(
q1+n−k+λ; q

)
1 = 1 − q1+n−k+λ = 1 − q1+n−k + q1+n−k(1 − qλ

)

and then use Proposition 3.1 and the case λ = 0 (3.2) of the first step. ��
Lemma 3.3 For each complex a and each non-negative integer i , the identity

i∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

⎛
⎝ n∑

j=0

q j

(
aqi ; q

)
j(

q1+i ; q
)

j

(
q1+i+ j−k; q

)
1

(q1+i+ j ; q)1

⎞
⎠ = (aq; q)n+i

(q; q)n+i

(
q1+n; q

)
1(

q1+n+i ; q
)
1

holds for all n = 0, 1, 2, . . . .
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Proof We use induction over n . The case n = 0 is precisely identity (3.2) and writing

i∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

⎛
⎝n+1∑

j=0

q j

(
aqi ; q

)
j(

q1+i ; q
)

j

(
q1+i+ j−k; q

)
1

(q1+i+ j ; q)1

⎞
⎠

=
i∑

k=0

q2k

( a
q ; q

)
k

(q; q)k

⎛
⎝ n∑

j=0

q j

(
aqi ; q

)
j(

q1+i ; q
)

j

(
q1+i+ j−k; q

)
1

(q1+i+ j ; q)1

⎞
⎠

+ qn+1

(
aqi ; q

)
n+1(

q1+i ; q
)

n+2

i∑
k=0

q2k

( a
q ; q

)
k

(q; q)k

(
qn+2+i−k; q

)
1

the result follows from algebraic manipulations, after combining the induction
hypothesis with Proposition 3.2. ��
Remark 3.4 Using identity (3.1) Proposition 3.1 can be written as

i∑
k=0

qk

(
q1+k; q

)
j−1

(q; q) j−1
=

(
q1+i ; q

)
j

(q; q) j
.

Now we will consider the sum

a(n,ν)
0 := q−nν

n∑
i=0

(
q2ν)i ,

where n is a nonnegative integer and ν is a fixed parameter, which will show up in
Sect. 6. The notation [x] to denote the greatest integer which does not exceed x will
be adopted.

Lemma 3.5 For a given sequence {γλ} we have, for m = 0, 1, 2, . . .,

m∑
λ=0

a(λ,ν)
0 a(m−λ,ν)

0 γλ =
[m
2

]∑
θ=0

a(m−2θ,ν)
0

(
m−θ∑
λ=θ

γλ

)
.

Proof Using induction on m it can be proved that

a(λ,ν)
0 a(m−λ,ν)

0 =
λ∑

θ=0

a(m−2θ,ν)
0 if 0 ≤ λ ≤

[m

2

]
(3.3)

holds for all m = 0, 1, 2, . . . . As a consequence,

a(λ,ν)
0 a(m−λ,ν)

0 =
m−λ∑
θ=0

a(m−2θ,ν)
0 if

[m

2

]
+ 1 ≤ λ ≤ m. (3.4)
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Writing

m∑
λ=0

a(λ,ν)
0 a(m−λ,ν)

0 γλ =
[m
2
]

∑
λ=0

a(λ,ν)
0 a(m−λ,ν)

0 γλ +
m∑

λ=[m
2
]+1

a(λ,ν)
0 a(m−λ,ν)

0 γλ ,

the lemma follows from (3.3), (3.4) and some algebra. ��

4 Fourier–Bessel series on a q-linear grid

The Fourier–Bessel series on a q-linear grid associated with f is defined as the sum

Sν
q [ f ](x) =

∞∑
k=1

aν
k ( f ) x

1
2 Jν(q jkνx; q2),

being aν
k ( f ) = 1

ηk,ν

∫ 1

0
t
1
2 f (t)Jν(q jkν t; q2)dqt

or, equivalently,

S(ν)
q [ f ](x) =

∞∑
k=1

a(ν)
k ( f ) Jν(q jkνx; q2), (4.1)

with the coefficients a(ν)
k given as

a(ν)
k ( f ) = 1

ηk,ν

∫ 1

0
t f (t)Jν(q jkν t; q2)dqt, (4.2)

and

ηk,ν =
∫ 1

0

[
t
1
2 Jν

(
q jkν t; q2)]2 dq t = −1 − q

2
qν−1 Jν+1(q jkν; q2)J ′

ν( jkν; q2)

= − (1 − q)qν−2

2 jkν

Jν(q jkν; q2)J ′
ν( jkν; q2).

(4.3)

The last equality in formula (4.3) follows from the identity (see, e.g., [25, Prop. 5 (vii),
p. 330])

Jν

(
q jkν; q2) = q jkν Jν+1

(
q jkν; q2). (4.4)

Theorem B assures mean convergence of the series (4.1). In the next two sections we
will see that it also converges at each of the points x ∈ V +

q = {qn : n = 0, 1, 2, . . .}
and obtain sufficient conditions for its uniform convergence.
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5 Pointwise convergence

5.1 A general set-up

With a view to studying pointwise convergence of the series (4.1) when x ∈ V +
q =

{qn : n = 0, 1, 2, . . .}, we first establish a general result in a more general setting,
designed to cover not only the convergence of q-Fourier–Bessel series but also other
Fourier systems based on discrete orthogonality relations, as in [12,22–24]. There is
no real novelty in this section and we are aware that the pointwise convergence follows
from the mean convergence by using known results from linear analysis. However, we
believe that the reader may benefit from the following elegant self contained argument,
which has been gently provided to us by Professor Juan Arias de Reyna.

Let N = {an| n ∈ N} be a numerable space and let μ be a positive measure on
N such that μn = μ({an}) > 0. We will denote by L2

μ, the space of all functions
f : N �→ C, such that

‖ f ‖2L2
μ

=
∞∑

n=1

| f (an)|2μn < +∞.

In such a space, the scalar product 〈 f , g〉 of two functions is defined by

〈 f , g〉μ =
∞∑

n=1

f (an)g(an)μn .

The sequence of functions (en)n≥1 defined on N by

en(ak) =
⎧⎨
⎩

μ
−1/2
n , k = n,

0, k �= n.
(5.1)

is a complete orthonormal system in L2
μ. To check this fact, notice that the function

gN , N ∈ N, defined by

gN = f −
N∑

n=1

〈 f , en〉μen, f ∈ L2
μ,

is such that gN (ak) = 0 for all k ≤ N and gN (ak) = f (ak) for all k > N . Therefore,

‖gN ‖2L2
μ

=
∞∑

n=N+1

| f (an)|2μn → 0, as N → ∞.
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Thus, for an arbitrary f ∈ L2
μ, we have

f =
∞∑

n=1

〈 f , en〉μen,

with convergence in norm ‖·‖2L2
μ
. This is also true for any other complete orthonormal

system (un)n≥1, i.e., for an arbitrary f ∈ L2
μ one has

f =
∞∑

n=1

〈 f , un〉μun,

with convergence in norm ‖ · ‖2L2
μ
. In the following lemma it is shown that this con-

vergence also holds pointwise.

Lemma 5.1 Let (un)n≥1 be a complete orthonormal system in L2
μ. Then for any arbi-

trary f ∈ L2
μ

f (ak) = lim
N→∞

N∑
n=1

〈 f , un〉un(ak), ∀ ak ∈ N .

Proof Let ak be an arbitrary element of N . Then, the function dk := μ
−1/2
k ek , where

ek is the function given in (5.1), satisfies the property

〈 f , dk〉 = 〈 f , μ
−1/2
k ek〉 = f (ak)μ

−1/2
k ek(ak)μk = f (ak).

In particular, 〈un, dk〉 = un(ak). Then,

f (ak) = 〈 f , dk〉 =
〈

lim
N→∞

N∑
n=1

〈 f , un〉un, dk

〉
= lim

N→∞

N∑
n=1

〈 f , un〉〈un, dk〉,

and, therefore,

f (ak) = lim
N→∞

N∑
n=1

〈 f , un〉un(ak).

��

5.2 Application to q-Fourier–Bessel series

Let N = V +
q and μ the measure associated to the Jackson q-integral (2.3). The

corresponding L2
μ space, denoted by L2

q [0, 1] is equipped with the norm

(∫ 1

0
| f (x)|2dq x

) 1
2

< +∞,
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Since the set of functions

u(ν)
n (x) = x

1
2 Jν( jnνqx; q2)∥∥∥x

1
2 Jν( jnνqx; q2)

∥∥∥
L2

q [0,1]
,

is a complete orthonormal system in L2
q [0, 1] then, for an arbitrary f ∈ L2

q [0, 1], i.e.,
we have the equality

f (qk) = lim
N→∞

N∑
n=1

〈 f , u(ν)
n 〉u(ν)

n (qk), k = 0, 1, 2, . . . ,

where

〈 f , u(ν)
n 〉 =

∫ 1

0
f (t)u(ν)

n (t)dqt .

Applying the results of the previous section leads to the following theorem.

Theorem 5.2 If f ∈ L2
q [0, 1], then the q-Fourier–Bessel series (4.1) converges to the

function f at every point x ∈ V +
q .

Remark 5.3 In the case of the standard trigonometric series the equivalent result of
Lemma 5.1 (L2

μ convergence implies pointwise convergence) is not true. In fact this
problem leads to the celebrated Carleson Theorem ([28]; for a tutorial exposition see
[16]). The main difference between these two cases is that L2

q [0, 1] is a reproducing
kernel Hilbert space, while L2[0, 2π ] is not. More precisely, in contrast to L2

μ (see
the function dk used in the proof of Lemma 5.1), for functions f ∈ L2[0, 2π ] and for
every a ∈ [0, 2π ], there exists no function fa such that 〈 f , fa〉 = f (a).

Remark 5.4 In [23], convergence theorems for q-Fourier series associated with the

q-trigonometric orthogonal system
{
1, Cq

(
q

1
2 ωk x

)
, Sq (qωk x)

}
were established,

where the q-cosines Cq and q-sinus Sq can be defined in terms of the third q-Bessel
functions by the identities

Cq(z) = q−3/8 (q2; q2)∞
(q; q2)∞

z1/2 J−1/2
(
q−3/4z; q2),

Sq(z) = q1/8 (q2; q2)∞
(q; q2)∞

z1/2 J1/2
(
q−1/4z; q2) ,

where {ωk} is the sequence of positive zeros of the function Sq , arranged in ascendant
order of magnitude. Since this orthogonal system is a complete system (see, e.g.,
[22]) in L2

q [−1, 1], the q-trigonometric Fourier series defined in [23] converges to
f ∈ L2

q [−1, 1] at every point of Vq = {±qn : n = 0, 1, 2, . . .}: for every x ∈ Vq ,
the identity

f (x) = a0
2

+
∞∑

k=1

{
akCq

(
q

1
2 ωk x

) + bk Sq
(
qωk x

)}
,
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holds with a0 = ∫ 1
−1 f (t)dqt and

ak = 1

τk

∫ 1

−1
f (t)Cq

(
q

1
2 ωk t

)
dqt, bk = q

1
2

τk

∫ 1

−1
f (t)Sq (qωk t) dq t,

for k = 1, 2, 3, . . ., where τk = (1 − q)Cq(q1/2ωk)S′
q(ωk). This answers a question

posed in the concluding section of [23].

Remark 5.5 In [12] a rigorous theory of q-Sturm–Liouville systems was developed.
In particular, it was shown that the set of all normalized eigenfunctions forms an
orthonormal basis for L2

q [0, a]. Therefore Lemma 5.1 can be used to show that the
Fourier expansions in terms of the eigenfunctions of q-Sturm–Liouville systems are
pointwise convergent.

6 Uniform convergence

By (4.1) and (4.2) one may write, with ηk,ν given by (4.3),

S(ν)
q [ f ](qn) =

∞∑
k=1

a(ν)
k ( f ) Jν

(
qn+1 jkν; q2)

=
∞∑

k=1

(
1

ηk,ν

∫ 1

0
t f (t)Jν

(
q jkν t; q2)dqt

)
Jν

(
qn+1 jkν; q2). (6.1)

6.1 Behavior of J�
(
qn+1jk�; q2

)

Proposition 6.1 For n = 0, 1, 2, . . .,

Jν

(
qn+1 jkν; q2) = Jν

(
q jkν; q2)Pn

(
j2kν; q

)
,

where {Pn(x; q)}n is a sequence of polynomials such that, for each n = 0, 1, 2, . . . ,
Pn(x; q) has degree n in the variable x and

⎧⎨
⎩

Pn+1
(

j2kν; q
) =

{(
qν + q−ν

) − q−ν+2(n+1) j2kν

}
Pn
(

j2kν; q
) − Pn−1

(
j2kν; q

)
,

P0( j2kν; q) = 1, P−1( j2kν; q) = 0.

Proof Consider the basic difference relation (2.12) of [42, p. 693]

Jν

(
q2x; q2) + q−ν

(
q2x2 − 1 − q2ν)Jν

(
qx; q2) + Jν

(
x; q2) = 0

Setting x = qn−1 jk,ν , the proposition follows using induction on n. ��
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Writing

Pn
(

j2kν; q
) :=

n∑
j=0

a(n,ν)
j (q)

(
j2kν

) j , (6.2)

Proposition 6.1 leads to the following recurrence relation for the polynomial coeffi-
cients a(n,ν)

j ≡ a(n,ν)
j (q):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(n+1,ν)
j = (

qν + q−ν
)
a(n,ν)

j − q−ν+2(n+1)a(n,ν)
j−1 − a(n−1,ν)

j , j ≤ n ;
a(0,ν)
0 = 1 ; a(i,ν)

−1 = 0 whenever i ≥ 0 ;
a(n,ν)

j = 0 whenever j > n.

(6.3)

Although n and j are nonnegative integers, relation (6.3) can be considered for any
integers n and j . Moreover, it follows from (6.3) that, for every integer n,

a(n,ν)
0 = q−nν

n∑
i=0

(
q2ν)i and a(n,ν)

n = (−1)nqn(n+1−ν) , (6.4)

and
a(n,ν)
0 = a(1,ν)

0 a(n−1,ν)
0 − a(n−2,ν)

0 . (6.5)

The first identity of (6.4) can be obtained by iterating (6.3) and the second identity
by iterating a(n,ν)

n = q−ν+2na(n−1,ν)
n−1 , which is also a consequence of (6.3). Noticing

that a(1,ν)
0 = qν + q−ν and replacing n by n − 1, the recurrence relation (6.3) may be

further rewritten in the form

a(n,ν)
j = a(1,ν)

0 a(n−1,ν)
j − a(n−2,ν)

j − q−ν+2na(n−1,ν)
j−1 .

Replacing n by n − 2 in (6.3) and inserting the resulting expression for a(n−1,ν)
j from

the previous identity,

a(n,ν)
j =

((
a(1,ν)
0

)2 − 1
)

a(n−2,ν)
j − a(1,ν)

0 a(n−3,ν)
j

− q−ν
[
q2na(n−1,ν)

j−1 + q2(n−1)a(1,ν)
0 a(n−2,ν)

j−1

]

= a(2,ν)
0 a(n−2,ν)

j − a(1,ν)
0 a(n−3,ν)

j

−q−ν
[
q2na(n−1,ν)

j−1 + q2(n−1)a(1,ν)
0 a(n−2,ν)

j−1

]
,

where (6.5) was used for the last identity.
Repeating the same argument for a(n−2,ν)

j and using (6.5),

a(n,ν)
j =

(
a(1,ν)
0 a(2,ν)

0 − a(1,ν)
0

)
a(n−3,ν)

j − a(2,ν)
0 a(n−4,ν)

j
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− q−ν
[
q2na(n−1,ν)

j−1 + q2(n−1)a(1,ν)
0 a(n−2,ν)

j−1 + q2(n−2)a(2,ν)
0 a(n−3,ν)

j−1

]

= a(3,ν)
0 a(n−3,ν)

j − a(2,ν)
0 a(n−4,ν)

j

− q−ν
[
q2na(n−1,ν)

j−1 + q2(n−1)a(1,ν)
0 a(n−2,ν)

j−1 + q2(n−2)a(2,ν)
0 a(n−3,ν)

j−1

]
.

Iterating n − j times the same argument provides the identity

a(n,ν)
j = a(n− j,ν)

0 a( j,ν)
j − a(n− j−1,ν)

0 a( j−1,ν)
j − q−ν

n−1− j∑
λ=0

q2(n−λ)a(λ,ν)
0 a(n−1−λ,ν)

j−1 .

Since a( j−1,ν)
j = 0 and a( j,ν)

j = −q−ν+2 j a( j−1,ν)
j−1 ,

a(n,ν)
j = −q−ν

n− j∑
λ=0

q2(n−λ)a(λ,ν)
0 a(n−1−λ,ν)

j−1 ,

and, therefore,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(n,ν)
j = −q2−ν

∑n− j
λ=0 q2(n−1−λ)a(λ,ν)

0 a(n−1−λ,ν)
j−1 , j ≤ n ;

a(0,ν)
0 = 1 ; a(i,ν)

−1 = 0 whenever i ≥ 0 ;
a(n,ν)

j = 0 whenever j > n.

(6.6)

The following result uses (6.6) to compute the quantities a(n,ν)
j in explicit form.

Proposition 6.2 An explicit expression for the polynomial coefficients a(n,ν)
j is given

by

a(n,ν)
j = (−1) j q j( j+1−ν)

[
n− j
2

]
∑
i=0

a(n− j−2i,ν)
0 q2i

((
q2
) j ; q2

)
i(

q2; q2
)

i

((
q2
)1+ j ; q2

)
n− j−2i(

q2; q2
)

n− j−2i

×
((

q2
)1+n−2i ; q2

)
i((

q2
)n− j−2i+2; q2

)
i

= (−1) j q j( j+1−ν)

[
n− j
2

]
∑
i=0

a(n− j−2i,ν)
0 q2i

((
q2
) j ; q2

)
i(

q2; q2
)

i

((
q2
)1+ j ; q2

)
n− j−i(

q2; q2
)

n− j−i

×
((

q2
)1+n− j−2i ; q2

)
1((

q2
)1+n− j−i; q2

)
1

,

with 0 ≤ j ≤ n, n = 0, 1, 2, . . . .
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Proof The proof, once again carried out by induction, is a bit long and technical.
We will simply present a sketch. The case n = 0 is obvious. We point out that
Proposition 6.2 is true for every n when j = 0 . Let us now assume that

a(k,ν)
l = (−1)lql(l+1−ν)

[
k−l
2

]
∑
i=0

a(k−l−2i,ν)
0 q2i

((
q2
)l; q2

)
i(

q2; q2
)

i

((
q2
)1+l; q2

)
k−l−2i(

q2; q2
)

k−l−2i

×
((

q2
)1+k−2i ; q2

)
i((

q2
)k−l−2i+2; q2

)
i

holds true for k = 0, 1, 2, . . . , n − 1 and 0 < l ≤ k . Then, for 0 < j ≤ n, it follows
from (6.6) that

a(n,ν)
j = −q2−ν

n− j∑
λ=0

q2(n−1−λ)a(λ,ν)
0 (−1) j−1q( j−1)( j−ν)

[
n− j−λ

2

]
∑
i=0

a(n− j−λ−2i,ν)
0 cλ,i

= (−1) j q j( j+1−ν)

n− j∑
λ=0

⎛
⎜⎜⎝

[
n− j−λ

2

]
∑
i=0

(
q2)n− j−λ

a(λ,ν)
0 a(n− j−λ−2i,ν)

0 cλ,i

⎞
⎟⎟⎠ ,

with cλ,i = q2i

((
q2
) j−1;q2

)
i

(q2;q2)i

((
q2
) j ;q2

)
n− j−λ−2i

(q2;q2)n− j−λ−2i

((
q2
)n−λ−2i ;q2

)
i(

(q2)
n− j−λ−2i+2;q2

)
i

. Hence

a(n,ν)
j = (−1) j q j( j+1−ν)

[
n− j
2

]
∑
i=0

⎛
⎝

n− j−2i∑
λ=0

(
q2)n− j−λ

a(λ,ν)
0 a(n− j−λ−2i,ν)

0 cλ,i

⎞
⎠ .

Setting γλ,i = (
q2
)n− j−λ−i

cλ,i in the last identity and using Lemma 3.5 yields

a(n,ν)
j = (−1) j q j( j+1−ν)

[
n− j
2

]
∑
λ=0

(
q2)i

⎛
⎜⎜⎝

[
n− j
2

]
−i∑

θ=0

a(n− j−2i−2θ,ν)
0

⎛
⎝

n− j−2i−θ∑
λ=0

γλ,i

⎞
⎠
⎞
⎟⎟⎠ ,

which can be rewritten as

a(n,ν)
j = (−1) j q j( j+1−ν)

[
n− j
2

]
∑
i=0

a(n− j−2i,ν)
0

(
q2)i

((
q2
) j ; q2

)
i(

q2; q2
)

i
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×
⎛
⎜⎝

i∑
θ=0

(
q2)2θ

((
q2
) j−1; q2

)
θ(

q2; q2
)
θ

×
⎛
⎜⎝

n− j−2i∑
λ=0

(
q2)λ

((
q2
) j ; q2

)
i+λ(

q2; q2
)

i+λ

((
q2
)1+i+λ−θ ; q2

)
1((

q2
)1+i+λ; q2

)
1

⎞
⎟⎠
⎞
⎟⎠ .

Finally, we use Lemma 3.3 and the proposition follows. ��
Remark 6.3 Notice that Proposition 6.2 also holds true for every nonnegative integers
n and j since, when j > n, then, by (6.3), both members become identically zero.

Lemma 6.4 For n = 0, 1, 2, . . . and ν > 0 fixed, the sequence
{

Jν

(
q1+n jkν; q2

)}
k∈N

is uniformly bounded (with respect to n).

Proof One must show that there exists C , independent of k and n, such that

∣∣∣Jν

(
q1+n jkν; q2)∣∣∣ ≤ C

for every k and n. Using Theorem A we may write, for k large enough,

Jν

(
q1+n jkν; q2) = Jν

(
q1+n−k+ε

(ν)
k ; q2).

This suggests dividing the proof in two cases, according to the behavior of n − k .
(i) When k − n > 0 is sufficiently large then, by Corollary 3 of [26],

jk−n−1,ν = q1+n−k+ε
(ν)
k−n−1 < q1+n−k+ε

(ν)
k = q1+n jkν < q1+n−k .

Therefore, if n ∈ N then q1+n jkν ∈ ]
jk−n−1,ν , q1+n−k

[
, whenever k − n > 0 is

sufficiently large. Now, by definition,

Jν

(
jk−n−1,ν; q2) = 0, (6.7)

and, by virtue of (12) in [18, p. 1205], for large (positive) values of k − n,

Jν

(
q1+n−k; q2) ≤

(−q2,−q2(ν+1); q2
)
∞(

q2; q2
)
∞

q(k−n+ν)(k−n−1). (6.8)

Moreover, it follows from Theorem A that

]
jk−n−1,ν , q1+n−k

[
⊂
]
q1+n−k+α

(ν)
k−n−1 , q1+n−k

[
.

By Corollary 2 of [26], the function Jν

(
x; q2

)
is monotone in the interval]

jk−n−1,ν , q1+n−k
[
. Hence, by (6.7) and (6.8),

∣∣Jν

(
q1+n jkν; q2

)∣∣ is bounded when-
ever k − n is sufficiently large (positive).
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(ii) Now, let us consider k − n bounded above. Then n − k is bounded below. Thus,

if ν > 0,
∣∣Jν

(
q1+n jkν; q2

)∣∣ =
∣∣∣Jν

(
q1+n−k+ε

(ν)
k ; q2

)∣∣∣ is bounded. ��

6.2 Behavior of J′�
(
qjk�; q2

)

The asymptotic behavior of J ′
ν

(
q jkν; q2

)
when k → ∞ was recently investigated

[26, Lemma 1], combining the asymptotic properties of the infinite q-shifted fac-
torial (z; q)∞ from [29] with the ideas developed in [47]. We provide here a more
direct proof, based only on the definition of the Hahn–Exton q-Bessel function and
its derivative.

Lemma 6.5 For large values of k,

J ′
ν( jkν; q2) = Aν(q) q−

(
k+ ν

2−1−ε
(ν)
k

)2
Sk,

where Aν(q)= 2
(

q2(ν+1);q2
)

∞(
q2;q2

)
∞

q
(ν−1)(ν−3)

4 and lim infk→∞ |Sk |>0.

Proof We will present only the main steps of the proof. Computing the derivative of
the function Jν(z; q2) and setting z = jkν , gives

J ′
ν( jkν; q2) = 2

(
q2(ν+1); q2

)
∞(

q2; q2
)
∞

∞∑
n=0

(−1)n nqn(n+1)

(q2(ν+1), q2; q2)n

(
jkν

)2n+ν−1
.

By Theorem A, jkν = q−k+ε
(ν)
k , and the above identity becomes

J ′
ν( jkν; q2) = Aν(q) q−

(
k+ ν

2−1−ε
(ν)
k

)2
Sk , (6.9)

where Aν(q)= 2
(

q2(ν+1);q2
)

∞(
q2;q2

)
∞

q
(ν−1)(ν−3)

4 and Sk =
∞∑

n=0
(−1)n nq

(
n−k+1/2+ε

(ν)
k

)2
(q2(ν+1),q2;q2)n

. Con-

sidering m = n − k, straightforward manipulations lead to

(−1)k Sk =
∞∑

m=−k

(−1)m mq
(

m+1/2+ε
(ν)
k

)2
(q2(ν+1), q2; q2)m+k

.

Thus, if p is a positive integer,

(−1)k Sk =
−(2p+2)∑

m=−k

F (ν)
m,k(q) +

2p∑
m=−(2p+1)

F (ν)
m,k(q) +

∞∑
m=2p+1

F (ν)
m,k(q),
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with

F (ν)
m,k(q) = (−1)m mq

(
m+1/2+ε

(ν)
k

)2
(q2(ν+1), q2; q2)m+k

.

Hence,

|Sk | ≥
∣∣∣∣∣∣

2p∑
m=−(2p+1)

F (ν)
m,k(q)

∣∣∣∣∣∣ −
−(2p+2)∑

m=−k

∣∣∣F (ν)
m,k(q)

∣∣∣ −
∞∑

m=2p+1

∣∣∣F (ν)
m,k(q)

∣∣∣ .

Since this estimate is independent of p, one can resort to (2.6)–(2.8) to show that the
last two sums on the right side of the previous inequality tend to zero when k → ∞.
Moreover, as k → ∞,

2p∑
m=−(2p+1)

F (ν)
m,k(q) = 1(

q2(ν+1),q2;q2
)

∞

2p∑
m=−(2p+1)

(−1)mmq
(

m+1/2
)2

+ o(1)

= q1/4(
q2(ν+1),q2;q2

)
∞

2p∑
m=0

(−1)m(2m + 1)qm(m+1) + o(1).

Therefore,

lim inf
k→∞ |Sk | ≥ q1/4(

q2(ν+1), q2; q2
)
∞

∣∣∣∣∣
∞∑

i=0

(−1)i (2i + 1)qi(i+1)

∣∣∣∣∣ . (6.10)

Identity (10.4.9) of Corollary 10.4.2 due to Jacobi [15, p. 500] guarantees that

∞∑
i=0

(−1)i (2i + 1)qi(i+1) =
∞∏

i=1

(
1 − q2i )3 > 0. (6.11)

The lemma now follows from (6.9), (6.10) and (6.11). ��

Notice that the above lemma implies that J ′
ν( jkν; q2) = O (

q−k(k+ν−2)
)
as k → ∞.

6.3 Sufficient conditions

Recall the notation V +
q = {qn : n = 0, 1, 2, . . .} for the support points of the q-

integral (2.3) in [0, 1] and the concept of a q-linear Hölder function in V +
q defined in

the introduction. In [25] the following upper bound for basic Fourier–Bessel coefficient
(4.2) has been obtained. However, the uniform convergence of basic Fourier–Bessel
expansions requires the slightly more restrictive conditions of Theorem 1.2 .
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Uniform convergence of basic Fourier–Bessel series on a q-linear grid

Theorem 6.6 If the function f is q-linear Hölder of order λ > 0 in V +
q ∪ {q−1}, with

t− 1
2 f (t) ∈ L2

q(0, 1) and the limit limx→0+ f (x) = f (0+) is finite, then

∣∣∣∣
∫ 1

0
t f (t)Jν(q jkν t; q2)dq t

∣∣∣∣
≤ (1 − q)qν−1

jkν

∣∣∣ f
(
q−1)Jν+1(q jkν; q2)

∣∣∣

+ (1 − q)q
ν−3
2

jkν

η
1
2
k,ν

⎛
⎝ q

ν+1
2 M1

(1 − q)
1
2
(
1 − q2α

) 1
2

+ q
ν
2 − q− ν

2

q
1
2 − q− 1

2

√
M2

⎞
⎠ ,

where M1 and M2 are independent of k and ηk,ν is given by (4.3).

The proof of the main result depends on a refinement of the above estimates. We start
proving the following identity.

Lemma 6.7 Let ν > 0. If f is a function such that limx→0+ f (x) < +∞, then

∫ 1

0
t f (t)Jν(q jkν t; q2)dq t

= (1 − q)qν−2 f
(
q−1

)
Jν(q jkν; q2)

j2kν

− qν−2

j2kν

[(
q

ν
2 − q− ν

2

)(
q

ν
2

∫ 1

0
Jν(q jkν t; q2)

f (qt)

t
dq t

− q− ν
2

∫ 1

0
Jν(q jkν t; q2)

f (t)

t
dq t

)

− q
ν
2

(
q

ν
2

∫ 1

0
Jν(q jkν t; q2)

f (qt) − f (t)

t
dq t

− q− ν
2

∫ 1

0
Jν(q jkν t; q2)

f (t) − f (t/q)

t
dq t

)]
,

provided all q-integrals converge.

Proof Wewill use the symmetric operator δq notation (2.1). From (3.7) in [25, Propo-
sition 4, p. 329],

δq
[
xν Jν

(
x; q2

)]
δq x

= q− ν
2

1 − q
xν Jν−1

(
q− 1

2 x; q2),

and, using q-integration by parts (2.4) together with the assumption limx→0+ f (x) =
f (0+) < +∞,

∫ 1

0
t f (t)Jν(q jkν t; q2)dq t
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= (1 − q)qν−1 f
(
q−1

)
Jν+1(q jkν; q2)

jkν

− (1 − q)q
ν−3
2

jkν

×
[
−q

ν
2 − q− ν

2

q
1
2 − q− 1

2

∫ 1

0
Jν+1(q jkν t; q2) f (t)dq t + q

ν
2

∫ 1

0
Jν+1(q jkν t; q2) f2(t)dq t

]
,

(6.12)

where

f2(t) := tδq f
(
q− 1

2 t
)

δq t
, (6.13)

and the operator δq is given in (2.1).Wewill now rewrite the integrals on the right hand
side of (6.12). Using (3.8) of [25, Proposition 4, p. 329], (2.4) and limx→0+ f (x) =
f (0+), the first integral on the right hand side of (6.12) becomes∫ 1

0
Jν+1(q jkν t; q2) f (t)dq t = (1 − q)q

ν−3
2

jkν

∫ 1

0
Jν(q jkν t; q2)

t−νδq

[
tν f

(
q

1
2 t
)]

δq t
dq t .

Evaluating the right hand side using (2.2 ),

∫ 1

0
Jν+1(q jkν t; q2) f (t)dqt = −q

ν−2
2

jkν

[
q

ν
2

∫ 1

0
Jν(q jkν t; q2)

f (qt)

t
dq t

− q− ν
2

∫ 1

0
Jν(q jkν t; q2)

f (t)

t
dq t

]
. (6.14)

The evaluation of the second q-integral on the right side of (6.12) is similar and
provides

∫ 1

0
Jν+1(q jkν t; q2) f2(t)dqt

= q
ν−1
2

(1 − q) jkν

×
[

q
ν
2

∫ 1

0
Jν(q jkν t; q2)

f (qt) − f (t)

t
dq t

− q− ν
2

∫ 1

0
Jν(q jkν t; q2)

f (t) − f
( t

q

)
t

dq t

]
. (6.15)

Finally, the lemma follows by substituting (6.14) and (6.15) into (6.12) and using the
identity (4.4). ��

Remark 6.8 To assure the convergence of all q-integrals involved in the previous
lemma, one is required to assume the same sufficient conditions of Theorem 1.2.

We are now in conditions to prove our main result. The beef of the proof consists of
finding an n-independent (convergent) upper bound for the q-Fourier–Bessel series.
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Uniform convergence of basic Fourier–Bessel series on a q-linear grid

Proof of Theorem 1.2 As observed before, the assumptions of Theorem 1.2 allow the
use of Lemma 6.7, yielding

∣∣∣∣
∫ 1

0
t f (t)Jν(q jkν t; q2)dqt

∣∣∣∣

≤
(1 − q)qν−2

∣∣∣ f
( 1

q

)
Jν(q jkν; q2)

∣∣∣
j2kν

+ qν−2

j2kν

[∣∣∣q ν
2 − q− ν

2

∣∣∣
(

q
ν
2

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (qt)

t
dq t

∣∣∣∣
+ q− ν

2

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (t)

t
dq t

∣∣∣∣
)

+ q
ν
2

(
q

ν
2

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (qt) − f (t)

t
dq t

∣∣∣∣
+ q− ν

2

∣∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (t) − f
( t

q

)
t

dq t

∣∣∣∣∣
)]

. (6.16)

Employing the q-Hölder type inequality [27, Th. 3.4, p. 346] with p = 2, the four
q-integrals appearing on the right side of (6.16) can be estimated as follows:

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (qt)

t
dq t

∣∣∣∣ ≤
(∫ 1

0
t J 2

ν (q jkν t; q2)dqt

) 1
2

(∫ 1

0

f 2(qt)

t3
dqt

) 1
2

≤ η
1
2
kν

(∫ 1

0

f 2(qt)

t3
dqt

) 1
2

, (6.17)

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (t)

t
dq t

∣∣∣∣ ≤ η
1
2
kν

(∫ 1

0

f 2(t)

t3
dqt

) 1
2

, (6.18)

∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (qt) − f (t)

t
dq t

∣∣∣∣ ≤ η
1
2
kν

(∫ 1

0

( f (qt) − f (t))2

t3
dqt

) 1
2

,

(6.19)

∣∣∣∣∣
∫ 1

0
Jν(q jkν t; q2)

f (t) − f
( t

q

)
t

dq t

∣∣∣∣∣ ≤ η
1
2
kν

⎛
⎜⎝
∫ 1

0

(
f (t) − f

( t
q

))2
t3

dqt

⎞
⎟⎠

1
2

.

(6.20)

Now, by virtue of the assumption t− 3
2 f (t) ∈ L2

q [0, 1], one can write the q-integral as
an infinite convergent sum

∫ 1

0

f 2(qt)

t3
dqt
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= (1 − q)

∞∑
n=0

qn f 2(qn+1)

q3n

= (1 − q)q2
∞∑

n=0

(
f (qn+1)

qn+1

)2

= S < +∞, (6.21)

and ∫ 1

0

f 2(t)

t3
dqt = (1 − q)

∞∑
n=0

(
f (qn)

qn

)2

= T < +∞ . (6.22)

Moreover, since f is q-linear Hölder of order λ > 1 in V +
q ∪ {

q−1
}
, there exist

constants U and W such that

∫ 1

0

( f (qt) − f (t))2

t3
dqt = (1 − q)

∞∑
n=0

(
f
(
qn+1

) − f
(
qn
))2

q2n

≤ (1 − q)U 2
∞∑

n=0

q2αn

q2n
= (1 − q)U 2

1 − q2(α−1)
, (6.23)

and

∫ 1

0

(
f (t) − f

( t
q

))2
t3

dqt = (1 − q)

∞∑
n=0

(
f
(
qn
) − f

(
qn−1

))2
q2n

≤ (1 − q)W 2
∞∑

n=0

q2αn

q2n
= (1 − q)W 2

1 − q2(α−1)
. (6.24)

The constants S ≡ Sq( f ), T ≡ Tq( f ),U ≡ Uq( f ) and W ≡ Wq( f ) in (6.21), (6.21),
(6.23) and (6.24) are independent of k. Notice also that the extra condition involving
the point q−1 can be removed (or neglected) since it only affects the choice of the
constant W .

Introducing inequalities (6.21), (6.22), (6.23) and (6.24) into inequalities (6.17),
(6.18), (6.19) and (6.20), respectively, and using (6.16), gives:

∣∣∣∣
∫ 1

0
t f (t)Jν(q jkν t; q2)dq t

∣∣∣∣ ≤
(1 − q)qν−2

∣∣∣ f
( 1

q

)
Jν(q jkν; q2)

∣∣∣
j2kν

+ qν−2η
1
2
k

j2kν

[∣∣∣q ν
2 − q− ν

2

∣∣∣
(

q
ν
2
√

S + q− ν
2
√

T
)

+ q
ν
2

⎛
⎝q

ν
2

√
(1 − q)U 2

1 − q2(α−1)
+ q− ν

2

√
(1 − q)W 2

1 − q2(α−1)

⎞
⎠
⎤
⎦ ,
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Uniform convergence of basic Fourier–Bessel series on a q-linear grid

or, equivalently,

∣∣∣∣
∫ 1

0
t f (t)Jν

(
q jkν t; q2)dqt

∣∣∣∣ ≤ 1

j2kν

{
C1

∣∣∣Jν

(
q jkν; q2)∣∣∣+ C2

(
ηk,ν

) 1
2

}
,

where C1 and C2 depend on f , ν and q, but not on k. Thus, the absolute value of the
kth term in (6.1) can be bounded as follows:∣∣∣a(ν)

k ( f ) Jν

(
qn+1 jkν; q2)∣∣∣

=
∣∣∣∣
(

1

ηk,ν

∫ 1

0
t f (t)Jν

(
q jkν t; q2)dq t

)
Jν

(
qn+1 jkν; q2)∣∣∣∣

≤
⎧⎨
⎩

C1
∣∣Jν

(
q jkν; q2

)∣∣
j2kνηk,ν

+ C2

j2kνη
1
2
k,ν

⎫⎬
⎭
∣∣∣Jν

(
q1+n jkν; q2)∣∣∣

≤
⎧⎨
⎩

qC1

jkν

∣∣J ′
ν

(
jkν; q2

)∣∣ + q
1
2 C2

j
3
2

kν

∣∣J ′
ν

(
jkν; q2

)∣∣ 12 ∣∣Jν

(
q jkν; q2

)∣∣ 12

⎫⎬
⎭
∣∣∣Jν

(
q1+n jkν; q2)∣∣∣ ,

(6.25)

using (4.3). To deal with the first term in (6.25), one uses Theorem A and Lemmas 6.4
and 6.5 to assure the existence of a constant M > 0, independent of k and n, such that

∣∣Jν

(
q1+n jkν; q2

)∣∣
jkν

∣∣J ′
ν

(
jkν; q2

)∣∣ ≤ Mqk .

By Proposition 6.1, the second term in (6.25) reads

∣∣Jν

(
q1+n jkν; q2

)∣∣
j
3
2

kν

∣∣J ′
ν

(
jkν; q2

)∣∣ 12 ∣∣Jν

(
q jkν; q2

)∣∣ 12 =
∣∣Jν

(
q jkν; q2

)∣∣ 12
j
3
2

kν

∣∣J ′
ν

(
jkν; q2

)∣∣ 12
∣∣∣Pn

(
j2kν; q

)∣∣∣ .

From (6.2), Proposition 6.7 and (6.4) it follows that, for all n,

lim
k→∞

∣∣∣∣∣
Pn
(

j2kν; q
)

a(n,ν)
n ( j2kν)

n

∣∣∣∣∣ = 1, and Pn
(

j2kν; q
) = O

(
qn(n+1−ν) j2n

kν

)
as k → ∞.

Combining Theorems A and C with Lemma 6.5, this allows to bound the second term
in (6.25),

Aqk2+νk+n(n+1−ν)−2kn = Aq

(
n−k− ν−1

2

)2− (ν−1)2
4 qk ≤ Bqk,

since ε
(ν)
k (q) > 0 and ε

(ν)
k (q) = O(q2k)when k → ∞ (see (2.8) and (2.6)). Since the

constants A and B are positive and independent of k and n, we finally conclude that

∣∣∣a(ν)
k ( f ) Jν

(
qn+1 jkν; q2)∣∣∣ = O

(
qk
)

as k → ∞.
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This proves the uniform convergence of the basic Fourier–Bessel series (4.1) on the
set V +

q . ��
Remark 6.9 The q-linear Hölder condition can be slightly relaxed. Indeed, it suffices
that f satisfies the almost q-linear Hölder condition [24, p. 105], which means that
the condition only needs to be satisfied for all integers n such that n ≥ n0, where n0
is a positive integer.

7 Examples

We conclude with some explicit examples of uniformly convergent Fourier–Bessel
series on a q-linear grid.

Example 7.1 Consider f (x) := xν . Using the power series expansion of Jν(x; q2) and
the definition of the q-integral, a calculation shows that

∫ 1

0
tν+1 Jν(q jkν t; q2)dqt = 1 − q

q jkν

Jν+1(q jkν; q2)

and (4.2)–(4.3) gives

an(xν) = − 2

qν jkν

1

J ′
ν( jkν; q2)

.

It is straightforward to check that the function f (x) = xν is q -linear Hölder of order
ν and, if ν > 1, that

x− 3
2 f (x) = xν− 3

2 ∈ L2
q [0, 1], lim

x→0+ xν = 0.

Thus, by Theorem 1.2, we conclude that the q -Fourier–Bessel series S(ν)
q
[
xν
]
con-

verges uniformly on V +
q = {qn : n = 0, 1, 2, . . . } whenever ν > 1. Hence, by

Theorem 5.2, we have

xν = −2 q−ν
∞∑

k=1

Jν(q jkνx; q2)

jkν J ′
ν( jkν; q2)

, x = qn, n = 0, 1, 2, . . . .

The convergence of the expansion of xν in classical Fourier–Bessel series was studied
in [48, §18.22] using contour integral methods.

Example 7.2 Consider gν,μ(x; q) ≡ g(x; q) := xν (x2q2;q2)∞
(x2q2μ−2ν ;q2)∞ , with |x | < 1 and

μ > ν > − 1
2 . Using the q-binomial Theorem [31, (1.3.2)] we have

g(x; q) = xν

1 − x2

[ ∞∑
n=0

(q2μ−2ν; q2)n

(q2; q2)n
x2n

]−1

.
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The limit relation

lim
q→1−

∞∑
n=0

(q2μ−2ν; q2)n

(q2; q2)n
x2n =

∞∑
n=0

(2μ − 2ν)n

n! x2n = (1 − x2)−2μ+2ν ,

shows that g(x; q) is a q-analogue of g(x) = xν(1 − x2)2μ−2ν−1. We can expand
g(x; q) in uniform convergent q-Fourier–Bessel series. Setting x = q jkν in formula
(4.11) from [1], and using (4.2), we find

∫ 1

0
t g(t; q)Jν(q jkν t; q2)dq t = (1 − q)(q jkν)

ν−μ (q2; q2)∞
(q2μ−2ν; q2)∞

Jμ(q jkν; q2).

Therefore, (4.2)–(4.3) enables one to write

a(ν)
k

(
g(x; q)

) = −2q1−μ
(

jkν

)ν−μ (q2; q2)∞
(q2μ−2ν; q2)∞

Jμ

(
q jkν; q2

)
Jν+1

(
q jkν; q2

)
J ′
ν

(
jkν; q2

) .

It can be checked that g(x; q) is q-linear Hölder of order ν + 2 . Also, x− 3
2 g(x; q) ∈

L2
q [0, 1] if ν > 1 and limx→0+ g(x; q) = 0. Thus, we can apply Theorem 1.2

to conclude that the q-Fourier series S(ν)
q
[
g(x; q)

]
converges uniformly on V +

q =
{qn : n = 0, 1, 2, . . . } whenever ν > 1. Hence, by Theorem 5.2, we have

xν(x2q2; q2)∞
(x2q2(μ−ν); q2)∞

= −2 q1−μ
(
q2; q2

)
∞(

q2(μ−ν); q2
)
∞

∞∑
k=1

( jkν)
ν−μ Jμ

(
q jkν; q2

)
Jν

(
q jkνx; q2

)
Jν+1

(
q jkν; q2

)
J ′
ν( jkν; q2)

,

x = qn, n = 0, 1, 2, . . . .

Notice that choosing μ = ν + 1 in the latter example one obtains the first one.
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